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The inequality and its application of algebroid functions
on annulus concerning some polynomials

By HONG YAN XU (Shangrao) and ZHAO JUN WU (Xianning)

Abstract. The main purpose of this paper is to investigate the value distribution
of algebroid functions on annulus, and establish the second fundamental theorem of
algebroid functions on annulus concerning some polynomials, which is an improvement
of the previous results given by Tan. By applying this inequality, we obtain three results
of algebroid functions on annulus concerning its derivatives and some polynomials.

1. Introduction

We first assume that the reader is familiar with the basic results and the
standard notations of Nevanlinna’s value distribution theory of meromorphic func-
tions such as m(r, f), N(r, f), T(r, f),... (see HAYMAN [6], YANG [29], YT and
YANG [30]). As we know, research on the value distribution of meromorphic func-
tions is very active in the field of complex analysis. It is well known that the
Nevanlinna theory plays an important role in studying the value distribution of
meromorphic functions. In the past one hundred years, there were many classic
theorems and results in this respect, such as: the first and second main theorem,
lemma on the logarithmic derivatives, the five values theorem, etc. It is also of
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interest to extend some classic theorems and results of value distribution of mero-
morphic functions in the whole complex plane to angular domains, unit disc, etc.
For example, SHEA and SONS [20] in 1986 studied the value distribution theory
for meromorphic functions of slow growth in the disk, and FANG [4] in 1999 dis-
cussed the uniqueness of meromorphic functions sharing some values and sets in
the unit disc, Valiron, Yang, Zhang, Wu, etc. had paid consideration attention
to the singular direction of meromorphic functions by using the Nevanlinna char-
acteristic function in the angular domain, and obtained some important results
on the existence of some singular directions such as: Borel direction, Julia di-
rection, Nevanlinna direction (see [25]-[26], [29], [33]), ZHENG [31]-[32] in 2000s
gave some interesting uniqueness theorems of meromorphic functions by using the
Tujsi characteristic function in the angular domain. Besides, there were also a lot
of papers focusing on the value distribution of meromorphic functions in the unit
disc and angular domain, see [13]-[15], [18]-[19], [24], [28], [30], [33].

In fact, the whole complex plane, the unit disc and the angular domain can
all be regarded as a single connected region, in other words, the theorems stated
in the above references are only regarded as the uniqueness results in simply
connected region. However, the annulus and the m-punctured complex plane
in the whole complex plane can be called as the double connected domain and
the several connected domain, respectively. Moreover, for meromorphic functions
on the double connected domain and several connected region, there were only
few papers about value distribution and uniqueness. Twelve years ago, KHRYS-
TIYANYN and KONDRATYUK [9]-[10] in 2005 established the Nevanlinna theory for
meromorphic functions on annuli (see also [11]-[12]), whereafter, LUND and YE
[16]-[17] in 2009 and 2010 studied meromorphic functions on annuli with the form
{z: Ry < |z|] < R}, where R; > 0 and Ry < 4o0. In 2009, Cao0 [2] investigated
the uniqueness of meromorphic functions on annuli sharing some values, and es-
tablished an analog of Nevanlinna’s famous five-value theorem. FERNANDEZ [5]
in 2010 further investigated the value distribution of meromorphic functions on
annuli. XU and XUAN [27] in 2012 studied the uniqueness of meromorphic func-
tions sharing some values on annuli. In the same year, CHEN and WU [3] dis-
cussed the Borel exceptional values of meromorphic function and its derivative
on annulus.

Let Hy(2), ..., Ho(z) be analytic functions in a single connected domain SCC
without common zeros, then a k-valued algebroid function f(z) in S C C can be
determined by the irreducible equation (see [7], [21])

\I/(Z, f) = Hk(z)fk + Hk_l(Z)fk_l + -+ Ho(z) =0.
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If k = 1, then f(z) is a meromorphic function in S. The notion of algebroid func-
tions was firstly introduced by H. Poincaré, and G. Darboux pointed out that it
is a very important class of functions (see [8]). As the extension of meromorphic
functions, He, Sun, Gao, etc. investigated the value distribution of algebroid func-
tions in S, and obtained the first and second fundamental theorems, the lemma
on the logarithmic derivatives, etc. of algebroid functions in some single con-
nected domains — the whole complex C, the unit disc D and the angular domain
A. Inspired by the idea in [9]-[10], TAN [22]-[23] first in 2015 and 2016 studied
the value distribution and uniqueness of algebroid functions on annuli A, and
established some basic results such as the first and second fundamental theorems,
and the Cartan theorem for algebroid functions on annuli A. But there are few
papers focusing on the value distribution of algebroid functions in some double
connected domain and several connected regions.

In this paper, we will further study the value distribution of algebroid func-
tions on annuli. The structure of this paper is as follows. In Section 2, we in-
troduce the basic notations and fundamental theorems of algebroid functions on
annuli. Section 3 gives our main theorems and corollaries including the second
fundamental theorem for algebroid functions on annuli concerning finite many
polynomials and related results for algebroid function concerning its derivation.
Section 4 lists some required lemmas. Section 5 shows the proofs of our main
results and corollaries.

2. Basic notions of algebroid function on annuli

From the Doubly Connected Mapping Theorem [1], it is easy to see that each
doubly connected domain is conformally equivalent to the annulus {z : r < |z] <

R}, 0<r<R<+oc0. If 0 <r < R < 400, take the homothety z — \/%T%, then

the annulus {z : r < |z| < R} is reduced to {z : R%J < |z| < Ry}, where Ry = \/é;
if r =0 and R = 400, then the annulus {z : 7 < |z| < R} is {z: 0 < |z| < 4+00}.
Thus, in two cases, every annulus is invariant with respect to the inversion z — %

Similar to [7], [21], we will show the basic notions and theorems of algebroid
functions on annulus A (see [22]—[23]) as follows. Let Ax(z),..., Ag(z) be analytic
functions on annulus A := {z : R%) < |z| < Ro}(1 < Ry < +00) without common
zeros, then a k-valued algebroid function W(z) on annulus A can be determined

by the irreducible equation (see [22]-]23])

Y(z, W) = Ap(2)W* + A 1 (2)WHF L 4o Ap(2) = 0. (1)
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Let W(z) be a k-valued algebroid function on annulus A and 1 < r < Ry < 4o0.
We denote the notations

Bl
‘Mw
—_

I
—

m(r, W) =

K
1 +
m(r,w;) =7 Z o log™ |w;( ret )|d9,

J

1 [t 1 ("
Ny(r,W) = %/ Mdt, No(r,W) = %/ Mdt,
1 1

mo(r, W) = m(r, W) +m (i W) — om(1, W),

No(r, W) = Ny(r, W) + No(r, W),

1 r
Nprwy =+ [ IOy oy = & [ e g,
! k 1 t 2 1

and

Ny (r, W) = Ny, (1, W) + Ng, (r, W),

where w;(2)(j = 1,2,..., k) is a one-valued branch of W (z), ny(t, W) and na(t, W)
are the counting functions of poles of the function W(z) in {z : t < |z] < 1}
and {z : 1 < |z| < t} (counting multiplicity), respectively, and n,, (¢, W) and
Ng, (t, W) are the counting functions of branch points of the function W(z) in
{z 1t < |z] <1} and {z : 1 < |z| < t}, respectively. N,(r,W) is the density
index of branch point of W(z) on annulus A (see [22]—[23]). The Nevanlinna
characteristic of algebroid function W on annulus A is defined by

To(r, W) = mo(r, W) + No(r, W).

Similarly, for a € C := C U {00}, we have

1 1 1
M) ) o)

Pt wig) 1 (7 nelt )
IR A S Sy _ Al gt
/1 t + k/l t ’

T =

, ﬁ) and na(t, ﬁ) are the counting functions of poles of the func-

tion m in{z:t<|z] <1} and {z : 1 < |z| < t} (counting multiplicity),

where n; (t

respectively. In addition, we use 7 (¢, ﬁ), na(t, ﬁ) to denote the count-

ing functions of distinct poles of the function A in {z : ¢t < [z| < 1} and
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{z:1 < |z| < t}. Similarly, we have the notations Ny (r, W), No(r, W), No(r, W),
and No(’l”, ﬁ)

Let W (%) be an algebroid function on annulus A. If there are A branches of
W (z) such that W(zg) = a, a(# c0), then the fractional power series of W(z) is

W(Z):a—kbr(z—zo)% +b7+1(z—20)711 +oe, (2)
and ng(r,a) = no(r, 7W17a) = > 7, where ng(r,a) is the counting function of

=a

zeros of W(z) — a on annulus A (counting multiplicity). If there are A branches
of W (z) such that W (zy) = oo, then the fractional power series of W (z) is

—r41

W(z) =b_r(z— Zo)_§ +b 1(z—20)7x +---, (3)

and no(r,00) = no(r, W) = > 7, where ng(r,c0) is the counting function of
=00

poles of W (z)—a on the annulus A (counting multiplicity), z = zg is a branch point
of A — 1 degree of W (z) on its Riemann surface .#. Let ng(r, W) be the branch
points of W(z) on its Riemann surface on annulus A, then n,(r, W) => (A —1).
In this paper, we suppose that zero is not a branch point of W (z). Obviously, for
a € C, we have

N S T P )

and especially, Ny(r, %) = %No(ﬁ A%,) as a = 0, and Ny(r,W) = %N{)(T’, Aik) as
a = co. From the above definitions, we have some connections with the classical

characteristics of algebroid functions in C as follows:
(a) No(r,W)=N(r,W)+ N(+, W) —2N(1,W), for r > 1,
(b) To(r,W)=T(r,W)+T(,W)—-2T(1,W), for r > 1,
(c) T(r,W)—=2T(1,W) <To(r, W) <T(r,W).
In fact, suppose W (0) # oo, then we have ny(t, W) =n(1,W) —n(t, W),0 <
t <1and na(t, W) =mn(t,W)—n(1,W),t > 1. Thus

dt

No(r, W) = [ n(1, W) t—n(t,W) it + /j n(t, W) ;n(l,W)

1 1 T T
:/ n(l,W)dt_/ n(t’W)dt—i—/ n(t, W)dt—/ n(l,W)dt
t Lt Lt Lt

Lt " n(t
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T 1
+/ Mdtf/ Mdtfn(l,W)logr
0 t 0 t
— N(r W) + N(2, W) — 2N (1, W),
r

Similarly, we can prove the case W (0) = oco. Because T(r,WW) = m(r,W) +
N(r,W), from the above equality, then relation (b) follows immediately, which
implies (c).

In addition, let W (z), Wi(z), Wa(2) be k-valued algebroid functions on an-
nulus A. The following properties will be used in this paper (see [22]):

1
To(r,W) =Ty (r, W) ,

%1%
max {To(r, Wl . W2)7 To (7", VV1> ,To(r, W1 + Wg)}ST()(T, W1)+T0(T, W2)+O(1),
2

To (7“, VV1> =To(r, W)+ O(1), for every fixed a € C.
—a

3. Our main results

In 2016, the second fundamental theorem for algebroid functions on annulus
A was first obtained by Tan [22]. Here we show this theorem as follows.

Theorem 3.1 (The second fundamental theorem for algebroid function on
annuli [22, Lemma 3.5]). Let W(z) be a k-valued algebroid function which is
determined by (1) on annulus A = {z : R%) < |z| < Ro}, where 1 < Ry < +o0.
Let a1, as,...,aq be q distinct complex numbers in the extended complex plane C.
Then

(q —2k)To(r,W) < ZNO <r, W i > — Ni(r,W) + So(r, W), (4)

aj
Ny (r,W) is the density index of all multiple values including finite or infinite,
every T multiple value counts T — 1, and

!

LAWES W
So(r, W) =my <7‘, W) + ;mo (r, W aj) +0(1).
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Remark 3.1. From [22], we know that (4) can be represented the following

form

(g —2k)To(r,W) < ZNQ <7“, I/Via> + So(r,W).

Remark 3.2. For the remainder Sy(r, W) in (4), from [10, Theorem 1] and [22],
we have

(1) in the case Ry = 400,
So(r, W) = O(log(rTo(r, W)))

for r € (1,+00) outside a set of finite linear measure;

(ii) in the case Ry < +o0,

e = 0 (e (TA210Y)

for r € (1, Ry) except for the set E of r such that [}, (Rtﬂiir_r) < +oo0.

Definition 3.1. Let W(z) be a k-valued algebroid function which is deter-
mined by (1) on annulus A = {z: RLO < |z] < Rp}, where 1 < Ry < +00. Then
the order of W (z) is defined by

log™ To(r, W)

p(W) = lirﬁilg og ) if Ry = +o0,
log™ To(r, W
p(W) = limsup M(lr’), if Ry < +o0.

T*}RQ log Rg*T

Remark 3.3. From Definition 3.1 and Remark 3.2, we have
(i) in the case Ry = +o0, if p(W) < +0o0, then

SO(Ta W) = O(lOg T) = O(TO(Tv W))
as r — +o0; if p(W) = 400, then
So(r, W) = O(log(rTo(r, W))) = o(To(r, W))

if » — 400 outside a set of finite linear measure;
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(ii) in the case Ry < +o0, if p(W) € [0, +00), then

So(r, W) =0 <1og (M)) ~0 (log <R01_ r)) ,

as r — Rg— except for the set E of r such that fE —dr < 10, and

(Ro—r)
if p(W) = 400, then

e - (e (TA10Y)

as r — Rg— except for the set E of r such that fE # < +o0.

In this paper, we will further investigate the value distribution of algebroid
functions on annulus A, and establish the second fundamental theorem for alge-
broid functions concerning polynomials on the annulus as follows.

Theorem 3.2. Let W(z) be a k-valued algebroid function which is deter-
mined by (1) on annulus A = {z : R%) < |z] < Ro}, where 1 < Ry < 400, and
Q;(2)(j =1,2,...,q) be q distinct polynomials of degree < d in z, then

[q — 2k — (4k‘ — 3)d]T0(T, W) < zq:No

j=1

where So(r, W) is stated as in Remark 3.3.

When k = 1, we get the second fundamental theorem for meromorphic func-
tions concerning polynomials on annulus

Corollary 3.1. Let f(z) be a meromorphic function on annulus A = {z :
RLO < |z| < Ro}, where 1 < Ry < 400, and Q;(2)(j = 1,2,...,q) be ¢ distinct
polynomials of degree < d in z, then

0= 2= (= 3T ) < 3 No (1= g7 ) + 5ol

j=1
By applying Theorem 3.2, we can obtain the following theorems.

Theorem 3.3. Let W(z) be a k-valued algebroid function which is deter-
mined by (1) on annulus A = {z : R%) < |z| < Ro}, where 1 < Ry < 400, and
a,(v=1,2,...,p) and b;(j = 1,2,...,q) be p+q distinct complex constants such
that a, #b; #0 forv=1,2,...,pand j =1,2,...,q then
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[p+q—6(k—1)]To(r,W)

<(q+1)N0< Ml/)+2N0rW ZN0< av)
P () [5 (e) o (e) ems

where Sy(r, W) is stated as in Remark 3.3.

Theorem 3.4. Let W(z) be a k-valued algebroid function which is deter-
mined by (1) on annulus A = {z : R%) < |z] < Rp}, where 1 < Ry < 400, and
Q:(2)(t=1,2,...,9) and G;(# 0)(I = 1,2,...,p) be p+ q distinct polynomials of
degree < d in z, then

[pg — (4k = 3)(1 + d)|To(r, W)

q
<ple0 (T,m) +ZNO< VIM) +SO(7",W),
t=

where So(r, W) is stated as in Remark 3.3.

When Q; = a4, G; = b; and d = 0 in Theorem 3.4, we obtain the following
corollary immediately:

Corollary 3.2. Let W(z) be a k-valued algebroid function which is deter-
mined by (1) on annulus A = {z : R%) < |z] < Ro}, where 1 < Ry < 400, and
ar(t=1,2,...,q) and bj(#0)(l = 1,2,...,p) be p+ ¢ distinct numbers, then

[pg — (6v = 1)|To(r, W)

<NO(T,W)+ptz:N0< Wiz —at) ZNO( W’—bz>

1 1
— |:N0 (7"7 W) + (p — 1)N() ( W/):| + SO(T W)
where So(r, W) is stated as in Remark 3.3.

From Theorem 3.2, we can get Theorem 3.1 immediately when d = 0 and
Qi(z)(j =1,2,...,q) are ¢ distinct numbers. Moreover, we can also obtain the
second fundamental theorem for meromorphic functions concerning polynomials
on annulus. In addition, we can see that Theorem 3.2 is very useful in studying
the value distribution of algebroid function on annulus concerning its derivatives
and polynomials from Theorems 3.3 and 3.4. Our results are a generalization and
improvement of the previous conclusions given by Tan, and Cao.
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4. Some lemmas

To prove Theorem 3.2, we require some lemmas as follows.

Lemma 4.1 (see [22, Lemma 3.3]). Let W (z) be a k-valued algebroid func-
tion which is determined by (1) on annulus A, then

Ny (r, W) < 2(k — 1)To(r, W) + O(1).

Lemma 4.2. Let W (z) be a k-valued algebroid function which is determined
by (1) on annulus A, then

No(r, W) < No(r, W) + jNo(r, W) + (2§ — 1) N, (r, W) + O(1).

PROOF. Suppose W(zp) = a,(# o00). Since W(z) is a k-valued algebroid
function on A, it follows from (2) that

T*j)\/\ ~
T wi(z), w(z0) # 0, c0.

WO (2) = (z — 2)
Hence, z is the pole of WU)(2) with multiplicity jA — 7 if jA —7 > 0. On the
other hand, if zg is the pole of W(z), from (3) we have

THIA R
@i(2),  Wi(z0) # 0, 0.

WO(z) = (2 — 20)~

Therefore,

no(r, W) = 3" (r+ji0+ > (GA-1",

W=o00 W#oo

where (A — 7)T = max{0,j\ — 7}. Since jA —7 < jA -1 < (25 —1)(A —1) as
A>1,and 1 <5 <25 —1, it yields

no(r, W) < S (r+i)+5 > A=1D+2i—1) > (A-1)
W=o0 W#oo W#oo
< no(r, W) + g (r, W) + (25 — D)na(r, W), (®)
where 1, (r, W) = ng, (r, W) + ng, (r, W). Thus, it follows from (5) that
No(r, WD) < No(r, W) + jNo(r, W) + (2j = D)Na(r, W) + O(1).

Therefore, the proof of this lemma is completed. O

Remark 4.1. By Lemmas 4.1 and 4.2, we have

No(r, WD) < No(r, W) + jNo(r, W) 4 2(k — 1)(2j — 1)To(r, W) + O(1).
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Lemma 4.3. Let W (z) be a k-valued algebroid function which is determined
by (1) on annulus A, then for any positive integer j, we have

w )
mo <7"7 W> = SO(Ta W)7

where So(r, W) is stated as in Remark 3.3.

ProOOF. By Remarks 3.2 and 3.3, it yields

TO(Tv W/) = mO(ra W/) + No(?", W/)
!
< mo(r, W) +mg <r, T;I/;) + No(r, W) +0O(1)

< 2T (r, W) + So(r, W).

Hence So(r, W')=Sy(r, W). Similarly, we have Sy (r, W)= Sy(r, W) for j € N.
Thus, it follows that

w ) w@) w w’
7%(“Mf)SW«“Www>+”*”mGWw)+W«“W>+Om

= So (’I’, W)

Therefore, this completes the proof of this lemma. ([

Lemma 4.4. Let W (z) be a k-valued algebroid function which is determined
by (1) on annulus A and is not an algebraic function, and Q(z) be polynomials
in z of degree < d, then

( W+ (2)
"\ W) - Q6)

where So(r, W) is stated as in Remark 3.2.

):%mw;

PRrROOF. Let V(z) = W(z) — Q(z). We first prove that V(z) is a k-valued
algebroid function on annulus A. Substituting W(z) = V(z) + Q(z) into (1),
it leads to

AV = Q)F + A1 ()(V = Q)F 7 + -+ Ag(2) = 0, (6)
and we can rewrite (6) as the following irreducible equation:

Bi(2)VF + By_1(2)VF 1 + -+ + Bo(2) = 0,
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where
Bi(z) = A(2),
Bk_l(z) = Ak_1(z) + Ak(Z)C]iQ(Z),

Bi—j(2) = Ak—j(2) + Ax(2)CiQ(2) + -+ + Ap_j1(2)Ch_; 11 Q(2),

Bo(z) = Ao(2) + Ax(2)Q(2)" + Ak—1(2)Q()* 7! + - + A1(2)Q(2)-
Since Ag(z), ..., Ao(z) are analytic functions on annulus A without common zeros,
thus Bg(z),. .., Bo(z) are analytic functions on annulus A without common zeros.

Hence V(z) is a k-valued algebroid function. Since W(z) is not an algebraic
function and Q(z) is a polynomial, then it follows that

To(r, V) =To(r, W — Q) < To(r, W) + To(r, Q) + O(1),

that is,
50(7", V) = 50(7‘7 W)

Then it follows

o (Y o () 1) = s

Therefore, this completes the proof of this lemma. ([l

Lemma 4.5 (see [9, Theorem 1]). Let f be a non-constant meromorphic
function on annulus A = (R%)’ Ry)(1 < Ry < +00), then
1 .
f (e’ﬂ) ‘ df
r

No (=) - No f)—l/%l 1£( “’>|de+1/2ﬂ1
0 T’f ol7, _27T0 og re 27 J, og

1 271' X
. / log |/ (¢i*)|db,
™ Jo

where 1 <r < Rp.

5. Proofs of Theorems 3.2—3.4.

5.1. The Proof of Theorem 3.2. Since W(z) is a k-valued algebroid func-
tion on annulus A and Qy(z) are polynomials, then W (¥+1)(2) is also a k-valued
algebroid function. Thus, assume that W (4+1) () satisfies the following equation:

Yoz, WD) = B (2) (WD), L By (2) (WD 4 By(2) = 0,
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where Ej(z)(j = 0,1,...,k) are analytic on annulus A, and E;(2)(j =0,1,...,k)
without common zeros. Further, let ¢;(z) = W(z) — Qi(2), (t =1,2,...,q), then
wi(z) (t=1,2,...,q) are also k-valued algebroid functions. Thus, we can assume
that ¢:(2), (t =1,2,...,q) satisfy the following equations:

bi(z,00) = Dek(2)¢) + Dig—1(2)pt "+ -+ + Dio(2) =0,
where Dy ;(2)(t =1,2,...,¢;5 = 0,1,...,k) are analytic on annulus A, and for

any fixed t, D; ;(2)(j = 0,1, ..., k) without common zeros. In view of Lemma 4.4,
it follows that Dy ;(2) = Da(z) = -+ = Dy (%) = Ai and

w(rirtg) = (nh) = (o) = (o)
U w=q,) "Ue) Uiz =0)) "Dyo)’

1 1 1 1
No (r, W — Qt) =No (7”7%) - %NO (7”7 Ye(z, 0 = 0)) .

Let w; = w;(2)(j = 1,2,...,k) be k branches of W(z), then the following
equation

J

)01 BRI 30 S =t (7
A - Qo —~ "wi—Q )

1t=1 j=1

holds, at most except for finite poles of A;, where

A(2) =[(Qe — Q1)+ (Qr — Qe=1)(Qt — Qus1) -+ (Qr — Qg)] 7,

that is, A;(z) is a rational function. Let z = ret?, z = %eie and z = €, substi-

tute (7), by Lemma 4.5 and similar to the argument as in [22], we can deduce

qTO(Tv W)
< To(r, WD) 4 ; Ny (T, VV—Qt) — No (7’, VV(d‘H)) + Qo(r, W), (8)
where

g T (d+1)
Qo(r,W) = m (7“, ) + O(log ).
0 tz:; 0 w0,
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By Lemma 4.2 and Remark 3.3, it follows that

W (d+1)
T W190) = g (W ) 4 N W)

W(d+1)
< No(r, WD) 4 Ty (r, W) — No(r, W) +myg (r, )

W (d+1) _
<o (1 )+ o0+ (@4 DNl W)

+2(2d+ 1)(k — )T (r, W) + O(log ). (9)
Substituting (9) into (8) and combining No(r, W) < To(r, W) + O(1), it leads to

W) <3 L) b @ 2mew) W
qTo(r, W) < N0<7",>—|— d+2)Ty(r, W +m0(r, )
— W —Q: W

+2(2d 4+ 1)(k — 1)To(r, W) + Qo(r, W)

<ZN0 ( W Qt) +[(d+2)+22d + 1)(k — 1)|To(r, W)+ Q1 (r, W),

where Qg = 0 and
W (d+1)

Zmo ( el > + O(log ).

Thus, it follows from Lemma 4.4 that

l[q — 2k — (4k — 3)d|To(r, W) < i Ny

Jj=1

Thus, it means that this proves the conclusion of Theorem 3.2.

5.2. The Proof of Theorem 3.3. Applying Theorem 3.2 for W(z),a, (v =
0,1,...,p) and W'(2),b;(j =0,1,...,q), respectively, it follows that

_av

pTo(r, W) < No(r, W) + ZNO ( ) — Ny(r) + So(r, W), (10)

and

q
1
qTo(r,W') < jz::() No <r, VV’—b) + No(r, W")

_No(T7 W’) —NO (T I/;N> +Sl(7' W) (11)
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where ag = by = 0 and

sy () s e

Thus, from (11) and in view of Ty (r, W) = Ty(r, 37), it yields

"

b]>+0(>

1
qTU(T7 W) = qTO (Ta W)
1 1 w!
< qTQ(T, W/) +qNg <Ta W) —qNy < W’) + gmyo < W) +O(1)
1 "
SqNo( W)-l—NorW ZN0< W/_b>

1 1
— |:(q—1)NQ< WI)+N0(T W)+N0< W’):| +SQ(T W) (12)
where
w" 4q w" W’
SQ(T, W’) = 27’7'1,0 (’I“7 VV/) + jz:;mo (’I", M) =+ qmy (7", W) + 0(1)
By combining (10) with (12), it follows that

(p + Q)TO (T, W)

() Sl

where S3(r, W) = Sa(r, W') + S1(r, W).
Thus, by Lemma 4.2, it means that the conclusions of Theorem 3.3 are proved

easily.
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5.3. The Proof of Theorem 3.4. From (8) and (9), it follows that

(¢ — D)To(r, W) < No(r, W) + ZNO (r, W i Qt) — Ni(r) + Hy(r, W),

where

1
Ni(r) = 2No(r, W) — No(r, W) 4+ Ny (7‘, W(d+1>)

and

TW(d+1)
Zm0< W Qt> Qo = 0.

By applying (4) for W@+ and Gy, then, we conclude from Jensen’s formula that

1 d 1
dt1 2d+2
pTo(r, WD) < No(r, WET2)) 4 N (7"7 W(d+1)> * ZNO <r, W(d+1)—Gl>
=1

- |:N0(T,W(d+1)) + Ny (r )} + Hy(r, WD) (13)

1
P W (2d+2)

where
W(2d+2) W(2d+2)
d+1

When (8) times p, it follows that

q
paTo(r, W) <p> _ No <7",

> + pTy(r, WD)
t=1

1
W —Qy
1
- pNg <7"7 VV(dH)> + pHa(r, W), (14)

where

W (d+1)

W) = émo (n T Qt) +0O(logr).

Substituting (13) into (14), and by Lemma 4.1, Lemma 4.2 and Remark 4.1,
we have

q
pqTo(r, W) <No(r, WD) +p> " N (r, ) - [No(r, W+
t=1

b
W —Q:

1 1
—|—N0 (T‘, I/V(Qd'i'2)> + (p — 1)N0 <’I"7 I/V(d"'l)>:| + HQ(T', W),

and
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[pq — 2(k — 1)(2d + 2)|To(r, W)

< (d+1)No(r, W) +ZN0< W<d+11>— >+pZN0< W= Qt>

=1
1 1
— {No <7’, I/V(Qd‘*‘Q)) + (p—1)No (7" I/V(d"‘l))] + Hs(r, W), (15)

where Hy(r, WD) 4 pH,(r, W) = H3(r, W). From the expression of Hz(r, W)
and (15), by Remark 3.3, and since No(r, W) < To(r, W) + O(1), it follows that

[pg — (4k = 3)(1 + d)|To(r, W)

q ) , 1
<p;NO (T,VV(Z)—Q::(Z)) +;NO (T’ I/V(dJrl)_Gl) + So(r, W).

Therefore, this completes the proof of Theorem 3.4.
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