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The inequality and its application of algebroid functions
on annulus concerning some polynomials

By HONG YAN XU (Shangrao) and ZHAO JUN WU (Xianning)

Abstract. The main purpose of this paper is to investigate the value distribution

of algebroid functions on annulus, and establish the second fundamental theorem of

algebroid functions on annulus concerning some polynomials, which is an improvement

of the previous results given by Tan. By applying this inequality, we obtain three results

of algebroid functions on annulus concerning its derivatives and some polynomials.

1. Introduction

We first assume that the reader is familiar with the basic results and the

standard notations of Nevanlinna’s value distribution theory of meromorphic func-

tions such as m(r, f), N(r, f), T (r, f), . . . (see Hayman [6], Yang [29], Yi and

Yang [30]). As we know, research on the value distribution of meromorphic func-

tions is very active in the field of complex analysis. It is well known that the

Nevanlinna theory plays an important role in studying the value distribution of

meromorphic functions. In the past one hundred years, there were many classic

theorems and results in this respect, such as: the first and second main theorem,

lemma on the logarithmic derivatives, the five values theorem, etc. It is also of
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interest to extend some classic theorems and results of value distribution of mero-

morphic functions in the whole complex plane to angular domains, unit disc, etc.

For example, Shea and Sons [20] in 1986 studied the value distribution theory

for meromorphic functions of slow growth in the disk, and Fang [4] in 1999 dis-

cussed the uniqueness of meromorphic functions sharing some values and sets in

the unit disc, Valiron, Yang, Zhang, Wu, etc. had paid consideration attention

to the singular direction of meromorphic functions by using the Nevanlinna char-

acteristic function in the angular domain, and obtained some important results

on the existence of some singular directions such as: Borel direction, Julia di-

rection, Nevanlinna direction (see [25]–[26], [29], [33]), Zheng [31]–[32] in 2000s

gave some interesting uniqueness theorems of meromorphic functions by using the

Tujsi characteristic function in the angular domain. Besides, there were also a lot

of papers focusing on the value distribution of meromorphic functions in the unit

disc and angular domain, see [13]–[15], [18]–[19], [24], [28], [30], [33].

In fact, the whole complex plane, the unit disc and the angular domain can

all be regarded as a single connected region, in other words, the theorems stated

in the above references are only regarded as the uniqueness results in simply

connected region. However, the annulus and the m-punctured complex plane

in the whole complex plane can be called as the double connected domain and

the several connected domain, respectively. Moreover, for meromorphic functions

on the double connected domain and several connected region, there were only

few papers about value distribution and uniqueness. Twelve years ago, Khrys-

tiyanyn and Kondratyuk [9]–[10] in 2005 established the Nevanlinna theory for

meromorphic functions on annuli (see also [11]–[12]), whereafter, Lund and Ye

[16]–[17] in 2009 and 2010 studied meromorphic functions on annuli with the form

{z : R1 < |z| < R2}, where R1 ≥ 0 and R2 ≤ +∞. In 2009, Cao [2] investigated

the uniqueness of meromorphic functions on annuli sharing some values, and es-

tablished an analog of Nevanlinna’s famous five-value theorem. Fernández [5]

in 2010 further investigated the value distribution of meromorphic functions on

annuli. Xu and Xuan [27] in 2012 studied the uniqueness of meromorphic func-

tions sharing some values on annuli. In the same year, Chen and Wu [3] dis-

cussed the Borel exceptional values of meromorphic function and its derivative

on annulus.

LetHk(z), . . . ,H0(z) be analytic functions in a single connected domain S⊆C
without common zeros, then a k-valued algebroid function f(z) in S ⊆ C can be

determined by the irreducible equation (see [7], [21])

Ψ(z, f) = Hk(z)fk +Hk−1(z)fk−1 + · · ·+H0(z) = 0.
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If k = 1, then f(z) is a meromorphic function in S. The notion of algebroid func-

tions was firstly introduced by H. Poincaré, and G. Darboux pointed out that it

is a very important class of functions (see [8]). As the extension of meromorphic

functions, He, Sun, Gao, etc. investigated the value distribution of algebroid func-

tions in S, and obtained the first and second fundamental theorems, the lemma

on the logarithmic derivatives, etc. of algebroid functions in some single con-

nected domains — the whole complex C, the unit disc D and the angular domain

4. Inspired by the idea in [9]–[10], Tan [22]–[23] first in 2015 and 2016 studied

the value distribution and uniqueness of algebroid functions on annuli A, and

established some basic results such as the first and second fundamental theorems,

and the Cartan theorem for algebroid functions on annuli A. But there are few

papers focusing on the value distribution of algebroid functions in some double

connected domain and several connected regions.

In this paper, we will further study the value distribution of algebroid func-

tions on annuli. The structure of this paper is as follows. In Section 2, we in-

troduce the basic notations and fundamental theorems of algebroid functions on

annuli. Section 3 gives our main theorems and corollaries including the second

fundamental theorem for algebroid functions on annuli concerning finite many

polynomials and related results for algebroid function concerning its derivation.

Section 4 lists some required lemmas. Section 5 shows the proofs of our main

results and corollaries.

2. Basic notions of algebroid function on annuli

From the Doubly Connected Mapping Theorem [1], it is easy to see that each

doubly connected domain is conformally equivalent to the annulus {z : r < |z| <
R}, 0 ≤ r < R ≤ +∞. If 0 < r < R < +∞, take the homothety z 7→ z√

rR
, then

the annulus {z : r < |z| < R} is reduced to {z : 1
R0

< |z| < R0}, where R0 =
√

R
r ;

if r = 0 and R = +∞, then the annulus {z : r < |z| < R} is {z : 0 < |z| < +∞}.
Thus, in two cases, every annulus is invariant with respect to the inversion z 7→ 1

z .

Similar to [7], [21], we will show the basic notions and theorems of algebroid

functions on annulus A (see [22]–[23]) as follows. Let Ak(z), . . . , A0(z) be analytic

functions on annulus A := {z : 1
R0

< |z| < R0}(1 < R0 ≤ +∞) without common

zeros, then a k-valued algebroid function W (z) on annulus A can be determined

by the irreducible equation (see [22]–[23])

ψ(z,W ) = Ak(z)W k +Ak−1(z)W k−1 + · · ·+A0(z) = 0. (1)
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Let W (z) be a k-valued algebroid function on annulus A and 1 < r < R0 ≤ +∞.

We denote the notations

m(r,W ) =
1

k

k∑
j=1

m(r, wj) =
1

k

k∑
j=1

1

2π
log+ |wj(reiθ)|dθ,

N1(r,W ) =
1

k

∫ 1

1
r

n1(t,W )

t
dt, N2(r,W ) =

1

k

∫ r

1

n2(t,W )

t
dt,

m0(r,W ) = m(r,W ) +m

(
1

r
,W

)
− 2m(1,W ),

N0(r,W ) = N1(r,W ) +N2(r,W ),

and

Nx1
(r,W ) =

1

k

∫ 1

1
r

nx1
(t,W )

t
dt, Nx2

(r,W ) =
1

k

∫ r

1

nx2
(t,W )

t
dt,

Nx(r,W ) = Nx1(r,W ) +Nx2(r,W ),

where wj(z)(j = 1, 2, . . . , k) is a one-valued branch ofW (z), n1(t,W ) and n2(t,W )

are the counting functions of poles of the function W (z) in {z : t < |z| ≤ 1}
and {z : 1 < |z| ≤ t} (counting multiplicity), respectively, and nx1

(t,W ) and

nx2
(t,W ) are the counting functions of branch points of the function W (z) in

{z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t}, respectively. Nx(r,W ) is the density

index of branch point of W (z) on annulus A (see [22]–[23]). The Nevanlinna

characteristic of algebroid function W on annulus A is defined by

T0(r,W ) = m0(r,W ) +N0(r,W ).

Similarly, for a ∈ C := C ∪ {∞}, we have

N0

(
r,

1

W − a

)
= N1

(
r,

1

W − a

)
+N2

(
r,

1

W − a

)

=
1

k

∫ 1

1
r

n1(t, 1
W−a )

t
dt+

1

k

∫ r

1

n2(t, 1
W−a )

t
dt,

where n1(t, 1
W−a ) and n2(t, 1

W−a ) are the counting functions of poles of the func-

tion 1
W (z)−a in {z : t < |z| ≤ 1} and {z : 1 < |z| ≤ t} (counting multiplicity),

respectively. In addition, we use n1(t, 1
W−a ), n2(t, 1

W−a ) to denote the count-

ing functions of distinct poles of the function 1
W−a in {z : t < |z| ≤ 1} and
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{z : 1 < |z| ≤ t}. Similarly, we have the notations N1(r,W ), N2(r,W ), N0(r,W ),

and N0(r, 1
W−a ).

Let W (z) be an algebroid function on annulus A. If there are λ branches of

W (z) such that W (z0) = a, a( 6=∞), then the fractional power series of W (z) is

W (z) = a+ bτ (z − z0)
τ
λ + bτ+1(z − z0)

τ+1
λ + · · · , (2)

and n0(r, a) = n0(r, 1
W−a ) =

∑
W=a

τ , where n0(r, a) is the counting function of

zeros of W (z) − a on annulus A (counting multiplicity). If there are λ branches

of W (z) such that W (z0) =∞, then the fractional power series of W (z) is

W (z) = b−τ (z − z0)−
τ
λ + b−τ+1(z − z0)

−τ+1
λ + · · · , (3)

and n0(r,∞) = n0(r,W ) =
∑

W=∞
τ , where n0(r,∞) is the counting function of

poles ofW (z)−a on the annulus A (counting multiplicity), z = z0 is a branch point

of λ− 1 degree of W (z) on its Riemann surface M̃ . Let nx(r,W ) be the branch

points of W (z) on its Riemann surface on annulus A, then nx(r,W ) =
∑

(λ− 1).

In this paper, we suppose that zero is not a branch point of W (z). Obviously, for

a ∈ C, we have

n0

(
r,

1

W − a

)
= n0

(
r,

1

ψ(z, a)

)
, N0

(
r,

1

W − a

)
= N0

(
r,

1

ψ(z, a)

)
,

and especially, N0(r, 1
W ) = 1

kN0(r, 1
A0

) as a = 0, and N0(r,W ) = 1
kN0(r, 1

Ak
) as

a =∞. From the above definitions, we have some connections with the classical

characteristics of algebroid functions in C as follows:

(a) N0(r,W ) = N(r,W ) +N( 1
r ,W )− 2N(1,W ), for r > 1,

(b) T0(r,W ) = T (r,W ) + T ( 1
r ,W )− 2T (1,W ), for r > 1,

(c) T (r,W )− 2T (1,W ) ≤ T0(r,W ) ≤ T (r,W ).

In fact, suppose W (0) 6=∞, then we have n1(t,W ) = n(1,W )−n(t,W ), 0 <

t < 1 and n2(t,W ) = n(t,W )− n(1,W ), t > 1. Thus

N0(r,W ) =

∫ 1

1
r

n(1,W )− n(t,W )

t
dt+

∫ r

1

n(t,W )− n(1,W )

t
dt

=

∫ 1

1
r

n(1,W )

t
dt−

∫ 1

1
r

n(t,W )

t
dt+

∫ r

1

n(t,W )

t
dt−

∫ r

1

n(1,W )

t
dt

= n(1,W ) log r −
∫ 1

0

n(t,W )

t
dt+

∫ 1
r

0

n(t,W )

t
d +
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+

∫ r

0

n(t,W )

t
dt−

∫ 1

0

n(t,W )

t
dt− n(1,W ) log r

= N(r,W ) +N(
1

r
,W )− 2N(1,W ).

Similarly, we can prove the case W (0) = ∞. Because T (r,W ) = m(r,W ) +

N(r,W ), from the above equality, then relation (b) follows immediately, which

implies (c).

In addition, let W (z),W1(z),W2(z) be k-valued algebroid functions on an-

nulus A. The following properties will be used in this paper (see [22]):

T0(r,W ) = T0

(
r,

1

W

)
,

max

{
T0(r,W1 ·W2), T0

(
r,
W1

W2

)
, T0(r,W1 +W2)

}
≤T0(r,W1)+T0(r,W2)+O(1),

T0

(
r,

1

W − a

)
= T0(r,W ) +O(1), for every fixed a ∈ C.

3. Our main results

In 2016, the second fundamental theorem for algebroid functions on annulus

A was first obtained by Tan [22]. Here we show this theorem as follows.

Theorem 3.1 (The second fundamental theorem for algebroid function on

annuli [22, Lemma 3.5]). Let W (z) be a k-valued algebroid function which is

determined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞.

Let a1, a2, . . . , aq be q distinct complex numbers in the extended complex plane C.

Then

(q − 2k)T0(r,W ) <

q∑
j=1

N0

(
r,

1

W − aj

)
−N1(r,W ) + S0(r,W ), (4)

N1(r,W ) is the density index of all multiple values including finite or infinite,

every τ multiple value counts τ − 1, and

S0(r,W ) = m0

(
r,
W ′

W

)
+

q∑
j=1

m0

(
r,

W ′

W − aj

)
+O(1).



Algebroid functions on annulus. . . 275

Remark 3.1. From [22], we know that (4) can be represented the following

form

(q − 2k)T0(r,W ) <

q∑
j=1

N0

(
r,

1

W − aj

)
+ S0(r,W ).

Remark 3.2. For the remainder S0(r,W ) in (4), from [10, Theorem 1] and [22],

we have

(i) in the case R0 = +∞,

S0(r,W ) = O(log(rT0(r,W )))

for r ∈ (1,+∞) outside a set of finite linear measure;

(ii) in the case R0 < +∞,

S0(r,W ) = O

(
log

(
T0(r,W )

R0 − r

))

for r ∈ (1, R0) except for the set E of r such that
∫
E

dr
(R0−r) < +∞.

Definition 3.1. Let W (z) be a k-valued algebroid function which is deter-

mined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Then

the order of W (z) is defined by

ρ(W ) = lim sup
r→+∞

log+ T0(r,W )

log r
, ifR0 = +∞,

ρ(W ) = lim sup
r→R0

log+ T0(r,W )

log 1
R0−r

, ifR0 < +∞.

Remark 3.3. From Definition 3.1 and Remark 3.2, we have

(i) in the case R0 = +∞, if ρ(W ) < +∞, then

S0(r,W ) = O(log r) = o(T0(r,W ))

as r → +∞; if ρ(W ) = +∞, then

S0(r,W ) = O(log(rT0(r,W ))) = o(T0(r,W ))

if r → +∞ outside a set of finite linear measure;
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(ii) in the case R0 < +∞, if ρ(W ) ∈ [0,+∞), then

S0(r,W ) = O

(
log

(
T0(r,W )

R0 − r

))
= O

(
log

(
1

R0 − r

))
,

as r → R0− except for the set E of r such that
∫
E

dr
(R0−r) < +∞, and

if ρ(W ) = +∞, then

S0(r,W ) = O

(
log

(
T0(r,W )

R0 − r

))
as r → R0− except for the set E of r such that

∫
E

dr
(R0−r) < +∞.

In this paper, we will further investigate the value distribution of algebroid

functions on annulus A, and establish the second fundamental theorem for alge-

broid functions concerning polynomials on the annulus as follows.

Theorem 3.2. Let W (z) be a k-valued algebroid function which is deter-

mined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞, and

Qj(z)(j = 1, 2, . . . , q) be q distinct polynomials of degree ≤ d in z, then

[q − 2k − (4k − 3)d]T0(r,W ) <

q∑
j=1

N0

(
r,

1

W (z)−Qj(z)

)
+ S0(r,W ),

where S0(r,W ) is stated as in Remark 3.3.

When k = 1, we get the second fundamental theorem for meromorphic func-

tions concerning polynomials on annulus

Corollary 3.1. Let f(z) be a meromorphic function on annulus A = {z :
1
R0

< |z| < R0}, where 1 < R0 ≤ +∞, and Qj(z)(j = 1, 2, . . . , q) be q distinct

polynomials of degree ≤ d in z, then

[q − 2− (4− 3)d]T0(r, f) <

q∑
j=1

N0

(
r,

1

f(z)−Qj(z)

)
+ S0(r, f).

By applying Theorem 3.2, we can obtain the following theorems.

Theorem 3.3. Let W (z) be a k-valued algebroid function which is deter-

mined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞, and

av(v = 1, 2, . . . , p) and bj(j = 1, 2, . . . , q) be p+q distinct complex constants such

that av 6= bj 6= 0 for v = 1, 2, . . . , p and j = 1, 2, . . . , q then
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[p+ q − 6(k − 1)]T0(r,W )

< (q + 1)N0

(
r,

1

W

)
+ 2N0(r,W ) +

p∑
v=1

N0

(
r,

1

W − av

)

+

q∑
j=1

N0

(
r,

1

W ′ − bj

)
−
[
N0

(
r,

1

W ′′

)
+ qN0

(
r,

1

W ′

)]
+ S0(r,W ),

where S0(r,W ) is stated as in Remark 3.3.

Theorem 3.4. Let W (z) be a k-valued algebroid function which is deter-

mined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞, and

Qt(z)(t = 1, 2, . . . , q) and Gl(6= 0)(l = 1, 2, . . . , p) be p+ q distinct polynomials of

degree ≤ d in z, then

[pq − (4k − 3)(1 + d)]T0(r,W )

< p

q∑
t=1

N0

(
r,

1

W (z)−Qt(z)

)
+

p∑
l=1

N0

(
r,

1

W (d+1) −Gl

)
+ S0(r,W ),

where S0(r,W ) is stated as in Remark 3.3.

When Qt = at, Gl = bl and d = 0 in Theorem 3.4, we obtain the following

corollary immediately:

Corollary 3.2. Let W (z) be a k-valued algebroid function which is deter-

mined by (1) on annulus A = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞, and

at(t = 1, 2, . . . , q) and bl(6= 0)(l = 1, 2, . . . , p) be p+ q distinct numbers, then

[pq − (6v − 1)]T0(r,W )

< N0(r,W ) + p

q∑
t=1

N0

(
r,

1

W (z)− at

)
+

p∑
l=1

N0

(
r,

1

W ′ − bl

)
−
[
N0

(
r,

1

W ′′

)
+ (p− 1)N0

(
r,

1

W ′

)]
+ S0(r,W ),

where S0(r,W ) is stated as in Remark 3.3.

From Theorem 3.2, we can get Theorem 3.1 immediately when d = 0 and

Qj(z)(j = 1, 2, . . . , q) are q distinct numbers. Moreover, we can also obtain the

second fundamental theorem for meromorphic functions concerning polynomials

on annulus. In addition, we can see that Theorem 3.2 is very useful in studying

the value distribution of algebroid function on annulus concerning its derivatives

and polynomials from Theorems 3.3 and 3.4. Our results are a generalization and

improvement of the previous conclusions given by Tan, and Cao.
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4. Some lemmas

To prove Theorem 3.2, we require some lemmas as follows.

Lemma 4.1 (see [22, Lemma 3.3]). Let W (z) be a k-valued algebroid func-

tion which is determined by (1) on annulus A, then

Nx(r,W ) ≤ 2(k − 1)T0(r,W ) +O(1).

Lemma 4.2. Let W (z) be a k-valued algebroid function which is determined

by (1) on annulus A, then

N0(r,W (j)) ≤ N0(r,W ) + jN0(r,W ) + (2j − 1)Nx(r,W ) +O(1).

Proof. Suppose W (z0) = a, (6= ∞). Since W (z) is a k-valued algebroid

function on A, it follows from (2) that

W (j)(z) = (z − z0)
τ−jλ
λ ŵj(z), ŵj(z0) 6= 0,∞.

Hence, z0 is the pole of W (j)(z) with multiplicity jλ − τ if jλ − τ > 0. On the

other hand, if z0 is the pole of W (z), from (3) we have

W (j)(z) = (z − z0)−
τ+jλ
λ ŵj(z), ŵj(z0) 6= 0,∞.

Therefore,

n0(r,W (j)) =
∑
W=∞

(τ + jλ) +
∑
W 6=∞

(jλ− τ)+,

where (jλ − τ)+ = max{0, jλ − τ}. Since jλ − τ ≤ jλ − 1 ≤ (2j − 1)(λ − 1) as

λ > 1, and 1 ≤ j ≤ 2j − 1, it yields

n0(r,W (j)) ≤
∑
W=∞

(τ + j) + j
∑
W 6=∞

(λ− 1) + (2j − 1)
∑
W 6=∞

(λ− 1)

≤ n0(r,W ) + jn0(r,W ) + (2j − 1)nx(r,W ), (5)

where nx(r,W ) = nx1
(r,W ) + nx2

(r,W ). Thus, it follows from (5) that

N0(r,W (j)) ≤ N0(r,W ) + jN0(r,W ) + (2j − 1)Nx(r,W ) +O(1).

Therefore, the proof of this lemma is completed. �

Remark 4.1. By Lemmas 4.1 and 4.2, we have

N0(r,W (j)) ≤ N0(r,W ) + jN0(r,W ) + 2(k − 1)(2j − 1)T0(r,W ) +O(1).
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Lemma 4.3. Let W (z) be a k-valued algebroid function which is determined

by (1) on annulus A, then for any positive integer j, we have

m0

(
r,
W (j)

W

)
= S0(r,W ),

where S0(r,W ) is stated as in Remark 3.3.

Proof. By Remarks 3.2 and 3.3, it yields

T0(r,W ′) = m0(r,W ′) +N0(r,W ′)

≤ m0(r,W ) +m0

(
r,
W ′

W

)
+N0(r,W ′) +O(1)

≤ 2T0(r,W ) + S0(r,W ).

Hence S0(r,W ′)=S0(r,W ). Similarly, we have S0(r,W (j))=S0(r,W ) for j ∈ N+.

Thus, it follows that

m0

(
r,
W (j)

W

)
≤ m0

(
r,

W (j)

W (j−1)

)
+ · · ·+m0

(
r,
W ′′

W ′

)
+m0

(
r,
W ′

W

)
+O(1)

= S0(r,W ).

Therefore, this completes the proof of this lemma. �

Lemma 4.4. Let W (z) be a k-valued algebroid function which is determined

by (1) on annulus A and is not an algebraic function, and Q(z) be polynomials

in z of degree ≤ d, then

m0

(
r,

W (d+1)(z)

W (z)−Q(z)

)
= S0(r,W ),

where S0(r,W ) is stated as in Remark 3.2.

Proof. Let V (z) = W (z) − Q(z). We first prove that V (z) is a k-valued

algebroid function on annulus A. Substituting W (z) = V (z) + Q(z) into (1),

it leads to

Ak(z)(V −Q)k +Ak−1(z)(V −Q)k−1 + · · ·+A0(z) = 0, (6)

and we can rewrite (6) as the following irreducible equation:

Bk(z)V k +Bk−1(z)V k−1 + · · ·+B0(z) = 0,
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where

Bk(z) = Ak(z),

Bk−1(z) = Ak−1(z) +Ak(z)C1
kQ(z),

· · ·

Bk−j(z) = Ak−j(z) +Ak(z)CjkQ(z)j + · · ·+Ak−j+1(z)C1
k−j+1Q(z),

· · ·

B0(z) = A0(z) +Ak(z)Q(z)k +Ak−1(z)Q(z)k−1 + · · ·+A1(z)Q(z).

Since Ak(z), . . . , A0(z) are analytic functions on annulus A without common zeros,

thus Bk(z), . . ., B0(z) are analytic functions on annulus A without common zeros.

Hence V (z) is a k-valued algebroid function. Since W (z) is not an algebraic

function and Q(z) is a polynomial, then it follows that

T0(r, V ) = T0(r,W −Q) ≤ T0(r,W ) + T0(r,Q) +O(1),

that is,

S0(r, V ) = S0(r,W ).

Then it follows

m0

(
r,

W (d+1)(z)

W (z)−Q(z)

)
= m0

(
r,
V (d+1)

V

)
= S0(r, V ) = S0(r,W ).

Therefore, this completes the proof of this lemma. �

Lemma 4.5 (see [9, Theorem 1]). Let f be a non-constant meromorphic

function on annulus A = ( 1
R0
, R0)(1 < R0 ≤ +∞), then

N0

(
r,

1

f

)
−N0(r, f) =

1

2π

∫ 2π

0

log |f(reiθ)|dθ +
1

2π

∫ 2π

0

log

∣∣∣∣f (1

r
eiθ
)∣∣∣∣ dθ

− 1

π

∫ 2π

0

log |f(eiθ)|dθ,

where 1 ≤ r < R0.

5. Proofs of Theorems 3.2–3.4.

5.1. The Proof of Theorem 3.2. Since W (z) is a k-valued algebroid func-

tion on annulus A and Qk(z) are polynomials, then W (d+1)(z) is also a k-valued

algebroid function. Thus, assume that W (d+1)(z) satisfies the following equation:

ψ0(z,W (d+1)) ≡ Ek(z)(W (d+1))k + Ek−1(z)(W (d+1))k−1 + · · ·+ E0(z) = 0,
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where Ej(z)(j = 0, 1, . . . , k) are analytic on annulus A, and Ej(z)(j = 0, 1, . . . , k)

without common zeros. Further, let ϕt(z) = W (z)−Qt(z), (t = 1, 2, . . . , q), then

ϕt(z) (t = 1, 2, . . . , q) are also k-valued algebroid functions. Thus, we can assume

that ϕt(z), (t = 1, 2, . . . , q) satisfy the following equations:

ψt(z, ϕt) ≡ Dt,k(z)ϕkt +Dt,k−1(z)ϕk−1t + · · ·+Dt,0(z) = 0,

where Dt,j(z)(t = 1, 2, . . . , q; j = 0, 1, . . . , k) are analytic on annulus A, and for

any fixed t, Dt,j(z)(j = 0, 1, . . . , k) without common zeros. In view of Lemma 4.4,

it follows that D1,k(z) = D2,k(z) = · · · = Dq,k(z) = Ak and

n0

(
r,

1

W −Qt

)
= n0

(
r,

1

ϕt

)
= n0

(
r,

1

ψt(z, ϕt = 0)

)
= n0

(
r,

1

Dt,0

)
,

N0

(
r,

1

W −Qt

)
= N0

(
r,

1

ϕt

)
=

1

k
N0

(
r,

1

ψt(z, ϕt = 0)

)
.

Let wj = wj(z)(j = 1, 2, . . . , k) be k branches of W (z), then the following

equation

k∏
j=1

q∏
t=1

1

wj −Qt
=

k∏
j=1

(
q∑
t=1

At
1

wj −Qt

)
=

k∏
j=1

{
q∑
t=1

At
w

(d+1)
j

wj−Qt

}
k∏
j=1

w
(d+1)
j

(7)

holds, at most except for finite poles of At, where

At(z) = [(Qt −Q1) · · · (Qt −Qt−1)(Qt −Qt+1) · · · (Qt −Qq)]−1,

that is, At(z) is a rational function. Let z = reiθ, z = 1
r e
iθ and z = eiθ, substi-

tute (7), by Lemma 4.5 and similar to the argument as in [22], we can deduce

qT0(r,W )

≤ T0(r,W (d+1)) +

q∑
t=1

N0

(
r,

1

W −Qt

)
−N0

(
r,

1

W (d+1)

)
+Q0(r,W ), (8)

where

Q0(r,W ) =

q∑
t=1

m0

(
r,
W (d+1)

W −Qt

)
+O(log r).
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By Lemma 4.2 and Remark 3.3, it follows that

T0(r,W (d+1)) = m0

(
r,W

W (d+1)

W

)
+N0(r,W (d+1))

≤ N0(r,W (d+1)) + T0(r,W )−N0(r,W ) +m0

(
r,
W (d+1)

W

)
≤ m0

(
r,
W (d+1)

W

)
+ T0(r,W ) + (d+ 1)N0(r,W )

+ 2(2d+ 1)(k − 1)T (r,W ) +O(log r). (9)

Substituting (9) into (8) and combining N0(r,W ) ≤ T0(r,W ) +O(1), it leads to

qT0(r,W ) <

q∑
t=1

N0

(
r,

1

W −Qt

)
+ (d+ 2)T0(r,W ) +m0

(
r,
W (d+1)

W

)
+ 2(2d+ 1)(k − 1)T0(r,W ) +Q0(r,W )

<

q∑
t=1

N0

(
r,

1

W −Qt

)
+[(d+ 2)+2(2d+ 1)(k − 1)]T0(r,W )+Q1(r,W ),

where Q0 = 0 and

Q1(r,W ) =

q∑
t=0

m0

(
r,
W (d+1)

W −Qt

)
+O(log r).

Thus, it follows from Lemma 4.4 that

[q − 2k − (4k − 3)d]T0(r,W ) <

q∑
j=1

N0

(
r,

1

W (z)−Qj(z)

)
+ S0(r,W ).

Thus, it means that this proves the conclusion of Theorem 3.2.

5.2. The Proof of Theorem 3.3. Applying Theorem 3.2 for W (z), av (v =

0, 1, . . . , p) and W ′(z), bj(j = 0, 1, . . . , q), respectively, it follows that

pT0(r,W ) < N0(r,W ) +

p∑
v=0

N0

(
r,

1

W − av

)
−N1(r) + S0(r,W ), (10)

and

qT0(r,W ′) <

q∑
j=0

N0

(
r,

1

W ′ − b

)
+N0(r,W ′′)

−N0(r,W ′)−N0

(
r,

1

W ′′

)
+ S1(r,W ′), (11)
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where a0 = b0 = 0 and

S1(r,W ′) = m0

(
r,
W ′′

W ′

)
+

q∑
j=1

m0

(
r,

W ′′

W ′ − bj

)
+O(1).

Thus, from (11) and in view of T0(r,W ) = T0(r, 1
W ), it yields

qT0(r,W ) = qT0

(
r,

1

W

)
≤ qT0(r,W ′) + qN0

(
r,

1

W

)
− qN0

(
r,

1

W ′

)
+ qm0

(
r,
W ′

W

)
+O(1)

≤ qN0

(
r,

1

W

)
+N0(r,W ′′) +

q∑
j=1

N0

(
r,

1

W ′ − bj

)

−
[
(q − 1)N0

(
r,

1

W ′

)
+N0(r,W ′) +N0

(
r,

1

W ′

)]
+ S2(r,W ′), (12)

where

S2(r,W ′) = 2m0

(
r,
W ′′

W ′

)
+

q∑
j=1

m0

(
r,

W ′′

W ′ − bj

)
+ qm0

(
r,
W ′

W

)
+O(1).

By combining (10) with (12), it follows that

(p+ q)T0(r,W )

< N0(r,W ′′)+(q+1)N0

(
r,

1

W

)
+

p∑
v=1

N0

(
r,

1

W − av

)
+

q∑
j=1

N0

(
r,

1

W ′ − bj

)

−
[
qN0

(
r,

1

W ′

)
+N0(r,W ) +N0

(
r,

1

W ′′

)]
+ S3(r,W )

≤ 2N0(r,W ) + 3Nx(r,W ) + (q + 1)N0

(
r,

1

W

)
+

p∑
v=1

N0

(
r,

1

W − av

)

+

q∑
j=1

N0

(
r,

1

W ′ − bj

)
−
[
qN0

(
r,

1

W ′

)
+N0

(
r,

1

W ′′

)]
+ S3(r,W ),

where S3(r,W ) = S2(r,W ′) + S1(r,W ).

Thus, by Lemma 4.2, it means that the conclusions of Theorem 3.3 are proved

easily.
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5.3. The Proof of Theorem 3.4. From (8) and (9), it follows that

(q − 1)T0(r,W ) < N0(r,W ) +

q∑
t=1

N0

(
r,

1

W −Qt

)
−N1(r) +H1(r,W ),

where

N1(r) = 2N0(r,W )−N0(r,W (d+1) +N0

(
r,

1

W (d+1)

)
and

H1(r,W ) =

q∑
t=0

m0

(
r,
W (d+1)

W −Qt

)
, Q0 = 0.

By applying (4) for W (d+1) and Gl, then, we conclude from Jensen’s formula that

pT0(r,W (d+1)) < N0(r,W (2d+2)) +N0

(
r,

1

W (d+1)

)
+

p∑
l=1

N0

(
r,

1

W (d+1) −Gl

)
−
[
N0(r,W (d+1)) +N0

(
r,

1

W (2d+2)

)]
+H1(r,W (d+1)), (13)

where

H1(r,W (d+1)) =

p∑
l=1

m0

(
r,

W (2d+2)

W (d+1) −Gl

)
+ 2m0

(
r,
W (2d+2)

W (d+1)

)
+O(1).

When (8) times p, it follows that

pqT0(r,W ) < p

q∑
t=1

N0

(
r,

1

W −Qt

)
+ pT0(r,W (d+1))

− pN0

(
r,

1

W (d+1)

)
+ pH2(r,W ), (14)

where

H2(r,W ) =

q∑
t=1

m0

(
r,
W (d+1)

W −Qt

)
+O(log r).

Substituting (13) into (14), and by Lemma 4.1, Lemma 4.2 and Remark 4.1,

we have

pqT0(r,W ) <N0(r,W (d+1)) + p

q∑
t=1

N0

(
r,

1

W −Qt

)
−
[
N0(r,W (d+1))

+N0

(
r,

1

W (2d+2)

)
+ (p− 1)N0

(
r,

1

W (d+1)

)]
+H2(r,W ),

and
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[pq − 2(k − 1)(2d+ 2)]T0(r,W )

< (d+ 1)N0(r,W ) +

p∑
l=1

N0

(
r,

1

W (d+1) −Gl

)
+ p

q∑
t=1

N0

(
r,

1

W −Qt

)
−
[
N0

(
r,

1

W (2d+2)

)
+ (p− 1)N0

(
r,

1

W (d+1)

)]
+H3(r,W ), (15)

where H2(r,W (d+1)) + pH1(r,W ) = H3(r,W ). From the expression of H3(r,W )

and (15), by Remark 3.3, and since N0(r,W ) ≤ T0(r,W ) +O(1), it follows that

[pq − (4k − 3)(1 + d)]T0(r,W )

< p

q∑
t=1

N0

(
r,

1

W (z)−Qt(z)

)
+

p∑
l=1

N0

(
r,

1

W (d+1) −Gl

)
+ S0(r,W ).

Therefore, this completes the proof of Theorem 3.4.
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