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On weak quasicontractions in b-metric spaces

By ZORAN D. MITROVIĆ (Ho Chi Minh City) and NAWAB HUSSAIN (Jeddah)

Abstract. Recently, weak quasicontractions have been studied by Bessenyei [2].

The aim of the present paper is to establish fixed point results for weak quasicontrac-

tions involving comparison function in b-metric spaces. As applications of our theorems,

we deduce certain well-known results as corollaries.

1. Introduction and preliminaries

Banach contraction mapping principle is a simple and powerful result with

a wide range of applications, including iterative methods for solving linear, non-

linear, differential, integral, and difference equations.

Theorem 1.1. Let (X, d) be a complete metric space. Let T be a contraction

mapping on X, that is, one for which exists λ ∈ [0, 1) satisfying

d(Tx, Ty) ≤ λd(x, y) (1.1)

for all x, y ∈ X. Then T has a unique fixed point x ∈ X.

Because of its significance and simplicity, various authors have established

numerous interesting extensions and generalizations of the Banach contraction

principle (see, for example, the monographs of Rus [20], Kirk and Shazad [16]).

In 2016, Bessenyei [2] rediscovered Theorems of Hegedűs and Szilágyi [9],

and those of Walter [21], introduced weak quasicontraction involving compar-

ison functions and also proved a theorem that generalizes the results obtained

by Ćirić [7], Browder [4] and Matkowski [17].
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The orbit and the double orbit induced by T are defined in the next way:

O(x) := {Tn(x)|n ∈ N ∪ {0}}; O(x, y) := O(x) ∪O(y),

where Tn+1 = T ◦ Tn and T 0 = id.

We mention some properties of comparison functions ϕ : [0,∞) → [0,∞)

which are being used in metric fixed point theory:

(P1) ϕ is increasing.

(P2) ϕ is upper semi-continuous.

(P3) ϕ(0) = 0.

(P4) ϕ(t) < t, for all t > 0.

(P5) limn→∞ ϕn(t) = 0, for each t > 0.

Lemma 1.2 (Bessenyei, [2]). (P1) + (P2) + (P3) + (P4)⇒ (P5).

Lemma 1.3 (Matkowski, [18]). (P1) + (P5)⇒ (P4).

Definition 1.4 ([2]). Let (X, d) be a metric space. A mapping T : X → X

is called a weak quasicontraction with comparison function ϕ (or briefly: a weak

ϕ-quasicontraction) if it induces bounded orbits, and for all x, y ∈ X,

d(Tx, Ty) ≤ ϕ(diamO(x, y)). (1.2)

The main result of Bessenyei [2] is the below-mentioned fixed point theorem

for weak quasicontractions defined on complete metric spaces.

Theorem 1.5 ([2]). Let (X, d) be a complete metric space, and T : X → X

a weak quasicontraction with comparison function ϕ that meets the conditions

(P1), (P2), (P3) and (P4). Then T has a unique fixed point. Moreover, the se-

quence of iterates at any point converges to this fixed point.

Remark 1.6. We note that condition (1.1) implies diamO(x) ≤ d(x,Tx)
1−λ ,

so if we put ϕ(t) = λt, t ≥ 0, in Theorem 1.5, we obtain the Banach fixed

point theorem.

Bakhtin [1] and Czerwik [6] defined the notion of b-metric spaces and

proved some fixed point theorems for single-valued and multi-valued mappings in

b-metric spaces. Successively, this notion has been reintroduced by Khamsi [14],

Khamsi and Hussain [15], and Hussain et al. [11], [12] with the name of metric-

type space.

Definition 1.7. Let X be a nonempty set, and let s ≥ 1 be a given real number.

A function d : X ×X → [0,∞) is said to be a b-metric if for all x, y, z ∈ X the

following conditions are satisfied:
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(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ s[d(x, y) + d(y, z)].

A triplet (X, d, s) is called a b-metric space with coefficient s.

Note that the class of metric spaces is a proper subset of the class of

b-metric spaces with coefficient s ≥ 1. Fixed point theory in b-metric spaces

was studied by many authors (see [8], [10], [13], [16], [19]). Note also that in

a b-metric space, distance function d need not be continuous, i.e, there exists

a b-metric space (X, d, s) and sequences{xn}, {yn} in X such that limn→∞ xn = x

and limn→∞ yn = y, but limn→∞ d(xn, yn) 6= d(x, y).

One of the main results of [6] Czerwik is the following;

Theorem 1.8 ([6, Theorem 1]). Let (X, d, s) be a complete b-metric space,

and suppose T : X → X satisfies

d(T (x), T (y)) ≤ ϕ(d(x, y)), (1.3)

for each x, y ∈ X, where mapping ϕ : [0,∞) → [0,∞) satisfies conditions (P1)

and (P5). Then T has a unique fixed point x∗ ∈ X, and limn→∞ Tn(x) = x∗ for

each x ∈ X.

Remark 1.9. Note that Theorem 1.8 is a direct consequence of the main result

of [3]. The recent paper [5] gives excellent overview of possible generalizations of

metric spaces.

Remark 1.10. We note that due to Lemma 1.3, condition (1.3) implies that

T is a continuous mapping. Also, condition (1.3) implies that T induces bounded

orbits (see [2]).

The fact that d is not continuous in the b-metric space leads to the introduc-

tion of strong b-metric space.

Definition 1.11 ([16, Definition 12.7]). Let X be a nonempty set, and s ≥ 1

be a given real number. A function d : X × X → [0,∞) is said to be a strong

b-metric if for all x, y, z ∈ X the following conditions are satisfied:

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x);

(3) d(x, z) ≤ sd(x, y) + d(y, z).

A triplet (X, d, s), is called a strong b-metric space with coefficient s.
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Remark 1.12. The distance function d in a strong b-metric space is continuous

(see [16, Proposition 12.3]).

The aim of this paper is to obtain Theorem 1.5 in b-metric spaces using weak

quasicontraction involving comparison function ϕ. As consequences, we derive

certain known results as corollaries.

2. Main result

The proof of the next lemma is a straightforward adaptation of the reasoning

from [2].

Lemma 2.1. Let (X, d, s) be a complete b-metric space, and T : X → X

a weak ϕ-quasicontraction where ϕ satisfies conditions (P1) and (P5). Then there

exists x∗ ∈ X such that limn→∞ Tn(x) = x∗ for each x ∈ X.

Proof. The boundedness of orbits implies the following:

diamO(Tx, Ty) = sup
k,l∈N
{d(T kx, T ly), d(T kx, T lx), d(T ky, T ly)}. (2.1)

From condition (1.2), we obtain

d(T kx, T ly) ≤ ϕ(diamO(T k−1x, T l−1y))) ≤ ϕ(diamO(x, y)).

Similarly, we have

d(T kx, T lx) ≤ ϕ(diamO(T k−1x, T l−1x)) ≤ ϕ(diamO(x)) ≤ ϕ(diamO(x, y)),

which implies

d(T ky, T ly) ≤ ϕ(diamO(x, y)). (2.2)

According to the foregoing, we conclude that

diamO(Tx, Ty) ≤ ϕ(diamO(x, y)). (2.3)

From inequality (2.3), we have the following:

diamO(T 2x, T 2y)≤ϕ(diamO(Tx, Ty))≤ϕ(ϕ(diamO(x, y)))=ϕ2(diamO(x, y)).

Using induction, we obtain

diamO(Tnx, Tny) ≤ ϕn(diamO(x, y)). (2.4)
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Choose x ∈ X, we show that {Tnx} is a Cauchy sequence. The boundedness of

orbits and condition (P5) imply that for each ε > 0 there exists n0 ∈ N such that

ϕn0(diamO(x)) < ε
2s . Therefore, using inequality (2.4), we obtain, for all n ≥ n0,

d(Tn0x, Tnx) ≤ ϕn0(diamO(x, Tn−n0x)) ≤ ϕn0(diamO(x)) ≤ ε

2s
.

Using inequality (3) in Definition 1.7, we conclude that for all m,n ≥ n0,

d(Tmx, Tnx) ≤ s[d(Tmx, Tn0x) + d(Tn0x, Tnx)] ≤ s
[ ε

2s
+

ε

2s

]
= ε.

So, {Tnx} is a Cauchy sequence, and hence there exists x∗ ∈ X such that

lim
n→∞

Tnx = x∗. �

Theorem 2.2. Let (X, d, s) be a complete b-metric space, and T : X → X

a weak ϕ-quasicontraction such that function ϕ satisfies conditions (P1) and (P5).

Then limn→∞ Tn(x) = x∗ for each x ∈ X, and x∗ is a unique fixed point of T ,

provided one of the following conditions is satisfied:

(i) T is continuous at x∗;

(ii) d is continuous.

Proof. Lemma 2.1 implies that limn→∞ Tn(x) = x∗ for each x ∈ X. Let us

prove that x∗ is a unique fixed point of T .

(i) Suppose that T is continuous at x∗ ∈ X.

Then we have

x∗ = lim
n→∞

Tn+1x = T lim
n→∞

Tn+1x = Tx∗.

(ii) Let d be continuous. If x∗ is not a fixed point of T , then diamO(x∗) > 0.

The methods of [2] provide n0 ∈ N such that diamO(x∗) = d(x∗, Tn0x∗) holds.

By Lemma 1.3, we obtain that

ϕ(diamO(x∗)) < diamO(x∗).

Since d is continuous, we obtain

diamO(x∗) = d(x∗, Tn0x∗) = lim
n→∞

d(Tn+n0x∗, Tn0x∗)

≤ ϕn0(diamO(Tnx∗, x∗)) ≤ ϕ(diamO(x∗)) < diamO(x∗).

Consequently, diamO(x∗) = 0. Thus x∗ is the fixed point of the mapping T .

For uniqueness, let y∗ be another fixed point of T . Since,

d(x∗, y∗) = d(Tx∗, T y∗) ≤ ϕ(diamO(x∗, y∗)) < diamO(x∗, y∗) = d(x∗, y∗),

which implies T has exactly one fixed point. �
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Remark 2.3. Since d(x, y) ≤ diamO(x, y), for all x, y ∈ X and ϕ, satisfies

condition (P4) (see Lemma 1.3), so from Theorem 2.2 we obtain Theorem 1.8.

Corollary 2.4. Let (X, d, s) be a complete b-metric space, and let mapping

T : X → X induce bounded orbits. Suppose that for all x, y ∈ X,

d(Tx, Ty) ≤ diamO(x, y)− ψ(diamO(x, y)), (2.5)

where function ψ : [0,∞)→ [0,∞) satisfies the below conditions:

(a) ψ is a decreasing,

(b) id− ψ satisfy condition (P5).

Then there exists x∗ ∈ X such that limn→∞ Tn(x) = x∗ for each x ∈ X, and x∗

is a unique fixed point of T , provided one of the following conditions is satisfied:

(i) T is continuous at x∗ ∈ X,

(ii) d is continuous.

3. Some applications

In this section, we present certain consequences of Theorem 2.2 in b-metric

spaces.

Lemma 3.1. Let (X, d, s) be a complete b-metric space, and T : X → X

a map such that for all x, y ∈ X and some λ ∈ [0, 1), we have

d(Tx, Ty) ≤ λd(x, y). (3.1)

Then T induces bounded orbits.

Proof. Since lim
n→∞

λn = 0, there exists a natural number n0 such that

0 < λn0 · s2 < 1. (3.2)

Let On(x)={x, Tx, . . . , Tnx}. Then, we conclude that diamOn(x)=d(T kx, T lx)

for some k, l ∈ {1, 2, . . . , n}, or diamOn(x) = d(x, T kx) for some k ∈ {1, 2, . . . , n}.
If diamOn(x) = d(T kx, T lx), we obtain (where it is understood that T 0x = x)

d(T kx, T lx) ≤ λd(T k−1x, T l−1x) < d(T k−1x, T l−1x) ≤ diamOn(x).

Therefore, we conclude that d(x, T kx) = diamOn(x) for some k ∈ {1, 2, . . . , n}.
Applying inequality (3) in Definition 1.7, we obtain



On weak quasicontractions 295

d(x, T kx) ≤ s[d(x, Tn0x) + d(Tn0x, T kx)]

≤ s[d(x, Tn0x) + s(d(Tn0x, Tn0+kx) + d(Tn0+kx, T kx))]

≤ sd(x, Tn0x) + s2[λn0d(x, T kx) + λkd(Tn0x, x)]

≤ (s+ s2)d(x, Tn0x) + s2λn0d(x, T kx)].

Therefore, we get

diamOn(x) ≤ s+ s2

1− λn0s2
d(x, Tn0x). (3.3)

Since diamO(x) = sup{diamOn(x) : n ∈ N}, we obtain that T induces bounds

orbits. �

Theorem 3.2 (The Banach contraction principle in b-metric spaces, Dung

[8, Theorem 2.1]). Let (X, d, s) be a complete b-metric space, and let T : X → X

be a continuous map such that for all x, y ∈ X and some λ ∈ [0, 1),

d(Tx, Ty) ≤ λd(x, y). (3.4)

Then T has a unique fixed point x∗, and limn→∞ Tnx = x∗ for all x ∈ X.

Proof. If we put ϕ(t) = λt, then the assertion follows from Theorem 2.2

and Lemma 3.1. �

Theorem 3.3. Let (X, d, s) be a complete b-metric space, and let T : X → X

be a quasicontraction inducing bounded orbits, i.e, there exists λ ∈ [0, 1) such

that

d(Tx, Ty) ≤ λ diamO(x, y), (3.5)

for all x, y ∈ X. Then there exists x∗ ∈ X such that limn→∞ Tn(x) = x∗ for

each x ∈ X, and T has a unique fixed point x∗, provided one of the following

conditions are satisfied:

(i) T is continuous at x∗ ∈ X;

(ii) d is continuous.

Proof. The proof follows from Theorem 2.2, if we put ϕ(t) = λt. �

Remark 3.4. (1) If T is a quasicontraction on b-metric space (X, d, s) with λ ∈
[0, 1s ), then similar to the proof of Lemma 3.1, there exists some k ∈ {1, 2, . . . , n},
such that d(x, T kx) = diamOn(x). Since,

diamOn(x) ≤ s[d(x, Tx) + diamOn−1(Tx)] ≤ s[d(x, Tx) + λ diamOn(x)],
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which implies

diamO(x) ≤ s

1− λs
d(x, Tx). (3.6)

(2) If (X, d, s) is a strong b-metric space, then

diamOn(x) ≤ sd(x, Tx) + diamOn−1(Tx) ≤ sd(x, Tx) + λ diamOn(x),

which implies

diamO(x) ≤ s

1− λ
d(x, Tx). (3.7)

From Lemma 2.1, Theorem 3.3 and Remark 3.4, we obtain the following

quasi-contraction principle in b-metric and strong b-metric spaces.

Corollary 3.5 (Version of the fixed point theorem of Ćirić in b-metric

spaces). Let (X, d, s) be a complete b-metric space and let T : X → X be a map

such that for all x, y ∈ X and some λ ∈ [0, 1/s),

d(Tx, Ty) ≤ λmax

{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty)

2s
,
d(y, Tx)

2s

}
.

Then T has a unique fixed point x∗.

Proof. From Lemma 2.1 and Remark 3.4, there exists x∗ ∈ X such that

limn→∞ Tn(x) = x∗ for each x ∈ X. Let us show that x∗ is a fixed point. We have

the following:

d(x∗, Tx∗) ≤ s[d(x∗, Tn+1x) + d(Tn+1x, Tx∗)]

≤ sd(x∗, Tn+1x) + sλmax

{
d(Tnx, x∗), d(Tnx, Tn+1x),

d(x∗, Tx∗),
d(x∗, Tn+1x)

2s
,
d(Tnx, Tx∗)

2s

}
.

Since,

d(x∗, Tn+1x)

2s
≤ d(x∗, Tnx) + d(Tnx, Tn+1x)

2

≤ max{d(x∗, Tnx), d(Tnx, Tn+1x)},

and

d(Tnx, Tx∗)

2s
≤ d(Tnx, x∗) + d(x∗, Tx∗)

2
≤ max{d(x∗, Tnx), d(x∗, Tx∗)},
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so we obtain

d(x∗, Tx∗) ≤ sd(x∗, Tn+1x) + sλmax{d(Tnx, x∗), d(Tnx, Tn+1x), d(x∗, Tx∗)}.

Since limn→∞ Tnx = x∗ and limn→∞ d(Tnx, Tn+1x) = 0, this shows that (1 −
λs)d(x∗, Tx∗) = 0, which implies that x∗ is a fixed point of T . The uniqueness

follows from the quasi-contractivity of T . �

Corollary 3.6 (Version of the fixed point theorem of Ćirić in strong b-metric

spaces). Let (X, d, s) be a complete strong b-metric space, and let T : X → X be

a map such that for all x, y ∈ X and some λ ∈ [0, 1),

d(Tx, Ty) ≤ λmax{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}.

Then T has a unique fixed point x∗.

Proof. The continuity of d follows directly from Theorem 3.3 and

Remark 3.4. �

Remark 3.7.

(i) The conclusion of Corollary 3.6 does not hold in the setting of b-metric spaces

for λ ∈ [0, 1) (see [8, Example 2.6]).

(ii) Corollary 3.5 improves the result of Jovanović et al. ([13, Corollary 3.12]).

(ii) Corollary 3.6 improves the results of Dung (see [8, Corollaries 2.4 and 2.5]).
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