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On weak quasicontractions in b-metric spaces

By ZORAN D. MITROVIC (Ho Chi Minh City) and NAWAB HUSSAIN (Jeddah)

Abstract. Recently, weak quasicontractions have been studied by BESSENYEI [2].
The aim of the present paper is to establish fixed point results for weak quasicontrac-
tions involving comparison function in b-metric spaces. As applications of our theorems,
we deduce certain well-known results as corollaries.

1. Introduction and preliminaries

Banach contraction mapping principle is a simple and powerful result with
a wide range of applications, including iterative methods for solving linear, non-
linear, differential, integral, and difference equations.

Theorem 1.1. Let (X, d) be a complete metric space. Let T be a contraction
mapping on X, that is, one for which exists A € [0,1) satisfying

d(Tz, Ty) < Ad(z,y) (1.1)
for all x,y € X. Then T has a unique fixed point x € X.

Because of its significance and simplicity, various authors have established
numerous interesting extensions and generalizations of the Banach contraction
principle (see, for example, the monographs of Rus [20], KIRK and SHAZAD [16]).
In 2016, BESSENYEI [2] rediscovered Theorems of HEGEDUS and SzILAGYI [9],
and those of WALTER [21], introduced weak quasicontraction involving compar-
ison functions and also proved a theorem that generalizes the results obtained
by CIRIC [7], BROWDER [4] and MATKOWSKI [17].
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The orbit and the double orbit induced by T are defined in the next way:
O(z) :={T"(x)[n e NU{0}};  O(z,y) := O(z) UO(y),

where T = T o T™ and T° = id.
We mention some properties of comparison functions ¢ : [0,00) — [0,00)
which are being used in metric fixed point theory:
(P1) ¢ is increasing.
(P2) ¢ is upper semi-continuous.
(Ps) ¢(0) =
(Py) ()<t for all ¢ > 0.
(Ps)

Ps) lim,_ ©™(t) = 0, for each ¢ > 0.
Lemma 1.2 (BESSENYEL [2]). (P1) + (P2) + (P3) + (Psy) = (Ps).
Lemma 1.3 (MATKOWSKI, [18]). (Py) + (Ps) = (Py).

Definition 1.4 ([2]). Let (X,d) be a metric space. A mapping T : X — X
is called a weak quasicontraction with comparison function ¢ (or briefly: a weak
p-quasicontraction) if it induces bounded orbits, and for all z,y € X,

d(Tz,Ty) < p(diam O(x,y)). (1.2)

The main result of Bessenyei [2] is the below-mentioned fixed point theorem
for weak quasicontractions defined on complete metric spaces.

Theorem 1.5 ([2]). Let (X,d) be a complete metric space, and T : X — X
a weak quasicontraction with comparison function ¢ that meets the conditions
(P1), (Py),(P3) and (Py). Then T has a unique fixed point. Moreover, the se-
quence of iterates at any point converges to this fixed point.

Remark 1.6. We note that condition (1.1) implies diam O(z) < w,
so if we put ¢(t) = At, ¢ > 0, in Theorem 1.5, we obtain the Banach fixed
point theorem.

BAKHTIN [1] and CZERWIK [6] defined the notion of b-metric spaces and
proved some fixed point theorems for single-valued and multi-valued mappings in
b-metric spaces. Successively, this notion has been reintroduced by KHAMSI [14],
KuAMST and HUSSAIN [15], and HUSSAIN et al. [11], [12] with the name of metric-
type space.

Definition 1.7. Let X be a nonempty set, and let s > 1 be a given real number.
A function d : X x X — [0,00) is said to be a b-metric if for all x,y,z € X the
following conditions are satisfied:
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(1) d(z,y) =0 if and only if z = y;

(2) d(@,y) = d(y,»);

(3) d(x,2) < sld(x,y) + d(y, 2)].

A triplet (X,d,s) is called a b-metric space with coefficient s.

Note that the class of metric spaces is a proper subset of the class of
b-metric spaces with coefficient s > 1. Fixed point theory in b-metric spaces
was studied by many authors (see [8], [10], [13], [16], [19]). Note also that in
a b-metric space, distance function d need not be continuous, i.e, there exists
a b-metric space (X, d, s) and sequences{zy }, {y,} in X such that lim, . z, =
and limy, 00 Yn = ¥, but limy, 00 d(24, yn) # d(z, y).

One of the main results of [6] Czerwik is the following;

Theorem 1.8 ([6, Theorem 1]). Let (X,d, s) be a complete b-metric space,
and suppose T : X — X satisfies

d(T(x), T(y)) < pld(z,y)), (1.3)

for each x,y € X, where mapping ¢ : [0,00) — [0,00) satisfies conditions (P;)
and (Ps). Then T has a unique fixed point * € X, and lim,,_,o, T"(x) = x* for
each z € X.

Remark 1.9. Note that Theorem 1.8 is a direct consequence of the main result
of [3]. The recent paper [5] gives excellent overview of possible generalizations of
metric spaces.

Remark 1.10. We note that due to Lemma 1.3, condition (1.3) implies that
T is a continuous mapping. Also, condition (1.3) implies that T induces bounded
orbits (see [2]).

The fact that d is not continuous in the b-metric space leads to the introduc-
tion of strong b-metric space.

Definition 1.11 ([16, Definition 12.7]). Let X be a nonempty set, and s > 1
be a given real number. A function d : X x X — [0,00) is said to be a strong
b-metric if for all x,y, z € X the following conditions are satisfied:

(1) d(z,y) = 0if and only if x = y;
(2) ( y) = d(y, 2);

(3) d(=z,z) < sd(z,y) + d(y, 2).
A trlplet (X,d, s), is called a strong b-metric space with coefficient s.
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Remark 1.12. The distance function d in a strong b-metric space is continuous
(see [16, Proposition 12.3]).

The aim of this paper is to obtain Theorem 1.5 in b-metric spaces using weak
quasicontraction involving comparison function ¢. As consequences, we derive
certain known results as corollaries.

2. Main result

The proof of the next lemma is a straightforward adaptation of the reasoning
from [2].

Lemma 2.1. Let (X,d,s) be a complete b-metric space, and T : X — X
a weak p-quasicontraction where @ satisfies conditions (Py) and (Ps). Then there
exists * € X such that lim,,_, o T"(x) = 2* for each z € X.

PRrROOF. The boundedness of orbits implies the following:

diam O(Tx, Ty) = sup {d(T*z, T'y),d(T*z, T'x), d(T*y, T'y)}. (2.1)
k,lEN

From condition (1.2), we obtain
d(T*z, T'y) < p(diam O(T* 1z, T'"1y))) < ¢(diam O(z, y)).
Similarly, we have
d(T*z, T'z) < p(diam O(T" 1z, T'"1x)) < p(diam O(z)) < @(diam O(z, y)),

which implies
d(T*y, T'y) < p(diam O(z, y)). (2.2)

According to the foregoing, we conclude that

diam O(Tz, Ty) < p(diam O(z,y)). (2.3)
From inequality (2.3), we have the following:
diam O(T?z, T?y) < p(diam O(Tx, Ty)) < ¢(p(diam O(z,y))) = ¢ (diam O(x, y)).
Using induction, we obtain

diam O(T"z, T"y) < ¢"(diam O(z,y)). (2.4)
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Choose z € X, we show that {T"xz} is a Cauchy sequence. The boundedness of
orbits and condition (Ps) imply that for each € > 0 there exists ny € N such that
@"(diam O(x)) < 5. Therefore, using inequality (2.4), we obtain, for all n > nq,

d(T™x, T"x) < " (diam O(z, T" "™x)) < ¢"°(diam O(x)) < 2—68

Using inequality (3) in Definition 1.7, we conclude that for all m,n > ny,

ATz, T"x) < s[d(T™x, T™x) + d(T™z,T"z)] < s [i + i} =e.

2s  2s
So, {T™z} is a Cauchy sequence, and hence there exists z* € X such that
lim T"x = x*. (]
n— oo

Theorem 2.2. Let (X,d,s) be a complete b-metric space, and T : X — X
a weak p-quasicontraction such that function ¢ satisfies conditions (Py) and (Ps).
Then lim,, o T™(x) = z* for each x € X, and z* is a unique fixed point of T,
provided one of the following conditions is satisfied:

(i) T is continuous at z*;
(ii) d is continuous.

PROOF. Lemma 2.1 implies that lim,,_, o 7" () = 2* for each x € X. Let us
prove that z* is a unique fixed point of 7.

(i) Suppose that T is continuous at z* € X.

Then we have

¥ = lim 7"z =T lim T" 2 = Tx*.
n—o0 n—oo

(ii) Let d be continuous. If z* is not a fixed point of T', then diam O(z*) > 0.
The methods of [2] provide ng € N such that diam O(z*) = d(z*, T™z*) holds.
By Lemma 1.3, we obtain that

p(diam O(z")) < diam O(z™).
Since d is continuous, we obtain
diam O(z*) = d(z*, T™°z*) = nh_)néo d(T o™ Tog*)
< " (diam O(T"z*, %)) < p(diam O(z™)) < diam O(z™).

Consequently, diam O(z*) = 0. Thus z* is the fixed point of the mapping T.
For uniqueness, let y* be another fixed point of T'. Since,

d(z”,y") = d(Ta", Ty") < p(diam O(2", y")) < diam O(2", y*) = d(2",y"),

which implies T" has exactly one fixed point. (I
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Remark 2.3. Since d(z,y) < diam O(z,y), for all x,y € X and ¢, satisfies
condition (Py) (see Lemma 1.3), so from Theorem 2.2 we obtain Theorem 1.8.

Corollary 2.4. Let (X,d,s) be a complete b-metric space, and let mapping
T : X — X induce bounded orbits. Suppose that for all z,y € X,

d(Tz,Ty) < diam O(z,y) — ¥(diam O(x, y)), (2.5)

where function 1 : [0,00) — [0, 00) satisfies the below conditions:

(a) ¢ is a decreasing,

(b) id — v satisfy condition (Ps).

Then there exists x* € X such that lim,,_, ., T"(x) = a* for each x € X, and x*
is a unique fixed point of T', provided one of the following conditions is satisfied:

(i) T is continuous at z* € X,

(ii) d is continuous.

3. Some applications

In this section, we present certain consequences of Theorem 2.2 in b-metric
spaces.
Lemma 3.1. Let (X,d,s) be a complete b-metric space, and T : X — X
a map such that for all z,y € X and some X\ € [0,1), we have
d(Tx,Ty) < Ad(z,y). (3.1)

Then T induces bounded orbits.

PROOF. Since lim A™ = 0, there exists a natural number ng such that
n—oo

0<A™ . 5% < 1. (3.2)

Let O, (z)={z,Tz,...,T"x}. Then, we conclude that diam O,,(z) =d(T"*z, T'z)
for some k,1 € {1,2,...,n}, or diam O, (z) = d(x, T*z) for some k € {1,2,...,n}.
If diam O,,(z) = d(T*x, T'x), we obtain (where it is understood that Tz = x)

d(TFz, T'x) < Xd(T* ', T 'a) < d(TF 12, T 12) < diam O, ().

Therefore, we conclude that d(z,T*z) = diam O,,(z) for some k € {1,2,...,n}.
Applying inequality (3) in Definition 1.7, we obtain
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d(z, T*z) < s[d(z, T™z) + d(T™x, T"z))

s[d(z, T x) + s(d(T™x, T™ *z) 4 d(T™ Fx, T )]
sd(z, T™x) + s2[\"d(z, T*z) + \ed(T™x, x)]

(5 + sH)d(z, T x) 4+ s>\ d(z, T*x)].

IN A

IN

Therefore, we get

. s+ s2 n
Since diam O(z) = sup{diam O, (z) : n € N}, we obtain that 7" induces bounds
orbits. d

Theorem 3.2 (The Banach contraction principle in b-metric spaces, DUNG
[8, Theorem 2.1]). Let (X,d, s) be a complete b-metric space, and let T : X — X
be a continuous map such that for all x,y € X and some X € [0, 1),

d(Tx, Ty) < \d(z,y). (3.4)

Then T has a unique fixed point x*, and lim,, ,o, Tz = x* for all x € X.

PRrROOF. If we put ¢(t) = At, then the assertion follows from Theorem 2.2
and Lemma 3.1. O

Theorem 3.3. Let (X, d, s) be a complete b-metric space, and let T : X — X
be a quasicontraction inducing bounded orbits, i.e, there exists A € [0,1) such
that

d(Tz, Ty) < Adiam O(z,y), (3.5)

for all x,y € X. Then there exists * € X such that lim, ., T"(x) = x* for
each ¢ € X, and T has a unique fixed point x*, provided one of the following
conditions are satisfied:

(i) T is continuous at z* € X;
(ii) d is continuous.
PROOF. The proof follows from Theorem 2.2, if we put () = At. O

Remark 3.4. (1) If T' is a quasicontraction on b-metric space (X, d, s) with \ €
[0, 1), then similar to the proof of Lemma 3.1, there exists some k € {1,2,...,n},
such that d(x, T*z) = diam O,,(x). Since,

diam Oy, (z) < s[d(z, Tx) + diam O,,_1(Tx)] < sld(z, Tz) + A diam O, (x)],
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which implies
diam O(z) <

= )\Sd(x,Tx). (3.6)

(2) If (X,d, s) is a strong b-metric space, then
diam Oy, (2) < sd(z, Tx) + diam O,,—1 (Tz) < sd(xz,Tz) + A diam O, (z),
which implies
diam O(x) < %d(m,Tx). (3.7

From Lemma 2.1, Theorem 3.3 and Remark 3.4, we obtain the following
quasi-contraction principle in b-metric and strong b-metric spaces.

Corollary 3.5 (Version of the fixed point theorem of Ciri¢ in b-metric
spaces). Let (X,d, s) be a complete b-metric space and let T : X — X be a map
such that for all z,y € X and some X € [0,1/s),

T T
i1 Ty) < N { ). do Tty 1), DT, ATD
Then T has a unique fixed point z*.

PROOF. From Lemma 2.1 and Remark 3.4, there exists z* € X such that
lim,, oo T"(2) = z* for each z € X. Let us show that «* is a fixed point. We have
the following:

d(z*, Tx*) < s[d(z*, T x) + d(T" e, Ta*))

< sd(z", T"x) + sAmax {d(T"ﬂc, ), d(T", T"a),

d(z*, T ) d(T z, To*
d(e T, W@ T 0) AT, T )}.
2s 2s
Since,
d(z*, T ) < d(z*,T"x) + d(T"x, T ')
2s - 2
< max{d(z*,T"z),d(T"z, T" " x)},

and

d(T™zx, Tx*) < d(T™x, x*) 4+ d(x*, Tx*)
2s - 2

< max{d(z*,T"x),d(x*, Tx™)},
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so we obtain
d(z*,Tx*) < sd(z*, T"'z) + sAmax{d(T"z,z*), d(T"z, T" " z), d(z*, Tz*)}.

Since lim,, oo T"x = z* and lim, o d(T™z, T""1x) = 0, this shows that (1 —
As)d(z*, Tx*) = 0, which implies that z* is a fixed point of T. The uniqueness
follows from the quasi-contractivity of 7. O

Corollary 3.6 (Version of the fixed point theorem of Ciri¢ in strong b-metric
spaces). Let (X,d,s) be a complete strong b-metric space, and let T : X — X be
a map such that for all z,y € X and some X € [0,1),

d(Tz, Ty) < Amax{d(z,y),d(z,Tx),d(y, Ty),d(z, Ty),d(y, Tx)}.

Then T has a unique fixed point x*.

PrOOF. The continuity of d follows directly from Theorem 3.3 and
Remark 3.4. 0

Remark 3.7.

(i) The conclusion of Corollary 3.6 does not hold in the setting of b-metric spaces
for A € [0,1) (see [8, Example 2.6]).

(ii) Corollary 3.5 improves the result of JOVANOVIC et al. ([13, Corollary 3.12]).
(ii) Corollary 3.6 improves the results of DUNG (see [8, Corollaries 2.4 and 2.5]).
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