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Cobordism of maps of locally orientable Witt spaces

By JEAN-PAUL BRASSELET (Marseille), ALICE KIMIE MIWA LIBARDI (Rio Claro),

ELIRIS CRISTINA RIZZIOLLI (Rio Claro) and MARCELO JOSÉ SAIA (São Carlos)

Abstract. The aim of this work is to present some remarks on cobordism of nor-

mally nonsingular maps between compact locally orientable Witt spaces. By using the

Wu classes defined by Goresky and Pardon, we give a definition of Stiefel–Whitney num-

bers in this situation. Following Stong’s method, we construct a map in the respective

intersection homology groups and show that null-cobordism implies the vanishing of

these Stiefel–Whitney numbers.

1. Introduction

R. Thom [21] was one of the first to define cobordism of smooth manifolds,

and he determined the non-oriented cobordism algebra. Many authors worked

on the subject, in particular R. E. Stong in his famous book [18] and in

many papers. Let us quote also M. F. Atiyah [1], and P. E. Conner and

E. E. Floyd [6].

Stong in [17] introduced and studied a notion of cobordism for maps

f : X → Y of closed smooth manifolds. He defined Stiefel–Whitney numbers

for such a map, presented a formula using cohomology groups with Z2 coeffi-

cients, and proved that two maps are cobordant if and only if they have the same
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characteristic numbers. These results concern smooth manifolds and use classical

homology theories. They are recalled in Section 2.

The natural question arises: What can we say in the case of singular varieties?

Among various works in this direction, we will quote those of G. Friedman [8],

M. Goresky and W. Pardon [13], P. Siegel [16], D. Sullivan [19] and

A. Szücs [20].

In [13, Introduction], Goresky and Pardon discussed four classes of singular

spaces for which they constructed characteristic classes such that the respec-

tive characteristic numbers determine the cobordism groups: orientable s̄-duality

spaces, orientable locally square-free spaces, locally orientable Witt spaces, locally

orientable spaces. They mention also other cobordism theories. Siegel in [16]

described the class of Q-Witt spaces and computed the cobordism groups of

such spaces, showing that in non-trivial cases they are equal to the Witt group.

Pardon [15] computed the cobordism groups of the “Poincaré duality spaces”

defined by Goresky and Siegel in [14]. Friedman in [8] followed Siegel by com-

puting the bordism groups of oriented K-Witt spaces for any coefficient field K

as well as identifying the resulting generalized homology theories.

Characteristic classes of smooth manifolds are defined in usual cohomology

groups on which there is a multiplicative structure given by the cup-product.

On the other hand, characteristic classes of singular varieties do not exist in co-

homology, they lie in homology where there is no product structure. In order to

recover a product and define characteristic numbers, one can consider intersec-

tion homology. In general, characteristic classes cannot be lifted to intersection

homology, and maps f : X → Y do not provide homomorphism of intersection

homology (see [3]). Fortunately, the characteristic classes we consider lie in in-

tersection homology and there are classes of maps, such as normally nonsingular

maps or placid maps, which provide well-defined homomorphisms in intersection

homology. But, unlike homology theories, intersection homology is not homo-

topy invariant and does not, in general, satisfy the universal coefficient theorem.

In this case, as we see in [8], the Witt spaces provide an important class of exam-

ples defined by a relatively tractable condition concerning intersection homology.

Our aim in this work is to present some results on cobordism of maps, by con-

sidering pseudomanifolds X and Y which are compact locally orientable Witt

spaces.

In this context, first we show that: If a map f : X → Y , where Y is a closed

smooth manifold, is null-cobordant, then the Stiefel–Whitney numbers, defined

using the Wu classes given by Goresky and Pardon in [13], are zero.



Cobordism of maps . . . 301

Then we consider the case when Y is not smooth, but the map is normally

a nonsingular (or placid) map. While these conditions are rather restrictive, they

are natural for the considered problem. We show that: If a normally nonsingular

(or placid) map f : X → Y is null-cobordant, then the Stiefel–Whitney numbers

are zero.

We remark that none of these results implies the other one, since the corre-

sponding characteristic numbers are different.

Consequently, if two maps are cobordant under our hypothesis, then we have

coincidence of the corresponding characteristic numbers.

2. Results of Stong and Atiyah on cobordism of maps

Let us recall results due to Stong in [17] and their relationship with the

bordism groups of Atiyah.

A map of dimension (m,n) is a triple (f,M,N), where M and N are closed

smooth manifolds of dimension m and n, respectively, and f : M → N is a con-

tinuous map.

Definition 2.1 ([17]). Two maps (f,M,N) and (f
′
,M

′
, N
′
) of dimension

(m,n) are cobordant if there exists a triple (F, V,W ) where:

(1) V and W are compact smooth manifolds of dimensions m + 1 and n + 1,

respectively, with boundaries ∂V = M tM ′
and ∂W = N tN ′ , and

(2) F : V →W is a continuous map whose restrictions toM andM
′
are f and f

′
,

respectively.

The set of equivalence classes of maps of dimension (m,n) under this rela-

tion is denoted N (m,n). Following Conner and Floyd in [6], Stong shows how

to reduce the calculation of the cobordism groups N (m,n) to a homotopy ques-

tion involving the Thom spaces. He showed that the group N (m,n) is the n-th

bordism group Nn(Ω∞MO(n − m +∞)) of the space Ω∞MO(n − m +∞) =

limq→∞ΩqMO(n−m+ q), where MO(i) is the Thom space of the i-dimensional

universal vector bundle and Ω stands for the loop space functor.

Atiyah introduced bordism groups Nm(N) which are equivalence classes of

maps under the following relation:

Definition 2.2. Two maps f : M −→ N and f
′

: M
′ −→ N , where M and M

′

are of dimension m, and N is of dimension n, are cobordant if there exist:
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(1) A manifold V of dimension m+ 1 with boundary ∂V = M tM ′
, and

(2) a continuous map F : V → N whose restrictions to M and M
′

are f and f
′
,

respectively.

In fact, this group is the group of homotopy classes of maps from the target

manifold N to Ω∞MO(n−m+∞), i.e., Nm(N) = [N,Ω∞MO(n−m+∞)].

Now the next propositions, showing the relation between the two definitions,

are obvious.

Proposition 2.3. Let (f,M,N) and (f
′
,M

′
, N
′
) be maps of dimension

(m,n) having the same target N = N
′
. If two maps represent the same class in

Nm(N), they determine the same class in N (m,n).

Proposition 2.4. If f, g : M → N are homotopic maps, then (f,M,N) is

cobordant to (g,M,N).

Stong in [17] defined the Stiefel–Whitney (S–W for short) numbers asso-

ciated to the map (f,M,N), and proved that two maps of the same dimension

(m,n) are cobordant if and only if they have the same S–W numbers. That is, he

proved that the resulting cobordism groups N (m,n) are determined by the S–W

numbers. In order to prove this result, Stong used a “Gysin” homomorphism f!

defined below. Here, as well as throughout the whole paper, homology and co-

homology groups are considered with Z2 coefficients. The universal coefficient

theorem is used to identify Hi+n−m(N) with Hom(Hi+n−m(N),Z2).

Definition 2.5 ([17, §6]). Let us consider a map f : M → N , where M and N

are manifolds of dimensions m and n, respectively. One defines the “Gysin” ho-

momorphism by commutativity of the following diagram, where f∗ is the map

induced by f in homology, and PDM and PDN are Poincaré duality isomor-

phisms:

Hi(M)

PDM
∼=
��

f! // Hi+n−m(N)

PDN
∼=
��

Hm−i(M)
f∗ // Hm−i(N).

The main reason why we restrict ourselves to the study of normally nonsin-

gular maps (see Definition 3.3) is that for them the Atiyah–Hirzebruch definition

of the Gysin map can be repeated word by word (see Remark 6.9). Moreover, its

analogues can be defined in the intersection (co)homologies as well.
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Remark 2.6. The Gysin homomorphism f! : Hi(M) → Hi+n−m(N) is the

map such that for any α ∈ Hi(M) and β ∈ Hi+n−m(N), one has 〈f!(α), β〉 =

〈f∗(β̃) ∪ α, [M ]〉 ∈ Z2, where β̃ = PD−1
N (β) ∈ Hm−i(N) and [M ] is the funda-

mental class of M .

We will use an analogous description of the map f!, due to Atiyah and

Hirzebruch [2]: Let us consider h : M → Ss an embedding of M in some

s-dimensional sphere Ss, and T a tubular neighborhood of (f ×h)(M) in N ×Ss,
then f! is the composition of the maps:

Hi(M)
ϕ→ Hi+s+n−m(T/∂T )

c∗→ Hi+s+n−m(N × Ss)→ Hi+n−m(N),

where ϕ denotes the Thom isomorphism, c : N × Ss → T/∂T is the collapsing

map, and the last map is the projection (denoted as isomorphism in Stong [17,

p. 255])

Hi+s+n−m(N × Ss) ∼= Hi+n−m(N)⊕Hs(Ss)→ Hi+n−m(N).

3. Intersection homology

3.1. Pseudomanifolds.

Definition 3.1 ([13, §2.1]). An m-dimensional pseudomanifold without

boundary is a purely m-dimensional piecewise linear (P.L. for short) polyhedron

which admits a triangulation such that each (m− 1) simplex is a face of exactly

two m-simplices.

A pseudomanifold admits a piecewise linear stratification [4, §I.1.4], which is

a filtration by closed subspaces ∅ ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xm−2 ⊂ Xm = X, with the

singular part Σ(X) of X being (included in) the element Xm−2 of the filtration

and such that for each point x ∈ Xi − Xi−1 there is a neighborhood U and

a homeomorphism preserving the P.L. stratification between U and Ri × c(L),

where c(L) denotes the (open) cone on the link L of the stratum Xi − Xi−1.

Note that the difference Xi − Xi−1 itself is a stratified pseudomanifold (see [4,

§I.1.1]). If Xi −Xi−1 is not empty, it is a (non-necessarily connected) manifold

of dimension i, and is called the i-dimensional stratum of the stratification.

Definition 3.2 ([13, §2.3]). An m-pseudomanifold X with boundary ∂X is

an m-dimensional compact P.L. space such that X − ∂X is a pseudomanifold,

and ∂X is a compact (m− 1)-dimensional P.L. subspace of X which has a collar

neighborhood U in X, i.e., there is a P.L. homeomorphism ϕ : U ∼= ∂X × [0, 1)

such that the restriction ϕ|∂X is the identity map.
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In the following, we will consider mainly two classes of maps: normally non-

singular maps and placid maps. Here we recall these definitions.

Definition 3.3 ([7], [12, §5.3.1]). A map f : X → Y between pseudomanifolds

is normally nonsingular if there exists a diagram

Nf

π

��

� � i // Y × Rk

p

��
X

s

TT

f // Y

where π : Nf −→ X is a vector bundle with zero-section s, i is an open embedding,

p is the first projection, and one has f = p ◦ i ◦ s. The bundle Nf is called the

normal bundle.

Remark 3.4. According to Fulton–MacPherson [7], this definition says

that geometrically the singularities of X at any point x are no better or worse

than the singularities of Y at f(x). In particular, if the target space Y is smooth,

then the domain is smooth after crossing with some Rk, so it is a homology

manifold.

Definition 3.5. A map f : X → Y between two pseudomanifolds is called

placid if there exists a stratification of Y such that for each stratum S in Y, we

have

codimXf
−1(S) ≥ codimY (S).

3.2. Intersection Homology and Cohomology. Reference for this section is

Goresky–MacPherson’s original paper [11].

The notion of perversity is fundamental for the definition of intersection

homology and cohomology. A perversity p̄ is a multi-index sequence of integers

(p(0), p(1), . . .) such that p(0) = p(1) = p(2) = 0 and p(c) ≤ p(c + 1) ≤ p(c) + 1

for c ≥ 2. Any perversity p̄ lies between the zero perversity 0̄ = (0, 0, 0, . . .) and

the total perversity t̄ = (0, 1, 2, 3, . . .). In particular, we will use the lower middle

perversity, denoted by m, and the upper middle perversity, denoted by n, such

that

m(c) =

[
c− 2

2

]
and n(c) =

[
c− 1

2

]
, for c ≥ 2.

Let p be a perversity, the complementary perversity q is defined by

q(c) + p(c) = t(c) = c− 2, for all c ≥ 2.

Let p and r be two perversities, if p(c) ≤ r(c) for every c ≥ 2, one will write p ≤ r.
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Let X be an m-dimensional pseudomanifold and p a perversity. The intersec-

tion homology groups with Z2 coefficients, denoted by IHp
i (X), are the homology

groups of the chain complex

ICpi (X)=

{
ξ ∈ Ci(X) | dim(|ξ| ∩Xm−c) ≤ i− c+ p(c) and

dim(|∂ξ| ∩Xm−c) ≤ i− 1− c+ p(c), ∀ c ≥2

}
,

where Ci(X) denotes the group of compact i-dimensional P.L. chains ξ of X with

Z2 coefficients, and |ξ| denotes the support of ξ.

The intersection cohomology groups with Z2 coefficients, denoted by

IHm−i
p (X), are defined as the groups of the cochain complex (see also [13])

ICm−ip (X)=

{
γ ∈ Cm−i(X)| dim(|γ| ∩Xm−c) ≤ i− c+ p(c) and

dim(|∂γ| ∩Xm−c) ≤ i− 1− c+ p(c), ∀c ≥ 2.

}
,

where Cm−i(X) denotes the abelian group, with Z2 coefficients, of all (m − i)-
dimensional P.L. cochains of X with closed supports in X.

The main properties of intersection homology that we will use are the fol-

lowing:

Properties 3.6. Let X be a compact m-dimensional pseudomanifold, then,

for any perversity p̄, the Poincaré duality map PDX given by the cap-product

with the fundamental class of X naturally factorizes in the following way [11]:

Hm−i(X)
PDX //

αX

&&

Hi(X)

IH p̄
i (X),

ωX

99
(3.7)

where αX is induced by the cap-product by the fundamental class [X], and ωX
is induced by the inclusion ICpi (X) ↪→ Ci(X).

For perversities p̄ and r̄ such that p̄+ r̄ ≤ t̄, the intersection product

IH p̄
i (X)× IH r̄

j (X)→ IH p̄+r̄
(i+j)−m(X)

is well defined.

If X is compact, the Poincaré duality homomorphism

IHm−i
p̄ (X;Z2)→ IH p̄

i (X;Z2) (3.8)

is an isomorphism.
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4. Locally orientable Witt spaces and Wu classes

In this section, we use definitions and notations of M. Goresky [10] and

M.Goresky and W. Pardon [13]. First of all, let us fix notations in the smooth case.

Let M be an m-dimensional manifold. We will denote by wi(M) ∈ Hi(M)

the i-th Stiefel–Whitney cohomology class (i-th S–W cohomology class) of the

tangent bundle TM . The (m− i)-th Stiefel–Whitney homology class ((m− i)-th
S–W homology class) of TM denoted by wm−i(M) in Hm−i(M) is the image of

wi(M) by Poincaré duality homomorphism.

4.1. Z2-Witt spaces and Wu classes. In the singular case, the mod 2 Steenrod

square operations have been defined in intersection cohomology by M. Goresky

in [10] (see also[13, §4]), as operations

Sqi : IHj
c̄ (X;Z2)→ IHi+j

2c̄ (X;Z2)

provided 2c̄ ≤ t̄. Via the above Poincaré duality, one has similar operations in

intersection homology (with compact supports).

Definition 4.1 ([13, §5.1]). Let X be an m-dimensional pseudomanifold. Sup-

pose c̄ is a perversity such that 2c̄ ≤ t̄. Let b̄ = t̄ − c̄ be the complementary

perversity. For any i with 0 ≤ i ≤ [m/2], the Steenrod square operation

Sqi : IH c̄
i (X)→ IH2c̄

0 (X)→ Z2

is given by multiplication with the ith-intersection cohomology Wu class of X:

vi(X) = vib̄(X) ∈ IHi
b̄(X).

One defines vi(X) = 0 for i > [m/2].

Definition 4.2 ([9, §5.1],[16]). A stratified pseudomanifold X is a Z2-Witt

space if, for each stratum of odd codimension 2k+ 1, one has that the link of the

stratum L satisfies IHk
m̄(L) = 0 with the lower middle perversity m̄.

There is a large class of examples of Z2-Witt spaces, such as manifolds,

complex varieties and suspensions of odd-dimensional Z2-Witt spaces.

If X is a Z2-Witt space, then the middle intersection homology group is self-

dual, i.e., satisfies the Poincaré duality over Z2. Also the natural homomorphism

IHi
m̄(X)→ IHi

n̄(X)

is an isomorphism.
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Let X be a Z2-Witt space, then for any i with 0 ≤ i ≤ [m/2], the Wu classes

vim̄(X) lift canonically to IHi
m̄(X) = IHi

n̄(X) (see [13] §10). From now on,

we shall denote, for short, the Wu classes vim̄(X) by vi(X).

We denote by vm−i(X) ∈ IH n̄
m−i(X) the (m − i)-th homology Wu class

of X in intersection homology, the dual to the Wu class vi(X) (denoted by Ivi ∈
IHi

m̄(X) in [10, §5.2]).

Let j : X → V be a normally nonsingular inclusion [7], [9], [11] with normal

bundle ν. Then j induces homomorphisms

j∗ : IH p̄
i (X;Z2)→ IH p̄

i (V ;Z2), j∗ : IHk
p̄ (V ;Z2)→ IHk

p̄ (X;Z2),

and one has the following Proposition ([13, Proposition 4.2])

Proposition 4.3. For any η ∈ IHk
p̄ (V ;Z2), with 2p̄ ≤ t̄, we have

Sqij∗(η) = j∗Sqi(η),

which means the commutativity of the following diagram:

IHk
p̄ (V )

j∗ //

Sqi

��

IHk
p̄ (X)

Sqi

��
IHi+k

2p̄ (V )
j∗ // IHi+k

2p̄ (X).

Notice that in the case X denotes the boundary of an (m + 1)-pseudo-

manifold V , then, the normal bundle of X in V is trivial (see Definition 3.2).

Corollary 4.4. Let V be an (m + 1)-pseudomanifold with boundary X,

and j : X ↪→ V the induced inclusion. For any i with 0 ≤ i ≤ [m/2], one has

j∗(vi(V )) = vi(X).

4.2. Locally orientable Witt spaces.

Definition 4.5 ([13, §8.1]). A stratified pseudomanifold X is locally orientable

if the link of each stratum is an orientable pseudomanifold.

Definition 4.6 ([13, §10.2]). A stratified pseudomanifold X is a locally ori-

entable Witt space if it is both locally orientable and a Z2-Witt space.

Lemma 4.7 ([13, §10.2]). If X is a locally orientable Witt space, then

Sq1Sq2i = Sq2i+1 as homomorphisms

IHm̄
j (X,Z2)→ IHm̄

j−2i−1(X,Z2).
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In our proofs, we will use the following property of locally orientable Witt

spaces: For a locally orientable Witt space, the Wu classes which are defined as

middle intersection homology classes, can be multiplied to construct the charac-

teristic numbers

ε(vi(X) • vj(X)) = 〈vm−i(X) ∪ vm−j(X), [X]〉 ∈ Z2,

where i+ j = m, the map ε : H0(X,Z2)→ Z2 denotes the augmentation, and the

following diagram commutes (here • denotes intersection of cycles):

IHm̄
i (X)× IHm̄

j (X)
• // IH t̄

0(X)
ε // Z2

IHm−i
m̄ (X)× IHm−j

m̄ (X)
∪ //

∼=×∼=

OO

IHm
0̄ (X).

∼=

OO

We notice that “absolute” cobordism of locally orientable Witt spaces is

computed in [13, §10.5].

5. Cobordism of maps between pseudomanifolds

Definition 5.1. Let f : X → Y be a map between pseudomanifolds of di-

mensions m and n, respectively. The triple (f,X, Y ) is null-cobordant if there

exist:

(1) pseudomanifolds V and W with dimensions m + 1 and n + 1, respectively,

such that ∂V = X and ∂W = Y ;

(2) a map F : V →W such that the following diagram commutes:

UX

∼= φ

��

F|UX // UY

∼=ψ

��
∂V × [0, 1)

f×Id // ∂W × [0, 1),

where UX and UY are the collar neighborhoods of X and Y in V and W , re-

spectively, and φ and ψ are P.L. diffeomorphisms such that φ(x) = (x, 0), x ∈
∂V and ψ(y) = (y, 0), y ∈ ∂W ;

(3) F|∂V = f : ∂V → ∂W.
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Given maps f : X1 → Y1 and g : X2 → Y2, one may define the triple

(f t g,X1 tX2, Y1 t Y2) by the map f t g from the disjoint union X1 tX2 of X1

and X2 into the disjoint union Y1 t Y2 of Y1 and Y2 such that (f t g)|X1 = f and

(f t g)|X2 = g.

Definition 5.2. Two maps f : X1 → Y1 and g : X2 → Y2 are cobordant if the

triple

(f t g,X1 tX2, Y1 t Y2)

is null-cobordant.

When fixing the target space Y , we denote the group of cobordism of maps

f : X → Y between pseudomanifolds by SN∗(Y ), the operation being given by

the disjoint union.

Remark 5.3. In the smooth case, there is an isomorphism between N∗(Y )

and H∗(Y,Z2)⊗N∗ where N∗(Y ) is the group of non-orientable bordism, and N∗
is the Thom bordism group [6].

A natural question is to ask if there exists an isomorphism between SN∗(Y )

and IH∗(Y,Z2)⊗N∗Z2−Witt where N∗Z2−Witt denotes the Z2-Witt bordism group

for the unoriented case. Friedman and Siegel defined the Z2-Witt bordism group

Ω∗
Z2−Witt for the oriented case; they do not consider the case of maps between Z2-

Witt spaces. The existence of an isomorphism between SN∗(Y ) and IH∗(Y,Z2)⊗
N∗Z2−Witt is still an open conjecture.

6. Main results

In this section, we consider different cases of compact pseudomanifolds X

and Y and maps f : X → Y , and we prove that if (f,X, Y ) is null-cobordant,

then characteristic numbers associated in each case vanish. First, we consider

the case X is a locally orientable Witt space of pure dimension m, and Y an

n-dimensional smooth manifold. Then we consider the case where X and Y

are locally orientable Witt spaces and f : X → Y a normally nonsingular (or

placid) map. Remark that in these two cases we deal with different characteristic

numbers.

6.1. Case of a map f : X −→ Y with Y a smooth manifold.

Let f : X −→ Y be a map with X a compact locally orientable Witt space of

pure dimension m, and Y a closed n-dimensional smooth manifold. Then, we can
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define the map f! : IH
p̄

i (X)→ IH
p̄

i (Y ) in such a way that the following diagram

commutes:

Hi(X)
f∗ // Hi(Y )

IH p̄
i (X)

ωX

OO

f! // IH p̄
i (Y ),

ωY '

OO

i.e. f! = (ωY )−1◦f∗◦ωX , where the map ωY is an isomorphism since Y is smooth.

We denote by f̃! the composition map f̃! = α−1
Y ◦f!, i.e. the composition map

IH p̄
i (X)

ωX−→ Hi(X)
f∗−→ Hi(Y )

PD−1
Y−→ Hn−i(Y )

where the last arrow denotes the inverse Poincaré duality isomorphism.

Definition 6.1. For any partition ` = `1 + · · · + `s of a non-negative integer

` and r numbers u1, . . . , ur satisfying ui ≤ [m/2] for all i and

(`1 + `2 + · · ·+ `s) + u1 + · · ·+ ur + r(n−m) = n, (6.2)

let us denote w`(Y ) = w`1(Y ) ∪ · · · ∪ w`s(Y ), where w`i(Y ) denotes the `i-th

Stiefel–Whitney cohomology class of Y , which corresponds to wn−`(Y ) =

wn−`1(Y )•· · ·•wn−`s(Y ), where wn−`i(Y ) denotes the (n−`i)-th Stiefel–Whitney

homology class of Y .

In the following, in order to avoid heavy notations, we will identify inter-

section homology classes vi(X) ∈ IHm̄
i (X) with intersection cohomology classes

vm−im̄ (X) ∈ IHm−i
m̄ (X) ∼= IHm̄

i (X).

The S–W numbers of any triple (f,X, Y ) corresponding to the numbers

`1, . . . , `s, u1, . . . , ur are defined by

〈w`(Y ) ∪ f̃!(vm−u1
(X)) ∪ · · · ∪ f̃!(vm−ur

(X)), [Y ]〉. (6.3)

Theorem 6.4. Let f : X −→ Y be a map, where X is compact locally

orientable Witt space of pure dimension m, and Y a closed n-dimensional smooth

manifold. If (f,X, Y ) is null-cobordant, with (f,X, Y ) = ∂(F, V,W ), and W is

a smooth manifold, then for any partition ` and r numbers u1, . . . , ur satisfying

ui ≤ [m/2] for all i and (6.2), the S–W numbers

〈w`(Y ) ∪ f̃!(vm−u1(X)) ∪ · · · ∪ f̃!(vm−ur (X)), [Y ]〉

are zero.
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Proof. With the notations of the theorem, let us define the map

F̃! : IHm̄
i+1(V )

ωV−→ Hi+1(V )
F∗−→ Hi+1(W )

i∗−→ Hi+1(W,Y )
LDW−→ Hn−i(W ),

where i∗ is the morphism induced by inclusion (W, ∅)→ (W,Y ) in the long exact

sequence of the pair, and LDW is the Poincaré–Lefschetz duality isomorphism.

One has 〈w`(Y ) ∪ f̃!(vm−u1(X)) ∪ · · · ∪ f̃!(vm−ur (X)), [Y ]〉 =

〈j∗w`(W )∪ j∗F̃!(vm−u1(V ))∪ · · · ∪ j∗F̃!(vm−ur (V )), ∂[W ]〉, by Corollary 4.4 and

commutativity of the following diagram:

IHm̄
i (X)

f̃! // Hn−i(Y )

IHm̄
i+1(V )

j∗X

OO

F̃! // Hn−i(W ).

j∗

OO

So, we obtain:〈
j∗
(
w`(W ) ∪ F̃!(vm−u1

(V )) ∪ · · · ∪ F̃!(vm−ur
(V ))

)
, ∂[W ]

〉
=
〈
δj∗
(
w`(W ) ∪ F̃!(vm−u1(V )) ∪ · · · ∪ F̃!(vm−ur (V ))

)
, [W,∂W ]

〉
= 0,

where

Hk(W )
j∗→ Hk(Y )

δ→ Hk+1(W,∂W )

is part of a long exact sequence, so δj∗ = 0. �

Remark 6.5. If f : X → Y is a normally nonsingular map with Y a manifold,

then ωX : IHp
i (X)→ Hi(X) is an isomorphism, see Remark 3.4, and the map f̃!

coincides with the composition

IHp
i (X) ∼= Hi(X)→ Hi(f(X)) ∼= Hn−i(Y, Y \ f(X))

β−→ Hn−i(Y ),

where the second isomorphism is Alexander duality and β is the connecting map

in the long exact sequence of a pair.

6.2. Maps f : X −→ Y with X and Y locally orientable Witt spaces.

Let f : X → Y be a map of pseudomanifolds, Then, in general neither the

existence nor the unicity of induced map holds in intersection homology, i.e. of a

Gysin map f! making the following diagram (6.6) commutative. However, if f is

proper and normally nonsingular, then there is a well-defined Gysin map

f! : IHm̄
i (X)→ IHm̄

i (Y )
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such that the following diagram commutes [12, §5.4.3]:

Hi(X)
f∗ // Hi(Y )

IH p̄
i (X)

ωX

OO

f! // IH p̄
i (Y ).

ωY

OO
(6.6)

The same result holds for placid maps as well (see [12] and [3, Proposi-

tion 3.2]).

We remark that the definition of the map f! is made at the level of sheaves

in [3]. More precisely, the intersection homology IHm̄
i (X) is the hypercohomol-

ogy IHm−i(X; IC•X), where IC•X is the so-called intersection sheaf such that for

any open subset U ⊂ X, the complex of sections Γ(U, IC•X) is the complex of

intersection chains ICmm−•(U), see [4, Corollary 5.2] and [12, §2.1].

Note that the index notation we use here is the one in [11] or [3], see [12,

§2.3] for the correspondence of indices between this one and those of [4] and [12].

Let f : X → Y be a map either normally nonsingular (see [12]), or placid,

or a closed embedding of a 1-codimensional complex variety (see [3, §2.4]), the

existence of a unique map f! : IHm̄
• (X) → IHm̄

• (Y ) such that the diagram 6.6

commutes is proved at the level of intersection sheaves

IC•X → f !IC•Y [n−m]

(see [3]), or equivalently, by adjunction f!IC•X → IC
•
Y .

Lemma 6.7. Let f : X −→ Y be a normally nonsingular map, or a placid

map, with X and Y compact and (f,X, Y ) = ∂(F, V,W ). Then there exists

a map F! such that the following diagram commutes:

IHm̄
u (X)

f!

��

IHm̄
u+1(V )

j∗Xoo

F!

��
IHm̄

u (Y ) IHm̄
u+1(W ).

j∗Yoo

Proof. We apply [4, Proposition 10.7] (see also [12]) to the following dia-

gram

X

f

��

� � jX // V

F

��
Y �
� jY // W,

where jX : X −→ V and jY : Y −→W are inclusion maps.
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Therefore, one has equality of sheaves on Y :

j∗Y F!A = f!j
∗
XA

for any sheaf A on V . That provides a commutative diagram of complexes of

sheaves on Y (perverse intersection sheaves for the middle perversity m̄):

f!IC•X

��

oo f!j
∗
X (IC•V ) = j∗Y F! (IC•V )

��
IC•Y oo j∗Y (IC•W ) .

Taking hypercohomology IHn−u(Y ; •) of the previous diagram, one obtains

for any u:

IHn−u(X; IC•X)

f!

��

oo j
∗
X

IHn−u(V ; IC•V )

F!

��
IHn−u(Y ; IC•Y ) oo

j∗Y
IHn−u(W ; IC•W ),

where, by unicity and the construction in [3], the maps coincide with the ones

previously defined. The Lemma follows. �

Theorem 6.8. Let f : X −→ Y be a normally nonsingular (or placid) map,

with X and Y compact locally orientable Witt spaces of pure dimension m and n,

respectively. If (f,X, Y ) is null-cobordant, then for any u with 0 ≤ u ≤ n, the

following S–W numbers vanish:

〈vn−u(Y ) • f!(vu(X)), [Y ]〉 = 0.

Proof. If m > n, the result is trivial. If m ≤ n and u is out of the interval

[m − [m/2], [n/2]] the result is trivial. Let us consider u in the interval. The

diagram of Lemma 6.7 can be written in the cohomology setting

IHm−u
n̄ (X)

f! // IHn−u
n̄ (Y )

IHm−u
n̄ (V )

j∗X

OO

F! // IHn−u
n̄ (W ),

j∗Y

OO

where m̄+n̄ = t̄, and we use the same notation for corresponding maps j∗X and j∗Y .
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Let us consider the intersection homology Wu class vn−u(Y ) ∈ IH n̄
n−u(Y ),

written vu(Y ) in IHu
m̄(Y ) in the intersection cohomology setting, by Corollary 4.4,

vu(Y ) = j∗Y v
u(W ), where vu(W ) ∈ IHu

m̄(W ) is the intersection cohomology

Wu class corresponding to the intersection homology Wu class vn+1−u(W ) ∈
IH n̄

n+1−u(W ) of W .

In the same way, let us denote by vm−u(X) ∈ IHm−u
n̄ (X) the intersec-

tion cohomology Wu class corresponding to the intersection homology Wu class

vu(X) ∈ IHm̄
u (X), then Corollary 4.4 implies that vm−u(X) = j∗X(vm−u(V )),

where vm−u(V ) ∈ IHm−u
n̄ (V ) is the intersection cohomology Wu class corre-

sponding to the intersection homology class vu+1(V ) ∈ IHm̄
u+1(V ).

One has the intersection product vn−u(Y ) • f!(vu(X)) ∈ IH t̄
0(Y ) corre-

sponding to the product vu(Y ) ∪ f!(v
m−u(X)) ∈ IHn

0̄ (Y ) and f!(v
m−u(X)) =

f!j
∗
X(vm−u(V )) ∈ IHn−u

n̄ (Y ).

Therefore,

〈vu(Y ) ∪ f!(v
m−u(X)), [Y ]〉 = 〈j∗Y vu(W ) ∪ f!j

∗
X(vm−u(V )), [Y ]〉

= 〈j∗Y vu(W ) ∪ j∗Y F!(v
m−u(V )), [Y ]〉

= 〈j∗Y
(
vu(W ) ∪ F!(v

m−u(V ))
)
, [∂W ]〉

= 〈δj∗Y
(
vu(W ) ∪ F!(v

m−u(V ))
)
, [W,∂W ]〉 = 0,

where the first equality is a consequence of [10, Theorem 5.3] of Goresky, the sec-

ond one is from Lemma 6.7, and the last equality is obtained in an analogous way

like the last equality given in the proof of Theorem 6.4. �

Remark 6.9. Let us consider the case where X is an m-dimensional compact

smooth manifold, and Y is a locally orientable Witt space of pure dimension n.

Then one can show that the map f! exists and is well-defined without sheaf theory,

in the following way.

Since f is a normally nonsingular map, one may consider the normal bun-

dle Nf over X and an open embedding i : Nf → Y × Rs. Let T be a tubular

neighborhood of (f×h)(X) in Y ×Rs, where h : X → Rs is defined in such a way

that the following diagram commutes:

Nf
i // Y × Rs.

X

σ

OO

f×h

::

By compactness of X, the image of i lies in Y × Ss for some s-dimensional
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sphere Ss, and then the diagram reduces to

Nf
i // Y × Ss.

X

σ

OO

f×h

;;

Following Remark 2.6, there exists a map φ which is the composition of the

maps:

Hi(X)
ϕ→ Hi+s+n−m(T/∂T )

c∗→ Hi+s+n−m(Y × Ss)→ Hi+n−m(Y ),

here ϕ denotes the Thom homomorphism and c : Y ×Ss → T/∂T is the collapsing

map. The last homomorphism is given by the Künneth formula for a product

of a smooth manifold with a Z2-Witt space [5].

Since X is a smooth manifold, αX : Hi(X)→ IH p̄
m−i(X) is an isomorphism,

then one defines the map f! by commutativity of the following diagram, i.e. f! =

αY ◦ φ ◦ α−1
X :

Hi(X)
φ //

αX ∼=
��

Hn−(m−i)(Y )

αY

��
IHm̄

m−i(X)
f! // IHm̄

m−i(Y ).

From these results, it is possible to conclude that in each case above, the

S–W numbers are cobordism invariants in the following sense.

Corollary 6.10. Let f : X1 → Y and g : X2 → Y be two cobordant maps

with X1 and X2 compact locally orientable Witt spaces of pure dimension m, and

Y be a closed n-dimensional smooth manifold. Then for any partition ` = `1 +

· · ·+`s and r numbers u1, . . . , ur satisfying ui ≤ [m/2] for all i and equation (6.2),

we have the equality of the corresponding S–W numbers:

〈w`(Y ) ∪ f̃!(vm−u1(X)) ∪ · · · ∪ f̃!(vm−ur (X)), [Y ]〉

= 〈w`(Y ) ∪ g̃!(vm−u1
(X)) ∪ · · · ∪ g̃!(vm−ur

(X)), [Y ]〉.

Corollary 6.11. Let f : X1 → Y and g : X2 → Y be two cobordant

normally nonsingular (or placid) maps, with X1 and X2 (of pure dimension m)

and Y (of pure dimension n) compact locally orientable Witt spaces. Then for

any u with 0 ≤ u ≤ n, we have the equality of the corresponding S–W numbers:

〈vn−u(Y ) • f!(vu(X)), [Y ]〉 = 〈vn−u(Y ) • g!(vu(X)), [Y ]〉.
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