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Cobordism of maps of locally orientable Witt spaces

By JEAN-PAUL BRASSELET (Marseille), ALICE KIMIE MIWA LIBARDI (Rio Claro),
ELIRIS CRISTINA RIZZIOLLI (Rio Claro) and MARCELO JOSE SAIA (Sao Carlos)

Abstract. The aim of this work is to present some remarks on cobordism of nor-
mally nonsingular maps between compact locally orientable Witt spaces. By using the
Wau classes defined by Goresky and Pardon, we give a definition of Stiefel-Whitney num-
bers in this situation. Following Stong’s method, we construct a map in the respective
intersection homology groups and show that null-cobordism implies the vanishing of
these Stiefel-Whitney numbers.

1. Introduction

R. THOM [21] was one of the first to define cobordism of smooth manifolds,
and he determined the non-oriented cobordism algebra. Many authors worked
on the subject, in particular R. E. STONG in his famous book [18] and in
many papers. Let us quote also M. F. ATivaH [1], and P. E. CONNER and
E. E. FLoyD [6].

STONG in [17] introduced and studied a notion of cobordism for maps
f X — Y of closed smooth manifolds. He defined Stiefel-Whitney numbers
for such a map, presented a formula using cohomology groups with Zy coeffi-
cients, and proved that two maps are cobordant if and only if they have the same
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characteristic numbers. These results concern smooth manifolds and use classical
homology theories. They are recalled in Section 2.

The natural question arises: What can we say in the case of singular varieties?
Among various works in this direction, we will quote those of G. FRIEDMAN [8],
M. GORrEskKy and W. PARDON [13], P. SIEGEL [16], D. SULLIVAN [19] and
A. Szucs [20].

In [13, Introduction], Goresky and Pardon discussed four classes of singular
spaces for which they constructed characteristic classes such that the respec-
tive characteristic numbers determine the cobordism groups: orientable 5-duality
spaces, orientable locally square-free spaces, locally orientable Witt spaces, locally
orientable spaces. They mention also other cobordism theories. Siegel in [16]
described the class of Q-Witt spaces and computed the cobordism groups of
such spaces, showing that in non-trivial cases they are equal to the Witt group.
PARDON [15] computed the cobordism groups of the “Poincaré duality spaces”
defined by GORESKY and SIEGEL in [14]. Friedman in [8] followed Siegel by com-
puting the bordism groups of oriented K-Witt spaces for any coefficient field K
as well as identifying the resulting generalized homology theories.

Characteristic classes of smooth manifolds are defined in usual cohomology
groups on which there is a multiplicative structure given by the cup-product.
On the other hand, characteristic classes of singular varieties do not exist in co-
homology, they lie in homology where there is no product structure. In order to
recover a product and define characteristic numbers, one can consider intersec-
tion homology. In general, characteristic classes cannot be lifted to intersection
homology, and maps f : X — Y do not provide homomorphism of intersection
homology (see [3]). Fortunately, the characteristic classes we consider lie in in-
tersection homology and there are classes of maps, such as normally nonsingular
maps or placid maps, which provide well-defined homomorphisms in intersection
homology. But, unlike homology theories, intersection homology is not homo-
topy invariant and does not, in general, satisfy the universal coefficient theorem.
In this case, as we see in [8], the Witt spaces provide an important class of exam-
ples defined by a relatively tractable condition concerning intersection homology.

Our aim in this work is to present some results on cobordism of maps, by con-
sidering pseudomanifolds X and Y which are compact locally orientable Witt
spaces.

In this context, first we show that: If a map f: X — Y, whereY is a closed
smooth manifold, is null-cobordant, then the Stiefel-Whitney numbers, defined
using the Wu classes given by Goresky and Pardon in [13], are zero.
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Then we consider the case when Y is not smooth, but the map is normally
a nonsingular (or placid) map. While these conditions are rather restrictive, they
are natural for the considered problem. We show that: If a normally nonsingular
(or placid) map f: X — Y is null-cobordant, then the Stiefel-Whitney numbers
are zero.

We remark that none of these results implies the other one, since the corre-
sponding characteristic numbers are different.

Consequently, if two maps are cobordant under our hypothesis, then we have
coincidence of the corresponding characteristic numbers.

2. Results of Stong and Atiyah on cobordism of maps

Let us recall results due to STONG in [17] and their relationship with the
bordism groups of Atiyah.

A map of dimension (m,n) is a triple (f, M, N), where M and N are closed
smooth manifolds of dimension m and n, respectively, and f : M — N is a con-
tinuous map.

Definition 2.1 ([17]). Two maps (f,M,N) and (f ,M',N') of dimension
(m,n) are cobordant if there exists a triple (F,V, W) where:

(1) V and W are compact smooth manifolds of dimensions m + 1 and n + 1,
respectively, with boundaries 9V = M UM and W = N U N, and

(2) F:V — W is a continuous map whose restrictions to M and M are f and f/,
respectively.

The set of equivalence classes of maps of dimension (m,n) under this rela-
tion is denoted N (m,n). Following Conner and Floyd in [6], Stong shows how
to reduce the calculation of the cobordism groups A (m,n) to a homotopy ques-
tion involving the Thom spaces. He showed that the group N (m,n) is the n-th
bordism group 91, (2°MO(n — m + oo)) of the space Q®°MO(n — m + oo) =
limg 0o QIMO(n — m + q), where M O(%) is the Thom space of the i-dimensional
universal vector bundle and 2 stands for the loop space functor.

Atiyah introduced bordism groups N, (N) which are equivalence classes of
maps under the following relation:

Definition 2.2. Twomaps f: M — N and f/ : M —» N, where M and M’
are of dimension m, and N is of dimension n, are cobordant if there exist:
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(1) A manifold V' of dimension m + 1 with boundary 8V = M U M, and

(2) a continuous map F': V — N whose restrictions to M and M "are f and f,
respectively.

In fact, this group is the group of homotopy classes of maps from the target
manifold N to Q°MO(n —m + o0), i.e., Npp(N) = [N, Q°MO(n — m + 0)].

Now the next propositions, showing the relation between the two definitions,
are obvious.

Proposition 2.3. Let (f,M,N) and (fl,M/,N/) be maps of dimension
(m,n) having the same target N = N " If two maps represent the same class in
N (N), they determine the same class in N'(m,n).

Proposition 2.4. If f,g : M — N are homotopic maps, then (f, M, N) is
cobordant to (g, M, N).

STONG in [17] defined the Stiefel-Whitney (S—W for short) numbers asso-
ciated to the map (f, M, N), and proved that two maps of the same dimension
(m,n) are cobordant if and only if they have the same S—W numbers. That is, he
proved that the resulting cobordism groups N'(m,n) are determined by the S-W
numbers. In order to prove this result, Stong used a “Gysin” homomorphism f
defined below. Here, as well as throughout the whole paper, homology and co-
homology groups are considered with Zs coefficients. The universal coeflicient
theorem is used to identify H*"~™(N) with Hom(H; ,_m(N), Zs).

Definition 2.5 ([17, §6]). Let us consider a map f : M — N, where M and N
are manifolds of dimensions m and n, respectively. One defines the “Gysin” ho-
momorphism by commutativity of the following diagram, where f, is the map
induced by f in homology, and PD); and PDy are Poincaré duality isomor-
phisms:

Hi(M) — s gitn—m(N)

PDy l N ~ J/ PDyn

Hyp (M) —" s Hpo y(N).

The main reason why we restrict ourselves to the study of normally nonsin-
gular maps (see Definition 3.3) is that for them the Atiyah—Hirzebruch definition
of the Gysin map can be repeated word by word (see Remark 6.9). Moreover, its
analogues can be defined in the intersection (co)homologies as well.
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Remark 2.6. The Gysin homomorphism f, : H{(M) — H*™™=™(N) is the
map such that for any o € HY(M) and 8 € H;y,_m(N), one has (fi(a),3) =
(f*(B) U, [M]) € Zy, where § = PDy'(8) € H™ *(N) and [M] is the funda-
mental class of M.

We will use an analogous description of the map fi, due to ATIYAH and
HIRZEBRUCH [2]: Let us consider h : M — S® an embedding of M in some
s-dimensional sphere S*, and T a tubular neighborhood of (f x h)(M) in N x S*,
then f is the composition of the maps:

HI(M) & Hits+n=m(T/9T) & Hits+Hn=m(N x §°) - H+"=m(N)

)

where ¢ denotes the Thom isomorphism, ¢ : N x S* — T/0T is the collapsing
map, and the last map is the projection (denoted as isomorphism in Stong [17,
p. 255])

Hi—i—s—i—n—m(N % SS) ~ Hi-l—n—m(N) e HS(SS) N Hi—&-n—m(N).

3. Intersection homology

3.1. Pseudomanifolds.

Definition 8.1 ([13, §2.1]). An m-dimensional pseudomanifold without
boundary is a purely m-dimensional piecewise linear (P.L. for short) polyhedron
which admits a triangulation such that each (m — 1) simplex is a face of exactly
two m-simplices.

A pseudomanifold admits a piecewise linear stratification [4, §I.1.4], which is
a filtration by closed subspaces ) € Xg C X; C -+ C X,,,_2 C X,,, = X, with the
singular part 3(X) of X being (included in) the element X,,_o of the filtration
and such that for each point z € X; — X;_; there is a neighborhood U and
a homeomorphism preserving the P.L. stratification between U and R? x c(L),
where ¢(L) denotes the (open) cone on the link L of the stratum X; — X;_;.
Note that the difference X; — X;_; itself is a stratified pseudomanifold (see [4,
§L.1.1])). If X; — X, is not empty, it is a (non-necessarily connected) manifold
of dimension ¢, and is called the i-dimensional stratum of the stratification.

Definition 3.2 ([13, §2.3]). An m-pseudomanifold X with boundary 90X is
an m-dimensional compact P.L. space such that X — 0X is a pseudomanifold,
and 0X is a compact (m — 1)-dimensional P.L. subspace of X which has a collar
neighborhood U in X, i.e., there is a P.L.. homeomorphism ¢ : U =2 90X x [0,1)
such that the restriction @|sx is the identity map.
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In the following, we will consider mainly two classes of maps: normally non-
singular maps and placid maps. Here we recall these definitions.

Definition 3.3 ([7], [12, §5.3.1]). Amap f: X — Y between pseudomanifolds

is normally nonsingular if there exists a diagram

Nf(—i>YXRk

vy

where 7 : Ny — X is a vector bundle with zero-section s, 7 is an open embedding,
p is the first projection, and one has f = poios. The bundle Ny is called the
normal bundle.

Remark 3.4. According to FULTON-MACPHERSON [7], this definition says
that geometrically the singularities of X at any point x are no better or worse
than the singularities of Y at f(z). In particular, if the target space Y is smooth,
then the domain is smooth after crossing with some RF, so it is a homology
manifold.

Definition 3.5. A map f : X — Y between two pseudomanifolds is called
placid if there exists a stratification of Y such that for each stratum S in Y, we

have
codimx f~1(S) > codimy ().

3.2. Intersection Homology and Cohomology. Reference for this section is
GORESKY-MACPHERSON’s original paper [11].

The notion of perversity is fundamental for the definition of intersection
homology and cohomology. A perversity p is a multi-index sequence of integers
(p(0),p(1), .. such that p(0) = p(1) = p(2) = 0 and p(c) < p(c+1) < pl(c) + 1
for ¢ > 2. Any perversity p lies between the zero perversity 0 = (0,0,0,...) and
the total perversity ¢ = (0,1,2,3,...). In particular, we will use the lower middle
perversity, denoted by 7, and the upper middle perversity, denoted by 7, such
that

-2 -1
mi(c) = {02 } and  7(c) = [02 ] for ¢ > 2.
Let p be a perversity, the complementary perversity g is defined by
q(c) +p(c) =t(c) =c—2, forall c>2.

Let p and T be two perversities, if p(c) < r(c) for every ¢ > 2, one will write p < 7.
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Let X be an m-dimensional pseudomanifold and p a perversity. The intersec-
tion homology groups with Zs coefficients, denoted by I H? (X)), are the homology
groups of the chain complex

ICP(X)={€ € Gi(X) |

?

dim(|¢|NXpm—e) < i—c+p(e) and
dim(|0¢|NXye) < i—1—c+plc), Ve>2 (7

where C;(X) denotes the group of compact i-dimensional P.L. chains £ of X with
Zs coefficients, and |¢| denotes the support of &.
The intersection cohomology groups with Zs coefficients, denoted by
I Hglii(X ), are defined as the groups of the cochain complex (see also [13])
_ — dim([y|NXm—e) < i—c+p(c) and
IC7H(X)={ vy € C™ (X
p (X {76 ( )‘dim(|8'y|ﬂXm,c) < i—1—c+p(c), Ve>2. [’

where C™~%(X) denotes the abelian group, with Zy coefficients, of all (m — 4)-
dimensional P.L. cochains of X with closed supports in X.

The main properties of intersection homology that we will use are the fol-
lowing:

Properties 3.6. Let X be a compact m-dimensional pseudomanifold, then,
for any perversity p, the Poincaré duality map PDx given by the cap-product
with the fundamental class of X naturally factorizes in the following way [11]:

PDx

H™ i (X) Hi(X) (3.7)

TH} (X)),

where ax is induced by the cap-product by the fundamental class [X], and wx
is induced by the inclusion IC?(X) — C;(X).
For perversities p and ¥ such that p + 7 < t, the intersection product

[H](X) x TH](X) = TH;}  (X)

is well defined.
If X is compact, the Poincaré duality homomorphism

TH?'" (X3 Zo) — TH? (X Zs) (3.8)

is an isomorphism.
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4. Locally orientable Witt spaces and Wu classes

In this section, we use definitions and notations of M. GORESKY [10] and
M. Goresky and W. Pardon [13]. First of all, let us fix notations in the smooth case.

Let M be an m-dimensional manifold. We will denote by w*(M) € H'(M)
the i-th Stiefel-Whitney cohomology class (i-th S—W cohomology class) of the
tangent bundle TM. The (m — i)-th Stiefel-Whitney homology class ((m — i)-th
S-W homology class) of TM denoted by wy,—;(M) in H,,_;(M) is the image of
w®(M) by Poincaré duality homomorphism.

4.1. Zo-Witt spaces and Wu classes. In the singular case, the mod 2 Steenrod
square operations have been defined in intersection cohomology by M. Goresky
in [10] (see also[13, §4]), as operations

Sq': THL(X;Zo) — THY (X;Zs)
provided 2¢ < £. Via the above Poincaré duality, one has similar operations in
intersection homology (with compact supports).

Definition 4.1 ([13, §5.1]). Let X be an m-dimensional pseudomanifold. Sup-
pose ¢ is a perversity such that 2¢ < t. Let b = ¢ — ¢ be the complementary
perversity. For any ¢ with 0 < i < [m/2], the Steenrod square operation

Sq': THE(X) — THE(X) — Zq
is given by multiplication with the i*P-intersection cohomology Wu class of X:
v (X) = vi(X) € THH(X).
One defines v'(X) = 0 for i > [m/2].

Definition 4.2 ([9, §5.1],[16]). A stratified pseudomanifold X is a Zy- Witt
space if, for each stratum of odd codimension 2k + 1, one has that the link of the
stratum L satisfies THE (L) = 0 with the lower middle perversity m.

There is a large class of examples of Zo-Witt spaces, such as manifolds,
complex varieties and suspensions of odd-dimensional Z,-Witt spaces.

If X is a Zo-Witt space, then the middle intersection homology group is self-
dual, i.e., satisfies the Poincaré duality over Zs. Also the natural homomorphism

ITH! (X) — TH!(X)

is an isomorphism.
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Let X be a Zo-Witt space, then for any ¢ with 0 <14 < [m/2], the Wu classes
ve (X) lift canonically to THE (X) = ITH.(X) (see [13] §10). From now on,
we shall denote, for short, the Wu classes v, (X) by v*(X).

We denote by vp,—i(X) € TH? .(X) the (m — 4)-th homology Wu class
of X in intersection homology, the dual to the Wu class v*(X) (denoted by Iv® €
[HL (X) in [10, §5.2]).

Let j : X — V be a normally nonsingular inclusion [7], [9], [11] with normal
bundle v. Then 5 induces homomorphisms

Gu : THP(X;Zo) — THP (V' Z3), J*IHE(VZs) — THE(X; Zs),
and one has the following Proposition ([13, Proposition 4.2])
Proposition 4.3. For any n € IHE(V; Zs), with 2p < t, we have
Sq'5*(n) = 5 Sq' (n),
which means the commutativity of the following diagram:

*

J

THE(V) THE(X)

*

THER (V) —L> THIEF(X),

Notice that in the case X denotes the boundary of an (m + 1)-pseudo-
manifold V, then, the normal bundle of X in V is trivial (see Definition 3.2).

Corollary 4.4. Let V' be an (m + 1)-pseudomanifold with boundary X,
and j : X — V the induced inclusion. For any i with 0 < ¢ < [m/2], one has
j* (' (V) = v'(X).

4.2. Locally orientable Witt spaces.

Definition 4.5 ([13, §8.1]). A stratified pseudomanifold X is locally orientable
if the link of each stratum is an orientable pseudomanifold.

Definition 4.6 ([13, §10.2]). A stratified pseudomanifold X is a locally ori-
entable Witt space if it is both locally orientable and a Zo- Witt space.

Lemma 4.7 ([13, §10.2]). If X is a locally orientable Witt space, then
Sq'Sq?* = S¢?'*! as homomorphisms

[HT (X, Zs) — TH™ 5, (X, Zs).
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In our proofs, we will use the following property of locally orientable Witt
spaces: For a locally orientable Witt space, the Wu classes which are defined as
middle intersection homology classes, can be multiplied to construct the charac-
teristic numbers

e(vi(X) 0 v;(X)) = ("7 (X) Uv™ (X)), [X]) € Zo,

where i+ j = m, the map ¢ : Hy(X,Z3) — Za denotes the augmentation, and the
following diagram commutes (here e denotes intersection of cycles):

TH™(X) x TH™(X) TH{(X) —— 7

EXET =

]

THZ(X) x THR ) (X) — TH'(X).

We notice that “absolute” cobordism of locally orientable Witt spaces is
computed in [13, §10.5].

5. Cobordism of maps between pseudomanifolds

Definition 5.1. Let f : X — Y be a map between pseudomanifolds of di-
mensions m and n, respectively. The triple (f, X,Y") is null-cobordant if there
exist:

(1) pseudomanifolds V' and W with dimensions m + 1 and n + 1, respectively,
such that 0V = X and OW =Y

(2) amap F:V — W such that the following diagram commutes:

Flux

Ux‘444444444%>LB/

s ‘s
fxId

oV x [0,1) ——= W x [0, 1),

where Uy and Uy are the collar neighborhoods of X and Y in V and W, re-
spectively, and ¢ and ¢ are P.L. diffeomorphisms such that ¢(z) = (z,0), z €
OV and ¥ (y) = (y,0), y € OW;

(3) Floy = [ : 0V — W.
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Given maps f : X7 — Y; and g : X5 — Y5, one may define the triple
(fuUg,X;UX,5, Y, UY3) by the map f LI g from the disjoint union X; U Xs of X,
and X5 into the disjoint union Y7 UYs of Y7 and Y5 such that (f Ug)|x, = f and
(fU9)lx. =9

Definition 5.2. Two maps f: X7 — Y7 and g : X5 — Y5 are cobordant if the
triple
(fUg, X1 UXy,Y1UYs)

is null-cobordant.

When fixing the target space Y, we denote the group of cobordism of maps
f: X — Y between pseudomanifolds by SN, (Y), the operation being given by
the disjoint union.

Remark 5.3. In the smooth case, there is an isomorphism between N, (Y)
and H,(Y,Z3) @ N where N, (Y) is the group of non-orientable bordism, and N
is the Thom bordism group [6].

A natural question is to ask if there exists an isomorphism between SN, (Y)
and I H,. (Y, Zs) QN 22~ Wit where N, 22~ Wit denotes the Zo-Witt bordism group
for the unoriented case. Friedman and Siegel defined the Zo-Witt bordism group
0, Z2=Wit for the oriented case; they do not consider the case of maps between Zo-
Witt spaces. The existence of an isomorphism between SN, (Y) and I H, (Y, Z3)®

N, B2=Witt §g still an open conjecture.

6. Main results

In this section, we consider different cases of compact pseudomanifolds X
and Y and maps f : X — Y, and we prove that if (f, X,Y) is null-cobordant,
then characteristic numbers associated in each case vanish. First, we consider
the case X is a locally orientable Witt space of pure dimension m, and Y an
n-dimensional smooth manifold. Then we consider the case where X and Y
are locally orientable Witt spaces and f : X — Y a normally nonsingular (or
placid) map. Remark that in these two cases we deal with different characteristic
numbers.

6.1. Case of amap f: X — Y with Y a smooth manifold.
Let f : X — Y be a map with X a compact locally orientable Witt space of
pure dimension m, and Y a closed n-dimensional smooth manifold. Then, we can
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define the map fi : TH; (X) — IH; (Y) in such a way that the following diagram
commutes:

ie. fi = (wy) lofiowx, where the map wy is an isomorphism since Y is smooth.
We denote by fi the composition map f, = a;l o fi, i.e. the composition map

THP(X) % Hy(X) L5 B,0) 2% B i(y)

where the last arrow denotes the inverse Poincaré duality isomorphism.

Definition 6.1. For any partition ¢ = 1 + - -- 4+ {5 of a non-negative integer
¢ and r numbers uq, ..., u, satisfying u; < [m/2] for all ¢ and

(b+lo+ -+ l) +ur+ -+ ur +r(n—m) =n, (6.2)

let us denote w’(Y) = w*(Y)U--- Uw’(Y), where w*(Y) denotes the ¢;-th
Stiefel-Whitney cohomology class of Y, which corresponds to w,_¢(Y) =
Wp—g, (Y)e- 0w, _; (Y), where w,_4, (Y) denotes the (n—¢;)-th Stiefel-Whitney
homology class of Y.

In the following, in order to avoid heavy notations, we will identify inter-
section homology classes v;(X) € TH™(X) with intersection cohomology classes
v (X) € THRH(X) = TH™(X).

The S-W numbers of any triple (f, X,Y) corresponding to the numbers
ly,...,ls,u1,...,u, are defined by

<w€(y) U fi(vm—u, (X)) U---U J?!(vmfur (X)), [Y]). (6.3)

Theorem 6.4. Let f : X — Y be a map, where X is compact locally
orientable Witt space of pure dimension m, and Y a closed n-dimensional smooth
manifold. If (f,X,Y) is null-cobordant, with (f,X,Y) = 0(F,V,W), and W is
a smooth manifold, then for any partition £ and r numbers w1, ..., u, satisfying
u; < [m/2] for all i and (6.2), the S-W numbers

<w€(Y) U J?!(Umfm (X)) U U filvm—u, (X)), [Y])

are zero.
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Proor. With the notations of the theorem, let us define the map
Fy: TH? (V) Y Hy (V) 255 Hi (W) =5 Hy (W, Y) 228 H (W),

where 4, is the morphism induced by inclusion (W, ) — (W, Y) in the long exact

sequence of the pair, and LDy is the Poincaré-Lefschetz duality isomorphism.
One has (' (Y) U filv—u, (X)) U+ U filom—a, (X)), [V]) =

(G (W) U §* Fi (Vg (V) U - U 5 (Um—u. (V)), O]W]), by Corollary 4.4 and

commutativity of the following diagram:

[HM(X) — Bi(Y)

So, we obtain:

(" (0" W) U B, (V) U0 B (V) ) . OIW])
= (35" (0" (W) U Fi(vmumas (V) U U (v (V) ) [W.0W]) = 0,

where B
HY W) L H*(Y) S HEY(W,0W)

is part of a long exact sequence, so dj* = 0. O

Remark 6.5. If f : X — Y is a normally nonsingular map with ¥ a manifold,
then wx : TH?(X) — H;(X) is an isomorphism, see Remark 3.4, and the map f,
coincides with the composition

THP(X) = Hy(X) —» H(f(X)) = B (V.Y \ f(X)) 2 B (Y),

where the second isomorphism is Alexander duality and 3 is the connecting map
in the long exact sequence of a pair.

6.2. Maps f: X — Y with X and Y locally orientable Witt spaces.

Let f: X — Y be a map of pseudomanifolds, Then, in general neither the
existence nor the unicity of induced map holds in intersection homology, i.e. of a
Gysin map f; making the following diagram (6.6) commutative. However, if f is
proper and normally nonsingular, then there is a well-defined Gysin map

fis THP(X) — TH(Y)
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such that the following diagram commutes [12, §5.4.3]:

Hi(X) —" > H,(Y) (6.6)

]

THP(X) —> 1HP(Y).

The same result holds for placid maps as well (see [12] and [3, Proposi-
tion 3.2]).

We remark that the definition of the map f; is made at the level of sheaves
in [3]. More precisely, the intersection homology IH!(X) is the hypercohomol-
ogy H™ ' (X;ZC%), where ZC% is the so-called intersection sheaf such that for
any open subset U C X, the complex of sections T'(U,ZC%) is the complex of
intersection chains IC["_,(U), see [4, Corollary 5.2] and [12, §2.1].

Note that the index notation we use here is the one in [11] or [3], see [12,
§2.3] for the correspondence of indices between this one and those of [4] and [12].

Let f: X — Y be a map either normally nonsingular (see [12]), or placid,
or a closed embedding of a 1-codimensional complex variety (see [3, §2.4]), the
existence of a unique map fi : THJ"(X) — IH™(Y) such that the diagram 6.6
commutes is proved at the level of intersection sheaves

IC% — f'ICY[n —m]
(see [3]), or equivalently, by adjunction /ZC% — ZCY,.
Lemma 6.7. Let f : X — Y be a normally nonsingular map, or a placid
map, with X and Y compact and (f,X,Y) = O(F,V,W). Then there exists

a map Fy such that the following diagram commutes:

- %

TH(X) <= TH L, (V)
f i I3 \L
THJ(Y) <" THJ, (W).
PROOF. We apply [4, Proposition 10.7] (see also [12]) to the following dia-
gram
x X vy
4o,
ye—" W,

where jx : X — V and jy : Y — W are inclusion maps.
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Therefore, one has equality of sheaves on Y:
Jy A= fijx A

for any sheaf A on V. That provides a commutative diagram of complexes of
sheaves on Y (perverse intersection sheaves for the middle perversity m):

HICY =— fijx (ICY) = jy Fi (ICY)

| |

10y Jv (ZC) -

Taking hypercohomology IH"*(Y;e) of the previous diagram, one obtains

for any wu:

H"(X;IC%) <—— H"“(V;IC?)

|

H(Y;ICY) <" — H" (W IC%,),

where, by unicity and the construction in [3], the maps coincide with the ones
previously defined. The Lemma follows. ]

Theorem 6.8. Let f : X — Y be a normally nonsingular (or placid) map,
with X and Y compact locally orientable Witt spaces of pure dimension m and n,
respectively. If (f,X,Y) is null-cobordant, then for any u with 0 < u < n, the
following S—W numbers vanish:

(vn—u(Y) @ fi(vu(X)), [Y]) = 0.

PRrROOF. If m > n, the result is trivial. If m < n and w is out of the interval
[m — [m/2],[n/2]] the result is trivial. Let us consider w in the interval. The
diagram of Lemma 6.7 can be written in the cohomology setting

THP=(X) —L s TH (Y

s e

Fy

THG™ (V) —— THz (W),

where m+n = ¢, and we use the same notation for corresponding maps j% and j3.
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Let us consider the intersection homology Wu class v, (Y) € TH_ (Y),
written v*(Y) in TH% (Y") in the intersection cohomology setting, by Corollary 4.4,
v"(Y) = jyu*(W), where v*(W) € IHY (W) is the intersection cohomology
Wu class corresponding to the intersection homology Wu class v,11—(W) €
THT | (W) of W.

In the same way, let us denote by v™ *(X) € THJ “(X) the intersec-
tion cohomology Wu class corresponding to the intersection homology Wu class
v, (X) € TH™(X), then Corollary 4.4 implies that v %(X) = j% (v %(V)),
where v™%(V) € TH;' (V) is the intersection cohomology Wu class corre-
sponding to the intersection homology class v,41(V) € TH]" (V).

One has the intersection product v, ,(Y) e fi(v,(X)) € THL(Y) corre-
sponding to the product v*(Y) U fi(v™™*(X)) € IHF(Y) and fi(v™ (X)) =
i 0mr(V)) € THE="(Y).

Therefore,

(W (Y) U ™)), [Y]) = Gio (W) U figk (0" =(V)), [Y)
= " O0) Uy B (V)Y ]>
= (20D U EG" (). o
= (055 ("(W) U (o <v>>),WaW

where the first equality is a consequence of [10, Theorem 5.3] of Goresky, the sec-
ond one is from Lemma 6.7, and the last equality is obtained in an analogous way
like the last equality given in the proof of Theorem 6.4. ]

Remark 6.9. Let us consider the case where X is an m-dimensional compact
smooth manifold, and Y is a locally orientable Witt space of pure dimension n.
Then one can show that the map f, exists and is well-defined without sheaf theory,
in the following way.

Since f is a normally nonsingular map, one may consider the normal bun-
dle Ny over X and an open embedding ¢ : Ny — Y x R®. Let T be a tubular
neighborhood of (f x h)(X) in Y x R®, where h : X — R? is defined in such a way
that the following diagram commutes:

Ny — %Y x R,
TU fxh
X

By compactness of X, the image of i lies in Y x S® for some s-dimensional
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sphere S°; and then the diagram reduces to

Ny — 'V x S8

TU
fxh

X

Following Remark 2.6, there exists a map ¢ which is the composition of the
maps:

HZ(X) f> Hi+s+n7m(T/aT) C;; Hi+s+nfm(y % Ss) N Hi+n7m(y)7

here ¢ denotes the Thom homomorphism and ¢ : Y xS* — T/9T is the collapsing
map. The last homomorphism is given by the Kiinneth formula for a product
of a smooth manifold with a Z5-Witt space [5].

Since X is a smooth manifold, ax : H*(X) — TH?

m—1

(X) is an isomorphism,
then one defines the map fi by commutativity of the following diagram, i.e. f; =
Qay o¢o 04)}1:

Hi(X) — s gr—(m=i(y)

axiu l

TH? (X) —L s tH™ (V).

m—1

From these results, it is possible to conclude that in each case above, the
S—W numbers are cobordism invariants in the following sense.

Corollary 6.10. Let f: X; —» Y and g : Xo — Y be two cobordant maps
with X7 and Xs compact locally orientable Witt spaces of pure dimension m, and
Y be a closed n-dimensional smooth manifold. Then for any partition { = {1 +
-+ -+{s and r numbers uy, . .., u, satisfying u; < [m/2] for all i and equation (6.2),
we have the equality of the corresponding S—W numbers:

<wé(y) U J?!(Umful (X)u---u JT!(Umfur(X))v Y1)
= (W"(Y) U gi(vm—u, (X)) U+ UG (00, (X)), [Y])-
Corollary 6.11. Let f : X; — Y and g : Xo — Y be two cobordant
normally nonsingular (or placid) maps, with X1 and X» (of pure dimension m)

and Y (of pure dimension n) compact locally orientable Witt spaces. Then for
any u with 0 < u < n, we have the equality of the corresponding S—W numbers:

(Un—u(Y) ® fi(vu (X)), [Y]) = (vn—u(Y) ® g1 (vu (X)), [Y]).



316 J.-P. Brasselet, A. K. M. Libardi, E. C. Rizziolli and M. J. Saia

ACKNOWLEDGEMENTS. The authors thank the anonymous referees for many
suggestions and corrections which improved the paper. The second named author
would like to thank for the hospitality of the Department of Mathematics of the
Federal University of Sao Carlos (UFSCar).

References

[1] M. F. ATivaH, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961), 200—208.

[2] M. F. ArivaH and F. HIRZEBRUCH, Cohomologie-Operationen und charakteristische
Klassen, Math. Z. 77 (1961), 149-187.

[3] G. BARTHEL, J.-P. BRASSELET, K. FIESELER, O. GABBER and L. KAUP, Relévement de
cycles algébriques et homomorphismes associés en homologie d’intersection, Ann. of Math.
(2) 141 (1995), 147-179.

[4] A. BOREL ET AL., Intersection Cohomology, Progress in Mathematics, Vol. 50: Swiss Sem-
inars, Birkhduser, Boston, 1984.

[5] D.C. CoHEN, M. GORESKY and L. J1, On the Kiinneth formula for intersection cohomology,
Trans. Amer. Math. Soc. 333 (1992), 63—69.

[6] P. E. CoNNER and E. E. FLoYD, Differentiable Periodic Maps, Springer-Verlag, Berlin —
Géttingen — Heidelberg, 1964.

[7] W. FuLToN and R. MACPHERSON, Categorical Framework for the Study of Singular Spaces,
Mem. Amer. Math. Soc. 31 (1981).

[8] G. FrRIEDMAN, Intersection homology with field coefficients: K-Witt spaces and K-Witt
bordism, Comm. Pure Appl. Math. 62 (2009), 1265-1292.

[9] M. GORESKY, Whitney stratified chains and cochains, Trans. Amer. Math. Soc. 267 (1981),

175-196.

[10] M. GORESKY, Intersection homology operations, Comment. Math. Helv. 59 (1984),
485-505.

[11] M. Goresky and R. MACPHERSON, Intersection homology theory, Topology 19 (1980),
135-162.

[12] M. GoOrEsKY and R. MACPHERSON, Intersection homology. II, Invent. Math. 72 (1983),
77-129.

[13] M. GoORrEskY and W. PARDON, Wu numbers of singular spaces, Topology 28 (1989),
325-367.

[14] M. GoresKY and P. SIEGEL, Linking pairings on Singular spaces, Comment. Math. Helv.
58 (1983), 96-110.

[15] W. PARDON, Intersection homology Poincaré spaces and the characteristic variety theorem,
Comment. Math. Helv. 65 (1990), 198-233.

[16] P. SIEGEL, Witt spaces: a geometric cycle theory for KO-homology at odd primes, Amer.
J. Math. 105 (1983), 1067-1105.

[17] R.E. SToNG, Cobordism of maps, Topology 5 (1966), 245-258.

[18] R. E. SToNG, Notes on Cobordism Theory. Mathematical Notes, Princeton University
Press, Princeton, N.J., 1968.

[19] D. SurLivAN, Combinatorial invariants of analytic spaces, In: Proceedings of Liverpool
Singularities—Symposium, I (1969/70), Springer, Berlin, 1971, 165-177.



Cobordism of maps ... 317

[20] A. SztGcs, Cobordism of singular maps, Geom. Topol. 12 (2008), 2379-2452.

[21] R. TrOM, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv.
28 (1954), 17-86.

JEAN-PAUL BRASSELET

DEPARTMENT OF MATHEMATICS

I12M CNRS AIX-MARSEILLE UNIVERSITY
MARSEILLE

FRANCE

E-mail: jean-paul.brasselet@univ-amu.fr

ALICE KIMIE MIWA LIBARDI
DEPARTMENT OF MATHEMATICS
SAO PAULO STATE UNIVERSITY
RIO CLARO

BRAZIL

E-mail: alice.libardi@unesp.br

ELIRIS CRISTINA RIZZIOLLI
DEPARTMENT OF MATHEMATICS
SAO PAULO STATE UNIVERSITY
RIO CLARO

BRAZIL

E-mail: eliris.rizziolli@unesp.br

MARCELO JOSE SAIA
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF SAO PAULO

SAO CARLOS

BRAZIL

E-mail: mjsaia@icmc.usp.br

(Received February 15, 2018; revised November 13, 2018)



