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Powerful numbers in the product of consecutive
integer values of a polynomial

By PALLAB KANTI DEY (New Delhi) and SHANTA LAISHRAM (New Delhi)

Abstract. Let n and r be positive integers. Also let k be an odd positive integer

and d be a non-negative integer. In this paper, we prove that if k has at most four

distinct prime factors, then the product ((d+1)k + rk)((d+2)k + rk) · · · ((d+n)k + rk)

is not a powerful number for n ≥ max{r+d, 59−r−d}. As a consequence, we prove that

if k has at most four distinct prime factors, then the product (1k+1)(2k+1) · · · (nk+1)

is not a powerful number.

1. Introduction

A positive integer a is called a powerful number if p | a implies p2 | a
for any prime p. For example, perfect powers are powerful numbers. Consider

a polynomial f(x) ∈ Z[x] of degree k ≥ 1. Then one can ask: what are the

perfect powers or powerful numbers in the product of consecutive integer values

of f(x), i.e, in the product

f(d+ 1)f(d+ 2) · · · f(d+ n)

for some integers d ≥ 0 and n ≥ 1? Denote the product f(d+ 1)f(d+ 2) · · · f(d+

n) by Ad(n) corresponding to a given polynomial f(x) with integer coefficients.

For d = 0, we denote A0(n) simply by A(n).

This question arises from a famous result of Erdős and Selfridge [5], which

states that there are no perfect powers in the product of consecutive integers.
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Hence, for f(x) = x, they proved that Ad(n) can never be a perfect power for

n > 1. There are several other results in the literature concerning perfect powers

in the product of consecutive integer values of a linear polynomial. For example,

Győry, Hajdu and Pintér [9] proved that if f(x) = ax + b for some coprime

fixed positive integers a and b, then A(n) can never be a perfect power for 3 <

n < 35.

Now, consider f(x) is a polynomial of degree k ≥ 2. Corresponding to the

polynomial x2 + 1, Amdeberhan, Medina and Moll [1] conjectured that the

product A(n) is not a square for any integer n > 3. In 2008, J. Cilleruelo [4]

confirmed this conjecture by using Chebyshev’s upper bound inequality for prime

numbers. In fact, he proved that A(n) is not powerful for n > 3. His tech-

nique was applied to the product A(n) corresponding to the polynomials such as

4x2 + 1 and 2x2 − 2x + 1 by Fang [6]. Corresponding to any irreducible qua-

dratic polynomial f(x) ∈ Z[x], Zhang and Yuan [17] proved that the product

A(n) is not a square for n > C(f), where C(f) is a constant depending on f(x).

In 2011, Yang, Togbé and He [14] proved that corresponding to any irreducible

quadratic polynomial f(x) ∈ Z[x], A(n) is not a perfect power for n ≥ C, where

C is a computable constant depending only on the coefficients of f(x) and d ≥ 1.

Recently, Gürel [7] considered the polynomials xk+1 for k = 2 and 3. He proved

that corresponding to these polynomials there exists a positive real number Nd

such that for n ≥ Nd, Ad(n) is not a square.

Now consider the polynomial xk + 1 for some positive integer k. Corre-

sponding to this polynomial, Amdeberhan, Medina and Moll [1] also claimed

that if n > 12, then A(n) is not a square for any odd prime k. Gürel and

Kişisel [8] proved that A(n) is never powerful for k = 3. Later, using an idea

due to W. Zudilin, Zhang and Wang [16] proved that A(n) is not a powerful

number for any odd prime k ≥ 5. Recently, Chen et al. [3] proved that A(n) is

not a powerful number for any odd prime power k. In the same paper, they also

proved that for any positive odd number k, there exists an integer N such that

for any positive integer n ≥ N , A(n) is not a powerful number. In 2013, Chen

and Gong [2] proved that A(n) is not a powerful number, when k is a product of

at most two odd prime factors. In the same paper, they also proved that for any

integer t ≥ 1, there exists a positive integer Tt such that if k is a positive integer

composed with t distinct odd prime factors and n is an integer with n ≥ Tt, then

A(n) is not a powerful number.

In 2017, Niu and Liu [11] considered the polynomial x3 + r3 for some

fixed positive integer r. They proved that for any positive integers r and n ≥
max{r, 1198−r}, the product A(n) is not a powerful number. Very recently, Yang
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and Jhao [15] proved that A(n) is not a powerful number for n ≥ max{r, 11− r}
and any odd prime power k, corresponding to the more generalized polynomial

xk + rk, where r is a fixed positive integer. They [15] also proved that, for any

positive integer r and odd positive integer k, there exists an integer Nr,k such

that A(n) is not a powerful number for n ≥ Nr,k.

In this paper, we generalize the results of [15] and [2] considering k as a prod-

uct of at most four distinct odd primes.

2. Main results

Let r be a fixed positive integer and k be a positive integer. Consider the

polynomial

f(x) = xk + rk.

Now we consider the product of consecutive integer values of f(x). For any

positive integer n and non-negative integer d, we have

Ad(n) =

d+n∏
x=d+1

f(x) = ((d+ 1)k + rk)((d+ 2)k + rk) · · · ((d+ n)k + rk).

For d = 0, we have

A(n) =
n∏

x=1

f(x) = (1k + rk)(2k + rk) · · · (nk + rk).

Then we prove the following results.

Theorem 2.1. If k is an odd positive integer composed of at most four

distinct primes, then for any integer n ≥ max{r + d, 59 − r − d}, Ad(n) is not

a powerful number.

Remark 2.2. If k is composed of at most three distinct odd primes, then

for any integer n ≥ max{r + d, 29 − r − d}, Ad(n) is not a powerful number.

If k is composed of at most two distinct odd primes, then for any integer n ≥
max{r + d, 23− r − d}, Ad(n) is not a powerful number. If k is an odd prime or

odd prime power, then for any integer n ≥ max{r + d, 11 − r − d}, Ad(n) is not

a powerful number.
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Remark 2.3. By the methods in [2], it is easy to prove that for any integer

n ≥ max{r+ d,C(t)− r− d}, Ad(n) is not a powerful number, where k is an odd

positive integer composed of t distinct primes, and C(t) is a constant depending

only on t.

Corollary 2.4. If k is an odd positive integer composed of at most four

distinct primes, then for any integer n ≥ max{r, 59 − r}, A(n) is not a powerful

number.

As a consequence, we have the following result.

Theorem 2.5. If k is an odd positive integer composed of at most four

distinct primes, then for any positive integer n, (1k + 1)(2k + 1) · · · (nk + 1) is not

a powerful number.

3. Preliminaries

In this section, we provide some useful lemmas which are essential to prove

our main results.

Lemma 3.1. Let r be a positive integer and p be an odd prime such that

p - r. Also, let a, k be positive integers with k odd. If

p | a
k + rk

a+ r
,

then (p(p− 1), k) > 1.

Proof. On the contrary, consider (p(p − 1), k) = 1. As p | (ak + rk),

we have p | (a2k − r2k). By Fermat’s little theorem, p | (ap−1 − rp−1). Hence

p | (a(2k,p−1)−r(2k,p−1)). So we have p | (a2−r2). If p | (a−r), then p | (ak−rk).

Since p | (ak+rk), we have p | 2rk, which is not possible as p - r. Hence, p - (a−r)
as p - r. Thus, it follows that p | (a+ r). Thus,

ak + rk

a+ r
≡ ak−1 − ak−2r + · · ·+ rk−1 ≡ krk−1 (mod p).

Therefore, we have

krk−1 ≡ 0 (mod p), as p | a
k + rk

a+ r
,

which is a contradiction to (p(p−1), k) = 1, since p - r. Hence (p(p−1), k) > 1. �
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Lemma 3.2. Let p be a prime, and r, k be positive integers with k odd and

(k, p− 1) = 1. Then the congruence equation xk + rk ≡ 0 (mod p) has only one

solution x ≡ −r (mod p).

Proof. If p | r, then x ≡ 0 ≡ −r (mod p) is the only solution for the

congruence equation xk + rk ≡ 0 (mod p). Thus, we can assume that p - r. So,

p - x as xk+rk ≡ 0 (mod p). Hence, we have (−x
r )k ≡ 1 (mod p). So, the order of

the element (−x
r ) in the group (Z/pZ)∗ divides k. Since (Z/pZ)∗ contains exactly

(p − 1) elements and (p − 1, k) = 1, we see that the order of (−x
r ) must be 1 in

(Z/pZ)∗. Hence (−x
r ) ≡ 1 (mod p), which further implies x ≡ −r (mod p). �

Corollary 3.3. Let r be a positive integer and k =
∏t

i=1 p
ei
i , where ei’s are

non-negative integers with at least one ei > 0, and pi’s are distinct odd primes.

If p is a prime with pi - (p − 1) for all 1 ≤ i ≤ t, then the congruence equation

xk + rk ≡ 0 (mod p) has only one solution x ≡ −r (mod p).

For any non-negative integer d and positive integers n, k, ` with (k, `) = 1,

define

Pd(n) =

{
q : q is a prime,

n+ d

2
< q ≤ n+ d

}
,

Pd(n; k, `) =

{
q : q is a prime,

n+ d

2
< q ≤ n+ d, q ≡ ` (mod k)

}
.

For a nonzero integer u and a prime p, let νp(u) denote the smallest non-

negative integer t such that pt | u but pt+1 - u.

Lemma 3.4. Let k =
∏t

i=1 p
ei
i be an odd positive integer with at least one

ei > 0, where pi’s are distinct odd primes. Let p be an odd prime such that p 6= pi
and pi - p − 1 for all i = 1, 2, . . . , t. Also let n, r be positive integers, and d be

a non-negative integer such that n ≥ r + d. If p ∈ Pr+d(n), then Ad(n) is not

a powerful number.

Proof. Since p ∈ Pr+d(n) and n ≥ r + d, we have p > n+d+r
2 ≥ r + d.

By Corollary 3.3, the smallest two positive integers x satisfying the congruence

equation (x+ d)k + rk ≡ 0 (mod p) are p− d− r and 2p− d− r, as p > r + d.

Since p 6= pi and pi - p − 1 for all i = 1, 2, . . . , t, we have (p(p − 1), k) = 1.

Also we see that (p − r) is a positive integer and p - r as p > r + d. Hence,

by Lemma 3.1, we have p - (p−r)k+rk

(p−r)+r . Thus, p2 - ((p − r)k + rk). Hence, if

p− d− r ≤ n < 2p− d− r, then

νp(Ad(n)) = νp((p− r)k + rk) = 1.

Thus, Ad(n) is not a powerful number. �
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Corollary 3.5. Let k > 1 be an odd positive integer. Also let n, r be positive

integers and d be a non-negative integer such that n ≥ r+d. Suppose that Ad(n)

is a powerful number. If an odd prime p ∈ Pr+d(n), then (p(p− 1), k) > 1.

Corollary 3.6. Let k, n be positive integers with k( 6= 1) odd. Suppose that

(1k + 1)(2k + 1) · · · (nk + 1) is a powerful number. If an odd prime p ∈ P1(n),

then (p(p− 1), k) > 1.

Lemma 3.7. Let k > 1 be an odd positive integer. Also let n, r be positive

integers, and d be a non-negative integer such that n ≥ r+d. Suppose there exist

t distinct primes p1, p2, . . . , pt ∈ Pr+d(n), such that no two of p1 − 1, p2 − 1, . . . ,

pt − 1 have common odd prime factors. If Ad(n) is a powerful number, then k

has at least t distinct prime factors.

Proof. Since
n+ d+ r

2
< pi ≤ n+ d+ r,

we see that (pi, pj − 1) = 1, for all 1 ≤ i, j ≤ t.
Now by Corollary 3.5,

(pi(pi − 1), k) > 1, for all 1 ≤ i ≤ k.

Since no two of p1−1, p2−1, . . . , pt−1 have common odd prime factors, it follows

that k has at least t distinct prime factors. �

Lemma 3.8. Let k be an odd positive integer composed of t distinct primes.

Also let n, r be positive integers, and d be a non-negative integer such that n ≥
r+d. Suppose that there exist t+1 distinct primes p1, p2, . . . , pt+1 with 3 ≤ p1 <
p2 < · · · < pt+1 such that no two of p1− 1, p2− 1, . . . , pt+1− 1 have common odd

prime factors. Then, for pt+1 − d− r ≤ n < 2p1 − d− r, Ad(n) is not a powerful

number.

Proof. For all integers n with pt+1 − d − r ≤ n < 2p1 − d − r, we have

p1, p2, . . . , pt+1 ∈ Pr+d(n).

If Ad(n) is a powerful number, then by Lemma 3.7, k has at least t+1 prime

factors, which is a contradiction. �

Lemma 3.9. Let k be an odd positive integer and n, r be positive integers.

Let p be an odd prime with p - r such that p||(a(k,p−1) + r(k,p−1)) for some

2 ≤ a ≤ n, and p - (b(k,p−1) + r(k,p−1)) for all 2 ≤ b ≤ n with b 6= a. If p2 | A(n),

then p | k.
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Proof. Let, (k, p−1) = u and uv = k for some integers u, v. Since p2 | A(n),

there exists an integer c with 2 ≤ c ≤ n such that p | (ck + rk). Hence, we have

p | (c2k − r2k). By Fermat’s little theorem, we have p | (cp−1 − rp−1). Thus,

we have p | (c(2k,p−1) + r(2k,p−1)), which further implies that p | (c2u − r2u).

If p | (cu − ru), then p | (ck − rk), which shows that p | r, a contradiction.

Hence p - (cu − ru). Thus we see that p | (cu + ru). Since p||(a(k,p−1) + r(k,p−1))

for some 2 ≤ a ≤ n and p - (b(k,p−1) + r(k,p−1)) for all 2 ≤ b ≤ n with b 6= a,

we conclude that c = a.

Since p2 | A(n), it follows that p2 | (ak +rk). Hence, p | ak+rk

au+ru as p||(au+ru).

Thus,

auv + ruv

au + ru
≡ au(v−1) − au(v−2)ru + · · ·+ ru(v−1) ≡ vru(v−1) (mod p).

Hence, we have

vru(v−1) ≡ 0 (mod p), as p | a
uv + ruv

au + ru
.

It follows that p | v as p - r. Therefore, p | k. �

If n + d + r = m, then Pr+d(m − d − r) = {p is a prime , m2 < p ≤ m}
and Pr+d(m − d − r; k, `) = {p is a prime , m2 < p ≤ m, p ≡ ` (mod k)}. Denote

Pr+d(m− d− r) by P (m) and Pr+d(m− d− r; k, `) by P (m; k, `).

Also let P be the set of all primes. Then for any positive real number x,

denote

π(x) = |{p ∈ P : p ≤ x}|, π(x; k, `) = |{p ∈ P : p ≤ x, p ≡ ` (mod k)}|,

and

θ(x; k, `) =

p≤x∑
p≡` (mod k)

log p,

where k, ` are relatively prime positive integers.

Hence,

|P (m)| = π(m)− π(m/2)

and

|P (m; k, `)| = π(m; k, `)− π(m/2; k, `).

Remark 3.10. For positive real numbers x and y, we have

(π(x+ y; k, `)− π(x; k, `)) log x ≤ θ(x+ y; k, `)− θ(x; k, `)

≤ (π(x+ y; k, `)− π(x; k, `)) log(x+ y),

where k and ` are relatively coprime integers.
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Hence, for x = m
2 and y = m

2 , we have

θ(m; k, `)− θ(m/2; k, `)

logm
≤ |P (m; k, `)| ≤ θ(m; k, `)− θ(m/2; k, `)

log m
2

. (3.1)

Lemma 3.11 ([10]). Let x and y be positive real numbers with y ≤ x. Also

let k and ` be positive integers with (k, `) = 1. For y > k, we have

π(x+ y; k, `)− π(x; k, `) <
2y

ϕ(k) log(y/k)
, (3.2)

where ϕ(k) is the Euler totient function.

Corollary 3.12. Let m be a positive integer. Then for any positive integers

k and ` with (k, `) = 1,

|P (m, k, `)| < m

ϕ(k)log(m/2k)
,

for m > 2k.

Proof. Put x = y = m/2 in inequality (3.2). Then,

|P (m; k, `)| = π(m; k, `)− π
(m

2
; k, `

)
<

m

φ(k) log(m/2k)
,

where m > 2k. �

Lemma 3.13 ([12]). For any triple (k, ε, x0) given in [12, Table 1] and any `

prime to k, we have

max
1≤y≤x

∣∣∣∣θ(y; k, `)− y

φ(k)

∣∣∣∣ ≤ ε x

φ(k)
,

for x ≥ x0.
In particular, ε is given explicitly in [12, Table 1] for x ≥ 1010 and k ≤ 72.

Corollary 3.14. If m, k and ` are positive integers with (k, `) = 1, then

m

φ(k) logm
(1/2− 2ε) ≤ |P (m; k, `)| ≤ m

φ(k) log m
2

(1/2 + 2ε),

for m ≥ 1010 and k ≤ 72, where ε is given in [12, Table 1].
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Proof. Taking x = y = m in Lemma 3.13, we have

m(1− ε)
φ(k)

≤ θ(m; k, `) ≤ m(1 + ε)

φ(k)
. (3.3)

Again, by taking x = m and y = m/2 in Lemma 3.13, we have

m(1− 2ε)

2φ(k)
≤ θ(m/2; k, `) ≤ m(1 + 2ε)

2φ(k)
. (3.4)

We now use the inequality (3.1) to obtain the result. �

Lemma 3.15 ([12]). For any positive real number x ≤ 1010 and integers k, `

with (k, `) = 1, we have ∣∣∣∣θ(x; k, `)− x

φ(k)

∣∣∣∣ < θ
√
x,

where θ is given in [12, Table 2].

Corollary 3.16. For any positive integersm, k, ` withm≤1010 and (k, `)=1,

we have

m

logm

(
1

2φ(k)
− θ√

m

(
1 +

1√
2

))
< |P (m; k, `)|

<
m

log m
2

(
1

2φ(k)
+

θ√
m

(
1 +

1√
2

))
,

where θ is given in [12, Table 2].

Proof. It follows from the inequality (3.1) and Lemma 3.15. �

Corollary 3.17. For any positive integer m with m ≥ 94000, we have

(1) 0.4885 m
logm < |P (m)| < 0.5445 m

logm ;

(2) 0.2399 m
logm < |P (m; 3, `)| < 0.2768 m

logm ;

(3) |P (m; 5, `)| < 0.1415 m
logm ;

(4) |P (m; 7, `)| < 0.0953 m
logm ;

(5) |P (m; 11, `)| < 0.0591 m
logm ;

(6) |P (m; 13, `)| < 0.0497 m
logm ;

(7) |P (m; 15, `)| > 0.0563 m
logm .
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Proof. First, we notice that log x
2/ log x is an increasing function in any

positive real number x. Hence, log m
2 ≥ 0.9394 logm for any positive integer

m ≥ 94000, and log m
2 ≥ 0.9699 logm for any positive integer m ≥ 1010. Then

we use Corollaries 3.14 and 3.16 to obtain the result. �

Corollary 3.18. Let q be a prime. Then for any positive integer m with

m ≥ 94000, we have

(1) |P (m; q, `)| < 0.0392 m
logm , for primes 17 ≤ q ≤ 71;

(2) |P (m; q, `)| < 0.0246 m
logm , for primes q ≥ 73.

Proof. For m ≥ 94000, we have log m
2 ≥ 0.9394 logm. Then by using

Corollaries 3.14 and 3.16, for any 17 ≤ q ≤ 71 we can show that |P (m; q, `)| <
0.0392 m

logm .

Now take q ≥ 73. Consider the function

f(x) = (x− 1) log
m

2x
.

This is an increasing function in x ∈ [73, m2e ].

If q ≤ m
2e , then by Corollary 3.12,

|P (m; q, `)| < m

(q − 1)log(m/2q)
<

m

72log(m/146)
< 0.0246

m

logm
,

since for m ≥ 94000, log(m/146) > 0.56479 logm and q ≥ 73.

If q > m
2e , then

|P (m; q, `)| ≤ 2 < 0.0246
m

logm
,

for m ≥ 94000. �

4. Proof of Theorem 2.1

By Bertrand’s postulate, there exists a prime p ∈ (n+d+r
2 , n + d + r]. Now,

n+d+r
2 ≥ r + d, as n ≥ r + d. Hence, for k = 1, νp(Ad(n)) = νp((1 + d + r)(2 +

d+ r) · · · (n+ d+ r) = 1, which shows that Ad(n) is not powerful. Thus, we can

assume that k > 1.

Let k =
∏4

i=1 p
ei
i , where pi’s are distinct odd primes and ei ≥ 0 with at least

one ei > 0. Then, by Lemma 3.4, it is enough to prove that there exists a prime

p ∈ Pr+d(n) such that p 6= pi and (p − 1, pi) = 1 for all i = 1, 2, 3, 4. Hence,

in other words, we need to prove that there exists a prime p ∈ P (m) such that

p 6= pi and (p− 1, pi) = 1 for all i = 1, 2, 3, 4.
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Case 1. m ≥ 94000.

Subcase (i). 3 - k.

Then pi > 3 for all i = 1, 2, 3, 4. Hence,

|P (m)| > 0.4885
m

logm
>

4∑
i=1

|P (m; pi, 1)|+ 4,

by Corollaries 3.17 and 3.18, which shows that there exists a prime p ∈ P (m)

such that p 6= pi and p 6≡ 1 (mod pi) for all i = 1, 2, 3, 4.

Subcase (ii). 3 | k, 5 - k.

Then pi 6= 5 for all i = 1, 2, 3, 4. Let p1 = 3 and pi > 5 for all i = 2, 3, 4. Then,

|P (m)| > 0.4885
m

logm
>

4∑
i=1

|P (m; pi, 1)|+ 4,

by Corollaries 3.17 and 3.18, which shows that there exists a prime p ∈ P (m)

such that p 6= pi and p 6≡ 1 (mod pi) for all i = 1, 2, 3, 4.

Subcase (iii). 3 | k, 5 | k.

Let p1 = 3 and p2 = 5. So, pi ≥ 7 for all i = 3, 4.

Now, we have

|P (m; 3, 2)| > 0.2399
m

logm

> |P (m; 5, 1)|+
4∑

i=3

|P (m; pi, 1)| − |P (m; 15, 1)|+ 4, (4.1)

by using Corollaries 3.17 and 3.18.

We notice that

4∑
i=1

|P (m; pi, 1)| −
∑
pi<pj

|P (m; pipj , 1)|

+
∑

pi<pj<pk

|P (m; pipjpk, 1)| − |P (m; p1p2p3p4, 1)|

<

4∑
i=1

|P (m; pi, 1)| − |P (m; p1p2, 1)|. (4.2)
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Since |P (m)| = |P (m; 3, 1)| + |P (m; 3, 2)| + 1, using inequalities (4.1) and

(4.2), we have

|P (m)| > |P (m; 3, 1)|+ |P (m; 5, 1)|+
4∑

i=3

|P (m; pi, 1)|+ 5

>

4∑
i=1

|P (m; pi, 1)| −
∑
pi<pj

|P (m; pipj , 1)|+
∑

pi<pj<pk

|P (m; pipjpk, 1)|

− |P (m; p1p2p3p4, 1)|+ 4. (4.3)

Therefore there exists a prime p ∈ P (m) such that p 6= pi and p 6≡ 1 (mod pi)

for all i = 1, 2, 3, 4.

Case 2. 59 ≤ m ≤ 94000.

Here we use Lemma 3.8. First, we construct a set of prime quintuples

(p1, p2, p3, p4, p5) with p1 < p2 < p3 < p4 < p5 in P (m) such that p1 − 1, p2 − 1,

p3 − 1, p4 − 1 and p5 − 1 have no common odd prime factors. Consider

(p1, p2, p3, p4, p5)

∈ { (37, 41, 47, 53, 59), (47, 53, 59, 71, 73), (59, 71, 73, 83, 89),

(89, 97, 101, 107, 113), (131, 137, 139, 149, 167), (227, 229, 239, 251, 257),

(419, 431, 439, 443, 449), (797, 809, 821, 823, 827),

(1553, 1559, 1571, 1579, 1583), (3023, 3041, 3049, 3083, 3089),

(5939, 5953, 5987, 6011, 6029), (11807, 11813, 11831, 11863, 11867),

(23561, 23563, 23567, 23603, 23609), (47057, 47059, 47087, 47093, 47111) }.

For these quintuples we see that Ar,k,d(n) is not powerful when m lies in in-

tervals [59, 73],[73, 93],[89, 117],[113, 177],[167, 261],[257, 453],[449, 837],[827, 1593],

[1583, 3105],[3089, 6045],[6029, 11877],[11867, 23613],[23609, 47121],[47111, 94113].

Combining all these intervals, we can see that Ad(n) is not powerful for 59 ≤
m ≤ 94000.

Hence, from both cases we see that Ad(n) is not powerful for m ≥ 59. Since

n + r + d = m and n ≥ r + d, we observe that Ad(n) is not powerful for n ≥
max{r + d, 59− r − d}. This completes the proof of Theorem 2.1. 2
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5. Proof of Theorem 2.5

Consider f(x) = xk + 1, where k is an odd positive integer composed of at

most four distinct primes. Hence A(n) = (1k+1)(2k+1) · · · (nk+1). Also, denote

P1(n) by P (n). Hence P (n) = {q : q is a prime, n+1
2 < q ≤ n+ 1}.

For n = 1, A(n) = 2, which is not powerful. For n = 2, (n) = 2(2k + 1),

which is again not powerful, as ν2(2(2k + 1)) = 1. Hence, we can assume that

n ≥ 3.

By Corollary 2.4, we see that A(n) is not powerful for n ≥ 58. Finally,

we consider the case 3 ≤ n ≤ 57. Let us assume that A(n) is a powerful number

for 3 ≤ n ≤ 57.

The idea is as follows. For different values of 3 < n ≤ 57, first of all we find

out all possible primes in P (n). Then by using Corollary 3.6, one can find out

some possible odd prime divisors of k. Let q be such a prime divisor. Then we

find an odd prime p with (p− 1, k) = q such that p || (aq + 1) for some 2 ≤ a ≤ n
but p - (bq + 1) for all 2 ≤ b ≤ n with b 6= a. Then by using Lemma 3.9, we can

conclude p | k. We continue in this way to find at least five distinct prime divisors

of k to get a contradiction, as k has at most four prime factors. We discuss all

possible cases in detail below.

Case 1. 52 ≤ n ≤ 57.

We see that 31, 37, 41, 43, 47, 53 ∈ P (n). Then by Corollary 3.6, we have

(31×3×5, k) > 1, (37×3, k) > 1, (41×5, k) > 1, (43×3×7, k) > 1, (47×23, k) > 1

and (53 × 13, k) > 1. Hence p1p2p3 | k, where p1 ∈ {47, 23}, p2 ∈ {13, 53} and

p3 ∈ {5, 41}.

Subcase (i). 3 | k.

Now, (97 − 1, k) = 3. We notice that 97 || (363 + 1) and 97 - (b3 + 1) for all

2 ≤ b ≤ 57 with b 6= 36. Hence, by Lemma 3.9, 97 | k, which is not possible as k

has at most four distinct prime factors.

Subcase (ii). 3 - k.

Since (37 × 3, k) > 1 and (43 × 3 × 7, k) > 1, we have 37 | k and 43 | k or 7 | k,

which is not possible again.

Case 2. 37 ≤ n ≤ 51.

We see that 29, 31, 37 ∈ P (n). Then by Corollary 3.6, we have (29×7, k) > 1,

(31× 3× 5, k) > 1 and (37× 3, k) > 1. If 45 ≤ n ≤ 51, then 41 ∈ P (n). Then by

Corollary 3.6, (41×5, k) > 1. Hence for 45 ≤ n ≤ 51, p1p2 | k, where p1 ∈ {41, 5}
and p2 ∈ {7, 29}. If 37 ≤ n ≤ 44, then 23 ∈ P (n). Then by Corollary 3.6,



332 Pallab Kanti Dey and Shanta Laishram

(23 × 11, k) > 1. Hence for 37 ≤ n ≤ 44, q1q2 | k, where q1 ∈ {23, 11} and

q2 ∈ {7, 29}.

Subcase (i). 3 | k.

Since 3 | k, we see that 97 | k, from Case 1. Since k has at most four distinct prime

factors, we have 13 - k. Then (157 − 1, k) = 3. We notice that 157 || (133 + 1)

and 157 - (b3 + 1) for all 2 ≤ b ≤ 51 with b 6= 13. Hence, by Lemma 3.9, 157 | k,

which is a contradiction.

Subcase (ii). 3 - k.

Since (37× 3, k) > 1, we have 37 | k. If 53 - k, then (3923− 1, k) = 37. We notice

that 3923 || (637 + 1) and 3923 - (e37 + 1) for all 2 ≤ e ≤ 51 with e 6= 6. Hence,

by Lemma 3.9, 53 | k or 3923 | k. Since 3 - k, we have 31 | k or 5 | k. This

is not possible for 37 ≤ n ≤ 44, as k has at most four distinct prime factors.

If 45 ≤ n ≤ 51, then 5 | k and 19 - k, as k has at most four distinct prime factors.

Now, (191 − 1, k) = 5. We notice that 191 || (75 + 1) and 191 - (b5 + 1) for all

2 ≤ b ≤ 15 with b 6= 7. Hence, by Lemma 3.9, 191 | k, which is a contradiction.

Case 3. 25 ≤ n ≤ 36.

We see that 19, 23 ∈ P (n). Then by Corollary 3.6, we have (19 × 3, k) > 1

and (23× 11, k) > 1. Hence p1 | k, where p1 ∈ {11, 23}.

Subcase (i). 3 | k.

Since 3 | k, we have 157 | k or 13 | k, from Case 2. If 7 - k, then (43− 1, k) = 3.

We notice that 43 || (73 +1) and 43 - (b3 +1) for all 2 ≤ b ≤ 36 with b 6= 7. Hence,

by Lemma 3.9, 43 | k or 7 | k. Now, 5 - k as k has at most four distinct prime

factors. Hence (61− 1, k) = 3. We notice that 61 || (143 + 1) and 61 - (b3 + 1) for

all 2 ≤ b ≤ 36 with b 6= 14. Hence, by Lemma 3.9, 61 | k, which is a contradiction.

Subcase (ii). 3 - k.

Since (19 × 3, k) > 1, we have 19 | k. Now, (1217 − 1, k) = 19. We notice that

1217 || (1619 + 1) and 1217 - (e19 + 1) for all 2 ≤ e ≤ 36 with e 6= 16. Hence, by

Lemma 3.9, 1217 | k. If 33 ≤ n ≤ 36, then 29, 31 ∈ P (n). Then by Corollary 3.6,

we have (29 × 7, k) > 1 and (31 × 5, k) > 1. Hence, p2p3 | k, where p2 ∈ {29, 7}
and p3 ∈ {31, 5}, which is a contradiction. If 25 ≤ n ≤ 32, then 17 ∈ P (n). Then

by Corollary 3.6, we have 17 | k. If 5 - k, then (2551− 1, k) = 17. We notice that

2551 || (1217 + 1) and 2551 - (f17 + 1) for all 2 ≤ f ≤ 32 with f 6= 12. Hence, by

Lemma 3.9, 2551 | k or 5 | k, which is a contradiction.

Case 4. 13 ≤ n ≤ 24.

We see that 13 ∈ P (n). Then by Corollary 3.6, we have (13 × 3, k) > 1.

If 16 ≤ n ≤ 24, then 17 ∈ P (n). Then by Corollary 3.6, 17 | k for 16 ≤ n ≤ 24.
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If 13 ≤ n ≤ 15, then 11 ∈ P (n). Then by Corollary 3.6, (11 × 5, k) > 1. Hence

for 13 ≤ n ≤ 15, p1 | k, where p1 ∈ {11, 5}.

Subcase (i). 3 | k.

Since 3 | k, we have 157 | k or 13 | k and 7 | k or 43 | k, from Case 3. If 5 - k, then

(31− 1, k) = 3. We notice that 31 || (63 + 1) and 31 - (b3 + 1) for all 2 ≤ b ≤ 24

with b 6= 6. Hence, by Lemma 3.9, 5 | k or 31 | k. This is not possible for

16 ≤ n ≤ 24, as k has at most four distinct prime factors. If 13 ≤ n ≤ 15, then

5 | k and 19 - k, as k has at most four distinct prime factors. Hence, 191 | k from

Case 2, which is a contradiction.

Subcase (ii). 3 - k.

Then 13 | k. Now, (157 − 1, k) = 13. We notice that 157 || (313 + 1) and

157 - (e13+1) for all 2 ≤ e ≤ 24 with e 6= 3. Hence, by Lemma 3.9, 157 | k. Again,

(937−1, k) = 13. We see that 937 || (613+1) and 937 - (f13+1) for all 2 ≤ f ≤ 24

with f 6= 6. Hence, by Lemma 3.9, 937 | k. Also, if 11 - k, (859 − 1, k) = 13.

We notice that 859 || (1013 + 1) and 859 - (g13 + 1) for all 2 ≤ g ≤ 24 with g 6= 10.

Hence, by Lemma 3.9, 11 | k or 859 | k. This is not possible for 16 ≤ n ≤ 24,

as k has at most four distinct prime factors. If 13 ≤ n ≤ 15, then 11 | k and 5 - k,

as k has at most four distinct prime factors. Now, (5501 − 1, k) = 11, as 5 - k.

We notice that 5501 || (911 + 1) and 5501 - (b11 + 1) for all 2 ≤ b ≤ 24 with b 6= 9.

Hence, by Lemma 3.9, 5501 | k, which is a contradiction.

Case 5. 10 ≤ n ≤ 12.

We see that 7, 11 ∈ P (n). Then by Corollary 3.6, we have (11 × 5, k) > 1

and (7× 3, k) > 1. Hence p1 | k, where p1 ∈ {5, 11}.

Subcase (i). 3 | k.

Since 3 | k, we have 43 | k or 7 | k and 31 | k or 5 | k, from Case 4. If 5 - k,

then (31 × 11) | k. Since 11 | k and 5 - k, we have 5501 | k from Case 4, which

is a contradiction. Thus, 5 | k. Hence 19 | k or 191 | k, from Case 2. Now,

(41− 1, k) = 5. We notice that 41 || (45 + 1) and 41 - (c5 + 1) for all 2 ≤ c ≤ 12

with c 6= 4. Hence, by Lemma 3.9, 41 | k, which is a contradiction.

Subcase (ii). 3 - k.

Then 7 | k. Now, (449−1, k) = 7. We notice that 449 || (57 +1) and 449 - (g7 +1)

for all 2 ≤ g ≤ 12 with g 6= 5. Hence, by Lemma 3.9, 449 | k. If 13 - k,

then (547 − 1, k) = 7. We notice that 547 || (37 + 1) and 547 - (h7 + 1) for all

2 ≤ h ≤ 12 with h 6= 3. Hence, by Lemma 3.9, 547 | k or 13 | k. Now, 43 - k,

as k has at most four distinct prime factors. Then (5419− 1, k) = 7. We observe
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that 5419 || (87 + 1) and 5419 - (i7 + 1) for all 2 ≤ i ≤ 12 with i 6= 8. Hence, by

Lemma 3.9, 5419 | k, which is a contradiction.

Case 6. 7 ≤ n ≤ 9.

We see that 7 ∈ P (n). Then by Corollary 3.6, (7× 3, k) > 1.

Subcase (i). 3 | k.

We see that 43 | k or 7 | k and 31 | k or 5 | k, from Case 4. Now, (13− 1, k) = 3.

We notice that 13 || (43 + 1) and 13 - (c3 + 1) for all 2 ≤ c ≤ 9 with c 6= 4. Hence,

by Lemma 3.9, 13 | k. If 5 | k, then 41 | k, from Case 5, which is a contradiction,

as k has at most four distinct prime factors. Hence 5 - k. Also 17 - k. Now,

(37571− 1, k) = 13. We notice that 37571 || (613 + 1) and 37571 - (e13 + 1) for all

2 ≤ e ≤ 9 with e 6= 6. Hence, by Lemma 3.9, 37571 | k, which is a contradiction.

Subcase (ii). 3 - k.

Then 7 | k. Now, we see that 13 | k or 547 | k and 449 | k, from Case 5.

If 7 ≤ n ≤ 8, then 5 ∈ P (n). Then by Corollary 3.6, we have 5 | k for 7 ≤ n ≤ 8.

Hence 41 | k, from Case 5, which is not possible for 7 ≤ n ≤ 8. For n = 9,

we have 43 | k or 5419 | k, from Case 5, as 7 | k. Since k is composed of at most

four primes, we have 19 - k and 31 - k. Now, (16493− 1, k) = 7. We observe that

16493 || (97 + 1) and 16493 - (i7 + 1) for all 2 ≤ i ≤ 9 with i 6= 9. Hence, by

Lemma 3.9, 16493 | k, which is a contradiction again.

Case 7. 4 ≤ n ≤ 6.

We see that 5 ∈ P (n). Then by Corollary 3.6, we have 5 | k. Hence, 41 | k,

from Case 8.

Subcase (i). 3 | k.

Since 3 | k, we notice that, 13 | k, from Case 6. Also, if 31 - k, then (1613−1, k) =

13. We observe that 1613 || (413 + 1) and 1613 - (h13 + 1) for all 2 ≤ h ≤ 6 with

h 6= 4. Hence, by Lemma 3.9, either 1613 | k or 31 | k, which is a contradiction.

Subcase (ii). 3 - k.

Now, (61 − 1, k) = 5. We notice that 61 || (35 + 1) and 61 - (e5 + 1) for all

2 ≤ e ≤ 6 with e 6= 3. Hence, by Lemma 3.9, 61 | k. Also, (733 − 1, k) = 61.

We notice that 733 || (461 + 1) and 733 - (f61 + 1) for all 2 ≤ f ≤ 6 with f 6= 4.

Hence, by Lemma 3.9, 733 | k. Also, if 7 - k, then (1709− 1, k) = 61. We observe

that 1709 || (461 + 1) and 1709 - (d61 + 1) for all 2 ≤ d ≤ 6 with d 6= 4. Hence, by

Lemma 3.9, 1709 | k or 7 | k, which is a contradiction.
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Case 8. n = 3.

3 ∈ P (n). Then by Corollary 3.6, 3 | k. Now, (7 − 1, k) = 3. We notice

that 7 - (23 + 1) and 7 || (33 + 1). Hence, by Lemma 3.9, 7 | k. If 13 - k, then

(547− 1, k) = 21. We notice that 547 || (321 + 1) and 547 - (221 + 1). Hence, by

Lemma 3.9, 547 | k or 13 | k. If 43 - k, then (5419− 1, k) = 21 or 63. We observe

that 5419 || (221 +1), 5419 || (263 +1) and 5419 - (363 +1). Hence, by Lemma 3.9,

either 43 | k or 5419 | k. If 32 | k, then (127 − 1, k) = 63. Now, 127 || (363 + 1)

and 127 - (263 + 1). Hence 127 | k, which is a contradiction. Hence, we conclude

that 3 || k. Now, (2269 − 1, k) = 21. We notice that 2269 || (321 + 1) and

2269 - (221 +1). Hence, by Lemma 3.9, 2269 | k, which is a contradiction again. 2
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