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Powerful numbers in the product of consecutive
integer values of a polynomial

By PALLAB KANTI DEY (New Delhi) and SHANTA LAISHRAM (New Delhi)

Abstract. Let n and r be positive integers. Also let k& be an odd positive integer
and d be a non-negative integer. In this paper, we prove that if k has at most four
distinct prime factors, then the product ((d+ 1)* +75)((d+2)* +7%)--- (d+ n)* +rF)
is not a powerful number for n > max{r+d,59—r—d}. As a consequence, we prove that
if k has at most four distinct prime factors, then the product (1¥ +1)(2F+1)--- (n* 4+1)
is not a powerful number.

1. Introduction

A positive integer a is called a powerful number if p | a implies p? | a
for any prime p. For example, perfect powers are powerful numbers. Consider
a polynomial f(z) € Zx] of degree & > 1. Then one can ask: what are the
perfect powers or powerful numbers in the product of consecutive integer values
of f(x), i.e, in the product

fd+1)fd+2)--- f(d+n)

for some integers d > 0 and n > 1?7 Denote the product f(d+1)f(d+2)--- f(d+
n) by Ag(n) corresponding to a given polynomial f(z) with integer coefficients.
For d = 0, we denote Ag(n) simply by A(n).

This question arises from a famous result of ERDOS and SELFRIDGE [5], which
states that there are no perfect powers in the product of consecutive integers.

Mathematics Subject Classification: 11A25, 11CO08.
Key words and phrases: polynomial, shifted power, powerful number.
The first author’s research is supported by the Indian Statistical Institute, Delhi.



320 Pallab Kanti Dey and Shanta Laishram

Hence, for f(x) = x, they proved that A4(n) can never be a perfect power for
n > 1. There are several other results in the literature concerning perfect powers
in the product of consecutive integer values of a linear polynomial. For example,
GYORY, HAJDU and PINTER [9] proved that if f(z) = ax + b for some coprime
fixed positive integers a and b, then A(n) can never be a perfect power for 3 <
n < 35.

Now, consider f(x) is a polynomial of degree k > 2. Corresponding to the
polynomial 2 + 1, AMDEBERHAN, MEDINA and MOLL [1] conjectured that the
product A(n) is not a square for any integer n > 3. In 2008, J. CILLERUELO [4]
confirmed this conjecture by using Chebyshev’s upper bound inequality for prime
numbers. In fact, he proved that A(n) is not powerful for n > 3. His tech-
nique was applied to the product A(n) corresponding to the polynomials such as
47? + 1 and 222 — 22 + 1 by FANG [6]. Corresponding to any irreducible qua-
dratic polynomial f(z) € Z[z], ZHANG and YUAN [17] proved that the product
A(n) is not a square for n > C(f), where C(f) is a constant depending on f(x).
In 2011, YANG, TOGBE and HE [14] proved that corresponding to any irreducible
quadratic polynomial f(x) € Z[z], A(n) is not a perfect power for n > C, where
C' is a computable constant depending only on the coefficients of f(z) and d > 1.
Recently, GUREL [7] considered the polynomials ¥ +1 for & = 2 and 3. He proved
that corresponding to these polynomials there exists a positive real number Ny
such that for n > Ny, A4(n) is not a square.

Now consider the polynomial z*¥ + 1 for some positive integer k. Corre-
sponding to this polynomial, Amdeberhan, Medina and Moll [1] also claimed
that if n > 12, then A(n) is not a square for any odd prime k. GUREL and
KISISEL [8] proved that A(n) is never powerful for k¥ = 3. Later, using an idea
due to W. Zudilin, ZHANG and WANG [16] proved that A(n) is not a powerful
number for any odd prime k > 5. Recently, CHEN et al. [3] proved that A(n) is
not a powerful number for any odd prime power k. In the same paper, they also
proved that for any positive odd number k, there exists an integer N such that
for any positive integer n > N, A(n) is not a powerful number. In 2013, CHEN
and GONG [2] proved that A(n) is not a powerful number, when & is a product of
at most two odd prime factors. In the same paper, they also proved that for any
integer ¢ > 1, there exists a positive integer T} such that if k is a positive integer
composed with ¢ distinct odd prime factors and n is an integer with n > T}, then
A(n) is not a powerful number.

In 2017, N1u and L1u [11] considered the polynomial z* + 73 for some
fixed positive integer r. They proved that for any positive integers r and n >
max{r, 1198—r}, the product A(n) is not a powerful number. Very recently, YANG
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and JHAO [15] proved that A(n) is not a powerful number for n > max{r,11 —r}
and any odd prime power k, corresponding to the more generalized polynomial
z® + 7k where r is a fixed positive integer. They [15] also proved that, for any
positive integer r and odd positive integer k, there exists an integer IV, j such
that A(n) is not a powerful number for n > N, .

In this paper, we generalize the results of [15] and [2] considering k as a prod-
uct of at most four distinct odd primes.

2. Main results

Let r be a fixed positive integer and k be a positive integer. Consider the
polynomial
fz) =a* +rF

Now we consider the product of consecutive integer values of f(z). For any
positive integer n and non-negative integer d, we have

d+n
Aan) = ] f@)=d+1)%+r")((d+2)% + %) ((d+n)* + %),
rz=d+1

For d = 0, we have

A(n) = ﬁ flx) = (1% 4+ ) (28 4+ 7)o (0P 4 k).

r=1
Then we prove the following results.

Theorem 2.1. If k is an odd positive integer composed of at most four
distinct primes, then for any integer n > max{r + d,59 — r — d}, A4(n) is not
a powerful number.

Remark 2.2. If k is composed of at most three distinct odd primes, then
for any integer n > max{r + d,29 — r — d}, Aq(n) is not a powerful number.
If k is composed of at most two distinct odd primes, then for any integer n >
max{r +d,23 — r — d}, A4(n) is not a powerful number. If k is an odd prime or
odd prime power, then for any integer n > max{r +d,11 — r — d}, A4(n) is not
a powerful number.
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Remark 2.3. By the methods in [2], it is easy to prove that for any integer
n > max{r+d,C(t) —r —d}, Aq(n) is not a powerful number, where k is an odd
positive integer composed of ¢ distinct primes, and C(t) is a constant depending
only on ¢.

Corollary 2.4. If k is an odd positive integer composed of at most four
distinct primes, then for any integer n > max{r,59 — r}, A(n) is not a powerful
number.

As a consequence, we have the following result.

Theorem 2.5. If k is an odd positive integer composed of at most four
distinct primes, then for any positive integer n, (1¥ +1)(2¥ +1)--- (n* 4+ 1) is not
a powerful number.

3. Preliminaries

In this section, we provide some useful lemmas which are essential to prove
our main results.

Lemma 3.1. Let r be a positive integer and p be an odd prime such that
p1tr. Also, let a, k be positive integers with k odd. If
akf +r¥
a—+r

|

7

then (p(p — 1), k) > 1.

PRrOOF. On the contrary, consider (p(p — 1),k) = 1. As p | (a® + 1),
we have p | (a?* — r2¥). By Fermat’s little theorem, p | (a?~% — rP~1). Hence
p | (a@FP=1) —p(Rr=1)) Qo we have p | (a2 —72). If p | (a—r), then p | (a* —rF).
Since p | (a¥+7*), we have p | 2r*, which is not possible as p { r. Hence, p{ (a—7)
as ptr. Thus, it follows that p | (a 4+ ). Thus,

k| .k
T a7t —d" g = Rl (mod p).
a+r

Therefore, we have

ak+rk

krf=1=0 d
T (mod p), asp| .

)

which is a contradiction to (p(p—1), k) = 1, since p t . Hence (p(p—1),k) > 1. O
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Lemma 3.2. Let p be a prime, and r, k be positive integers with k odd and

(k,p—1) = 1. Then the congruence equation ¥ + r* = 0 (mod p) has only one
solution x = —r (mod p).
PROOF. If p | r, then x = 0 = —r (mod p) is the only solution for the

congruence equation z* + r* =

ptazasz®+r¥ =0 (mod p). Hence, we have (—£)* =1 (mod p). So, the order of
the element (—) in the group (Z/pZ)* divides k. Since (Z/pZ)* contains exactly

(mod p). Thus, we can assume that p {r. So,

(p — 1) elements and (p — 1,k) = 1, we see that the order of (—%) must be 1 in
(Z/pZ)*. Hence (—%) =1 (mod p), which further implies x = —r (mod p). O

Corollary 3.3. Let r be a positive integer and k = szl p;', where e;’s are
non-negative integers with at least one e; > 0, and p;’s are distinct odd primes.
If p is a prime with p; ¥ (p — 1) for all 1 < i < t, then the congruence equation
2F +7F =0 (mod p) has only one solution x = —r (mod p).

For any non-negative integer d and positive integers n, k,¢ with (k,¢) = 1,
define

d
Pd(n){q:qisaprime7 nt <q§n+d},

d
Pd(n;k:,f)_{q:qisaprime,nJr <qg<n-+d, q=/ (modk)}.

For a nonzero integer u and a prime p, let v,(u) denote the smallest non-
negative integer ¢ such that p’ | u but p'*! t u.

Lemma 3.4. Let k = szl p;* be an odd positive integer with at least one
e; > 0, where p;’s are distinct odd primes. Let p be an odd prime such that p # p;
and p;1p—1foralli =1,2,... t. Also let n,r be positive integers, and d be
a non-negative integer such that n > r +d. If p € P.y4(n), then Agz(n) is not
a powerful number.

PROOF. Since p € P,14(n) and n > r + d, we have p > % >r+d.
By Corollary 3.3, the smallest two positive integers x satisfying the congruence
equation (x +d)* +7¥ =0 (mod p) are p—d —r and 2p —d — 7, as p > r + d.

Since p # p; and p; 1 p— 1 for all i = 1,2,...,¢, we have (p(p — 1),k) = 1.
Also we see that (p — r) is a positive integer and p 1 r as p > r + d. Hence,
by Lemma 3.1, we have p { M. Thus, p? { ((p — r)* + r*). Hence, if

p—r)+r
p—d—r<n<2p—d-—r, then

vp(Aa(n)) = vp((p — )" +r%) = 1.

Thus, A4(n) is not a powerful number. O
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Corollary 3.5. Let k > 1 be an odd positive integer. Also let n,r be positive
integers and d be a non-negative integer such that n > r+d. Suppose that Ayz(n)
is a powerful number. If an odd prime p € P4 4(n), then (p(p —1),k) > 1.

Corollary 3.6. Let k,n be positive integers with k(# 1) odd. Suppose that
(1F +1)(2* + 1) --- (n* + 1) is a powerful number. If an odd prime p € P;(n),
then (p(p —1),k) > 1.

Lemma 3.7. Let k > 1 be an odd positive integer. Also let n,r be positive
integers, and d be a non-negative integer such that n > r+d. Suppose there exist
t distinct primes p1,pa,...,pt € Prya(n), such that no two of py — 1,pa — 1,...,
pt — 1 have common odd prime factors. If Ay(n) is a powerful number, then k
has at least t distinct prime factors.

PROOF. Since
n+d+r

2

we see that (p;,p; —1) =1, forall 1 <4,j <t.
Now by Corollary 3.5,

<pi§n+d+'r7

(pilps —1),k) >1, foralll<i<k.

Since no two of p; —1,p2—1,..., ps — 1 have common odd prime factors, it follows
that k has at least ¢ distinct prime factors. O

Lemma 3.8. Let k be an odd positive integer composed of t distinct primes.
Also let n,r be positive integers, and d be a non-negative integer such that n >
r+d. Suppose that there exist t+1 distinct primes p1,pa, ..., pi+1 With 3 < p; <
P2 < -+ < pgy1 such that no two of py — 1,pa — 1,...,piy1 — 1 have common odd
prime factors. Then, for p;11 —d —r <n < 2p; —d—r, Aq(n) is not a powerful
number.

ProOF. For all integers n with pi41 —d —7r < n < 2p; —d —r, we have
P1,D2s s P41 € Prya(n).

If Aj(n) is a powerful number, then by Lemma 3.7, k has at least ¢t + 1 prime
factors, which is a contradiction. ([

Lemma 3.9. Let k be an odd positive integer and n,r be positive integers.
Let p be an odd prime with p { r such that p||(a®P~Y 4 r(*2=1) for some
2 <a<mn,andptOFP~D 4 r*r=1)) for all 2 < b < n with b # a. If p* | A(n),
then p | k.
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PROOF. Let, (k,p—1) = u and uv = k for some integers u, v. Since p? | A(n),
there exists an integer ¢ with 2 < ¢ < n such that p | (¥ + 7*). Hence, we have
p | (c®* — r?*). By Fermat’s little theorem, we have p | (¢?~! — rP~1). Thus,
we have p | (¢ZFP=1) 4 #(2k2=1)) which further implies that p | (¢** — 72%).

If p| (¢* —r%), then p | (c* — r*), which shows that p | r, a contradiction.
Hence p f (¢* — r*). Thus we see that p | (c* +7%). Since pl|(aFP~1) 4 p(kr=1))
for some 2 < a < n and p t (bFP~1) 4 p(BP=D) for all 2 < b < n with b # a,
we conclude that ¢ = a.

Since p? | A(n), it follows that p? | (a* +7*). Hence, p | Zii;: as pl|(a*+7").
Thus,

a*’ +r
ST

Hence, we have

= au(vfl) _ au(v72)ru N Tu(vfl) = Uru(vfl) (mod p)

uv uv
"D 20 (mod aer
ur (mod p), as p | T
It follows that p | v as p{ r. Therefore, p | k. a

If n4+d+r =m, then P.yg(m —d—r) = {pisaprime, 3 < p < m}
and P.iq(m —d —r;k,f) = {pis aprime , 5 <p <m,p={ (mod k)}. Denote
P.yg(m —d—r) by P(m) and Pryq(m —d —r;k,£) by P(m;k, ).

Also let P be the set of all primes. Then for any positive real number x,
denote

m(@)=HpeP:p<all,  w(wk ()=

{peP:p<az,p=( (modk)},

and
p<z

O(x; k, L) = Z log p,

p={ (mod k)
where k, ¢ are relatively prime positive integers.

Hence,
|P(m)| = 7(m) — w(m/2)

and
|P(m;k,0)| = n(m; k, 0) — w(m/2;k, £).

Remark 3.10. For positive real numbers x and y, we have
(’/T(I)'J +y; k,f) - ’/T(‘T; kag)) IOgLL‘ S 9(1’ +y; kag) - 0(’137 k7£)
< (m(z+y; k,0) — w(x; k, £)) log(z + y),

where k and ¢ are relatively coprime integers.



326 Pallab Kanti Dey and Shanta Laishram

Hence, for z = 7 and y = %, we have

O(m; k,0) — 0(m/2; k, 0) < |P(m:k, 0)] < O(m; k,0) — 0(m/2; k, 0)
logm - A= log 2

. (31)

Lemma 3.11 ([10]). Let # and y be positive real numbers with y < x. Also
let k and ¢ be positive integers with (k,{) = 1. For y > k, we have

2
m(x+y k, 0) —m(z; k, 0) < " i (3.2)

(k) log(y/k)’
where (k) is the Euler totient function.
Corollary 3.12. Let m be a positive integer. Then for any positive integers

k and ¢ with (k,¢) =1,

o B O gt )

for m > 2k.
PROOF. Put z =y = m/2 in inequality (3.2). Then,

¢(k) log(m/2k)’

where m > 2k. O

|P(m; k,0)| = w(m; k,0) — (T; k,ﬁ) <
2
Lemma 3.13 ([12]). For any triple (k, €, xo) given in [12, Table 1] and any ¢

prime to k, we have

max
1<y<az

. Y z
0(y; k, £) — ¢(k’)' < 6@7

for x > xg.
In particular, € is given explicitly in [12, Table 1] for z > 101 and k < 72.

Corollary 3.14. If m,k and { are positive integers with (k,¢) = 1, then

m

o0 logm (/220 S [P(mik, O] < Zas 0w (1/2 4+ 26),

¢(k)log %

for m > 10'° and k < 72, where € is given in [12, Table 1].
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Proor. Taking x =y = m in Lemma 3.13, we have

m(1 —e€)

o(h) <O(m;k,l) < ——=.

Again, by taking © = m and y = m/2 in Lemma 3.13, we have

m(1l — 2¢)

2¢(k)

m(1 4+ 2e¢)

<O(m/2;k,0) < N0

We now use the inequality (3.1) to obtain the result.

327

Lemma 3.15 ([12]). For any positive real number z < 100 and integers k, ¢

with (k,¢) =1, we have

‘e(x;k,e) - Jk)‘ <0V,

where 0 is given in [12, Table 2].

Corollary 3.16. For any positive integers m, k, £ withm <10'° and (k, () =1,

we have

s <2¢1(k) - <1+ ;5)) < |P(m; , )

< (1 +9(1
g Z \ 2000 * vim

where 0 is given in [12, Table 2].

PROOF. It follows from the inequality (3.1) and Lemma 3.15.

Corollary 3.17. For any positive integer m with m > 94000, we have

1) 048857 < |P(m)| < 0.5445 ™

1) Tog m Tog 1

(2) 02399 < |P(m33,0)] < 02768
(3) |P(m;5,0)| < 0.1415ﬁ;

(4) [P(m;7,0)] < 0.095372;

(5) [P(m;11,€)[ < 0.0591

(6) |P(m;13,0)] < 0.0497107;7”;

(7) [P(m;15,0)] > 0.0563 2

)
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PROOF. First, we notice that log 3 /logz is an increasing function in any
positive real number x. Hence, log 3 > 0.9394logm for any positive integer
m > 94000, and log %5 > 0.9699logm for any positive integer m > 10'°. Then
we use Corollaries 3.14 and 3.16 to obtain the result. O

Corollary 3.18. Let g be a prime. Then for any positive integer m with

m > 94000, we have
(1) |P(m;q,0)] < 0.0392$, for primes 17 < ¢ < 71;
(2) |P(m;q,0)| < 0.0246 52—, for primes q > 73.

Proor. For m > 94000, we have log 5 > 0.9394logm. Then by using
Corollaries 3.14 and 3.16, for any 17 < ¢ < 71 we can show that |P(m;q, /)| <
0.0392 2

Now take ¢ > 73. Consider the function

f(@) = (@~ 1)log 7.

This is an increasing function in x € [73, F*].

If ¢ < 5%, then by Corollary 3.12,

mn < 0.0246—""—

[P(msq. 0] < < ,
(g — Dlog(m/2q) = T2log(m/146) logm

since for m > 94000, log(m/146) > 0.56479logm and ¢ > 73.
If ¢ > g7, then
|P(m;q,0)] < 2 < 0.0246——
logm

for m > 94000. O

4. Proof of Theorem 2.1

By Bertrand’s postulate, there exists a prime p € (%d“”, n+ d+ r]. Now,
nEdEr > p 4 d, as n > 7+ d. Hence, for k =1, v,(Ag(n)) = vp,(L+d +7)(2 +
d+7)---(n+d+r) =1, which shows that A4(n) is not powerful. Thus, we can
assume that k > 1.

Let k = H?:l pi’, where p;’s are distinct odd primes and e; > 0 with at least
one ¢; > 0. Then, by Lemma 3.4, it is enough to prove that there exists a prime
p € Pr1q(n) such that p # p; and (p — 1,p;) = 1 for all ¢ = 1,2,3,4. Hence,
in other words, we need to prove that there exists a prime p € P(m) such that
p#p;and (p—1,p;) =1 forall i =1,2,3,4.
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Case 1. m > 94000.

Subcase (i). 31k.
Then p; > 3 for all i = 1,2, 3,4. Hence,

4
m
p 0.4885—— > S |P(m;p;, 1)| + 4,
Pm)| > 04885750 > B 1P(mipe D]+

by Corollaries 3.17 and 3.18, which shows that there exists a prime p € P(m)
such that p # p; and p £ 1 (mod p;) for all i = 1,2,3,4.

Subcase (i). 3| k,51k.
Then p; # 5 for all i =1,2,3,4. Let p; =3 and p; > 5 for all ¢ = 2,3,4. Then,

4
m

P(m)| > 0.4885—— > S | P(m; pi, 1)| + 4,

[P(m) g~ 2o 1P(mizi, DI +

by Corollaries 3.17 and 3.18, which shows that there exists a prime p € P(m)
such that p # p; and p £ 1 (mod p;) for all i = 1,2,3,4.

Subcase (ii). 3| k,5 | k.
Let p; =3 and ps = 5. So, p; > 7 for all i = 3,4.
Now, we have

|P(m;3,2)] > 0.2399——
logm
4
> |P(m:5, 1)+ > |P(mipi, 1) = [P(ms 15, 1) +4, (4.1
i=3
by using Corollaries 3.17 and 3.18.
We notice that
4
S 1P(mips )= Y [P(mspips, 1))
i=1 Pi<pj
+ Y [P(mipipjpr, 1)| — [P(m; pipapspa, 1))
Pi<p; <Pk
4
< S 1P(mipi 1)] — [P(mi prps, 1)]. (4.2)

i=1
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Since |P(m)| = |P(m;3,1)| + |P(m;3,2)| + 1, using inequalities (4.1) and
(4.2), we have

4
|P(m)| > |P(m;3,1)| + [P(m;5,1)| + Y |P(m;pi, 1)] + 5

=3
4
>3 [P(mipi D)l = > [P(mipips, DI+ Y [P(mipippr, 1)
1=1 Pi<pj Pi<p; <Pk
= |P(m; p1papspa, 1)| + 4. (4.3)

Therefore there exists a prime p € P(m) such that p # p; and p £ 1 (mod p;)
for all t =1,2,3,4.

Case 2. 59 < m < 94000.
Here we use Lemma 3.8. First, we construct a set of prime quintuples

(1, P2, D3, pa,p5) With p1 < pa < p3 < ps < ps in P(m) such that p; — 1,py — 1,
p3s — 1,p4 — 1 and ps — 1 have no common odd prime factors. Consider

(P1,P2,P3,P4,P5)
€ {(37,41,47,53,59), (47,53,59, 71, 73), (59, 71, 73, 83, 89),
(89,97,101,107,113), (131,137,139, 149, 167), (227, 229, 239, 251, 257),
(419,431,439, 443, 449), (797, 809, 821, 823, 827),
(1553,1559, 1571, 1579, 1583), (3023, 3041, 3049, 3083, 3089),
(5939, 5953, 5987, 6011, 6029), (11807,11813,11831, 11863, 11867),
(23561, 23563, 23567, 23603, 23609), (47057, 47059, 47087,47093,47111) }.

For these quintuples we see that A, ¢(n) is not powerful when m lies in in-
tervals [59, 73],[73, 93],[89, 117],[113, 177],[167, 261],[257, 453],[449, 837],[827, 1593],
[1583, 3105],[3089, 6045],[6029, 11877],[11867,23613],[23609, 47121],[47111,94113].
Combining all these intervals, we can see that Ag(n) is not powerful for 59 <
m < 94000.

Hence, from both cases we see that Ag4(n) is not powerful for m > 59. Since
n+r+d=mand n > r+d, we observe that A4(n) is not powerful for n >
max{r + d,59 — r — d}. This completes the proof of Theorem 2.1. O



Powerful numbers in the product of consecutive integer. .. 331
5. Proof of Theorem 2.5

Consider f(x) = x* + 1, where k is an odd positive integer composed of at
most four distinct primes. Hence A(n) = (1¥+1)(2F+1)--- (n*+1). Also, denote
Pi(n) by P(n). Hence P(n) = {q: ¢ is a prime, 2! < g <n+1}.

For n = 1, A(n) = 2, which is not powerful. For n = 2, (n) = 2(2% + 1),
which is again not powerful, as 15(2(2¥ + 1)) = 1. Hence, we can assume that
n > 3.

By Corollary 2.4, we see that A(n) is not powerful for n > 58. Finally,
we consider the case 3 < n < 57. Let us assume that A(n) is a powerful number
for 3 <n <57.

The idea is as follows. For different values of 3 < n < 57, first of all we find
out all possible primes in P(n). Then by using Corollary 3.6, one can find out
some possible odd prime divisors of k. Let ¢ be such a prime divisor. Then we
find an odd prime p with (p — 1,k) = g such that p || (a?+ 1) for some 2 < a <n
but p{ (b7 + 1) for all 2 < b < n with b # a. Then by using Lemma 3.9, we can
conclude p | k. We continue in this way to find at least five distinct prime divisors
of k to get a contradiction, as k£ has at most four prime factors. We discuss all
possible cases in detail below.

Case 1. 52 < n < 57.

We see that 31,37,41,43,47,53 € P(n). Then by Corollary 3.6, we have
(31x3x5,k) > 1,(37x3,k) > 1, (41x5,k) > 1,(43x3x7,k) > 1,(47x23,k) > 1
and (53 x 13,k) > 1. Hence p1psps3 | k, where p1 € {47,23}, po € {13,53} and
p3 € {5,41}.

Subcase (i). 3| k.
Now, (97 — 1,k) = 3. We notice that 97 || (36 + 1) and 97 { (b® + 1) for all
2 < b < 57 with b # 36. Hence, by Lemma 3.9, 97 | k, which is not possible as k
has at most four distinct prime factors.

Subcase (ii). 31 k.
Since (37 x 3,k) > 1 and (43 x 3 x 7,k) > 1, we have 37 | k and 43 | k or 7 | k,
which is not possible again.

Case 2. 37 < n <51.

We see that 29,31,37 € P(n). Then by Corollary 3.6, we have (29x7,k) > 1,
(31 x3x5,k)>1and (37 x 3,k) > 1. If 45 < n <51, then 41 € P(n). Then by
Corollary 3.6, (41 x 5, k) > 1. Hence for 45 < n < 51, p1ps | k, where p; € {41,5}
and po € {7,29}. If 37 < n < 44, then 23 € P(n). Then by Corollary 3.6,
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(23 x 11,k) > 1. Hence for 37 < n < 44, q1¢q2 | k, where ¢1 € {23,11} and
g2 € {7,29}.

Subcase (i). 3| k.
Since 3 | k, we see that 97 | k, from Case 1. Since k has at most four distinct prime
factors, we have 13 f k. Then (157 — 1,k) = 3. We notice that 157 || (133 + 1)
and 157 1 (b3 + 1) for all 2 < b < 51 with b # 13. Hence, by Lemma 3.9, 157 | k,
which is a contradiction.

Subcase (i). 31k.

Since (37 x 3,k) > 1, we have 37 | k. If 53 1 k, then (3923 — 1, k) = 37. We notice
that 3923 || (637 + 1) and 3923 { (e*” + 1) for all 2 < e < 51 with e # 6. Hence,
by Lemma 3.9, 53 | k or 3923 | k. Since 3 1 k, we have 31 | k or 5 | k. This
is not possible for 37 < n < 44, as k has at most four distinct prime factors.
If 45 <n <51, then 5 | k and 191 k, as k has at most four distinct prime factors.
Now, (191 — 1,k) = 5. We notice that 191 || (7° + 1) and 191 ¢ (b° + 1) for all
2 < b <15 with b # 7. Hence, by Lemma 3.9, 191 | k, which is a contradiction.

Case 3. 25 <n < 36.
We see that 19,23 € P(n). Then by Corollary 3.6, we have (19 x 3,k) > 1
and (23 x 11, k) > 1. Hence p; | k, where p; € {11,23}.

Subcase (i). 3| k.
Since 3 | k, we have 157 | k or 13 | k, from Case 2. If 7t k, then (43 — 1,k) = 3.
We notice that 43 || (73 +1) and 43 4 (b3 +1) for all 2 < b < 36 with b # 7. Hence,
by Lemma 3.9, 43 | k or 7| k. Now, 51 k as k has at most four distinct prime
factors. Hence (61 —1,k) = 3. We notice that 61 || (14 + 1) and 614 (b3 + 1) for
all 2 < b < 36 with b # 14. Hence, by Lemma 3.9, 61 | k, which is a contradiction.

Subcase (ii). 31 k.

Since (19 x 3,k) > 1, we have 19 | k. Now, (1217 — 1,k) = 19. We notice that
1217 || (1619 + 1) and 1217 1 (e!® + 1) for all 2 < e < 36 with e # 16. Hence, by
Lemma 3.9, 1217 | k. If 33 < n < 36, then 29,31 € P(n). Then by Corollary 3.6,
we have (29 x 7,k) > 1 and (31 x 5,k) > 1. Hence, paps | k, where ps € {29,7}
and p3 € {31,5}, which is a contradiction. If 25 < n < 32, then 17 € P(n). Then
by Corollary 3.6, we have 17 | k. If 51 k, then (2551 — 1, k) = 17. We notice that
2551 || (1217 + 1) and 2551 1 (f17 + 1) for all 2 < f < 32 with f # 12. Hence, by
Lemma 3.9, 2551 | k or 5 | k, which is a contradiction.

Case 4. 13 < n < 24.
We see that 13 € P(n). Then by Corollary 3.6, we have (13 x 3,k) > 1.
If 16 < n < 24, then 17 € P(n). Then by Corollary 3.6, 17 | k for 16 < n < 24.
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If 13 < n < 15, then 11 € P(n). Then by Corollary 3.6, (11 x 5,k) > 1. Hence
for 13 < n <15, p; | k, where p; € {11,5}.

Subcase (i). 3| k.
Since 3 | k, we have 157 | k or 13 | k and 7 | k or 43 | k, from Case 3. If 5 1 k, then
(31 — 1,k) = 3. We notice that 31 || (6% + 1) and 311 (6> + 1) for all 2 < b < 24
with b # 6. Hence, by Lemma 3.9, 5 | k or 31 | k. This is not possible for
16 < n < 24, as k has at most four distinct prime factors. If 13 < n < 15, then
5| k and 191k, as k has at most four distinct prime factors. Hence, 191 | k from
Case 2, which is a contradiction.

Subcase (ii). 31 k.

Then 13 | k. Now, (157 — 1,k) = 13. We notice that 157 || (3'% + 1) and
157 1 (e'3+1) for all 2 < e < 24 with e # 3. Hence, by Lemma 3.9, 157 | k. Again,
(937—1,k) = 13. We see that 937 || (6'3+1) and 9371 (f13+1) forall 2 < f < 24
with f # 6. Hence, by Lemma 3.9, 937 | k. Also, if 11 t k, (859 — 1,k) = 13.
We notice that 859 || (10*3 +1) and 859 1 (¢'3 +1) for all 2 < g < 24 with g # 10.
Hence, by Lemma 3.9, 11 | k or 859 | k. This is not possible for 16 < n < 24,
as k has at most four distinct prime factors. If 13 < n < 15, then 11 | k and 5 1 k,
as k has at most four distinct prime factors. Now, (5501 — 1,k) = 11, as 5 1 k.
We notice that 5501 || (91 + 1) and 5501 1 (b*! +1) for all 2 < b < 24 with b # 9.
Hence, by Lemma 3.9, 5501 | k, which is a contradiction.

Case 5. 10 <n < 12.
We see that 7,11 € P(n). Then by Corollary 3.6, we have (11 x 5,k) > 1
and (7 x 3,k) > 1. Hence p; | k, where p; € {5,11}.

Subcase (i). 3| k.
Since 3 | k, we have 43 | k or 7| k and 31 | k or 5 | k, from Case 4. If 5 1 k,
then (31 x 11) | k. Since 11 | k and 5 1 k, we have 5501 | k from Case 4, which
is a contradiction. Thus, 5 | k. Hence 19 | k or 191 | k, from Case 2. Now,
(41 — 1,k) = 5. We notice that 41 || (4° + 1) and 411 (¢® + 1) for all 2 < ¢ < 12
with ¢ # 4. Hence, by Lemma 3.9, 41 | k, which is a contradiction.

Subcase (ii). 31 k.
Then 7 | k. Now, (449—1,k) = 7. We notice that 449 || (57 +1) and 449 { (¢7 +1)
for all 2 < g < 12 with g # 5. Hence, by Lemma 3.9, 449 | k. If 13 { k,
then (547 — 1,k) = 7. We notice that 547 || (37 + 1) and 547 { (h7 + 1) for all
2 < h <12 with h # 3. Hence, by Lemma 3.9, 547 | k or 13 | k. Now, 43 { k,
as k has at most four distinct prime factors. Then (5419 — 1, k) = 7. We observe
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that 5419 || (87 + 1) and 5419 1 (i + 1) for all 2 <4 < 12 with i # 8. Hence, by
Lemma 3.9, 5419 | k, which is a contradiction.

Case 6. T<n<9.
We see that 7 € P(n). Then by Corollary 3.6, (7 x 3,k) > 1.

Subcase (i). 3| k.
We see that 43 | k or 7| k and 31 | k or 5 | k, from Case 4. Now, (13 —1,k) = 3.
We notice that 13 || (43 +1) and 131 (¢® +1) for all 2 < ¢ < 9 with ¢ # 4. Hence,
by Lemma 3.9, 13 | k. If 5 | k, then 41 | k, from Case 5, which is a contradiction,
as k has at most four distinct prime factors. Hence 5 f k. Also 17 1 k. Now,
(37571 — 1, k) = 13. We notice that 37571 || (62 + 1) and 37571 1 (e!3 + 1) for all
2 < e <9 with e # 6. Hence, by Lemma 3.9, 37571 | k, which is a contradiction.

Subcase (ii). 31k.

Then 7 | k. Now, we see that 13 | k or 547 | k and 449 | k, from Case 5.
If 7 <n <8, then 5 € P(n). Then by Corollary 3.6, we have 5 | k for 7 <n < 8.
Hence 41 | k, from Case 5, which is not possible for 7 < n < 8. For n = 9,
we have 43 | k or 5419 | k, from Case 5, as 7| k. Since k is composed of at most
four primes, we have 19 { k and 31 t k. Now, (16493 — 1, k) = 7. We observe that
16493 || (97 + 1) and 16493 { (i7 + 1) for all 2 < i < 9 with i # 9. Hence, by
Lemma 3.9, 16493 | k, which is a contradiction again.

Case 7. 4 <n <6.
We see that 5 € P(n). Then by Corollary 3.6, we have 5 | k. Hence, 41 | k,
from Case 8.

Subcase (i). 3| k.
Since 3 | k, we notice that, 13 | k, from Case 6. Also, if 311 k, then (1613—1,k) =
13. We observe that 1613 || (413 + 1) and 1613 t (h'? + 1) for all 2 < h < 6 with
h # 4. Hence, by Lemma 3.9, either 1613 | k or 31 | k, which is a contradiction.

Subcase (i). 31k.
Now, (61 — 1,k) = 5. We notice that 61 || (3° + 1) and 61 t (¢ + 1) for all
2 < e < 6 with e # 3. Hence, by Lemma 3.9, 61 | k. Also, (733 — 1,k) = 61.
We notice that 733 || (451 4+ 1) and 733 1 (! + 1) for all 2 < f < 6 with f # 4.
Hence, by Lemma 3.9, 733 | k. Also, if 71 k, then (1709 — 1, k) = 61. We observe
that 1709 || (4! +1) and 1709 1 (d®! +1) for all 2 < d < 6 with d # 4. Hence, by
Lemma 3.9, 1709 | k or 7 | k, which is a contradiction.
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Case 8. n = 3.

3 € P(n). Then by Corollary 3.6, 3 | k. Now, (7 — 1,k) = 3. We notice
that 71 (22 +1) and 7 || (3% + 1). Hence, by Lemma 3.9, 7 | k. If 13 { k, then
(547 — 1,k) = 21. We notice that 547 || (32* + 1) and 547 { (22! + 1). Hence, by
Lemma 3.9, 547 | k or 13 | k. If 43 { k, then (5419 — 1, k) = 21 or 63. We observe
that 5419 || (221 +1), 5419 || (252 +1) and 5419 1 (3%3 +1). Hence, by Lemma 3.9,
either 43 | k or 5419 | k. If 3% | k, then (127 — 1,k) = 63. Now, 127 || (3% + 1)
and 1271 (25 + 1). Hence 127 | k, which is a contradiction. Hence, we conclude
that 3 || k. Now, (2269 — 1,k) = 21. We notice that 2269 || (32! + 1) and
2269 1 (221 +1). Hence, by Lemma 3.9, 2269 | k, which is a contradiction again. O
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