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On the distribution of integers with missing digits
under hereditary sum of digits function

By KARAM ALOUI (Sfax) and FIRAS FEKI (Sfax)

Abstract. The aim of this work is to estimate the cardinality of the set of integers
with missing digits under an arithmetical constraint on their hereditary sum of digits.
This proves in particular a theorem on the well-distribution in residue classes and on the
equidistribution modulo 1 of the sequences (w(n)a)newy, and (NQ)newp wn)=r mod m;
where « is an irrational number, » and m are integers, w denotes the hereditary sum of
digits function, and Wp is the set of integers with missing digits.

1. Introduction

It is known that, given any integer ¢ > 2, every positive integer n has a unique
representation

n = Zaw’ﬂ where a, # 0 and ay, € [0,q — 1] for all k, (1.1)
k=0

called g-ary expansion of n.

A base ¢ being fixed and a subset D C [0,¢q — 1] such that 2 < |D| < ¢ —1
(i.e., D expels at least one digit and keeps at least two) being chosen, we define the
integers with missing digits expressed to base ¢ relatively to D to be the integers
whose g-ary expansion includes only the digits of D. We denote by Wp the set
of such integers, and for z € R,

Wp(z) :=={n € Wp, n < z}.
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A first estimate of the size of Wp(x) is given when z = ¢ by

D, if 0 € D,
W (q")| = 2”: k (1.2)
|DI¥, else,
k=1

which, according to the bound ¢! < z < ¢¥, gives

log |D|

Wo ()| = a5

In particular, the set Wp is of density zero, since €]0,1[. As a matter

log | D]
log ¢
of fact, the integers with missing digits do not only present a sparse sequence but
also present a fractal structure. For instance, the integers with missing digits to
base 3 associated to the set of digits {0,2} have a distribution modeled on that
of Cantor’s set (after a rescaling). Their study is possible since their generating
function is factorized completely, which enables to control its irregularities. The
arithmetic properties of integers with missing digits have been intensively stud-
ied by many authors, namely BANKS, COQUET, DARTYGE, ERDOS, FILASETA,

KONYAGIN, MAUDUIT, SARKOZY and SHPARLINSKI (see [3], [6]-[9], [12]-[13]).

In their articles [8] and [9], Erdds, Mauduit and Sarkézy studied the distri-
bution of integers with missing digits in arithmetic progressions. If ¢ > 3, 0 € D
and 2 < |D| € ¢ — 1, then the main theorem of [8] states as follows:

Theorem A. There exist positive constants ¢; = ¢1(q,|D|), ca = c2(q, |D|)
and c3 = c3(q,|D|), such that writing D = {di,da,...,dp|} where di = 0
and (da,...,djp)) =1, N e Nym' e Ny m/' > 2, ((¢—1)¢gm') =1, m" <
exp (c1 (log N)%) and a € Z Then

{n; neWp(N),n=a (modm’)}| — ;/WD(NH‘

logN)

1
< CQ%D/V’D(N)‘ exXp <_Cdlogn’L/

From Theorem A, it follows that the set Wp (V) is uniformly equidistributed
in the residue classes modulo m’ once m’ < exp (01 (q,|D])(log N)%). This implies
that for such m’, Wp(N) meets every residue class modulo m’.

It should be noted that Col improved the inequality [8, Lemma 2] providing
a more refined result (see [4, Corollary 1]).

In the same direction, we could name an article of Konyagin [12, Theorem 1]
that deals with the study of the distribution of Wp(N) in the residue classes.
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Theorem B. Let ¢ > 3, D C [0,q— 1] such that 0 € D and 2 < |D| < ¢—1,
writing D = {dl,dg,...,d|p‘} where d; = 0 and (dg,...,d|p‘) =1, N € N,
vg € NNy 2 0, N = Ny (modg™), K € N, M C N, (¢g,m) = 1 for all
me M, pi,...,x+1 are integers, 1 = po--- = pr > pr+1 = 0, My = g'*,
and for any k € [1, K+1] and any distinct elements my, ..., my from M, we have
(mq,...,my) < M. Then

Z a(rrrrllax |m| [{n € Wp(N): n=a (modm)} — Wp(N)||
meM

odm)
)™

K
< o) M1+ Wo () [ Y- (14 (1- = K
k=1

1
q 1)5(261)2)

Theorem B induces a larger class of integers m for which the set Wp(N)
is uniformly equidistributed modulo m. Note that the major advantage of his
formula, compared to Theorem A, lies in summing on the classes m € M, which
allows to achieve an average result on the residue classes modulo m.

The interested reader may refer to [4], [9], [16]-[17] for additional results and
details.

Given a positive integer n, we define its g-ary hereditary expansion, denoted
fq(n), as follows:

fa(n) = Z apqle®
k=0

where ag, . . . , a, are the integers defined in (1.1) (actually, we keep just the ay that
are nonzero). In other words, we expand n in base ¢ as in (1.1), then we expand
each power of ¢ recursively till we get only the digits 0,...,q. So, in order to
convert from g-ary expansion to g-ary hereditary expansion, we rewrite all of the
exponents in ¢g-ary expansion. Then rewrite any exponents inside the exponents,
and continue in this way until every number appearing in the expression has been
converted to g-ary expansion. Hence, the process continues with as many levels
of exponentiation as required. For instance, the 3-ary expansion of 2018 is

2018 =2-3"4+2.324+2.3342.354+2.36,
and the 3-ary hereditary expansion of 2018 is
31-30

_ 0 2.3 1.313° 1.313° 12.30 2.
2018 =2-3"+2-3 +2-3 +2-3 +2-3

The g-ary hereditary expansion was used to define Goodstein sequences and prove
Goodstein’s theorem, which is a statement about the natural numbers, proved
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by GOODSTEIN [10] in 1944, stating that every Goodstein sequence eventually
terminates at 0. Indeed, the Goodstein sequence G,,(n) of a positive integer n
is a sequence of natural numbers whose first element Gy(n) is n itself. To get
G2(n), we write n in 2-ary hereditary notation, next we change all the 2’s to 3’s
and then subtract 1 from the result. In general, the (m + 1) term G,,.1(n)
of the Goodstein sequence of n is obtained as follows: we take the (m + 1)-ary
hereditary representation of G,,(n), replace each occurrence of the base m + 1
with m + 2 and then subtract one. Note that the next term depends both on the
previous term and on the index m.

Goodstein’s theorem states that if we continue this process, the result will be
zero at some step. For example, the sequence G, (3) reaches zero at the sixth step
(see [14, Table 1]). KIRBY and PARISs [11] showed that this is unprovable in Peano
arithmetic. For more details about this topic, the reader can refer to [14] and [19].

The hereditary sum of digits function to base g, which we denote by wy,
assigns to each positive integer the sum of its g-ary hereditary digits. For example,

w3(2018) =2+24+2424+14+14+2+14+14+24+2+2+1=21.

If there is no risk of confusion, we write simply w instead of w,. It is easy to see
that w(0) = 0, and if

L
n= Z ;g
i=1

with 4 > -+ > vy and ¢; € [1,q— 1],V i € [1, L], then w satisfies

L

w(n) =Y (b +ww)).

=1

In particular, if £ > 1, a and b are integers such that a € [[1,¢g—1] and 0 < b < q",
then

w(ag® +b) = a +w(k) +w(b).

In [20], SANNA gave optimal upper bounds for the exponential sum Z e(w(n)t),

n<N
where ¢ is a real number. In particular, his results imply that for each positive

integer m, the sequence (w(n))nen, is uniformly distributed modulo m, and that
for each irrational number «, the sequence (aw(n))nen is uniformly distributed
modulo 1.
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1.1. Notation. Along this article, the following notations are adopted: we de-
note by Ny, N, Z and R the sets of nonnegative integers, positive integers, integers
and real numbers, respectively. Given a real number z, we denote by |z| the
greatest integer less than or equal to z, ||z|| the distance from x to the nearest
integer (i.e., ||z| = 15161121 |z —n|), and we set e(z) = ™
a and b is denoted by (a,b), and if a < b, we denote the set {a,a +1,...,b} by
[a,b]. The number of elements of a set A is written as |A|. We agree that, given
n n

. The ged of two integers

a sequence of complex numbers (a;) e, Z a; =0 and H aj =1 once m > n.

j=m j=m
Given two arithmetic functions f and g; we write f(n) = O(g(n)) or f(n) <
g(n) if there exists a constant ¢ > 0 such that |f(n)| < c|g(n)| whenever n is

sufficiently large. If f(n) < g(n) and g(n) < f(n), we write f(n) < g(n).

2. Statement of the results

Let a and r be integers, ¢, m and m’ be integers > 2. Let D be a nonempty
subset of [0,q — 1] such that |D| > 2. We denote by

D*:=D\ {0}
and for every integer £ € [0, g, we set
=[0,{—-1]NnD and D; =D\ {0},

in particular, D, =D and Dy = @
We set 1 4 the characteristic function of the set A, i.e.:

L14:[0,¢g—1] — {0,1}
1, ifzeA,
T —
0, else.
Moreover, we set

Wp = {n €N, n= Zaqu, where ay € D for every k € [0,v] and a, # 0}
k=0

and for N > 2

Wp(N) :={n < N, ne€ Wp},
Wop(N,a,m',r,m) :={n € Wp(N), n=a modm’, w(n)=r modm}.
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Our work is split as follows: In paragraph 3, we present some technical
lemmas concerning the exponential sums and the cardinality of Wp(N), which
we shall need in order to settle our main theorem. In paragraph 4, we add to
Theorem A some congruence constraint on the hereditary sum of digits in the set
{n € Wp(N) :n=amodm'} so to obtain our main theorem:

Theorem 2.1. Let ¢ > 3, D C [0,q — 1] such that 2 < |D| < ¢ — 1, there
exist positive constants k1 = ki(q, |D|), ka = ka(q,|D|) and ks = k3(q, |D|) such
that, writing D = {dy,da,...,dp|} with d; = min(D) and (da,...,d|p|) = 1,
N € N;m and m’ € N such that m,m’ > 2,(q(¢ —1),m’) =1,

mm' < exp(k1(log N)?), (2.1)
and (a,r) € Z*. Then
1
N ! - N

Wo(N.aul )] = — ()|

1 log N
N —fa—2" ). 2.2
<k2mm’|WD( )exp( kslogmm’) (22)

Following this theorem, we prove that the set Wp (V) is uniformly equidis-
tributed in the residue classes modulo mm’ admitting mm’< exp(k(q, D)(log N)?2).
It follows that for such m and m’, the set Wp(N) meets every congruence class
modulo mm/'.

It is to note that Theorem 2.1 holds true even if 0 € D. Indeed, the formula
differs between the cases 0 € D and 0 € D (due to combinatorial reasons), but
Theorem 2.1 remains true in the latter case (which is rarely considered in the
literature, see [5], for instance).

As a consequence of this estimate, we care about a result concerning the
equidistribution modulo 1 of the sequence (w(n)a)necwy-

Corollary 2.2. The sequence (w(n)a)new, Is equidistributed modulo 1 if
and only if « € R\ Q.

In the same perspective, we could state the following corollary

Corollary 2.3. Let m > 2 and r € Z. The sequence (n)pcwp w(n)=r modm
is equidistributed modulo 1 if and only if « € R\ Q.

3. Estimate of the sets Wp(N) and Wp(N,a,m’,r,m)

Now, we introduce the function Tn with complex values defined for every
positive integer N, for every real numbers «, 8 and for every nonempty subset D
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of [0,q — 1] by
Tn(e,8) =Tn(D,a, B) = Z e(na+wn)p).

neEWp (N)
We also set
Op(a, B,7,0) =1+ e(w(j)pB) Z e(d(¢?a + B)) for j € Ny and £ € [0, q].
deD;
The function T enables to sieve the elements of Wp (N, a,m’,r,m). In fact,

we have

Lemma 3.1. Let ¢,m’,m be integers > 2 and (a,r) € Z?, and let N be
a positive integer. Then, we have

1 ta\ o= sr t s
/ _— [ — [ JE— —
|WD(N,a,m,7“,m)|—mm/ Ze< m/>ze< m)TN (m/am)'
t=0 s=0
PRroOOF. It is obvious according to the classic orthogonality relation that
|WD (N,a,m/,r,m)\ = Z 1
nEWp (N)

1 - m—1 .
- L Z Z . (t nmla) > . <S 10(7173I 7")
P ta\ e~ sr t s
=t 2 <‘m> 2 e(=3) T (mm> 0

We are going to state and prove some recursive relations enabling to express
[Wp| and Ty as previously done in [1]-[2] and [18], for instance. Note that this

idea was already used in the work of Sanna [20] in order to establish an upper

bound for the exponential sum Z e(cw(n)), where N € Nand o € R\ Z.
n<N

3.1. Study of the case 0 € D. First, we state the following lemma that deter-
mines the cardinality of Wp (V) for a given integer N > 2 whenever 0 € D.

Lemma 3.2. Let D C [0,q — 1] such that 0 € D. For every integer N =
01g" + -+ Lpgtt withvy > - > vy and {; € [1,q— 1] V i € [1, L], we have

L-1 [ k
Wo(N)| = Dy, DI+ | [[ 1)) | Do, D5
k=1 \j=1
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log N
PROOF. We shall write N = £1¢" + N’ with vy = { o8

J, N’ < ¢** and
0gq
¢, € [1,q — 1]. Evidently, we have

Whp(N)| = [Wp(£1g")| + Lp(£2)[Wp (N')].

Iterating the process, we are left with
L-1 [ k
W (N)| = Wo (i) + > [ [T 104) | W (lrirg™+)]. (3.1)
k=1 \j=1

Let v be a nonnegative integer, and let ¢ € [1,q — 1]. We separate the integers
strictly smaller than ¢ into two sets: the integers strictly smaller than ¢, and
the integers between ¢” and £g”. There follows the identity

Wo(lg")| = Wn(¢")[ + (IDe| = 1)|PI” = |De|[D]”. (3-2)

Putting (3.2) in (3.1), we reach the required conclusion. O

Next, we are looking to simplify the expression of the function Ty whenever
0eD.

Lemma 3.3. Let D C [[0,q — 1] such that 0 € D. Then, for all real numbers
«, B, for every integer N = (1¢"* + --- + £1q"* with v; > --- > vy and {; €
[1,q—1] Vi€ [1, L], it follows that

Tn(a,B)= Y I 1o()et;q” a+ (£ +w(v;))B)

0<k<L—1 \1<i<k

l/k+1—1

X@'D(aaﬂ7yk+l7£k+l) H ('-)'D(aaﬁmjaq)'
7=0

log N
log g

Proor. We write N = {1¢"* + N’ with v = {
[1,q — 1]. Obviously,

J,N’<q”1 and {; €

T (v, B) = Toyqni (0, B) + > e(na+w(n)B).

21q%1 <n<lyq¥1+N’
newp

But, if ¢; ¢ D, then the second sum is zero and the expression is reduced to
Tflq”l (a7 ﬁ)
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Otherwise, we write

Z e(na +w(n)p) = Z e((n+ 019" )a+w(n + €14")B)

£1q¥1 ﬁl?fvl;ylw/ n€EWp(N')
=e(li(¢" a+B) +w(1)B) TN (a, B).
So
Tn(a,B) = Topgn (o, B) + Ap(lr)e(lrq™ o+ ((1 + w(v1)) B) T (e, B).
Reiterating, it follows that
In(e, B) = Tygn (o, B) + Lp(€r)e(lrg” a + (6 + w(11)) B) Toyqra (o, B) + - -

L—1 L—1
+lp(t) - Ap(lpa)e | Y Liga+ Y (6 +ww;)B | Teygrn (. B).  (3.3)
j=1 j=1

Yet, for every nonnegative integer k and for every integer ¢ € [2, ¢ — 1], we have

Togr (e, ) = Ty (@, B) + Y Y elnatw(n)p)

ISd<t dqk<n<(d+1)qF
deD neWp

=Tp(,B)+ > Y e((n+dd¥)a+w(n+dg")B)

deD; neWp (¢*)

— |1+ ew®)B) Y eldgha+ )| Ty(a, ). (3.4)

deD;
Furthermore, this relation is trivially true for £ = 1, and thus true for every
¢ € [1,q — 1]. Finally, we write:

k
Tpa(e,B) =14+ > > el(dg +m)a+w(dg +m)B)

120 1550 meWn (@)

k
=1+ e(w(;)B) Y eldda+B)Ty(a,B).
j=0 deD~

This implies the formula

Tyetr (o, B) = |1+ e(w(k)B) Z e(d(¢*a + B)) Ty (e, B),
deD*
which enables to affirm that
k—1
Tye(o, B) = H 1+ e(w(y)B) Z e(d(¢a+B))|, forevery ke N. (3.5)
J=0 deD*

Putting (3.5) in (3.4), which we insert in (3.3), we reach the required formula. O
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3.2. Study of the case 0 ¢ D. Now, we state a lemma enabling to determine
the cardinality of Wp(N) for N > 2 whenever 0 ¢ D.

Lemma 3.4. Let D C [1,q—1]. For every integer N = £,q" +---+{1q+ {o
with £; € [0,q — 1] V i € [0,v] and £, # 0, we have

Wo(N)| = D, [[D]” + Y _1D[F+ > | [ 1o) | 1De,_, [IDIF.
k=1 k=1 \j=k

log N
OgJ, N' < ¢” and ¢, # 0.
log q

We write N’ =¢,_1¢"~! +--- + /gy and split the elements of Wp(£,¢” + N’) into
two sets: the integers strictly smaller than £,¢" (|Wp(£,q")| elements), and the

PrROOF. Let N = /,q” + N’ with v = {

integers between £,¢” and £,q” + N’. Then
o if N’ < ¢¥7!, the second set is empty;
o if ¢ 71 < N'" < ¢ and {, ¢ D, the second set is empty again;
o if 71 < N’ < ¢” and ¢, € D, the second set contains ([Wp(N')|—
Wp(g"~1)|) elements.
We set the function

Xs : [0, — 1] — {0,1}
{1, if £ > 6 = min(D),
f—

3.6
0, else. (3.6)
It follows that

[Wo(N)| = [Wp(l,q")]
+ 1p () xs(lu—1) (Wp(ly—1q”™ "+ -+ Lo)| — Wp(g"M)]). (3.7)

Let k be a nonnegative integer, and let £ € [1, ¢ — 1], we separate the elements of
Wp(€q¢%) into two sets: the integers strictly smaller than ¢* (|Wp(¢*)| elements),
and those between ¢* and £¢* (|Dy||D|* elements). It follows that

[Wo(£4")| = [Wn(q")| + |De||DI*. (3.8)
Tterating the process, we insert (3.8) in (3.7), and applying the identities

Ip(O)xs(f) =1p(€) and  x5(€)|De| = |Dol,
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we get

Wo(N)| = Wo(g")| + |De, IIDI” + Y | [T 1o4) | 1De, DI (3.9)

k=1 \j=k
But, following (1.2), we recall that
Wo(g")| = DI (3.10)
k=1
Finally, it is sufficient to put (3.10) in (3.9) to get the desired conclusion. O

Last, we finish this paragraph by a lemma that simplifies the expression of
the function T in the case 0 ¢ D.

Lemma 3.5. Let D C [1,q — 1]. Then, for all real numbers «, 3, for all
integers v and for every integer N = £,q" + - -+ {1q+{y with ¢; € [0,q—1] Vi €
[0,v] and ¢, # 0, we have

v

Tn(o,B) =Ty, ) +e | Y wiB | Y. T, (6" ', B)

j=0 1<k<y
k—2 ) )
[[7@ap) | II 1ot)et;da+¢;p)
j=0 k<<

log N
logq

PrRoOF. Let N = {,q" + N’ with v = { J, N’ < ¢” and ¢, # 0. We set

N =0, 1¢" ' + - + £y, therefore

Toyqrini (@, ) = Ty, (@, B) + > ena+w(n)B).

Ly gV <n<tly,qV+N'
nEWp

But, if £, ¢ D or if N’ < ¢~ !, the second sum is zero and the expression is
reduced to Ty, 4 (v, 5).
Otherwise, we write

Z e(na + w(n)p) Z e((n+£,¢")a+w(n+£,4")B)

Ly q¥ <n<l,q”+N' gV~ l<n< N/
nEWp neWp

= e(ly(¢"a+B)+w(v)B) (Tn: (o, B)=Typ-1(a, B)) .
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In conclusion,

Tfyq"(avﬁ)a if N' < quil,
Tn(a,B) = 4 To,qr (@, B) + LIp(6)e(lyg”a + (6, + w(¥))B)
X(TN'((X7B)_T(IV’1(O[’ﬁ))7 lf q”_l <N1<ql/.

Recall the function xs already defined in (3.6), then

Tn(a,B) =Ty, q(a, B) + Lp (€ ) xs (b-1)
x e(lyq”a+ (b, + w(v))B) (Tn (o, B) — Typ—1 (e, B)) . (3.11)

Next, for every nonnegative integer k and for every integer £ € [2, g — 1], we write

Tygr (o, B) = Ty (v, B) + Z Z e(na + w(n)p)

1<d<t gk <n<(d41)qk
deD neWp

=T(a,B) + Z Z e((n+dg")a +w(n + dg*)B)

1<d<l gh—lgpegh

= Tye(a, B) +e(w(k)B) Y e(dda+p) > e(na+wn)b)

=Tp(a, B) + e(w(k)B)Tu(¢" v, B) (T (cv, B) — Ty (v, B)) . (3.12)

Furthermore, this formula is evidently true for £ = 1, and so is true for every
¢e[l,q—1]. Then,

k
Tpir(,B) =Y Y elna+w(n)p)

J=0 ¢i<n<qitl
nEWp

k
= Z Z e((dg’ +m)a +w(dg’ +m)pB)

§=0deED ¢i—1<m<qi
meWp

(w(7)B)Ty(d’ v, B) [Tys (e, B) = Tys—1 (v, B)] -

I
Rﬂw

<.
I
o

Subsequently, it follows that

Tye+r (o, B) = Ty (v, B) + e(w(k:),B)Tq(qkoz,ﬁ) [qu (a,B) = Typ—1(ax, 6)] .
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Finally a strong induction on k enables to conclude that:

k=1 h

Tyo(e, B) =Y [ e(w(i)B)Ty(d’ o, B). (3.13)

h=0j=0

We insert (3.13) in (3.12), and assuming v > 2, we set N” = ¢, _2¢" "2+ -+ 4o
in (3.11) to obtain

v—1 v—2
Tno(a, B) = Tp—r(a, B) = e | Y _w(i)B | To,_, (" ‘e, B) [ [ To(d’ e, B)
j=0 j=0

+ ]l’D(gufl)X6(€V72)e(€tlflqy_1a + (gufl
+w(v —1))8) (T (a, B) — Tyv-2(a, B)) -

We reiterate the process and report to (3.11), taking in consideration the identities
Xs(O)Te(q"a, B) = To(q e, B)

and
Ip(£)xs(f) = 1p(0),

true for every integer £. We are left with the formula

v

Tn(a,B) =Toq(a,B)+e | D w@)B | > T, (¢ ', B)

j=0 1<k<y
k—2 )
[[7@a) | II 1ot)et;d’a+¢;p)
j=0 K<j<v

If v =2,

Tne(a, B) = Ty(er, B) = e((w(0) + w (1)) T, (e, B)Ty(ev, B)
+ Ip(l)xs(bo)e(trga + (6 + w(1))B)Tey (e, B).

We put this in (3.11) to reach the previous formula (with v = 2).
Hence, the lemma is proved. O
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4. Proof of Theorem 2.1 — Analogon of Theorem A

4.1. Notations and lemmas. We start by introducing some notations and
some lemmas used in [8] that will be useful to settle Theorem 2.1.

Lemma 4.1. Let g and D be as defined in Theorem 2.1, and let o € R, then
there exist two integers ¢ and j such that 2 < i < j < |D| and

1
. > - .
16— ol > g lal

PROOF. The lemma can be proved following [8, Lemma 1] step by step mod-
ulo some elementary modifications, and it is easy to check that it works also when
0¢D. O

First, for a € R and D = {d1,...,d|p|}, we write
|D|

u(a) = up(a) == Ze(dka) and U(a) =Up(a):=

k=1

up ()
D|

Next, we use an improved version of [8, Lemma 2].

Lemma 4.2. Let ¢ and D be as defined in Theorem 2.1, o € R, then we

have
64

(g +1)3

PrOOF. This is [4, Corollary 1]. O

U(e)] <1 - .

Lemma 4.3. Ifq, m/, t, p € Nsatisfy gqm’ > 2, ¢t € [1,m' —1], (¢g,m') =1
and (¢ —1)-5 ¢ Z, then

log m’

=2 8 4.1
log q + (41)
and 8 € R, then
-1 2
(¢—1° »p
— | > .
Zo pt q 20g* logm/

PRrROOF. This is [15, Lemma 2’], which means a slight improvement of
[17, Lemma 2]. O
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4.2. Proof of Theorem 2.1. We go back to the generating function
nEWD(N)
in particular,

then for a, r € Z, m', m € N, we get from Lemma 3.1

m’—1 m—1
1 ta rs t s
|WD(N7CL’ m’,?“y m)| - mm/ Z e (_Tn/> Z e (—E> TN (W’ m) . (43)

t=0 s=0
It follows from (4.2) and (4.3) that

1
|WD (N7a7m/a r, m)| -
mm

W)

1

mm/

1 m—1
S mm/ ; ’TN (0’%)‘ + Z

(t,s)eY

= ‘|WD(N,a,m’,r,m)|— TN(O,O)’

Ty <ni/ ;)‘ , (4.4)

Y = [1,m' — 1] x [0,m — 1],

where

for

t
so we are led to estimate ‘TN (O, i)‘ for s € [1,m — 1] and ’TN </, 8)
m m'’ m

(t,s) €Y. (4.5)

On the one hand, we write IV as

L
N:Zaqukv
k=1
where v1 > vy > -+ > v, ap € [1,q — 1] for k € [1, L] so that ¢"* < N < g1+,

log N
hence v, = ogq |

Moreover, when s € [1,m—1] and 0 € D, we can bound from above according

to Lemma 3.3

1 (0.2)] < X [on (020
< (g— 1)51:]1:[1 <1 +

k=0 j=0

1T loo (0.2.00)
3e (d%) D . (4.6)

deD*
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Indeed, the second inequality holds true, because ‘GD (07 i, Vk,ék)‘ <(¢g—-1)
m
and the sum running over [0,4] (which is positive) includes vz, ..., ;.

But, Lemma 4.1 proves that V s € [1,m — 1] there exists some i and j such that

m{s(d; —d;), so

Z e (di) <|D|-1.
m

deD*

Thus, setting

v:=14+ max
1<s<m—1

S __ logy
Z e(dm>| and w:= log D] <1,

deD*

it follows that V s € [[1,m — 1],

1+ (> e(d%)

deD*

which gives after substitution in (4.6)

s V1 " Dw(lerl) 2 (g—1 "
7 (0. 3) | <= Y121 <ta - 0T < T pwn . @)
k=0

This upper bound follows from the fact that [Wp(N)| > |D|** (thanks to
Lemma 3.2) and that the function x — —%5 is decreasing and |D| > 2.

An analogous upper bound holds true, from Lemmas 3.4 and 3.5, when 0 ¢ D.
In fact, thanks to Lemma 3.5, we get (see the details in the proof of Corollary 2.2)

w

wr q w
DI < (W (N)I,

e (0.2)] <o

20 —1 2@ —1
log Z e(da)
where w = %IDI < 1. Here we use Lemma 3.4 to recall that |Wp(N)| >
0og
2|D|”.

On the other hand, we use the ideas of [8], and we denote by Ay, for ¢ € [1, L],
the set of integers n written in the form

ve—1

01
n= Z a;q” + xq”" + Z Y59,
i=1 =0
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where
zeDN[0,a,—1], y; € D, for je [0,v, —1].

Thus, we clearly have

L

- U Ay

=1

with
A;iNnAr=02, forl<j<l<L.
It follows that for all a, 8 € R,
L
Tn(a,B)= Z e(na+w(n)p) :Z e(na+w(n ZTNg a, B), (4.8)
nEWp(N) {=1neA,

where, for ¢ € [1, L], we have

ron =X 3 3 |3

Yug—1

V[l

Zaq”lJracq +Zyz

+

-1 ve—1
D (i +w) + o+ In(z)wlve) + D (v + 1N(yi)w(i))] 5)

i=1 =0

-1 -1
—e <Z a;q" o + Z (a; +w(v;)) 5)
i=1 1=1

X Z e(z(¢"a+ B) + In(x)w(ve)5)

z€DN[0,a,—1]

X i:[ Z e(y;(da+ B) + In(yj)w(4)B)

y; €D
Then
v—1 . ve—1 .
T, 8)] < |D| [] lun(@a+B) < alD” ] Up(¢’ o+ B)|. (4.9)
§=0 §=0

Subsequently, and since |D| > 2, we get for @, S € R
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TN (e, B)]

I//l

< > IDI”‘H1<qZ|DI2logq

1 log N
£ive3 Tog @

1

< 2q|D|Fe < 2¢(|D M) < 23 (ID")? < 203 Wp(N)[3,  (4.10)
as we have from Lemmas 3.2 and 3.4

Wo(N)| = D" (4.11)

1 log N

2 To5q then if N is sufficiently large, we get from (4.1)

In addition, whenever vy >

1log N S 2logm'
2 logq log q
so that condition (4.1) is true with vy instead of p. Then using Lemmas 4.2 and 4.3,
from (4.9) and the convexity inequality 1 — z < exp(—z) (for x > 0), for £ < L

1log N

such that v, > 3 Tog g’
2)
2

e 5)\ oo T (1-
C\mm q+1

I/zl t
+13Z W m

(-
q|D|Wexp( 6a -1 ”)
(o

+38,

we have

jt S
¢ — + =
m m

¢ °

5¢4(q + 1)3 logm/

8(q —1)? log N
q+1 )3log g logmm/

Then, from (2.1) and (4.11), for t € [1,m’
t s

TNy (,7 )
m'’m

log N\ <X . log N
< gexp (_ og > Z |D|U17‘] < |D|u1 exp (_ og )
=0

k4logmm/ kslogmm/

log N
< Whp(N)|exp <_k510gmm’> ) (4.12)

where k4, k5 depend at most on ¢ and |D|.
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It follows from (4.8), (4.10) and (4.12) that for (¢, s) satisfying (4.5), we get

t s
()
m''m

< 2¢3 W (V)| + [Wo(N) | exp (

log N
ks log mm/
1

3 1 log N
— M| (2mm/ 2 N)| 2 / — %)) (41
—Wn( )I(mmq2WD( )72 +mm eXP( kslogmm,» (4.13)

Since |D| > 2 and thanks to (4.11), there exist positive constants kg = kg¢(¢q) and
k7 = k7(q) such that

(log N)
Wp(N)| = [D]* > 2l®e0 ] > ket (4.14)

Choosing k; in (2.1) sufficiently small, inequality (2.2) follows immediately from
(2.1), (4.4), (4.7), (4.13) and (4.14), finishing the proof. |

5. Some applications to the equidistribution modulo 1

This paragraph is devoted to the applications of the formulae obtained in
paragraph 3 to the problems of equidistribution modulo 1. The following re-
sults are direct consequences of the bounds of exponential sums T defined in
paragraph 3.

PROOF OF COROLLARY 2.2. Indeed, if a € Q, the sequence (w(n)a)newsy
takes only a finite number of values modulo 1 and is clearly not equidistributed
modulo 1.

From Weyl’s criterion, Corollary 2.2 is hence equivalent to prove that for all
a € R\ Q and for all h € Z\ {0}, we have

Y. elw(n)ha) = o(Wp(N))),
nEWD(N)
meaning that for all « € R\ Q, we have
Y. elwn)a) =o(Wp(N))]).
neEWp(N)
Case 1. If 0 € D, we write N = £1¢"* + --- + £r.q"> with v; > --- > v, and
¢; € [1,q — 1] for every ¢ € 1, L]. Thus

Y e(w(n)a) =Ty (0,0).

nEWp (N)
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It follows from (4.6) that

v k—1
> ewma)|<@-1)Y ] <1+ > e(da)

) . (5.1)

neWp(N) k=0 j=0 deD~
log (1 + Z e (da) )
But, Z e(da)| < |D| — 1, so setting p = 10?;;' < 1, we get
deD*
1+ [) " e(da)| = D).
deD*
Then substituting in (5.1), we get
17514 k‘—l v 1)
|D|P+D — 1
neEWn(N) k=0 j=0
But, Lemma 3.2 gives
Wo(N)| = D[,
which implies from (5.2)
Y clw(n)a)
neEWp(N) |'D‘p ( 71)( logNJ+1)
<(qg—1)———|D|'* Tog q ,
worr < Vpp 1P

and the result follows immediately by tending N towards +oo.

Case 2. If 0 ¢ D, we write N = £,¢” + -+ 4+ £1q + Lo with ¢; € [0,q — 1] for
all 7 € [0,7] and ¢, # 0, then Lemmas 3.4 and 3.5 lead to the inequalities

[Wo(N)| = DI,
and
> elwn)a)
nEWD(N)
k—2
= [T (0,0)] < [Trq(0,0)[ + Y [To, . (0,0)| [T IT4(0,0)|
1<k<y j=0
1 h+1 k—1 Dy
< Z Z e(da) +(g-1) Z Z e(da) < qm|p|9 v
h=0 |deD 1<k<v+1 |deD
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log Z e(da)
deD
log D
Lemma 4.1, there exist two integers ¢ and j such that 2 < i < j < |D| and
(dj — di) « ¢ Z.

where p/ = < 1, since « is an irrational number, so following

Hence, Corollary 2.2 is proved. O

PROOF OF COROLLARY 2.3. Indeed, the case a € Q is rejected as done
above, and from Weyl’s criterion it remains to prove that for all & € R\ Q,
we have

Z e(na) = o (|Wp(N)])-

nEWp,w(n)=r modm

But, the left-side term is simply a combination of the functions Ty (a, %) (where
h is a parameter going along the set [0, m — 1]) that could be bounded as done
previously to reach the desired result. (I
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