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On the distribution of integers with missing digits
under hereditary sum of digits function

By KARAM ALOUI (Sfax) and FIRAS FEKI (Sfax)

Abstract. The aim of this work is to estimate the cardinality of the set of integers

with missing digits under an arithmetical constraint on their hereditary sum of digits.

This proves in particular a theorem on the well-distribution in residue classes and on the

equidistribution modulo 1 of the sequences (w(n)α)n∈WD and (nα)n∈WD,w(n)≡r mod m,

where α is an irrational number, r and m are integers, w denotes the hereditary sum of

digits function, and WD is the set of integers with missing digits.

1. Introduction

It is known that, given any integer q > 2, every positive integer n has a unique

representation

n =

ν∑
k=0

akq
k, where aν 6= 0 and ak ∈ J0, q − 1K for all k, (1.1)

called q-ary expansion of n.

A base q being fixed and a subset D ⊂ J0, q − 1K such that 2 6 |D| 6 q − 1

(i.e., D expels at least one digit and keeps at least two) being chosen, we define the

integers with missing digits expressed to base q relatively to D to be the integers

whose q-ary expansion includes only the digits of D. We denote by WD the set

of such integers, and for x ∈ R,

WD(x) := {n ∈ WD, n < x}.
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A first estimate of the size of WD(x) is given when x = qν by

|WD(qν)| =


|D|ν , if 0 ∈ D,
ν∑
k=1

|D|k, else,
(1.2)

which, according to the bound qν−1 6 x < qν , gives

|WD(x)| � x
log |D|
log q .

In particular, the setWD is of density zero, since
log |D|
log q

∈]0, 1[. As a matter

of fact, the integers with missing digits do not only present a sparse sequence but

also present a fractal structure. For instance, the integers with missing digits to

base 3 associated to the set of digits {0, 2} have a distribution modeled on that

of Cantor’s set (after a rescaling). Their study is possible since their generating

function is factorized completely, which enables to control its irregularities. The

arithmetic properties of integers with missing digits have been intensively stud-

ied by many authors, namely Banks, Coquet, Dartyge, Erdős, Filaseta,

Konyagin, Mauduit, Sárközy and Shparlinski (see [3], [6]–[9], [12]–[13]).

In their articles [8] and [9], Erdős, Mauduit and Sárközy studied the distri-

bution of integers with missing digits in arithmetic progressions. If q > 3, 0 ∈ D
and 2 6 |D| 6 q − 1, then the main theorem of [8] states as follows:

Theorem A. There exist positive constants c1 = c1(q, |D|), c2 = c2(q, |D|)
and c3 = c3(q, |D|), such that writing D = {d1, d2, . . . , d|D|} where d1 = 0

and (d2, . . . , d|D|) = 1, N ∈ N, m′ ∈ N, m′ > 2, ((q − 1)q,m′) = 1, m′ <

exp
(
c1(logN)

1
2

)
and a ∈ Z Then∣∣∣∣|{n ; n ∈ WD(N), n ≡ a (modm′)}| − 1

m′
|WD(N)|

∣∣∣∣
< c2

1

m′
|WD(N)| exp

(
−c3

logN

logm′

)
.

From Theorem A, it follows that the setWD(N) is uniformly equidistributed

in the residue classes modulo m′ once m′ < exp
(
c1(q, |D|)(logN)

1
2

)
. This implies

that for such m′, WD(N) meets every residue class modulo m′.

It should be noted that Col improved the inequality [8, Lemma 2] providing

a more refined result (see [4, Corollary 1]).

In the same direction, we could name an article of Konyagin [12, Theorem 1]

that deals with the study of the distribution of WD(N) in the residue classes.
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Theorem B. Let q > 3, D ⊂ J0, q−1K such that 0 ∈ D and 2 6 |D| 6 q−1,

writing D = {d1, d2, . . . , d|D|} where d1 = 0 and (d2, . . . , d|D|) = 1, N ∈ N,

ν0 ∈ N, N0 > 0, N ≡ N0 (mod qν0), K ∈ N, M ⊂ N, (q,m) = 1 for all

m ∈ M, µ1, . . . , µK+1 are integers, µ1 > µ2 · · · > µK > µK+1 = 0, Mk = qµk ,

and for any k ∈ J1,K+1K and any distinct elements m1, . . . ,mk fromM, we have

(m1, . . . ,mk) 6Mk. Then∑
m∈M

max
a(modm)

|m| |{n ∈ WD(N) : n ≡ a (modm)}| − |WD(N)||

6 |WD(N0)||M|M1+WD(N)

 K∑
k=1

1+q

(
1− 1

(q − 1)5(2q)2

)⌊
ν0
2µk

⌋2µk

−K

 .

Theorem B induces a larger class of integers m for which the set WD(N)

is uniformly equidistributed modulo m. Note that the major advantage of his

formula, compared to Theorem A, lies in summing on the classes m ∈M, which

allows to achieve an average result on the residue classes modulo m.

The interested reader may refer to [4], [9], [16]–[17] for additional results and

details.

Given a positive integer n, we define its q-ary hereditary expansion, denoted

fq(n), as follows:

fq(n) =

ν∑
k=0

akq
fq(k),

where a0, . . . , aν are the integers defined in (1.1) (actually, we keep just the ak that

are nonzero). In other words, we expand n in base q as in (1.1), then we expand

each power of q recursively till we get only the digits 0, . . . , q. So, in order to

convert from q-ary expansion to q-ary hereditary expansion, we rewrite all of the

exponents in q-ary expansion. Then rewrite any exponents inside the exponents,

and continue in this way until every number appearing in the expression has been

converted to q-ary expansion. Hence, the process continues with as many levels

of exponentiation as required. For instance, the 3-ary expansion of 2018 is

2018 = 2 · 30 + 2 · 32 + 2 · 33 + 2 · 35 + 2 · 36,

and the 3-ary hereditary expansion of 2018 is

2018 = 2 · 30 + 2 · 32·30

+ 2 · 31·31·30

+ 2 · 31·31·30+2·30

+ 2 · 32·31·30

.

The q-ary hereditary expansion was used to define Goodstein sequences and prove

Goodstein’s theorem, which is a statement about the natural numbers, proved
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by Goodstein [10] in 1944, stating that every Goodstein sequence eventually

terminates at 0. Indeed, the Goodstein sequence Gm(n) of a positive integer n

is a sequence of natural numbers whose first element G1(n) is n itself. To get

G2(n), we write n in 2-ary hereditary notation, next we change all the 2’s to 3’s

and then subtract 1 from the result. In general, the (m + 1)th term Gm+1(n)

of the Goodstein sequence of n is obtained as follows: we take the (m + 1)-ary

hereditary representation of Gm(n), replace each occurrence of the base m + 1

with m+ 2 and then subtract one. Note that the next term depends both on the

previous term and on the index m.

Goodstein’s theorem states that if we continue this process, the result will be

zero at some step. For example, the sequence Gm(3) reaches zero at the sixth step

(see [14, Table 1]). Kirby and Paris [11] showed that this is unprovable in Peano

arithmetic. For more details about this topic, the reader can refer to [14] and [19].

The hereditary sum of digits function to base q, which we denote by wq,

assigns to each positive integer the sum of its q-ary hereditary digits. For example,

w3(2018) = 2 + 2 + 2 + 2 + 1 + 1 + 2 + 1 + 1 + 2 + 2 + 2 + 1 = 21.

If there is no risk of confusion, we write simply w instead of wq. It is easy to see

that w(0) = 0, and if

n =

L∑
i=1

`iq
νi

with ν1 > · · · > νL and `i ∈ J1, q − 1K,∀ i ∈ J1, LK, then w satisfies

w(n) =

L∑
i=1

(`i + w(νi)).

In particular, if k > 1, a and b are integers such that a ∈ J1, q−1K and 0 6 b < qk,

then

w(aqk + b) = a+ w(k) + w(b).

In [20], Sanna gave optimal upper bounds for the exponential sum
∑
n<N

e(w(n)t),

where t is a real number. In particular, his results imply that for each positive

integer m, the sequence (w(n))n∈N0 is uniformly distributed modulo m, and that

for each irrational number α, the sequence (αw(n))n∈N is uniformly distributed

modulo 1.
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1.1. Notation. Along this article, the following notations are adopted: we de-

note by N0, N, Z and R the sets of nonnegative integers, positive integers, integers

and real numbers, respectively. Given a real number x, we denote by bxc the

greatest integer less than or equal to x, ||x|| the distance from x to the nearest

integer (i.e., ‖x‖ = min
n∈Z
|x−n|), and we set e(x) = e2iπx. The gcd of two integers

a and b is denoted by (a, b), and if a 6 b, we denote the set {a, a + 1, . . . , b} by

Ja, bK. The number of elements of a set A is written as |A|. We agree that, given

a sequence of complex numbers (aj)j∈N,

n∑
j=m

aj = 0 and

n∏
j=m

aj = 1 once m > n.

Given two arithmetic functions f and g; we write f(n) = O(g(n)) or f(n)�
g(n) if there exists a constant c > 0 such that |f(n)| 6 c|g(n)| whenever n is

sufficiently large. If f(n)� g(n) and g(n)� f(n), we write f(n) � g(n).

2. Statement of the results

Let a and r be integers, q, m and m′ be integers > 2. Let D be a nonempty

subset of J0, q − 1K such that |D| > 2. We denote by

D∗ := D \ {0}

and for every integer ` ∈ J0, qK, we set

D` := J0, `− 1K ∩ D and D∗` = D` \ {0},

in particular, Dq = D and D0 = ∅.

We set 1A the characteristic function of the set A, i.e.:

1A : J0, q − 1K −→ {0, 1}

x 7−→

{
1, if x ∈ A,
0, else.

Moreover, we set

WD :=

{
n ∈ N, n =

ν∑
k=0

akq
k, where ak ∈ D for every k ∈ J0, νK and aν 6= 0

}
and for N > 2,

WD(N) := {n < N, n ∈ WD},
WD(N, a,m′, r,m) := {n ∈ WD(N), n ≡ a modm′, w(n) ≡ r modm}.
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Our work is split as follows: In paragraph 3, we present some technical

lemmas concerning the exponential sums and the cardinality of WD(N), which

we shall need in order to settle our main theorem. In paragraph 4, we add to

Theorem A some congruence constraint on the hereditary sum of digits in the set

{n ∈ WD(N) : n ≡ a modm′} so to obtain our main theorem:

Theorem 2.1. Let q > 3, D ⊂ J0, q − 1K such that 2 6 |D| 6 q − 1, there

exist positive constants k1 = k1(q, |D|), k2 = k2(q, |D|) and k3 = k3(q, |D|) such

that, writing D = {d1, d2, . . . , d|D|} with d1 = min(D) and (d2, . . . , d|D|) = 1,

N ∈ N,m and m′ ∈ N such that m,m′ > 2, (q(q − 1),m′) = 1,

mm′ < exp(k1(logN)
1
2 ), (2.1)

and (a, r) ∈ Z2. Then∣∣∣∣|WD(N, a,m′, r,m)| − 1

mm′
|WD(N)|

∣∣∣∣
< k2

1

mm′
|WD(N)| exp

(
−k3

logN

logmm′

)
. (2.2)

Following this theorem, we prove that the set WD(N) is uniformly equidis-

tributed in the residue classes modulomm′ admittingmm′<exp(k(q,D)(logN)
1
2).

It follows that for such m and m′, the set WD(N) meets every congruence class

modulo mm′.

It is to note that Theorem 2.1 holds true even if 0 6∈ D. Indeed, the formula

differs between the cases 0 ∈ D and 0 6∈ D (due to combinatorial reasons), but

Theorem 2.1 remains true in the latter case (which is rarely considered in the

literature, see [5], for instance).

As a consequence of this estimate, we care about a result concerning the

equidistribution modulo 1 of the sequence (w(n)α)n∈WD .

Corollary 2.2. The sequence (w(n)α)n∈WD is equidistributed modulo 1 if

and only if α ∈ R \Q.

In the same perspective, we could state the following corollary

Corollary 2.3. Let m > 2 and r ∈ Z. The sequence (nα)n∈WD,w(n)≡r modm

is equidistributed modulo 1 if and only if α ∈ R \Q.

3. Estimate of the sets WD(N) and WD(N, a,m′, r,m)

Now, we introduce the function TN with complex values defined for every

positive integer N , for every real numbers α, β and for every nonempty subset D
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of J0, q − 1K by

TN (α, β) = TN (D, α, β) :=
∑

n∈WD(N)

e (nα+ w(n)β) .

We also set

ΘD(α, β, j, `) = 1 + e(w(j)β)
∑
d∈D∗`

e(d(qjα+ β)) for j ∈ N0 and ` ∈ J0, qK.

The function TN enables to sieve the elements of WD (N, a,m′, r,m). In fact,

we have

Lemma 3.1. Let q,m′,m be integers > 2 and (a, r) ∈ Z2, and let N be

a positive integer. Then, we have

|WD (N, a,m′, r,m)| = 1

mm′

m′−1∑
t=0

e

(
− ta
m′

)m−1∑
s=0

e
(
−sr
m

)
TN

(
t

m′
,
s

m

)
.

Proof. It is obvious according to the classic orthogonality relation that

|WD (N, a,m′, r,m)| =
∑

n∈WD(N)

n≡a modm′
w(n)≡r modm

1

=
1

mm′

∑
n∈WD(N)

m′−1∑
t=0

e

(
t
n− a
m′

)m−1∑
s=0

e

(
s
w(n)− r

m

)

=
1

mm′

m′−1∑
t=0

e

(
− ta
m′

)m−1∑
s=0

e
(
−sr
m

)
TN

(
t

m′
,
s

m

)
. �

We are going to state and prove some recursive relations enabling to express

|WD| and TN as previously done in [1]–[2] and [18], for instance. Note that this

idea was already used in the work of Sanna [20] in order to establish an upper

bound for the exponential sum
∑
n<N

e(αw(n)), where N ∈ N and α ∈ R \ Z.

3.1. Study of the case 0 ∈ D. First, we state the following lemma that deter-

mines the cardinality of WD(N) for a given integer N > 2 whenever 0 ∈ D.

Lemma 3.2. Let D ⊂ J0, q − 1K such that 0 ∈ D. For every integer N =

`1q
ν1 + · · ·+ `Lq

νL with ν1 > · · · > νL and `i ∈ J1, q − 1K ∀ i ∈ J1, LK, we have

|WD(N)| = |D`1 ||D|ν1 +

L−1∑
k=1

 k∏
j=1

1D(`j)

 |D`k+1
||D|νk+1 .



344 Karam Aloui and Firas Feki

Proof. We shall write N = `1q
ν1 + N ′ with ν1 =

⌊
logN

log q

⌋
, N ′ < qν1 and

`1 ∈ J1, q − 1K. Evidently, we have

|WD(N)| = |WD(`1q
ν1)|+ 1D(`1)|WD(N ′)|.

Iterating the process, we are left with

|WD(N)| = |WD(`1q
ν1)|+

L−1∑
k=1

 k∏
j=1

1D(`j)

 |WD(`k+1q
νk+1)|. (3.1)

Let ν be a nonnegative integer, and let ` ∈ J1, q − 1K. We separate the integers

strictly smaller than `qν into two sets: the integers strictly smaller than qν , and

the integers between qν and `qν . There follows the identity

|WD(`qν)| = |WD(qν)|+ (|D`| − 1)|D|ν = |D`||D|ν . (3.2)

Putting (3.2) in (3.1), we reach the required conclusion. �

Next, we are looking to simplify the expression of the function TN whenever

0 ∈ D.

Lemma 3.3. Let D ⊂ J0, q− 1K such that 0 ∈ D. Then, for all real numbers

α, β, for every integer N = `1q
ν1 + · · · + `Lq

νL with ν1 > · · · > νL and `i ∈
J1, q − 1K ∀ i ∈ J1, LK, it follows that

TN (α, β) =
∑

06k6L−1

 ∏
16j6k

1D(`j)e(`jq
νjα+ (`j + w(νj))β)


×ΘD(α, β, νk+1, `k+1)

νk+1−1∏
j=0

ΘD(α, β, j, q).

Proof. We write N = `1q
ν1 + N ′ with ν1 =

⌊
logN

log q

⌋
, N ′ < qν1 and `1 ∈

J1, q − 1K. Obviously,

TN (α, β) = T`1qν1 (α, β) +
∑

`1q
ν16n<`1q

ν1+N′
n∈WD

e(nα+ w(n)β).

But, if `1 /∈ D, then the second sum is zero and the expression is reduced to

T`1qν1 (α, β).
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Otherwise, we write∑
`1q

ν16n<`1q
ν1+N′

n∈WD

e(nα+ w(n)β) =
∑

n∈WD(N ′)

e((n+ `1q
ν1)α+ w(n+ `1q

ν1)β)

= e(`1(qν1α+ β) + w(ν1)β)TN ′(α, β).

So

TN (α, β) = T`1qν1 (α, β) + 1D(`1)e(`1q
ν1α+ (`1 + w(ν1))β)TN ′(α, β).

Reiterating, it follows that

TN (α, β) = T`1qν1 (α, β) + 1D(`1)e(`1q
ν1α+ (`1 + w(ν1))β)T`2qν2 (α, β) + · · ·

+ 1D(`1) · · ·1D(`L−1)e

L−1∑
j=1

`jq
νjα+

L−1∑
j=1

(`j + w(νj))β

T`LqνL (α, β). (3.3)

Yet, for every nonnegative integer k and for every integer ` ∈ J2, q − 1K, we have

T`qk(α, β) = Tqk(α, β) +
∑

16d<`
d∈D

∑
dqk6n<(d+1)qk

n∈WD

e(nα+ w(n)β)

= Tqk(α, β) +
∑
d∈D∗`

∑
n∈WD(qk)

e((n+ dqk)α+ w(n+ dqk)β)

=

1 + e(w(k)β)
∑
d∈D∗`

e(d(qkα+ β))

Tqk(α, β). (3.4)

Furthermore, this relation is trivially true for ` = 1, and thus true for every

` ∈ J1, q − 1K. Finally, we write:

Tqk+1(α, β) = 1 +

k∑
j=0

∑
16d<q
d∈D

∑
m∈WD(qj)

e((dqj +m)α+ w(dqj +m)β)

= 1 +

k∑
j=0

e(w(j)β)
∑
d∈D∗

e(d(qjα+ β))Tqj (α, β).

This implies the formula

Tqk+1(α, β) =

[
1 + e(w(k)β)

∑
d∈D∗

e(d(qkα+ β))

]
Tqk(α, β),

which enables to affirm that

Tqk(α, β) =

k−1∏
j=0

[
1 + e(w(j)β)

∑
d∈D∗

e(d(qjα+ β))

]
, for every k ∈ N. (3.5)

Putting (3.5) in (3.4), which we insert in (3.3), we reach the required formula. �
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3.2. Study of the case 0 /∈ D. Now, we state a lemma enabling to determine

the cardinality of WD(N) for N > 2 whenever 0 /∈ D.

Lemma 3.4. Let D ⊂ J1, q− 1K. For every integer N = `νq
ν + · · ·+ `1q+ `0

with `i ∈ J0, q − 1K ∀ i ∈ J0, νK and `ν 6= 0, we have

|WD(N)| = |D`ν ||D|ν +

ν∑
k=1

|D|k +

ν∑
k=1

 ν∏
j=k

1D(`j)

 |D`k−1
||D|k−1.

Proof. Let N = `νq
ν + N ′ with ν =

⌊
logN

log q

⌋
, N ′ < qν and `ν 6= 0.

We write N ′ = `ν−1q
ν−1 + · · ·+ `0 and split the elements of WD(`νq

ν +N ′) into

two sets: the integers strictly smaller than `νq
ν (|WD(`νq

ν)| elements), and the

integers between `νq
ν and `νq

ν +N ′. Then

• if N ′ < qν−1, the second set is empty;

• if qν−1 6 N ′ < qν and `ν /∈ D, the second set is empty again;

• if qν−1 6 N ′ < qν and `ν ∈ D, the second set contains (|WD(N ′)|−
|WD(qν−1)|

)
elements.

We set the function

χδ : J0, q − 1K −→ {0, 1}

` 7−→

{
1, if ` > δ = min(D),

0, else.
(3.6)

It follows that

|WD(N)| = |WD(`νq
ν)|

+ 1D(`ν)χδ(`ν−1)
(
|WD(`ν−1q

ν−1 + · · ·+ `0)| − |WD(qν−1)|
)
. (3.7)

Let k be a nonnegative integer, and let ` ∈ J1, q− 1K, we separate the elements of

WD(`qk) into two sets: the integers strictly smaller than qk (|WD(qk)| elements),

and those between qk and `qk (|D`||D|k elements). It follows that

|WD(`qk)| = |WD(qk)|+ |D`||D|k. (3.8)

Iterating the process, we insert (3.8) in (3.7), and applying the identities

1D(`)χδ(`) = 1D(`) and χδ(`)|D`| = |D`|,
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we get

|WD(N)| = |WD(qν)|+ |D`ν ||D|ν +

ν∑
k=1

 ν∏
j=k

1D(`j)

 |D`k−1
||D|k−1. (3.9)

But, following (1.2), we recall that

|WD(qν)| =
ν∑
k=1

|D|k. (3.10)

Finally, it is sufficient to put (3.10) in (3.9) to get the desired conclusion. �

Last, we finish this paragraph by a lemma that simplifies the expression of

the function TN in the case 0 /∈ D.

Lemma 3.5. Let D ⊂ J1, q − 1K. Then, for all real numbers α, β, for all

integers ν and for every integer N = `νq
ν + · · ·+ `1q+ `0 with `i ∈ J0, q−1K ∀ i ∈

J0, νK and `ν 6= 0, we have

TN (α, β) = T`νqν (α, β) + e

 ν∑
j=0

w(j)β

 ∑
16k6ν

T`k−1

(
qk−1α, β

)
k−2∏
j=0

Tq(q
jα, β)

 ∏
k6j6ν

1D(`j)e(`jq
jα+ `jβ)

 .

Proof. Let N = `νq
ν +N ′ with ν =

⌊
logN

log q

⌋
, N ′ < qν and `ν 6= 0. We set

N ′ = `ν−1q
ν−1 + · · ·+ `0, therefore

T`νqν+N ′(α, β) = T`νqν (α, β) +
∑

`νqν6n<`νqν+N′
n∈WD

e(nα+ w(n)β).

But, if `ν /∈ D or if N ′ < qν−1, the second sum is zero and the expression is

reduced to T`νqν (α, β).

Otherwise, we write∑
`νqν6n<`νqν+N′

n∈WD

e(nα+ w(n)β) =
∑

qν−16n<N′
n∈WD

e((n+ `νq
ν)α+ w(n+ `νq

ν)β)

= e(`ν(qνα+β)+w(ν)β)
(
TN ′(α, β)−Tqν−1(α, β)

)
.
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In conclusion,

TN (α, β) =


T`νqν (α, β), if N ′ < qν−1,

T`νqν (α, β) + 1D(`ν)e(`νq
να+ (`ν + w(ν))β)

×(TN ′(α, β)− Tqν−1(α, β)), if qν−1 6 N ′ < qν .

Recall the function χδ already defined in (3.6), then

TN (α, β) = T`νqν (α, β) + 1D(`ν)χδ(`ν−1)

× e(`νqνα+ (`ν + w(ν))β)
(
TN ′(α, β)− Tqν−1(α, β)

)
. (3.11)

Next, for every nonnegative integer k and for every integer ` ∈ J2, q−1K, we write

T`qk(α, β) = Tqk(α, β) +
∑

16d<`
d∈D

∑
dqk6n<(d+1)qk

n∈WD

e(nα+ w(n)β)

= Tqk(α, β) +
∑

16d<`
d∈D

∑
qk−16n<qk

n∈WD

e((n+ dqk)α+ w(n+ dqk)β)

= Tqk(α, β) + e(w(k)β)
∑

16d<`
d∈D

e(d(qkα+ β))
∑

qk−16n<qk

n∈WD

e(nα+ w(n)β)

= Tqk(α, β) + e(w(k)β)T`(q
kα, β)

(
Tqk(α, β)− Tqk−1(α, β)

)
. (3.12)

Furthermore, this formula is evidently true for ` = 1, and so is true for every

` ∈ J1, q − 1K. Then,

Tqk+1(α, β) =

k∑
j=0

∑
qj6n<qj+1

n∈WD

e(nα+ w(n)β)

=

k∑
j=0

∑
d∈D

∑
qj−16m<qj

m∈WD

e((dqj +m)α+ w(dqj +m)β)

=

k∑
j=0

e(w(j)β)Tq(q
jα, β)

[
Tqj (α, β)− Tqj−1(α, β)

]
.

Subsequently, it follows that

Tqk+1(α, β) = Tqk(α, β) + e(w(k)β)Tq(q
kα, β)

[
Tqk(α, β)− Tqk−1(α, β)

]
.
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Finally a strong induction on k enables to conclude that:

Tqk(α, β) =

k−1∑
h=0

h∏
j=0

e(w(j)β)Tq(q
jα, β). (3.13)

We insert (3.13) in (3.12), and assuming ν > 2, we set N ′′ = `ν−2q
ν−2 + · · ·+ `0

in (3.11) to obtain

TN ′(α, β)− Tqν−1(α, β) = e

ν−1∑
j=0

w(j)β

T`ν−1(qν−1α, β)

ν−2∏
j=0

Tq(q
jα, β)

+ 1D(`ν−1)χδ(`ν−2)e(`ν−1q
ν−1α+ (`ν−1

+ w(ν − 1))β)
(
TN ′′(α, β)− Tqν−2(α, β)

)
.

We reiterate the process and report to (3.11), taking in consideration the identities

χδ(`)T`(q
`α, β) = T`(q

`α, β)

and

1D(`)χδ(`) = 1D(`),

true for every integer `. We are left with the formula

TN (α, β) = T`νqν (α, β) + e

 ν∑
j=0

w(j)β

 ∑
16k6ν

T`k−1

(
qk−1α, β

)
k−2∏
j=0

Tq(q
jα, β)

 ∏
k6j6ν

1D(`j)e(`jq
jα+ `jβ)

 .

If ν = 2,

TN ′(α, β)− Tq(α, β) = e((w(0) + w(1))β)T`1(qα, β)Tq(α, β)

+ 1D(`1)χδ(`0)e(`1qα+ (`1 + w(1))β)T`0(α, β).

We put this in (3.11) to reach the previous formula (with ν = 2).

Hence, the lemma is proved. �
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4. Proof of Theorem 2.1 – Analogon of Theorem A

4.1. Notations and lemmas. We start by introducing some notations and

some lemmas used in [8] that will be useful to settle Theorem 2.1.

Lemma 4.1. Let q and D be as defined in Theorem 2.1, and let α ∈ R, then

there exist two integers i and j such that 2 6 i < j 6 |D| and

‖(dj − di)α‖ >
1

2(q − 2)2
‖α‖.

Proof. The lemma can be proved following [8, Lemma 1] step by step mod-

ulo some elementary modifications, and it is easy to check that it works also when

0 6∈ D. �

First, for α ∈ R and D = {d1, . . . , d|D|}, we write

u(α) = uD(α) :=

|D|∑
k=1

e(dkα) and U(α) = UD(α) :=
uD(α)

|D|
.

Next, we use an improved version of [8, Lemma 2].

Lemma 4.2. Let q and D be as defined in Theorem 2.1, α ∈ R, then we

have

|U(α)| 6 1− 64

(q + 1)3
‖α‖2.

Proof. This is [4, Corollary 1]. �

Lemma 4.3. If q, m′, t, ρ ∈ N satisfy q,m′ > 2, t ∈ J1,m′− 1K, (q,m′) = 1

and (q − 1) t
m′ 6∈ Z, then

ρ > 2
logm′

log q
+ 8 (4.1)

and β ∈ R, then
ρ−1∑
j=0

∥∥∥∥β + qj
t

m′

∥∥∥∥2

>
(q − 1)2

20q4

ρ

logm′
.

Proof. This is [15, Lemma 2’], which means a slight improvement of

[17, Lemma 2]. �



Distribution in residue classes 351

4.2. Proof of Theorem 2.1. We go back to the generating function

TN (α, β) =
∑

n∈WD(N)

e(nα+ w(n)β),

in particular,

TN (0, 0) = |WD(N)|, (4.2)

then for a, r ∈ Z, m′, m ∈ N, we get from Lemma 3.1

|WD(N, a,m′, r,m)| = 1

mm′

m′−1∑
t=0

e

(
− ta
m′

)m−1∑
s=0

e
(
−rs
m

)
TN

(
t

m′
,
s

m

)
. (4.3)

It follows from (4.2) and (4.3) that∣∣∣∣|WD (N, a,m′, r,m)| − 1

mm′
|WD(N)|

∣∣∣∣
=

∣∣∣∣|WD (N, a,m′, r,m)| − 1

mm′
TN (0, 0)

∣∣∣∣
6

1

mm′

m−1∑
s=1

∣∣∣TN (0,
s

m

)∣∣∣+
∑

(t,s)∈Υ

∣∣∣∣TN ( t

m′
,
s

m

)∣∣∣∣
 , (4.4)

where

Υ := J1,m′ − 1K× J0,m− 1K,

so we are led to estimate
∣∣∣TN (0,

s

m

)∣∣∣ for s ∈ J1,m− 1K and

∣∣∣∣TN ( t

m′
,
s

m

)∣∣∣∣ for

(t, s) ∈ Υ. (4.5)

On the one hand, we write N as

N =

L∑
k=1

akq
νk ,

where ν1 > ν2 > · · · > νL, ak ∈ J1, q − 1K for k ∈ J1, LK so that qν1 6 N < qν1+1,

hence ν1 =

⌊
logN

log q

⌋
.

Moreover, when s ∈ J1,m−1K and 0 ∈ D, we can bound from above according

to Lemma 3.3∣∣∣TN (0,
s

m

)∣∣∣ 6 L∑
k=1

∣∣∣ΘD (0,
s

m
, νk, `k

)∣∣∣ νk−1∏
j=0

∣∣∣ΘD (0,
s

m
, j, q

)∣∣∣
6 (q − 1)

ν1∑
k=0

k−1∏
j=0

(
1 +

∣∣∣∣∣ ∑
d∈D∗

e
(
d
s

m

)∣∣∣∣∣
)
. (4.6)
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Indeed, the second inequality holds true, because
∣∣∣ΘD (0,

s

m
, νk, `k

)∣∣∣ 6 (q − 1)

and the sum running over J0, ν1K (which is positive) includes νL, . . . , ν1.

But, Lemma 4.1 proves that ∀ s ∈ J1,m− 1K there exists some i and j such that

m - s(dj − di), so ∣∣∣∣∣ ∑
d∈D∗

e
(
d
s

m

)∣∣∣∣∣ < |D| − 1.

Thus, setting

γ := 1 + max
16s6m−1

∣∣∣∣∣ ∑
d∈D∗

e
(
d
s

m

)∣∣∣∣∣ and ω :=
log γ

log |D|
< 1,

it follows that ∀ s ∈ J1,m− 1K,

1 +

∣∣∣∣∣ ∑
d∈D∗

e
(
d
s

m

)∣∣∣∣∣ 6 |D|ω,
which gives after substitution in (4.6)

∣∣∣TN (0,
s

m

)∣∣∣6(q − 1)

ν1∑
k=0

|D|kω6(q − 1)
|D|ω(ν1+1)

|D|ω − 1
6

2ω(q − 1)

2ω − 1
|WD(N)|ω. (4.7)

This upper bound follows from the fact that |WD(N)| > |D|ν1 (thanks to

Lemma 3.2) and that the function x 7→ x
x−1 is decreasing and |D| > 2.

An analogous upper bound holds true, from Lemmas 3.4 and 3.5, when 0 6∈ D.

In fact, thanks to Lemma 3.5, we get (see the details in the proof of Corollary 2.2)∣∣∣TN (0,
s

m

)∣∣∣ 6 q 2ω

2ω − 1
|D|ων 6 q

2ω − 1
|WD(N)|ω,

where ω =

log

∣∣∣∣∣∑
d∈D

e(dα)

∣∣∣∣∣
log |D|

< 1. Here we use Lemma 3.4 to recall that |WD(N)| >

2|D|ν .

On the other hand, we use the ideas of [8], and we denote by A`, for ` ∈ J1, LK,
the set of integers n written in the form

n =

`−1∑
i=1

aiq
νi + xqν` +

ν`−1∑
j=0

yjq
j ,
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where

x ∈ D ∩ J0, a` − 1K, yj ∈ D, for j ∈ J0, ν` − 1K.

Thus, we clearly have

WD(N) =

L⋃
`=1

A`

with

Aj ∩ A` = ∅, for 1 6 j < ` 6 L.

It follows that for all α, β ∈ R,

TN (α, β)=
∑

n∈WD(N)

e(nα+w(n)β)=

L∑
`=1

∑
n∈A`

e(nα+w(n)β)=

L∑
`=1

TN,`(α, β), (4.8)

where, for ` ∈ J1, LK, we have

TN,`(α, β) =
∑
x

∑
y0

· · ·
∑
yν`−1

e

([
`−1∑
i=1

aiq
νi + xqν` +

ν`−1∑
i=0

yiq
i

]
α

+

[
`−1∑
i=1

(ai + w(νi)) + x+ 1N(x)w(ν`) +

ν`−1∑
i=0

(yi + 1N(yi)w(i))

]
β

)

= e

(
`−1∑
i=1

aiq
νiα+

`−1∑
i=1

(ai + w(νi))β

)

×

 ∑
x∈D∩J0,a`−1K

e(x(qν`α+ β) + 1N(x)w(ν`)β)


×
ν`−1∏
j=0

∑
yj∈D

e(yj(q
jα+ β) + 1N(yj)w(j)β)

 .

Then

|TN,`(α, β)| 6 |D|
ν`−1∏
j=0

|uD(qjα+ β)| 6 q|D|ν`
ν`−1∏
j=0

|UD(qjα+ β)|. (4.9)

Subsequently, and since |D| > 2, we get for α, β ∈ R
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∑
` :ν`6 1

2
logN
log q

|TN,`(α, β)|

6
∑

` :ν`6 1
2

logN
log q

q|D|ν`
ν`−1∏
j=0

1 < q

+∞∑
j=0

|D|
logN
2 log q−j

6 2q|D|
logN
2 log q < 2q(|D|ν1+1)

1
2 < 2q

3
2 (|D|ν1)

1
2 6 2q

3
2 |WD(N)| 12 , (4.10)

as we have from Lemmas 3.2 and 3.4

|WD(N)| > |D|ν1 . (4.11)

In addition, whenever ν` >
1
2

logN
log q , then if N is sufficiently large, we get from (4.1)

ν` >
1

2

logN

log q
> 2

logm′

log q
+ 8,

so that condition (4.1) is true with ν` instead of ρ. Then using Lemmas 4.2 and 4.3,

from (4.9) and the convexity inequality 1 − x 6 exp(−x) (for x > 0), for ` 6 L

such that ν` >
1
2

logN
log q , we have∣∣∣∣TN,`( t

m′
,
s

m

)∣∣∣∣ 6 q|D|ν` ν`−1∏
j=0

(
1− 64

(q + 1)3

∥∥∥∥qj tm′ +
s

m

∥∥∥∥2
)

6 q|D|ν` exp

− 64

(q + 1)3

ν`−1∑
j=0

∥∥∥∥qj tm′ +
s

m

∥∥∥∥2


6 q|D|ν` exp

(
− 16(q − 1)2

5q4(q + 1)3

ν`
logm′

)
6 q|D|ν` exp

(
− 8(q − 1)2

5q4(q + 1)3 log q

logN

logmm′

)
.

Then, from (2.1) and (4.11), for t ∈ J1,m′ − 1K,∑
`6L : ν`>

1
2

logN
log q

∣∣∣∣TN,`( t

m′
,
s

m

)∣∣∣∣
6 q exp

(
− logN

k4 logmm′

)+∞∑
j=0

|D|ν1−j 6 |D|ν1 exp

(
− logN

k5 logmm′

)

6 |WD(N)| exp

(
− logN

k5 logmm′

)
, (4.12)

where k4, k5 depend at most on q and |D|.
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It follows from (4.8), (4.10) and (4.12) that for (t, s) satisfying (4.5), we get∣∣∣∣TN ( t

m′
,
s

m

)∣∣∣∣
6 2q

3
2 |WD(N)| 12 + |WD(N)| exp

(
− logN

k5 logmm′

)
=

1

mm′
|WD(N)|

(
2mm′q

3
2 |WD(N)|− 1

2 +mm′ exp

(
− logN

k5 logmm′

))
. (4.13)

Since |D| > 2 and thanks to (4.11), there exist positive constants k6 = k6(q) and

k7 = k7(q) such that

|WD(N)| > |D|ν1 > 2b
(logN)
(log q) c > k6N

k7 . (4.14)

Choosing k1 in (2.1) sufficiently small, inequality (2.2) follows immediately from

(2.1), (4.4), (4.7), (4.13) and (4.14), finishing the proof. �

5. Some applications to the equidistribution modulo 1

This paragraph is devoted to the applications of the formulae obtained in

paragraph 3 to the problems of equidistribution modulo 1. The following re-

sults are direct consequences of the bounds of exponential sums TN defined in

paragraph 3.

Proof of Corollary 2.2. Indeed, if α ∈ Q, the sequence (w(n)α)n∈WD
takes only a finite number of values modulo 1 and is clearly not equidistributed

modulo 1.

From Weyl’s criterion, Corollary 2.2 is hence equivalent to prove that for all

α ∈ R \Q and for all h ∈ Z \ {0}, we have∑
n∈WD(N)

e(w(n)hα) = o(|WD(N)|),

meaning that for all α ∈ R \Q, we have∑
n∈WD(N)

e(w(n)α) = o(|WD(N)|).

Case 1. If 0 ∈ D, we write N = `1q
ν1 + · · ·+ `Lq

νL with ν1 > · · · > νL and

`i ∈ J1, q − 1K for every i ∈ J1, LK. Thus∑
n∈WD(N)

e(w(n)α) = TN (0, α) .
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It follows from (4.6) that∣∣∣∣∣∣
∑

n∈WD(N)

e(w(n)α)

∣∣∣∣∣∣ 6 (q − 1)

ν1∑
k=0

k−1∏
j=0

(
1 +

∣∣∣∣∣ ∑
d∈D∗

e (dα)

∣∣∣∣∣
)
. (5.1)

But,

∣∣∣∣∣ ∑
d∈D∗

e (dα)

∣∣∣∣∣ < |D| − 1, so setting ρ =

log

(
1 +

∣∣∣∣∣ ∑
d∈D∗

e (dα)

∣∣∣∣∣
)

log |D|
< 1, we get

1 +

∣∣∣∣∣ ∑
d∈D∗

e (dα)

∣∣∣∣∣ = |D|ρ.

Then substituting in (5.1), we get∣∣∣∣∣∣
∑

n∈WD(N)

e(w(n)α)

∣∣∣∣∣∣ 6 (q − 1)

ν1∑
k=0

k−1∏
j=0

|D|ρ 6 (q − 1)
|D|ρ(ν1+1) − 1

|D|ρ − 1
. (5.2)

But, Lemma 3.2 gives

|WD(N)| > |D|ν1 ,

which implies from (5.2)∣∣∣∣∣∣
∑

n∈WD(N)

e(w(n)α)

∣∣∣∣∣∣
|WD(N)|

6 (q − 1)
|D|ρ

|D|ρ − 1
|D|(ρ−1)(b logN

log q c+1),

and the result follows immediately by tending N towards +∞.

Case 2. If 0 /∈ D, we write N = `νq
ν + · · ·+ `1q + `0 with `i ∈ J0, q − 1K for

all i ∈ J0, νK and `ν 6= 0, then Lemmas 3.4 and 3.5 lead to the inequalities

|WD(N)| > |D|ν ,

and∣∣∣∣∣∣
∑

n∈WD(N)

e(w(n)α)

∣∣∣∣∣∣
= |TN (0, α)| 6 |T`νqν (0, α)|+

∑
16k6ν

∣∣T`k−1
(0, α)

∣∣ k−2∏
j=0

|Tq(0, α)|

6
ν−1∑
h=0

∣∣∣∣∣∑
d∈D

e(dα)

∣∣∣∣∣
h+1

+ (q − 1)
∑

16k6ν+1

∣∣∣∣∣∑
d∈D

e(dα)

∣∣∣∣∣
k−1

6 q
|D|ρ′

|D|ρ′ − 1
|D|ρ

′ν ,
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where ρ′ =

log

∣∣∣∣∣∑
d∈D

e(dα)

∣∣∣∣∣
log |D|

< 1, since α is an irrational number, so following

Lemma 4.1, there exist two integers i and j such that 2 6 i < j 6 |D| and

(dj − di)α 6∈ Z.

Hence, Corollary 2.2 is proved. �

Proof of Corollary 2.3. Indeed, the case α ∈ Q is rejected as done

above, and from Weyl’s criterion it remains to prove that for all α ∈ R \ Q,

we have ∑
n∈WD,w(n)≡r modm

e(nα) = o (|WD(N)|) .

But, the left-side term is simply a combination of the functions TN
(
α, hm

)
(where

h is a parameter going along the set J0,m − 1K) that could be bounded as done

previously to reach the desired result. �
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[13] S. Konyagin, C. Mauduit and A. Sárközy, On the number of prime factors of integers

characterized by digit properties, Period. Math. Hungar. 40 (2000), 37–52.

[14] A.B. Matos, Total recursive functions that are not primitive recursive, 2016,

http://www.dcc.fc.up.pt/ acm/definitions.pdf.
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