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Commutativity of Cho and normal Jacobi operators on real
hypersurfaces in the complex quadric

By JUAN DE DIOS PEREZ (Granada) and YOUNG JIN SUH (Daegu)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi-
Civita connection and, for any non-zero real constant k, the k-th generalized Tanaka—
Webster connection. We prove the non-existence of real hypersurfaces in the complex
quadric for which the covariant derivatives associated to both connections coincide when
they act on the normal Jacobi operator of the real hypersurface.

1. Introduction

The complex quadric Q™ = SO,,42/50,,503 is a compact Hermitian sym-
metric space of rank 2. It is also a complex hypersurface in the complex projective
space CP™ 1 (see [4]). The space Q™ is equipped with two geometric structures:
a Kaehler structure J and a parallel circle subbundle 2l of the endomorphism
bundle End(T'Q™), which consists of all the real structures on the tangent space
of Q™. For any A € 2 the following relations hold: A? = [ and AJ = —JA.
A nonzero tangent vector W at a point of Q™ is called singular if it is tangent
to more than one maximal flat in Q™. There are two types of singular tangent
vectors for Q™: A-principal or A-isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in
a Hermitian manifold such as a complex space form, or the complex two-plane
Grassmannian SU,, +2/S(UsU,,), or the complex hyperbolic two-plane Grassman-
nian SUsz ., /S(U2Uy,). Since Q™ is a compact Hermitian symmetric space with
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rank 2, it is interesting to study real hypersurfaces M in Q™. The Kaehler struc-
ture J of @™ induces on M an almost contact metric structure (¢, &, n, g), where
¢ is the structure tensor field, £ is the Reeb vector field, 7 is a 1-form and g is
the induced Riemannian metric of Q™.

The study of real hypersurfaces M in Q™ is initiated by BERNDT and SUH
in [1]. In this paper the geometric properties of real hypersurfaces M in complex
quadric @™, which are tubes of radius r, 0 < r < 7/2, around the totally geodesic
CP* in Q™, when m = 2k, or tubes of radius r, 0 < 7 < 7/2v/2, around the
totally geodesic @™ ! in Q™, are presented. The condition of isometric Reeb
flow is equivalent to the commuting condition of the shape operator S with the
structure tensor ¢ of M. The classification of such real hypersurfaces in Q™ is
obtained in [2].

Given a Riemannian manifold (M, §), Jacobi fields along geodesics satisfy
a differential equation which results in the notion of Jacobi operator. That is,
if R is the Riemannian curvature tensor of M and X is a tangent vector field
on M, then the Jacobi operator with respect to X at a point p € M is given by

(RxY)(p) = (R(Y, X)X)(p),

and is a self adjoint endomorphism of the tangent bundle TM of M, ie., Rx
€ End(TpM ). In the case of real hypersurfaces M in Q™, we can consider the
normal Jacobi operator Ry, where R is the Riemannian curvature tensor of Q™
and N is the unit normal vector field on the real hypersurface M.

As M has an almost contact metric structure, for any non-zero real con-
stant k, we can define the so called k-th generalized Tanaka—Webster connection
V&) on M by

VY = VxY + g(6SX, V)€ = n(Y)6SX — kn(X)pY

for any X, Y tangent to M, where V is the Levi-Civita connection on M, S de-
notes the shape operator on M associated to N (see [3]). ¢, n and & will be defined
in Section 3. Let us call FP)Y = g(¢SX,Y)¢ — n(Y)$SX — kn(X)¢Y, for any
X,Y tangent to M. F)((k) is called the k-th Cho operator on M associated to X.
Notice that if X € C, the maximal holomorphic distribution on M, given by all
the vector fields orthogonal to &, the associated Cho operator does not depend
on k and we will denote it simply by F'x. Then, given a symmetric tensor field L
of type (1,1) on M, VxIL = @g?)L for a tangent vector field X on M if and only
if F)((k)L = LF)((k), that is, the eigenspaces of L are preserved by F)(f).

In this paper we study real hypersurfaces M in Q™ such that the covariant
derivatives associated to the Levi-Civita and the k-th generalized Tanaka—Webster
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connections coincide when we apply them to the normal Jacobi operator Ry,
that is

VRy = VP Ry (1.1)
for some non-zero real k. We will prove the following

Theorem 1.1. There do not exist real hypersurfaces M in Q™, m > 3, such
that VRy = @(k)RN, for any non-zero real k.

2. The space Q™

The complex projective space CP™*t! is considered as the Hermitian
symmetric space of the special unitary group SU,,;2, namely CP™T! =
SUpm+2/S(Um+1U1). The symbol o = [0,...,0,1] in CP™*! is the fixed point
of the action of the stabilizer S(U,,+1U1). The action of the special orthogonal
group SO0 C SUp, 12 on CP™ s of cohomogeneity one. The totally geodesic
real projective space RP™+! ¢ CP™*! is a singular orbit of the action of SO,
containing the point 0. The second singular orbit of this action is the complex
quadric Q™ = S0,,4+2/50,,505. It is a homogeneous model, which interprets
geometrically the complex quadric Q™ as the Grassmann manifold G (R™*+2)
of oriented 2-planes in R™*2. Thus, the complex quadric Q™ is considered as
a Hermitian space of rank 2. For m = 1 the complex quadric Q! is isometric to
a sphere S? of constant curvature. For m = 2 the complex quadric Q)? is isometric
to the Riemannian product of two 2-spheres with constant curvature. Therefore,
we assume the dimension of complex quadric Q™ to be greater than or equal to 3.

Moreover, the complex quadric Q™ is the complex hypersurface in CP™*!
defined by the homogeneous quadric equation z? + --- + 22, 12 = 0, where z;,
i=1,...,m+2, are homogeneous coordinates on CP™*!. The Kaehler structure
of the complex projective space CP™*+! induces canonically a Kaehler structure
(J,g) on Q™, where g is a Riemannian metric with maximal holomorphic sectional
curvature 4 induced by the Fubini Study metric of CP™*1,

A point [z] in CP™"! is the complex span of z, i.e., [2]= {\z|\ € C}, where
z is a nonzero vector of C™*2. Take the Riemannian fibration 7 : S?"+3 C
Cm+2 — CP™*! given by 2 + [2]. Then C™2 6 [2] is the horizontal space of
at z € §¥m+3,

The shape operator Az of Q™ with respect to the unit normal vector Z is
given by

Az ;w = mi| 0,



362 Juan de Dios Pérez and Young Jin Suh

for all w € T, )Q™. The shape operator A; is a complex conjugation restricted
to T1,)Q™. The complex vector space T,)Q™ is decomposed into

T[Z]Qm =V(A4;) @ JV(Az),

where V(Az) = R™2 N T,;Q™ is the (+1)-eigenspace of Az, i.e., A;X = X and
JV(Az) = iR™2 N Ti)Q™ is the (-1)-eigenspace of Az, ie., A;JX = —JX for
any X € V(Az). Geometrically, it means that A; defines a real structure on
the complex vector space Tj,;Q™, which is an antilinear involution. The set of all
shape operators Ay; defines a parallel circle subbundle 2l of the endomorphism
bundle End(7'Q™), which consists of all the real structures on the tangent space
of Q™. For any A € 2 the following relations hold:

A2=1T and AJ=-JA.

The Gauss equation for Q™ Cc CP™*! yields that the Riemannian curvature

tensor R of Q™ is given by
RX,Y)Z =g(Y,2)X— g(X, 2)Y + g(JY, 2)JX — g(JX, Z)JY — 29(JX,Y)J Z
+g(AY, Z2)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)J AY,

where J is the complex structure, g is the Riemannian metric and A is a real
structure in 2.

A nonzero tangent vector W € Tj,;Q™ is called singular if it is tangent to
more than one maximal flat in Q™. There are two types of singular tangent
vectors for Q™:

(1) ™A-principal. In this case, there exists a real structure A € 2 such that W €
V(A).

(2) A-isotropic. In this case, there exists a real structure A € 2 and orthonormal
vectors X, Y € V(A) such that W/[|W]|| = (X + JY)/V2.

For every unit vector field W € T},;Q™, there is a complex conjugation A € A
and orthonormal vectors X, Y € V(A) such that

W = cos(t)X + sin(t)JY,

for some ¢ € [0,7/4]. The singular vectors correspond to the values ¢ = 0 and
t=m/4.
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3. Real hypersurfaces in Q™

Let M be a real hypersurface in Q™ and N a unit normal vector field of M.
For any vector X tangent to M, we write

JX = ¢X +n(X)N, (3.1)

where ¢X denotes the tangential component of JX and 7(X)N the normal
component. The above relation defines on M a skew-symmetric tensor field of
type (1,1) ¢, named the structure tensor. The structure vector field £ is defined
by £ = —JN and is called the Reeb vector field. The 1-form 7 is given by
n(X) = g(X, &) for any vector field X tangent to M. So, on M an almost con-
tact metric structure (¢,&,n,g) is defined. The elements of the almost contact
structure satisfy the following relations:

P’X =X +n(X)§, n(€) =1 g(¢X,Y)=g(X,Y)—n(X)n(Y) (3.2)
for all tangent vectors X,Y to M. Relation (3.2) implies
P€ = 0.
The tangent bundle T'M of M splits orthogonally into
TM =Ca F,

where C = ker(n) is the maximal complex subbundle of TM and F = R{. The
structure tensor field ¢ restricted to C coincides with the complex structure J.
At each point [z] € M, we choose a real structure A € 2j;; such that

N[} = cos(t)Zy + sin(t).] Zs, AN, = cos(t)Zy — sin(t).] Z, (3.3)

where Z;, Zy are orthonormal vectors in V(A) and 0 < ¢ < . Moreover, the
above relations due to ¢ = —JN imply

§12) = —cos(t)J Zy + sin(t) Zs, A&y, = cos(t)J Zy + sin(t) Zs. (3.4)

So we have g(AN[},§}z)) = 0.
Let X € Tj,)M, then AX is decomposed into

AX = BX + p(X)N, (3.5)

where BX is the tangential component, p(X)N is the normal component with
p(X) = g(AX,N) = g(X, AN).
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Moreover, we define the maximal 2A[,)-invariant subspace of T,;M to be
given by
Q[Z] = {X S T[Z]M‘AX S T[Z]M for all A € Q[[Z]}.

In [8], the following lemma concerning the normal vector N of M is included:

Lemma 3.1. Let M be a real hypersurface in Q™. Then for each [z] € M,
we have:

(i) If Ni, is -principal, then Q) = Cy;.
(ii) If Ny, is not A-principal, then Q) = Cp,; © C(JX +Y).
The shape operator of a real hypersurface M in Q™ is denoted by S. The real

hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector
of the shape operator, i.e.,

S¢E = ag, (3.6)
where o = ¢g(S¢, €) is the Reeb function. The Codazzi equation of M due to (3.5)
is given by
9(VxS)Y = (Vy9)X, Z)
=n(X)g(eY, Z) =n(Y)g(¢X, Z) — 2n(Z)g(¢X,Y) + p(X)g(BY, Z)
—p(Y)g(BX, Z) —n(BX)g(BY, $Z) —n(BX)p(Y)n(Z)
+n(BY)g(BX, ¢Z) + n(BY)p(X)n(Z), (3.7)

and the curvature tensor R(X,Y)Z of M is given by

R(X,Y)Z =g(Y,Z)X —g(X, Z)Y +9(¢Y, Z)9 X —g(¢ X, Z)pY —29(¢X,Y)dpZ
+ g(AY, 2)AX — g(AX, Z)AY + g(JAY, Z)JAX
— g(JAX, Z)JAY + g(SY, Z)SX — g(SX, Z)SY, (3.8)

for any X, Y, Z tangent to M.

4. Proof of Theorem 1.1

The normal Jacobi operator of a real hypersurface in Q™ is calculated by the
Gauss equation for Y = Z = N and, because of (3.3), is given by

Rn(X) =X 4+ 3n(X)E + cos(2t)AX — g(AX,N)AN — g(AX,§)AE, (4.1)

for any X € TM.
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Let M be a real hypersurface in @™ whose normal Jacobi operator satisfies
relation (1.1). This is equivalent to having F\' RyY = RyFY, for any X, Y
tangent to M. In particular, if X = &, we obtain

9(#SE, RNY )€ — g(RNE,Y)$SE — koRNY
= g(#SEY)RNE — n(Y)RnoSE — kRnoY  (4.2)

for any Y tangent to M. If X € C. we have
9(6SX, RNY)E — g(RNE,Y)$SX = g(¢SX,Y)RNE —n(Y)RnoSX  (4.3)

for any X € C, Y tangent to M.

All the following calculations take place at an arbitrary point [z] € M, but
we omit the subscript [ from the vector fields and other objects for the sake of
brevity.

Let us suppose that M is Hopf at [z], i.e., that S& = a& holds. From (4.2) we
get kpRNY = kRn®Y for any Y tangent to M. As k # 0, Ry = Ry¢ and N
must be A-isotropic, see [5]. In this case, g(AN, N) = g(AE, &) = g(AN,§) =0
and Ry¢& = 4¢€. From (4.3) we get g(RnE, €)pSX = RypSX for any X € C.
That is, 3¢SX = —g(¢pSX, AN)AN — g(¢SX, A) AS. Let us suppose there exists
aunit Y € C such that SY = AY, A # 0. Then we have 3¢Y = —g(¢Y, AN)AN —
g(pY, A) AL, Tts scalar product with ¢Y yields 3 = —g(aY, AN)? — g(¢Y, A¢)?,
which is impossible. Therefore SX = 0 for any X € C.

Then the equation of Codazzi for a unit X € C, Y = ¢X, Z = £ yields
0 = -2+ g(X,AN)g(A¢X,§) —g(¢X, AN)g(AX,§) + g(X, A)g(JAPX,§) —
(X, A)g(JAX, &) = —2+29(X, AN)? +2g(X, AE)? for any X € C. This yields
X =g(X,AN)AN + g(X, AE) A¢ for any unit X € C, which gives dim(C)=2, and
this is impossible because m > 3.

Thus M must be non-Hopf at [z]. We write S¢ = af+ U, with a unit vector
U € C, and a non-zero real number 5. Then (4.2) becomes

Bg(oU, RN X)E — Bg(RNE, X)pU — k¢Rn X
= Bg(oU, X)RnE — Bn(X)RyoU — kRN X (4.4)

for any X tangent to M. Taking X = ¢ in (4.4), we obtain Bg(¢U, RN&)E —
Bg(RNE, E)PU — k¢pRnE = —BRN@U. Tts scalar product with &, bearing in mind
that 8 # 0, yields g(Rx&,¢U) = 0 = 2cos(2t)g(pU, AE). Then, if cos(2t) = 0,

t =7 and N must be 2l-isotropic.
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From now on, we will suppose cos(2t) #0. Thus g(¢U, A8)=0=—g(U, JAE) =
g(U, AN). That is,

g(Rn&, ¢U) = g(8U, A€) = g(U, AN) = 0. (4.5)
The scalar product of (4.4) and ¢U implies
—B9(RN¢E, X) — kg(Ry X, U) = —Bn(X)g(RnoU, ¢U) — kg(Rnd X, ¢U)  (4.6)

for any X tangent to M. Taking X = ¢U we obtain, bearing in mind (4.5),
g(RyU, ¢U) = 0. This yields cos(2t)g(AU, U) = 0. As we suppose cos(2t) # 0,
we obtain

g(RnU,U) = g(AU, ¢U) = 0. (4.7

Moreover, if we take X € Cy = {X € C|g(X,U) = ¢g(X,¢U) = 0} in (4.6),
we get
—Bg(RnE X) = kg((¢RN — Rno)oU, X) (4.8)

for any X € Cy.

The scalar product of (4.4) and U, bearing in mind (4.7), gives g(¢ Ry X,U) =
g(RnoX,U), for any X € Cy. That is, g((pRy — Ry¢)U, X) = 0, for any
X € Cy. Taking ¢X instead of X, we have g(pRNU — RyoU,$X) = 0 =
9(RNU, X) ~ g(RnoU,6X) = —g(Rxé)oU, X) + g((6Rx)6U, X). That is
g((pRNy — Rn¢)oU, X) = 0, for any X € Cy. From (4.8) we obtain

g(RNE X) =0 (4.9)
for any X € Cy. This yields
g(A€, X) = g(AN, X) = 0 (4.10)

for any X € Cy.
Take the scalar product of (4.4) and Y € Cy. From (4.9) we obtain g((¢Ryx —
Ry¢)Y,X) =0, forany X € C,Y € Cy. As g((¢Rnx—Rn9)Y, &) = 0 we conclude
(6Ry — Ryd)Y =0 (411)

for any Y € Cy. From (4.10) we have

RNY =Y +cos(2t)AY and Ryn¢Y = ¢Y + cos(2t)ApY



Commutativity of Cho and normal Jacobi operators 367

for any Y € Cy. Therefore (4.11) yields cos(2t)pAY = cos(2t)AdY, and,
as cos(2t) # 0, pAY = A¢Y, for any Y € Cy. Thus gAY = JAY = A¢Y =
AJY = —JAY yields JAY = 0 for any Y € Cy. This gives AY = 0, which is
impossible and we have proved that N must be 2(-isotropic.

Then g(AN,N) = g(A¢,€) = 0 and Ry¢ = 4¢€. Taking X = ¢ in (4.4),
we have —48¢U = —BRyoU. Its scalar product with ¢U gives 3= —g(¢U, AN)? —
g(oU, A€)?, a contradiction, finishing the proof.
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