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Commutativity of Cho and normal Jacobi operators on real
hypersurfaces in the complex quadric

By JUAN DE DIOS PÉREZ (Granada) and YOUNG JIN SUH (Daegu)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi-

Civita connection and, for any non-zero real constant k, the k-th generalized Tanaka–

Webster connection. We prove the non-existence of real hypersurfaces in the complex

quadric for which the covariant derivatives associated to both connections coincide when

they act on the normal Jacobi operator of the real hypersurface.

1. Introduction

The complex quadric Qm = SOm+2/SOmSO2 is a compact Hermitian sym-

metric space of rank 2. It is also a complex hypersurface in the complex projective

space CPm+1 (see [4]). The space Qm is equipped with two geometric structures:

a Kaehler structure J and a parallel circle subbundle A of the endomorphism

bundle End(TQm), which consists of all the real structures on the tangent space

of Qm. For any A ∈ A the following relations hold: A2 = I and AJ = −JA.

A nonzero tangent vector W at a point of Qm is called singular if it is tangent

to more than one maximal flat in Qm. There are two types of singular tangent

vectors for Qm: A-principal or A-isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in

a Hermitian manifold such as a complex space form, or the complex two-plane

Grassmannian SUm+2/S(U2Um), or the complex hyperbolic two-plane Grassman-

nian SU2,m/S(U2Um). Since Qm is a compact Hermitian symmetric space with
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rank 2, it is interesting to study real hypersurfaces M in Qm. The Kaehler struc-

ture J of Qm induces on M an almost contact metric structure (φ, ξ, η, g), where

φ is the structure tensor field, ξ is the Reeb vector field, η is a 1-form and g is

the induced Riemannian metric of Qm.

The study of real hypersurfaces M in Qm is initiated by Berndt and Suh

in [1]. In this paper the geometric properties of real hypersurfaces M in complex

quadric Qm, which are tubes of radius r, 0 < r < π/2, around the totally geodesic

CP k in Qm, when m = 2k, or tubes of radius r, 0 < r < π/2
√

2, around the

totally geodesic Qm−1 in Qm, are presented. The condition of isometric Reeb

flow is equivalent to the commuting condition of the shape operator S with the

structure tensor φ of M . The classification of such real hypersurfaces in Qm is

obtained in [2].

Given a Riemannian manifold (M̃, g̃), Jacobi fields along geodesics satisfy

a differential equation which results in the notion of Jacobi operator. That is,

if R̃ is the Riemannian curvature tensor of M̃ and X is a tangent vector field

on M̃ , then the Jacobi operator with respect to X at a point p ∈ M̃ is given by

(R̃XY )(p) = (R̃(Y,X)X)(p),

and is a self adjoint endomorphism of the tangent bundle TM̃ of M̃ , i.e., R̃X
∈ End(TpM̃). In the case of real hypersurfaces M in Qm, we can consider the

normal Jacobi operator R̄N , where R̄ is the Riemannian curvature tensor of Qm

and N is the unit normal vector field on the real hypersurface M .

As M has an almost contact metric structure, for any non-zero real con-

stant k, we can define the so called k-th generalized Tanaka–Webster connection

∇̂(k) on M by

∇̂(k)
X Y = ∇XY + g(φSX, Y )ξ − η(Y )φSX − kη(X)φY

for any X, Y tangent to M , where ∇ is the Levi-Civita connection on M , S de-

notes the shape operator on M associated to N (see [3]). φ, η and ξ will be defined

in Section 3. Let us call F
(k)
X Y = g(φSX, Y )ξ − η(Y )φSX − kη(X)φY , for any

X,Y tangent to M . F
(k)
X is called the k-th Cho operator on M associated to X.

Notice that if X ∈ C, the maximal holomorphic distribution on M , given by all

the vector fields orthogonal to ξ, the associated Cho operator does not depend

on k and we will denote it simply by FX . Then, given a symmetric tensor field L

of type (1,1) on M , ∇XL = ∇̂(k)
X L for a tangent vector field X on M if and only

if F
(k)
X L = LF

(k)
X , that is, the eigenspaces of L are preserved by F

(k)
X .

In this paper we study real hypersurfaces M in Qm such that the covariant

derivatives associated to the Levi-Civita and the k-th generalized Tanaka–Webster
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connections coincide when we apply them to the normal Jacobi operator R̄N ,

that is

∇R̄N = ∇̂(k)R̄N (1.1)

for some non-zero real k. We will prove the following

Theorem 1.1. There do not exist real hypersurfacesM in Qm, m ≥ 3, such

that ∇R̄N = ∇̂(k)R̄N , for any non-zero real k.

2. The space Qm

The complex projective space CPm+1 is considered as the Hermitian

symmetric space of the special unitary group SUm+2, namely CPm+1 =

SUm+2/S(Um+1U1). The symbol o = [0, . . . , 0, 1] in CPm+1 is the fixed point

of the action of the stabilizer S(Um+1U1). The action of the special orthogonal

group SOm+2 ⊂ SUm+2 on CPm+1is of cohomogeneity one. The totally geodesic

real projective space RPm+1 ⊂ CPm+1 is a singular orbit of the action of SOm+2

containing the point o. The second singular orbit of this action is the complex

quadric Qm = SOm+2/SOmSO2. It is a homogeneous model, which interprets

geometrically the complex quadric Qm as the Grassmann manifold G+
2 (Rm+2)

of oriented 2-planes in Rm+2. Thus, the complex quadric Qm is considered as

a Hermitian space of rank 2. For m = 1 the complex quadric Q1 is isometric to

a sphere S2 of constant curvature. For m = 2 the complex quadric Q2 is isometric

to the Riemannian product of two 2-spheres with constant curvature. Therefore,

we assume the dimension of complex quadric Qm to be greater than or equal to 3.

Moreover, the complex quadric Qm is the complex hypersurface in CPm+1

defined by the homogeneous quadric equation z2
1 + · · · + z2

m+2 = 0, where zi,

i = 1, . . . ,m+2, are homogeneous coordinates on CPm+1. The Kaehler structure

of the complex projective space CPm+1 induces canonically a Kaehler structure

(J, g) on Qm, where g is a Riemannian metric with maximal holomorphic sectional

curvature 4 induced by the Fubini Study metric of CPm+1.

A point [z] in CPm+1 is the complex span of z, i.e., [z]= {λz|λ ∈ C}, where

z is a nonzero vector of Cm+2. Take the Riemannian fibration π : S2m+3 ⊂
Cm+2 −→ CPm+1 given by z 7→ [z]. Then Cm+2	 [z] is the horizontal space of π

at z ∈ S2m+3.

The shape operator Az̄ of Qm with respect to the unit normal vector z̄ is

given by

Az̄π∗|zw = π∗|zw̄,
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for all w ∈ T[z]Q
m. The shape operator Az̄ is a complex conjugation restricted

to T[z]Q
m. The complex vector space T[z]Q

m is decomposed into

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace of Az̄, i.e., Az̄X = X and

JV (Az̄) = iRm+2 ∩ T[z]Q
m is the (-1)-eigenspace of Az̄, i.e., Az̄JX = −JX for

any X ∈ V (Az̄). Geometrically, it means that Az̄ defines a real structure on

the complex vector space T[z]Q
m, which is an antilinear involution. The set of all

shape operators Aλz̄ defines a parallel circle subbundle A of the endomorphism

bundle End(TQm), which consists of all the real structures on the tangent space

of Qm. For any A ∈ A the following relations hold:

A2 = I and AJ = −JA.

The Gauss equation for Qm ⊂ CPm+1 yields that the Riemannian curvature

tensor R of Qm is given by

R̄(X,Y )Z = g(Y,Z)X− g(X,Z)Y + g(JY, Z)JX− g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX− g(AX,Z)AY + g(JAY,Z)JAX− g(JAX,Z)JAY,

where J is the complex structure, g is the Riemannian metric and A is a real

structure in A.

A nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tangent to

more than one maximal flat in Qm. There are two types of singular tangent

vectors for Qm:

(1) A-principal. In this case, there exists a real structure A ∈ A such that W ∈
V (A).

(2) A-isotropic. In this case, there exists a real structure A ∈ A and orthonormal

vectors X, Y ∈ V (A) such that W/||W || = (X + JY )/
√

2.

For every unit vector field W ∈ T[z]Q
m, there is a complex conjugation A ∈ A

and orthonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY,

for some t ∈ [0, π/4]. The singular vectors correspond to the values t = 0 and

t = π/4.
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3. Real hypersurfaces in Qm

Let M be a real hypersurface in Qm and N a unit normal vector field of M .

For any vector X tangent to M , we write

JX = φX + η(X)N, (3.1)

where φX denotes the tangential component of JX and η(X)N the normal

component. The above relation defines on M a skew-symmetric tensor field of

type (1,1) φ, named the structure tensor. The structure vector field ξ is defined

by ξ = −JN and is called the Reeb vector field. The 1-form η is given by

η(X) = g(X, ξ) for any vector field X tangent to M . So, on M an almost con-

tact metric structure (φ, ξ, η, g) is defined. The elements of the almost contact

structure satisfy the following relations:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ) (3.2)

for all tangent vectors X,Y to M . Relation (3.2) implies

φξ = 0.

The tangent bundle TM of M splits orthogonally into

TM = C ⊕ F ,

where C = ker(η) is the maximal complex subbundle of TM and F = Rξ. The

structure tensor field φ restricted to C coincides with the complex structure J .

At each point [z] ∈ M , we choose a real structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2, AN[z] = cos(t)Z1 − sin(t)JZ2, (3.3)

where Z1, Z2 are orthonormal vectors in V (A) and 0 ≤ t ≤ π
4 . Moreover, the

above relations due to ξ = −JN imply

ξ[z] = − cos(t)JZ1 + sin(t)Z2, Aξ[z] = cos(t)JZ1 + sin(t)Z2. (3.4)

So we have g(AN[z], ξ[z]) = 0.

Let X ∈ T[z]M , then AX is decomposed into

AX = BX + ρ(X)N, (3.5)

where BX is the tangential component, ρ(X)N is the normal component with

ρ(X) = g(AX,N) = g(X,AN).
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Moreover, we define the maximal A[z]-invariant subspace of T[z]M to be

given by

Q[z] = {X ∈ T[z]M |AX ∈ T[z]M for all A ∈ A[z]}.

In [8], the following lemma concerning the normal vector N of M is included:

Lemma 3.1. Let M be a real hypersurface in Qm. Then for each [z] ∈ M ,

we have:

(i) If N[z] is A-principal, then Q[z] = C[z].
(ii) If N[z] is not A-principal, then Q[z] = C[z] 	 C(JX + Y ).

The shape operator of a real hypersurface M in Qm is denoted by S. The real

hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector

of the shape operator, i.e.,

Sξ = αξ, (3.6)

where α = g(Sξ, ξ) is the Reeb function. The Codazzi equation of M due to (3.5)

is given by

g((∇XS)Y − (∇Y S)X,Z)

= η(X)g(φY,Z)− η(Y )g(φX,Z)− 2η(Z)g(φX, Y ) + ρ(X)g(BY,Z)

− ρ(Y )g(BX,Z)− η(BX)g(BY, φZ)− η(BX)ρ(Y )η(Z)

+ η(BY )g(BX,φZ) + η(BY )ρ(X)η(Z), (3.7)

and the curvature tensor R(X,Y )Z of M is given by

R(X,Y )Z = g(Y, Z)X−g(X,Z)Y +g(φY,Z)φX−g(φX,Z)φY −2g(φX, Y )φZ

+ g(AY,Z)AX − g(AX,Z)AY + g(JAY,Z)JAX

− g(JAX,Z)JAY + g(SY,Z)SX − g(SX,Z)SY, (3.8)

for any X, Y , Z tangent to M .

4. Proof of Theorem 1.1

The normal Jacobi operator of a real hypersurface in Qm is calculated by the

Gauss equation for Y = Z = N and, because of (3.3), is given by

R̄N (X) = X + 3η(X)ξ + cos(2t)AX − g(AX,N)AN − g(AX, ξ)Aξ, (4.1)

for any X ∈ TM .



Commutativity of Cho and normal Jacobi operators 365

Let M be a real hypersurface in Qm whose normal Jacobi operator satisfies

relation (1.1). This is equivalent to having F
(k)
X R̄NY = R̄NF

(k)
X Y , for any X,Y

tangent to M . In particular, if X = ξ, we obtain

g(φSξ, R̄NY )ξ − g(R̄Nξ, Y )φSξ − kφR̄NY

= g(φSξ, Y )R̄Nξ − η(Y )R̄NφSξ − kR̄NφY (4.2)

for any Y tangent to M . If X ∈ C. we have

g(φSX, R̄NY )ξ − g(R̄Nξ, Y )φSX = g(φSX, Y )R̄Nξ − η(Y )R̄NφSX (4.3)

for any X ∈ C, Y tangent to M .

All the following calculations take place at an arbitrary point [z] ∈ M , but

we omit the subscript [z] from the vector fields and other objects for the sake of

brevity.

Let us suppose that M is Hopf at [z], i.e., that Sξ = αξ holds. From (4.2) we

get kφR̄NY = kR̄NφY for any Y tangent to M . As k 6= 0, φR̄N = R̄Nφ and N

must be A-isotropic, see [5]. In this case, g(AN,N) = g(Aξ, ξ) = g(AN, ξ) = 0

and R̄Nξ = 4ξ. From (4.3) we get g(R̄Nξ, ξ)φSX = R̄NφSX for any X ∈ C.
That is, 3φSX = −g(φSX,AN)AN−g(φSX,Aξ)Aξ. Let us suppose there exists

a unit Y ∈ C such that SY = λY , λ 6= 0. Then we have 3φY = −g(φY,AN)AN−
g(φY,Aξ)Aξ. Its scalar product with φY yields 3 = −g(φY,AN)2 − g(φY,Aξ)2,

which is impossible. Therefore SX = 0 for any X ∈ C.
Then the equation of Codazzi for a unit X ∈ C, Y = φX, Z = ξ yields

0 = −2 + g(X,AN)g(AφX, ξ) −g(φX,AN)g(AX, ξ) + g(X,Aξ)g(JAφX, ξ) −
g(φX,Aξ)g(JAX, ξ) = −2+2g(X,AN)2 +2g(X,Aξ)2 for any X ∈ C. This yields

X = g(X,AN)AN + g(X,Aξ)Aξ for any unit X ∈ C, which gives dim(C)=2, and

this is impossible because m ≥ 3.

Thus M must be non-Hopf at [z]. We write Sξ = αξ+βU , with a unit vector

U ∈ C, and a non-zero real number β. Then (4.2) becomes

βg(φU, R̄NX)ξ − βg(R̄Nξ,X)φU − kφR̄NX

= βg(φU,X)R̄Nξ − βη(X)R̄NφU − kR̄NφX (4.4)

for any X tangent to M . Taking X = ξ in (4.4), we obtain βg(φU, R̄Nξ)ξ −
βg(R̄Nξ, ξ)φU − kφR̄Nξ = −βR̄NφU . Its scalar product with ξ, bearing in mind

that β 6= 0, yields g(R̄Nξ, φU) = 0 = 2 cos(2t)g(φU,Aξ). Then, if cos(2t) = 0,

t = π
4 and N must be A-isotropic.
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From now on, we will suppose cos(2t) 6=0. Thus g(φU,Aξ)=0=−g(U, JAξ)=

g(U,AN). That is,

g(R̄Nξ, φU) = g(φU,Aξ) = g(U,AN) = 0. (4.5)

The scalar product of (4.4) and φU implies

−βg(R̄Nξ,X)− kg(R̄NX,U) = −βη(X)g(R̄NφU, φU)− kg(R̄NφX, φU) (4.6)

for any X tangent to M . Taking X = φU we obtain, bearing in mind (4.5),

g(R̄NU, φU) = 0. This yields cos(2t)g(AU, φU) = 0. As we suppose cos(2t) 6= 0,

we obtain

g(R̄NU, φU) = g(AU, φU) = 0. (4.7)

Moreover, if we take X ∈ CU = {X ∈ C|g(X,U) = g(X,φU) = 0} in (4.6),

we get

−βg(R̄Nξ,X) = kg((φR̄N − R̄Nφ)φU,X) (4.8)

for any X ∈ CU .

The scalar product of (4.4) and U , bearing in mind (4.7), gives g(φR̄NX,U) =

g(R̄NφX,U), for any X ∈ CU . That is, g((φR̄N − R̄Nφ)U,X) = 0, for any

X ∈ CU . Taking φX instead of X, we have g(φR̄NU − R̄NφU, φX) = 0 =

g(R̄NU,X) − g(R̄NφU, φX) = −g((R̄Nφ)φU,X) + g((φR̄N )φU,X). That is,

g((φR̄N − R̄Nφ)φU,X) = 0, for any X ∈ CU . From (4.8) we obtain

g(R̄Nξ,X) = 0 (4.9)

for any X ∈ CU . This yields

g(Aξ,X) = g(AN,X) = 0 (4.10)

for any X ∈ CU .

Take the scalar product of (4.4) and Y ∈ CU . From (4.9) we obtain g((φR̄N−
R̄Nφ)Y,X) = 0, for any X ∈ C, Y ∈ CU . As g((φR̄N−R̄Nφ)Y, ξ) = 0 we conclude

(φR̄N − R̄Nφ)Y = 0 (4.11)

for any Y ∈ CU . From (4.10) we have

R̄NY = Y + cos(2t)AY and R̄NφY = φY + cos(2t)AφY
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for any Y ∈ CU . Therefore (4.11) yields cos(2t)φAY = cos(2t)AφY , and,

as cos(2t) 6= 0, φAY = AφY , for any Y ∈ CU . Thus φAY = JAY = AφY =

AJY = −JAY yields JAY = 0 for any Y ∈ CU . This gives AY = 0, which is

impossible and we have proved that N must be A-isotropic.

Then g(AN,N) = g(Aξ, ξ) = 0 and R̄Nξ = 4ξ. Taking X = ξ in (4.4),

we have −4βφU=−βR̄NφU . Its scalar product with φU gives 3=−g(φU,AN)2−
g(φU,Aξ)2, a contradiction, finishing the proof.

Acknowledgements. The first author is supported by MINECO-FEDER

Project MTM 2016-78807-C2-1-P, and the second author by grant Project No.

NRF-2018-R1D1A1B-05040381 from National Research Foundation of Korea.

The authors thank the referee for valuable comments that have improved the

paper.

References

[1] J. Berndt and Y. J. Suh, On the geometry of homogeneous real hypersurfaces in the

complex quadric, In: Proceedings of the 16th International Workshop on Differential Ge-
ometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop, Vol. 16, Natl.

Inst. Math. Sci. (NIMS), Daegu, 2012, 1–9.

[2] J. Berndt and Y. J. Suh, Real hypersurfaces with isometric Reeb flow in complex quadric,

Internat. J. Math. 24 (2013), 18 pp.

[3] J. T. Cho, CR-structures on real hypersurfaces of a complex space form, Publ. Math.

Debrecen 54 (1999), 473–487.

[4] B. Smyth, Differential geometry of complex hypersurfaces, Ann. of Math. (2) 85 (1967),
246–266.

[5] Y. J. Suh, H. Lee and C. Woo, Real hypersurfaces with commuting Jacobi operator in
the complex quadric, Publ. Math. Debrecen 93 (2018), 425–443.

[6] Y. J. Suh, Real hypersurfaces in the complex quadric with commuting and parallel Ricci

tensor, J. Geom. Phys. 106 (2016), 130–142.

[7] Y. J. Suh, Real hypersurfaces in the complex quadric with Reeb parallel shape operator,

Internat. J. Math. 25 (2014), 17 pp.

[8] Y. J. Suh and D. H. Hwang, Real hypersurfaces in the complex quadric with commuting

Ricci tensor, Sci. China Math. 59 (2016), 2185–2198.

JUAN DE DIOS PÉREZ
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