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On the additive and multiplicative structures of the exceptional
units in finite commutative rings

By SU HU (Guangzhou) and MIN SHA (Sydney)

Abstract. Let R be a commutative ring with identity. A unit u of R is called
exceptional if 1 —u is also a unit. When R is a finite commutative ring, we determine the
additive and multiplicative structures of its exceptional units; and then as an application
we find a necessary and sufficient condition under which R is generated by its exceptional
units.

1. Introduction

1.1. Background. Let R be a commutative ring with 1 € R and R* its group
of units. A unit u € R is called exceptional if 1 —u € R*. We denote by R** the
set of exceptional units of R. This concept was introduced by NAGELL [7] in 1969
in order to solve certain cubic Diophantine equations. The key idea is that the
solution of many Diophantine equations can be reduced to the solution of a finite
number of unit equations of type

ar +by =1,

where x and y are restricted to units in the ring of integers of some number field
(see [2] for a treatise on unit equations). By choosing a = b = 1, we obtain the
concept of exceptional unit.

Let Z,, be the residue class ring of the integers Z modulo a positive inte-
ger n. SANDER [9, Theorem 1.1] determined the number of representations of an
element in Z,, as the sum of two exceptional units. Recently, ZHANG and J1 [12,
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Theorem 1.5] extended Sander’s result to the case when R is a residue class ring
of a number field. Using a different approach with the aid of exponential sums,
for any integer k > 2 YANG and ZHAO [11, Theorem 1] obtained an exact formula
for the number of ways to represent an element of Z, as a sum of k exceptional
units. Most recently, MIGUEL [6, Theorem 1] generalized the result of Yang and
Zhao to the case of finite commutative rings. SANDER [10] persued another struc-
tural perspective by investigating the atom decomposition of sets of exceptional
units in Z,,.

1.2. Our situation. In this paper, we consider the additive and multiplicative
structures of the exceptional units of a finite commutative ring. We show that
as in [6] and [11], there is an exact formula for the number of ways to represent
a unit as a product of k exceptional units. As an application and in combination
with Miguel’s result, we completely determine the additive and multiplicative
structures of such exceptional units in our situation (see Theorems 1.7 and 1.10
below); and then as an application we find a necessary and sufficient condition
under which R is generated by its exceptional units (see Corollaries 1.8 and 1.11
below).

From now on, R is a finite commutative ring with identity. It is well-known
that R can be uniquely expressed as a direct sum of local rings; see [5, page 95].
So, in the following we assume that

R:Rl@"'@R'm

where each R;, for ¢ = 1,...,n, is a local ring. Then, each element ¢ € R can
be represented as (c1,...,¢,) with ¢; € R;; i = 1,...,n. Foreachi =1,...,n,
suppose that M; is the unique maximal ideal of R;, and put

m; = |M;], ¢ = |Ri/M;).

Here, each residue field R;/M; is a finite field, and thus ¢; is a power of a prime.
We first state our results in Sections 1.3, 1.4, 1.5 and 1.6, and then we give
proofs in Section 2.

1.3. Additive structure of units. Before further work, we first determine the
additive structure of R*. For ¢ € R, we define the set

\IlkyR(C) = {(‘Tlv s 7mk) S (R*)k X+t x = 6}7

and put
Vi,r(c) = [Pr,r(c)].
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That is, ¥, r(c) is the number of ways to represent ¢ as a sum of k units. KIANI
and MOLLAHAJIAGHAEI obtained the following formula for ¢ gr(c) (see [3, The-
orem 2.5]), which generalizes the result in [8].

Theorem 1.1 ([3]). For any integer k > 2 and any ¢ = (c1,...,¢,) € R,

we have
n

vk r(e) = [[ml g i (e,

i=1

where

pk, R, (€i) =

(i — DF + (=Dk(q; = 1), ife; € M;,
(g — )P + (—1)F+1, ife; € Ry \ M.

Theorem 1.1 can be directly used to establish the additive structure of the
units of R.

Corollary 1.2. The following hold:
(i) If ¢; > 2 for each i = 1,...,n, then we have

R*+R" =R
(ii) If 1 =--- =¢qs =2 (s > 1) and g; > 2 for each j > s, then for any
integer k > 2 we have
Zk:R* . (@1 M) & (Bj>sR)), if k is even,
=1 (@ 1Ri\ M;) ® (®j>sR;), otherwise.

In particular, each element of R is a sum of units if and only if s = 1.
In Corollary 1.2 (ii), if s = n, then the part ;- ,R; does not exist.

Corollary 1.3. The ring R is generated by its units if and only if there is
at most one q; equal to 2.

1.4. Additive structure of exceptional units. We now turn our attention to
exceptional units. In Theorem 1.1, if we choose k = 2 and ¢ = 1, then we directly
get the size of R**.

Corollary 1.4. We have

B =[] milai —2).
i=1
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We directly have:
Corollary 1.5. R** # () if and only if each ¢; > 3,i=1,...,n.
For ¢ € R, define the set

() = {(x1,...,21) € (R™) ay + -+ ap = ¢},

and denote
or,r(c) = |Pp,r(c)]-
That is, @i r(c) is the number of ways to represent ¢ as a sum of k exceptional

units. Miguel gave an exact formula for ¢ g(c); see [6, Theorem 1].

Theorem 1.6 ([6]). For any integer k > 2 and any ¢ = (c1,...,¢,) € R,
we have

orr(c) = [[(=1)Fmf "¢ o (c),

where

k
k
iR (Ci) = 4 Z () +(2-gq)f -2~
j=0 J
j=c; (mod M;)

Using Theorem 1.6, we completely determine the additive structure of R**

in the following theorem. Note that by Corollary 1.5 we need to exclude the case
when there is some ¢; equal to 2.

Theorem 1.7. Assume that each q; > 3,1 =1,...,n. Then, the following
hold:

(i) If each q; is greater than 4,4 =1,...,n, we have
R*™ + R = R.
(i) If g = --- =¢qs =3 (s > 1) and q; > 4 for each j > s, then for any k > 2
we have
k ( leMi) D (@j>st), ifk=0 (mod 3),

S OR™ = (@12 + M) ® (By=sR;), ifk=1 (mod 3),
=1 (B5_11+ M;) @ (®;>sR;), if k=2 (mod 3).
(iii) If 1 =---=¢q: =4 (t > 1) and g; > 4 for each j > t, then for any k > 2
we have
f:R** (@ (M UL+ M) @ (9554 R;), if k is even,
= (@ (R \ (M; U1+ M;))) ® (®;5¢R;j), otherwise.
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(iv) Assume that 1 = -+ =¢qs =3 (s> 1), gs41 = - =qsyt =4 (t > 1),
and q; > 4 for each j > s+t. Then, for any k > 2 we have

(D51 M) & (D721 (M; UL+ M) & (B)>544R;),
if k=0 (mod 6),
(D512 + My) © (@20 (R \ (M; U1 + M;))) @ (@554 R)),
if k=1 (mod 6),
(@511 + M;) @ (7254, (M; UL+ M) @ (@554 R)),
S e o if k=2 (mod 6),
i=1 (@51 M;) @ (@fi;H(Ri \ (M; U1+ M;))) @ (Dj>s+el2)),
if k=3 (mod 6),
(@512 + M;) @ (72541 (M; UL+ M) @ (@554 R)),
if k =4 (mod 6),
(@i 1+ M) © (@720 (R \ (M; U1 + M;))) @ (@554 R)),
if k=5 (mod 6).

Using Theorem 1.7, we directly obtain a necessary and sufficient condition
under which every element of R is a sum of its exceptional units.

Corollary 1.8. Assume that each ¢; > 3,1 =1,...,n. Then, every element
of R is a sum of its exceptional units if and only if there is at most one ¢; equal
to 3 and at most one q; equal to 4 fori,j=1,...,n.

1.5. Multiplicative structure of exceptional units. Here, we want to de-
termine the multiplicative structure of exceptional units of R.
For a unit u € R*, define the set

Orr(w) = {(z1,...,21) € (R s wyag - mp = ul,

and denote
Ok, r(u) = |Ok r(u)].

That is, 0 r(u) is the number of ways to represent u as a product of k exceptional
units.

By Corollary 1.5, if there is some ¢; = 2, then R** = (). Certainly we need
to exclude this case. Applying the same arguments as in [6], we obtain an exact

formula for 0y g(u).
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Theorem 1.9. Assume that each q; > 3,1 =1,...,n. Then, for any integer
k> 2 and any u = (uy,...,u,) € R*, we have

n
Ok () = [[mi (g — 1) ok m, (wi),
i=1

where
(i —2)F 4+ (=1)F(q; —2), ifu; €1+ M,
Tk, R; (i) = k k1 :
(i —2)F + (=1)*+ ifu; ¢ 1+ M;.

Then, we can determine the multiplicative structure of R**.

Theorem 1.10. The following hold:
(i) If each ¢; > 3, i =1,...,n, then we have

R* - R™ = R*.
(ii) If n = -+ =¢qs =3 (s > 1) and g; > 3 for each j > s, then for any
integer k > 2 we have
[[r < @+ M) @pul), ik is cven
i=1 (@i B\ 1+ M;) © (©j>s}), otherwise.

In particular, every unit of R is a product of its exceptional units if and only if
s=1.

Finally, we determine under which condition the ring R can be generated
by its exceptional units (that is, every element of R can be represented as either
a sum of exceptional units or a sum of products of exceptional units).

Corollary 1.11. Assume that each q; > 3,4 =1,...,n. Then, the ring R is
generated by its exceptional units if and only if there is at most one q; equal to 3.

1.6. Applications. So far, there have been extensive studies on additive unit
representations in global fields; see [1] for a survey. Here, we apply our main
results to the case of exceptional units in Dedekind domains.

Let D be a Dedekind domain. Notice that every exceptional unit of D auto-
matically yields an exceptional unit in D /I for any ideal I of D. By Corollary 1.5
(or noticing the simple fact that the binary field has no exceptional unit), we im-
mediately have:

Corollary 1.12. If D has a prime ideal of norm 2, then D** = ().
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In view of quadratic number fields, one can see that the condition in Corol-
lary 1.12 is sufficient but not necessary. In fact, by definition it is easy to see that
the only exceptional units in quadratic fields are the roots of the four polynomials:

X% - X 41, X% -3X +1, X2 X -1, X2+ X 1.

They correspond to the quadratic fields Q(v/—3), Q(v/5). For each of the two
fields, the ring of integers is generated by its exceptional units.
Using Corollaries 1.8 and 1.12, we directly obtain:

Corollary 1.13. Not every element of D is a sum of its exceptional units if
one of the following conditions holds:

e D has a prime ideal of norm 2;
e D has at least two prime ideals of norm 3;

e D has at least two prime ideals of norm 4.
The following is a direct consequence of Corollary 1.11.

Corollary 1.14. D cannot be generated by its exceptional units if D has at
least two prime ideals of norm 3.

We remark that Corollary 1.14 can be proved by the following simple argu-
ment without using Corollary 1.11: if P and @ are two prime ideals of norm 3,
then every element of D, which is congruent to 0 modulo P and to 1 modulo @,
cannot be a sum of exceptional units or a sum of products of exceptional units,
because the only exceptional unit modulo P is 2.

The condition in Corollary 1.14 is also only sufficient.

Ezxample 1.15. Choose D to be the ring of integers of the quadratic field
Q(v/21). Then, the prime 2 is inert and the prime 3 is ramified in D. By Corol-
lary 1.11, for any non-zero ideal I the quotient ring D/I is generated by its
exceptional units. However, D has no exceptional unit.

2. Proofs

2.1. Proof of Corollary 1.2. (i) Notice that for any ¢ = (c1,...,¢,) € R,
if ¢; > 2, then
W2, R, (Cl) > 0.

This, together with Theorem 1.1, implies the result in (i).
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(ii) Now, assume that ¢; = 2, then by Theorem 1.1, we have

1+ (=1)%, if ¢; € M;,

2.1
1+(—1)k+1, if ¢; € Rl\Ml ( )

Mk, R; (Ci) = {

Then, letting k& be even and applying (2.1), we obtain
k
Z R* = (@721 M;) © (B> 1))
i=1

Similarly, letting k be odd and using (2.1), we obtain the second identity.

2.2. Proof of Theorem 1.7. (i) Notice that given ¢ = (¢1,...,¢,) € R, for
eachi=1,...,n,
p2.r;(ci) >0, if g >4.

This, together with Theorem 1.6, implies the result in (i).
(ii) If ¢; = 3, we have

2
P2, (ci) =3 Z <) —11|, foranyc; €R;.

As g; = 3, the residue classes modulo M; can be represented by 0, 1, 2, respec-
tively. So, pa.g,(c;) # 0 if and only if ¢; € 1 + M;. Then, using Theorem 1.6,
we get

R™ + R™ = (®j_11+ M;) ® (Dj>sR;). (2.2)

We again have

3
3
p3.r;(ci) =3 Z ( ) -3, foranyc; €R;.

j=0 J
j=c; (mod M;)

Thus, ps g, (c;) # 0 if and only if ¢; € M;. So, by Theorem 1.6 we obtain
R™ + R™ + R = (©j_ M;) © (®;>5Ry). (2.3)

Then, combining (2.2) with (2.3), we get the identities in (ii).
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(iii) If g¢; = 4, for even k we have

k
Pk.r;(ci) =4 Z (k>, for any ¢; € R;.
j=0 J
j=c; (mod M;)
So, pi,r, (¢;) # 0 if and only if ¢; € M; or ¢; € 1+ M;, where one should note that
the characteristic of the residue field R;/M; is 2 (because ¢; = 4). Thus, by using
Theorem 1.6, we get the first identity in (iii).
For the second identity, we note that for odd k we have

k
k
PR (c;) =4 Z ( ) —92k=1 1 for any ¢; € R;.

: J

=0

j=ci (]mod M;)
Since the characteristic of the residue field R;/M; is 2, if ¢; € M;, then j =¢; =
0 (mod M;) for any even integer j. Also, if ¢; € 1+ M;, then j = ¢; = 1 (mod M;)
for any odd integer j. Thus, pi g, (c;) # 0 if and only if ¢; ¢ M; and ¢; & 1+ M.
So, similarly we obtain the second identity.
(iv) The desired results in (iv) follow directly from (ii) and (iii).

2.3. Proof of Theorem 1.9. Applying the same arguments as in [6], we have

the following two lemmas, whose proofs we omit.

Lemma 2.1. For any u = (uy,...,u,) € R*, we have

Or,r(u) = H Ok, R, (ui).
i=1

Lemma 2.2. For eachi=1,...,n and for any unit u; € R}, we have

Ok, r, (ui) = My~ 0 gy, (us).

Let F, be a finite field of ¢ elements. Recall that a multiplicative character
x of F} is a homomorphism from F} to the complex roots of unity. The trivial
character xo is the one sending every element of F to 1. Let Gy be the group
of multiplictive characters of F;, and let Gy = G, \ {xo}. Then, |G| = ¢ — 1.
Furthermore, we have the following orthogonality relations (for instance, see [4]):

ZX(G)Z{Q_L if x = xo,

= 0, otherwise;
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and

ZX(G)Z{q_L ifa=1,

XEG, 0, otherwise.

PrOOF OF THEOREM 1.9. Based on the above lemmas, we only need to cal-
culate 6y, r, (c) for c € [y and ¢ > 2. Using the above formulas about multiplicative
characters, we obtain

Orz, () = {(@1,...,21) € (F)* s maan -y = ¢}

1
Z Z Z FZX(%"'SUI@/C)

$1EF;* $2€F;* ka]F;* x€Gyq

e Ol (D DIR(CYN RS () DIPTCNY UG

xX€G, z1 €™ xR €EF%*

LSS @ | @ | e+ -2k

-1
¢ XEG; \z€F;* xy €EFp*

since Fy* =Ty \ {1}.
Notice that for any x € G, we have

0= Z x(@i) =1+ Z x(@i).

x; E]F; x; E]F;*

Then, we further have

9}67]}?(2(6) = q%l (g — Q)k + (—1)k Z X(c_l)

XEG}
_JE@=-29F+ (1) -2), ife=1,
L ((g—2)F + (—1)k+Y) it

This, together with Lemma 2.1 and Lemma 2.2, implies the desired result. ([l

2.4. Proof of Theorem 1.10. (i) Notice that given u = (uy,...,u,) € R*, for
each i =1,...,n, we have

O'Q,Ri(’u,i) >0, ifg > 3.

This, together with Theorem 1.9, implies the result in (i).
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(ii) If ¢; = 3, we have

1+ (=1)F, if u; € 14+ M,

(2.4)
L+ (=DF ifu; & 14 M.

ok, R, (Ui) = {

Then, letting k be even and applying (2.4), we get

k
[[2" = (@1 + M) @ (@;5.R;).

i=1

This completes the proof of the first identity.
Similarly, letting k& be odd and using (2.4), we obtain the second identity.

2.5. Proof of Corollary 1.11. The sufficient part follows directly from Corol-
lary 1.2 (i) and Theorem 1.10.

For the necessary part, we suppose that ¢¢ = ¢2 = 3. By assumption,
the ring R is generated by its exceptional units. Then, the ring R; & R» is also
generated by its exceptional units, and so is the ring Ry /M; @ Ro/Ms. On the
other hand, since both finite fields R;/M; and Ry/M> have only three elements,
we in fact have

(R1/My & Ro/M2)™ = {(2,2)},

which generates the subset

{(0,0), (1,1),(2,2)}.

So, the ring Ry /M; @ Ry /M cannot be generated by its unique exceptional unit.
This leads to a contradiction.
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