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On the additive and multiplicative structures of the exceptional
units in finite commutative rings

By SU HU (Guangzhou) and MIN SHA (Sydney)

Abstract. Let R be a commutative ring with identity. A unit u of R is called

exceptional if 1−u is also a unit. When R is a finite commutative ring, we determine the

additive and multiplicative structures of its exceptional units; and then as an application

we find a necessary and sufficient condition under which R is generated by its exceptional

units.

1. Introduction

1.1. Background. Let R be a commutative ring with 1 ∈ R and R∗ its group

of units. A unit u ∈ R is called exceptional if 1− u ∈ R∗. We denote by R∗∗ the

set of exceptional units of R. This concept was introduced by Nagell [7] in 1969

in order to solve certain cubic Diophantine equations. The key idea is that the

solution of many Diophantine equations can be reduced to the solution of a finite

number of unit equations of type

ax+ by = 1,

where x and y are restricted to units in the ring of integers of some number field

(see [2] for a treatise on unit equations). By choosing a = b = 1, we obtain the

concept of exceptional unit.

Let Zn be the residue class ring of the integers Z modulo a positive inte-

ger n. Sander [9, Theorem 1.1] determined the number of representations of an

element in Zn as the sum of two exceptional units. Recently, Zhang and Ji [12,
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Theorem 1.5] extended Sander’s result to the case when R is a residue class ring

of a number field. Using a different approach with the aid of exponential sums,

for any integer k ≥ 2 Yang and Zhao [11, Theorem 1] obtained an exact formula

for the number of ways to represent an element of Zn as a sum of k exceptional

units. Most recently, Miguel [6, Theorem 1] generalized the result of Yang and

Zhao to the case of finite commutative rings. Sander [10] persued another struc-

tural perspective by investigating the atom decomposition of sets of exceptional

units in Zn.

1.2. Our situation. In this paper, we consider the additive and multiplicative

structures of the exceptional units of a finite commutative ring. We show that

as in [6] and [11], there is an exact formula for the number of ways to represent

a unit as a product of k exceptional units. As an application and in combination

with Miguel’s result, we completely determine the additive and multiplicative

structures of such exceptional units in our situation (see Theorems 1.7 and 1.10

below); and then as an application we find a necessary and sufficient condition

under which R is generated by its exceptional units (see Corollaries 1.8 and 1.11

below).

From now on, R is a finite commutative ring with identity. It is well-known

that R can be uniquely expressed as a direct sum of local rings; see [5, page 95].

So, in the following we assume that

R = R1 ⊕ · · · ⊕Rn,

where each Ri, for i = 1, . . . , n, is a local ring. Then, each element c ∈ R can

be represented as (c1, . . . , cn) with ci ∈ Ri, i = 1, . . . , n. For each i = 1, . . . , n,

suppose that Mi is the unique maximal ideal of Ri, and put

mi = |Mi|, qi = |Ri/Mi|.

Here, each residue field Ri/Mi is a finite field, and thus qi is a power of a prime.

We first state our results in Sections 1.3, 1.4, 1.5 and 1.6, and then we give

proofs in Section 2.

1.3. Additive structure of units. Before further work, we first determine the

additive structure of R∗. For c ∈ R, we define the set

Ψk,R(c) = {(x1, . . . , xk) ∈ (R∗)k : x1 + · · ·+ xk = c},

and put

ψk,R(c) = |Ψk,R(c)|.
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That is, ψk,R(c) is the number of ways to represent c as a sum of k units. Kiani

and Mollahajiaghaei obtained the following formula for ψk,R(c) (see [3, The-

orem 2.5]), which generalizes the result in [8].

Theorem 1.1 ([3]). For any integer k ≥ 2 and any c = (c1, . . . , cn) ∈ R,

we have

ψk,R(c) =

n∏
i=1

mk−1
i q−1i µk,Ri

(ci),

where

µk,Ri
(ci) =

{
(qi − 1)k + (−1)k(qi − 1), if ci ∈Mi,

(qi − 1)k + (−1)k+1, if ci ∈ Ri \Mi.

Theorem 1.1 can be directly used to establish the additive structure of the

units of R.

Corollary 1.2. The following hold:

(i) If qi > 2 for each i = 1, . . . , n, then we have

R∗ +R∗ = R.

(ii) If q1 = · · · = qs = 2 (s ≥ 1) and qj > 2 for each j > s, then for any

integer k ≥ 2 we have

k∑
i=1

R∗ =

{
(⊕si=1Mi)⊕ (⊕j>sRj), if k is even,

(⊕si=1Ri \Mi)⊕ (⊕j>sRj), otherwise.

In particular, each element of R is a sum of units if and only if s = 1.

In Corollary 1.2 (ii), if s = n, then the part ⊕j>sRj does not exist.

Corollary 1.3. The ring R is generated by its units if and only if there is

at most one qi equal to 2.

1.4. Additive structure of exceptional units. We now turn our attention to

exceptional units. In Theorem 1.1, if we choose k = 2 and c = 1, then we directly

get the size of R∗∗.

Corollary 1.4. We have

|R∗∗| =
n∏
i=1

mi(qi − 2).
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We directly have:

Corollary 1.5. R∗∗ 6= ∅ if and only if each qi ≥ 3, i = 1, . . . , n.

For c ∈ R, define the set

Φk,R(c) = {(x1, . . . , xk) ∈ (R∗∗)k : x1 + · · ·+ xk = c},

and denote

ϕk,R(c) = |Φk,R(c)|.

That is, ϕk,R(c) is the number of ways to represent c as a sum of k exceptional

units. Miguel gave an exact formula for ϕk,R(c); see [6, Theorem 1].

Theorem 1.6 ([6]). For any integer k ≥ 2 and any c = (c1, . . . , cn) ∈ R,

we have

ϕk,R(c) =

n∏
i=1

(−1)kmk−1
i q−1i ρk,Ri(ci),

where

ρk,Ri
(ci) = qi

k∑
j=0

j≡ci (mod Mi)

(
k

j

)
+ (2− qi)k − 2k.

Using Theorem 1.6, we completely determine the additive structure of R∗∗

in the following theorem. Note that by Corollary 1.5 we need to exclude the case

when there is some qi equal to 2.

Theorem 1.7. Assume that each qi ≥ 3, i = 1, . . . , n. Then, the following

hold:

(i) If each qi is greater than 4, i = 1, . . . , n, we have

R∗∗ +R∗∗ = R.

(ii) If q1 = · · · = qs = 3 (s ≥ 1) and qj > 4 for each j > s, then for any k ≥ 2

we have

k∑
i=1

R∗∗ =


(⊕si=1Mi)⊕ (⊕j>sRj), if k ≡ 0 (mod 3),

(⊕si=12 +Mi)⊕ (⊕j>sRj), if k ≡ 1 (mod 3),

(⊕si=11 +Mi)⊕ (⊕j>sRj), if k ≡ 2 (mod 3).

(iii) If q1 = · · · = qt = 4 (t ≥ 1) and qj > 4 for each j > t, then for any k ≥ 2

we have

k∑
i=1

R∗∗ =

{
(⊕ti=1(Mi ∪ 1 +Mi))⊕ (⊕j>tRj), if k is even,

(⊕ti=1(Ri \ (Mi ∪ 1 +Mi)))⊕ (⊕j>tRj), otherwise.
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(iv) Assume that q1 = · · · = qs = 3 (s ≥ 1), qs+1 = · · · = qs+t = 4 (t ≥ 1),

and qj > 4 for each j > s+ t. Then, for any k ≥ 2 we have

k∑
i=1

R∗∗ =



(⊕si=1Mi)⊕ (⊕s+ti=s+1(Mi ∪ 1 +Mi))⊕ (⊕j>s+tRj),
if k ≡ 0 (mod 6),

(⊕si=12 +Mi)⊕ (⊕s+ti=s+1(Ri \ (Mi ∪ 1 +Mi)))⊕ (⊕j>s+tRj),
if k ≡ 1 (mod 6),

(⊕si=11 +Mi)⊕ (⊕s+ti=s+1(Mi ∪ 1 +Mi))⊕ (⊕j>s+tRj),
if k ≡ 2 (mod 6),

(⊕si=1Mi)⊕ (⊕s+ti=s+1(Ri \ (Mi ∪ 1 +Mi)))⊕ (⊕j>s+tRj),
if k ≡ 3 (mod 6),

(⊕si=12 +Mi)⊕ (⊕s+ti=s+1(Mi ∪ 1 +Mi))⊕ (⊕j>s+tRj),
if k ≡ 4 (mod 6),

(⊕si=11 +Mi)⊕ (⊕s+ti=s+1(Ri \ (Mi ∪ 1 +Mi)))⊕ (⊕j>s+tRj),
if k ≡ 5 (mod 6).

Using Theorem 1.7, we directly obtain a necessary and sufficient condition

under which every element of R is a sum of its exceptional units.

Corollary 1.8. Assume that each qi ≥ 3, i = 1, . . . , n. Then, every element

of R is a sum of its exceptional units if and only if there is at most one qi equal

to 3 and at most one qj equal to 4 for i, j = 1, . . . , n.

1.5. Multiplicative structure of exceptional units. Here, we want to de-

termine the multiplicative structure of exceptional units of R.

For a unit u ∈ R∗, define the set

Θk,R(u) = {(x1, . . . , xk) ∈ (R∗∗)k : x1x2 · · ·xk = u},

and denote

θk,R(u) = |Θk,R(u)|.

That is, θk,R(u) is the number of ways to represent u as a product of k exceptional

units.

By Corollary 1.5, if there is some qi = 2, then R∗∗ = ∅. Certainly we need

to exclude this case. Applying the same arguments as in [6], we obtain an exact

formula for θk,R(u).
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Theorem 1.9. Assume that each qi ≥ 3, i = 1, . . . , n. Then, for any integer

k ≥ 2 and any u = (u1, . . . , un) ∈ R∗, we have

θk,R(u) =

n∏
i=1

mk−1
i (qi − 1)−1σk,Ri

(ui),

where

σk,Ri
(ui) =

{
(qi − 2)k + (−1)k(qi − 2), if ui ∈ 1 +Mi,

(qi − 2)k + (−1)k+1, if ui 6∈ 1 +Mi.

Then, we can determine the multiplicative structure of R∗∗.

Theorem 1.10. The following hold:

(i) If each qi > 3, i = 1, . . . , n, then we have

R∗∗ ·R∗∗ = R∗.

(ii) If q1 = · · · = qs = 3 (s ≥ 1) and qj > 3 for each j > s, then for any

integer k ≥ 2 we have

k∏
i=1

R∗∗ =

{
(⊕si=11 +Mi)⊕ (⊕j>sR∗j ), if k is even,

(⊕si=1R
∗
i \ 1 +Mi)⊕ (⊕j>sR∗j ), otherwise.

In particular, every unit of R is a product of its exceptional units if and only if

s = 1.

Finally, we determine under which condition the ring R can be generated

by its exceptional units (that is, every element of R can be represented as either

a sum of exceptional units or a sum of products of exceptional units).

Corollary 1.11. Assume that each qi ≥ 3, i = 1, . . . , n. Then, the ring R is

generated by its exceptional units if and only if there is at most one qi equal to 3.

1.6. Applications. So far, there have been extensive studies on additive unit

representations in global fields; see [1] for a survey. Here, we apply our main

results to the case of exceptional units in Dedekind domains.

Let D be a Dedekind domain. Notice that every exceptional unit of D auto-

matically yields an exceptional unit in D/I for any ideal I of D. By Corollary 1.5

(or noticing the simple fact that the binary field has no exceptional unit), we im-

mediately have:

Corollary 1.12. If D has a prime ideal of norm 2, then D∗∗ = ∅.
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In view of quadratic number fields, one can see that the condition in Corol-

lary 1.12 is sufficient but not necessary. In fact, by definition it is easy to see that

the only exceptional units in quadratic fields are the roots of the four polynomials:

X2 −X + 1, X2 − 3X + 1, X2 −X − 1, X2 +X − 1.

They correspond to the quadratic fields Q(
√
−3), Q(

√
5). For each of the two

fields, the ring of integers is generated by its exceptional units.

Using Corollaries 1.8 and 1.12, we directly obtain:

Corollary 1.13. Not every element of D is a sum of its exceptional units if

one of the following conditions holds:

• D has a prime ideal of norm 2;

• D has at least two prime ideals of norm 3;

• D has at least two prime ideals of norm 4.

The following is a direct consequence of Corollary 1.11.

Corollary 1.14. D cannot be generated by its exceptional units if D has at

least two prime ideals of norm 3.

We remark that Corollary 1.14 can be proved by the following simple argu-

ment without using Corollary 1.11: if P and Q are two prime ideals of norm 3,

then every element of D, which is congruent to 0 modulo P and to 1 modulo Q,

cannot be a sum of exceptional units or a sum of products of exceptional units,

because the only exceptional unit modulo P is 2.

The condition in Corollary 1.14 is also only sufficient.

Example 1.15. Choose D to be the ring of integers of the quadratic field

Q(
√

21). Then, the prime 2 is inert and the prime 3 is ramified in D. By Corol-

lary 1.11, for any non-zero ideal I the quotient ring D/I is generated by its

exceptional units. However, D has no exceptional unit.

2. Proofs

2.1. Proof of Corollary 1.2. (i) Notice that for any c = (c1, . . . , cn) ∈ R,

if qi > 2, then

µ2,Ri(ci) > 0.

This, together with Theorem 1.1, implies the result in (i).
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(ii) Now, assume that qi = 2, then by Theorem 1.1, we have

µk,Ri(ci) =

{
1 + (−1)k, if ci ∈Mi,

1 + (−1)k+1, if ci ∈ Ri \Mi.
(2.1)

Then, letting k be even and applying (2.1), we obtain

k∑
i=1

R∗ = (⊕si=1Mi)⊕ (⊕j>sRj).

Similarly, letting k be odd and using (2.1), we obtain the second identity.

2.2. Proof of Theorem 1.7. (i) Notice that given c = (c1, . . . , cn) ∈ R, for

each i = 1, . . . , n,

ρ2,Ri
(ci) > 0, if qi > 4.

This, together with Theorem 1.6, implies the result in (i).

(ii) If qi = 3, we have

ρ2,Ri(ci) = 3

 2∑
j=0

j≡ci (mod Mi)

(
2

j

)
− 1

 , for any ci ∈ Ri.

As qi = 3, the residue classes modulo Mi can be represented by 0, 1, 2, respec-

tively. So, ρ2,Ri(ci) 6= 0 if and only if ci ∈ 1 + Mi. Then, using Theorem 1.6,

we get

R∗∗ +R∗∗ = (⊕si=11 +Mi)⊕ (⊕j>sRj). (2.2)

We again have

ρ3,Ri
(ci) = 3

 3∑
j=0

j≡ci (mod Mi)

(
3

j

)
− 3

 , for any ci ∈ Ri.

Thus, ρ3,Ri(ci) 6= 0 if and only if ci ∈Mi. So, by Theorem 1.6 we obtain

R∗∗ +R∗∗ +R∗∗ = (⊕si=1Mi)⊕ (⊕j>sRj). (2.3)

Then, combining (2.2) with (2.3), we get the identities in (ii).
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(iii) If qi = 4, for even k we have

ρk,Ri
(ci) = 4

k∑
j=0

j≡ci (mod Mi)

(
k

j

)
, for any ci ∈ Ri.

So, ρk,Ri
(ci) 6= 0 if and only if ci ∈Mi or ci ∈ 1+Mi, where one should note that

the characteristic of the residue field Ri/Mi is 2 (because qi = 4). Thus, by using

Theorem 1.6, we get the first identity in (iii).

For the second identity, we note that for odd k we have

ρk,Ri
(ci) = 4

 k∑
j=0

j≡ci (mod Mi)

(
k

j

)
− 2k−1

 , for any ci ∈ Ri.

Since the characteristic of the residue field Ri/Mi is 2, if ci ∈ Mi, then j ≡ ci ≡
0 (mod Mi) for any even integer j. Also, if ci ∈ 1+Mi, then j ≡ ci ≡ 1 (mod Mi)

for any odd integer j. Thus, ρk,Ri
(ci) 6= 0 if and only if ci 6∈Mi and ci 6∈ 1 +Mi.

So, similarly we obtain the second identity.

(iv) The desired results in (iv) follow directly from (ii) and (iii).

2.3. Proof of Theorem 1.9. Applying the same arguments as in [6], we have

the following two lemmas, whose proofs we omit.

Lemma 2.1. For any u = (u1, . . . , un) ∈ R∗, we have

θk,R(u) =

n∏
i=1

θk,Ri
(ui).

Lemma 2.2. For each i = 1, . . . , n and for any unit ui ∈ R∗i , we have

θk,Ri
(ui) = mk−1

i θk,Ri/Mi
(ui).

Let Fq be a finite field of q elements. Recall that a multiplicative character

χ of F∗q is a homomorphism from F∗q to the complex roots of unity. The trivial

character χ0 is the one sending every element of F∗q to 1. Let Gq be the group

of multiplictive characters of F∗q , and let G∗q = Gq \ {χ0}. Then, |Gq| = q − 1.

Furthermore, we have the following orthogonality relations (for instance, see [4]):

∑
a∈F∗

q

χ(a) =

{
q − 1, if χ = χ0,

0, otherwise;
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and ∑
χ∈Gq

χ(a) =

{
q − 1, if a = 1,

0, otherwise.

Proof of Theorem 1.9. Based on the above lemmas, we only need to cal-

culate θk,Fq (c) for c ∈ F∗q and q > 2. Using the above formulas about multiplicative

characters, we obtain

θk,Fq
(c) = |{(x1, . . . , xk) ∈

(
F∗∗q
)k

: x1x2 · · ·xk = c}|

=
∑

x1∈F∗∗
q

∑
x2∈F∗∗

q

· · ·
∑

xk∈F∗∗
q

1

q − 1

∑
χ∈Gq

χ(x1 · · ·xk/c)

=
1

q − 1

∑
χ∈Gq

 ∑
x1∈F∗∗

q

χ(x1)

 · · ·
 ∑
xk∈F∗∗

q

χ(xk)

χ(c−1)

=
1

q − 1

∑
χ∈G∗

q

 ∑
x1∈F∗∗

q

χ(x1)

 · · ·
 ∑
xk∈F∗∗

q

χ(xk)

χ(c−1) + (q − 2)k

 ,

since F∗∗q = F∗q \ {1}.
Notice that for any χ ∈ G∗q , we have

0 =
∑
xi∈F∗

q

χ(xi) = 1 +
∑

xi∈F∗∗
q

χ(xi).

Then, we further have

θk,Fq
(c) =

1

q − 1

(q − 2)k + (−1)k
∑
χ∈G∗

q

χ(c−1)


=

{
1
q−1

(
(q − 2)k + (−1)k(q − 2)

)
, if c = 1,

1
q−1

(
(q − 2)k + (−1)k+1

)
, if c 6= 1.

This, together with Lemma 2.1 and Lemma 2.2, implies the desired result. �

2.4. Proof of Theorem 1.10. (i) Notice that given u = (u1, . . . , un) ∈ R∗, for

each i = 1, . . . , n, we have

σ2,Ri
(ui) > 0, if qi > 3.

This, together with Theorem 1.9, implies the result in (i).
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(ii) If qi = 3, we have

σk,Ri
(ui) =

{
1 + (−1)k, if ui ∈ 1 +Mi,

1 + (−1)k+1, if ui 6∈ 1 +Mi.
(2.4)

Then, letting k be even and applying (2.4), we get

k∏
i=1

R∗∗ = (⊕si=11 +Mi)⊕ (⊕j>sR∗j ).

This completes the proof of the first identity.

Similarly, letting k be odd and using (2.4), we obtain the second identity.

2.5. Proof of Corollary 1.11. The sufficient part follows directly from Corol-

lary 1.2 (i) and Theorem 1.10.

For the necessary part, we suppose that q1 = q2 = 3. By assumption,

the ring R is generated by its exceptional units. Then, the ring R1 ⊕ R2 is also

generated by its exceptional units, and so is the ring R1/M1 ⊕ R2/M2. On the

other hand, since both finite fields R1/M1 and R2/M2 have only three elements,

we in fact have

(R1/M1 ⊕R2/M2)∗∗ = {(2, 2)},

which generates the subset

{(0, 0), (1, 1), (2, 2)}.

So, the ring R1/M1⊕R2/M2 cannot be generated by its unique exceptional unit.

This leads to a contradiction.

Acknowledgements. The authors would like to thank the referees for

careful reading and valuable comments. This work was supported by the National

Natural Science Foundation of China, Grant No. 11501212. The research of Min

Sha was supported by the Macquarie University Research Fellowship.

References

[1] F. Barroero, C. Frei and R. F. Tichy, Additive unit representations in global fields –

a survey, Publ. Math. Debrecen 79 (2011), 291–307.
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