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Restricted summability of the multi-dimensional Cesàro means
of Walsh–Kaczmarz–Fourier series

By KÁROLY NAGY (Nýıregyháza) and MOHAMED SALIM (Al Ain)

Abstract. The properties of the maximal operator of the (C,α)-means (α =

(α1, . . . , αd)) of the multi-dimensional Walsh–Kaczmarz–Fourier series are discussed,

where the set of indices is inside a cone-like set. We prove that the maximal op-

erator is bounded from dyadic Hardy space Hγ
p to Lebesgue space Lp for p0 < p

(p0 = max{1/(1 + αk) : k = 1, . . . , d}) and is of weak type (1, 1). As a corollary,

we get a theorem of Simon on the a.e. convergence of cone-restricted two-dimensional

Fejér means of integrable functions. In the endpoint case p = p0, we show that the max-

imal operator σκ,α,∗L is not bounded from the dyadic Hardy space Hγ
p0 to the Lebesgue

space Lp0 .

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (for more

details, see [1] and [16]). Let P denote the set of positive integers, N := P ∪ {0}.
Denote Z2 the discrete cyclic group of order 2, that is Z2 has two elements 0 and 1,

the group operation is the modulo 2 addition. The topology is given by that

every subset is open. The Haar measure on Z2 is given by the assumption that

the measure of a singleton is 1/2, that is, µ({0}) = µ({1}) = 1/2. Let G be the

complete direct product of countable infinite copies of the compact groups Z2. The

elements of G are sequences of the form x = (x0, x1, . . . , xk, . . .) with coordinates
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xk ∈ {0, 1} (k ∈ N). The group operation on G is the coordinate-wise addition,

the measure (denoted by µ) is the product measure, and the topology is the

product topology. The compact Abelian group G is called the Walsh group.

A base for the neighbourhoods of G can be given by

I0 (x) := G,

In (x) := In (x0, . . . , xn−1) := {y ∈ G : y = (x0, . . . , xn−1, yn, yn+1, . . .)} ,

(x ∈ G,n ∈ N), where In(x) are called dyadic intervals. Let 0 = (0 : i ∈ N) ∈ G
denote the null element of G, and for simplicity, we write In := In (0) (n ∈ N).

Set en := (0, . . . , 0, 1, 0, . . .) ∈ G, the n-th coordinate of which is 1 and the rest

are zeros (n ∈ N).

Let rk denote the k-th Rademacher function, it is defined by

rk (x) := (−1)
xk (k ∈ N, x ∈ G).

The Walsh–Paley system is defined as the product system of Rademacher func-

tions. Now, we give more details. If n ∈ N, then n can be expressed in the form

n =
∞∑
i=0

ni2
i, where ni ∈ {0, 1} (i ∈ N). Define the order of a natural number n

by |n| := max{j ∈ N :nj 6= 0}, that is 2|n| ≤ n < 2|n|+1.

The Walsh–Paley functions are

wn (x) :=

∞∏
k=0

(rk (x))
nk = r|n| (x) (−1)

|n|−1∑
k=0

nkxk
(x ∈ G,n ∈ P) .

The Walsh–Kaczmarz functions, defined by κ0 = 1, are

κn(x) := r|n|(x)

|n|−1∏
k=0

(r|n|−1−k(x))nk = r|n|(x)(−1)
∑|n|−1
k=0 nkx|n|−1−k

for n ≥ 1. The set of Walsh–Kaczmarz functions and the set of Walsh–Paley

functions are equal in dyadic blocks. Namely,

{κn : 2k ≤ n < 2k+1} = {wn : 2k ≤ n < 2k+1}

for all k ∈ P. Moreover, κ0 = w0.

V. A. Skvortsov (see [21]) gave a relation between the Walsh–Kaczmarz

functions and the Walsh–Paley functions. Namely, Skvortsov defined a transfor-

mation τA : G→ G

τA(x) := (xA−1, xA−2, . . . , x1, x0, xA, xA+1, . . .)
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for A ∈ N. The transformation τA satisfies τA(τA(x)) = x for all x ∈ G, and it is

a measure-preserving transformation [21]. By the definition of τA, we have the

following connection:

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G).

Let us set 0 < α, and let

Aαj :=

(
j + α

j

)
=

(α+ 1)(α+ 2) · · · (α+ j)

j!
(j ∈ N;α 6= −1,−2, . . .).

It is known that Aαj ∼ O(jα) (j ∈ N) (see Zygmund [32]). The one-dimensional

Dirichlet kernels and Cesàro kernels are defined by

Dψ
n :=

n−1∑
k=0

ψk, Kψ,α
n (x) :=

1

Aαn

n∑
k=0

Aα−1n−kD
ψ
k (x),

for ψn = wn (n ∈ P) or ψn = κn (n ∈ P), Dψ
0 := 0.

Choosing α = 1 we defined the n-th Fejér mean, as a special case. For Walsh–

Paley–Fejér kernel functions we have Kn(x) → 0, while n → ∞ for every

x 6= 0. However, they can take negative values, which is a different situation

from the trigonometric case. On the other hand, for Walsh–Kaczmarz–Fejér ker-

nel functions we have Kn(x) → ∞, while n → ∞ at every dyadic rational (and

Kn(x) can take negative values, as well). The last fact shows that the behavior

of the Walsh–Kaczmarz system is worse than the behavior of the Walsh–Paley

system in this special sense. See later inequality (2), as well.

It is well-known that the 2n-th Dirichlet kernels have a closed form (see, e.g.,

[16]):

Dw
2n(x) = Dκ

2n(x) = D2n(x) =

{
0, if x 6∈ In,
2n, if x ∈ In.

(1)

The Kronecker product
(
ψn : n ∈ Nd

)
of d Walsh–(Kaczmarz) systems is said

to be the d-dimensional (multi-dimensional) Walsh–(Kaczmarz) system. That is,

ψn (x) = ψn1

(
x1
)
· · ·ψnd

(
xd
)
,

where n = (n1, . . . , nd) and x = (x1, . . . , xd).

If f ∈ L1
(
Gd
)
, then the number f̂ψ (n) :=

∫
Gd

fψn
(
n ∈ Nd

)
is said to be the

n-th Walsh–(Kaczmarz)–Fourier coefficient of f . We can extend this definition

to martingales in the usual way (see Weisz [25], [26]).
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The d-dimensional (C,α) (α = (α1, . . . , αd)) or Cesàro mean of a martingale

is defined by

σψ,αn f(x) :=
1∏d

i=1A
αi
ni

d∑
j=1

nj∑
kj=0

d∏
i=1

Aαi−1ni−kiS
ψ
k (f ;x).

It is known that

Kψ,α
n (x) = Kψ,α1

n1
(x1) · · ·Kψ,αd

nd
(xd).

In 1948, S̆neider [22] introduced the Walsh–Kaczmarz system and showed

that the inequality

lim sup
n→∞

Dκ
n(x)

log n
≥ C > 0 (2)

holds a.e. This inequality shows a big difference between the two arrangements

of the Walsh system.

In 1974, Schipp [17] and Young [31] proved that the Walsh–Kaczmarz sys-

tem is a convergence system. Skvortsov in 1981 showed that the Fejér means

with respect to the Walsh–Kaczmarz system converge uniformly to f for any con-

tinuous functions f , see [21]. Gát [5] proved for any integrable functions that

the Fejér means with respect to the Walsh–Kaczmarz system converge almost

everywhere to the function. Moreover, he showed that the maximal operator

σκ,∗ of Walsh–Kaczmarz–Fejér means is of weak type (1, 1) and of type (p, p)

for all 1 < p ≤ ∞. Gát’s result was generalized by Simon [19], who showed

that the maximal operator σκ,∗ is of type (Hp, Lp) for p > 1/2. In the endpoint

case p = 1/2, Goginava [10] proved that the maximal operator σκ,∗ is not of

type (H1/2, L1/2), and Weisz [28] showed that the maximal operator is of weak

type (H1/2, L1/2). Recently, the rate of the deviant behaviour in the endpoint

case p = 1/2 was discussed by Goginava and the first author [12]. The case

0 < p < 1/2 can be found in the papers of Tephnadze [23], [24].

In 2004, the boundedness of the maximal operator of the Cesàro means (0 <

α ≤ 1) was investigated by Simon [20]. It was showed that the maximal operator

is bounded from the Hardy space Hp to the space Lp for p > p0 := 1/(1 +α) and

of weak type (1,1). Moreover, he showed the inequality

sup
n
‖Kκ,α

n ‖1 <∞ for all 0 < α ≤ 1. (3)

In the endpoint case, Gát and Goginava showed that the endpoint p0 :=1/(1+α)

is essential. That is, they proved that the maximal operator of Cesàro means is

not bounded from the Hardy space Hp0 to the space Lp0 [8]. Other properties
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of the (C,α)-means in the endpoint case p0 are discussed in [3], and in the case

p < p0 are investigated in [4].

For x = (x1, x2, . . . , xd) ∈ Gd and n = (n1, n2, . . . , nd) ∈ Nd, the d-dimensio-

nal rectangles are defined by In(x) := In1(x1) × · · · × Ind(xd). For n ∈ Nd,
the σ-algebra generated by the rectangles {In(x), x ∈ Gd} is denoted by Fn.

The conditional expectation operators relative to Fn are denoted by En.

Suppose that for all j = 2, . . . , d the functions γj : [1,+∞) → [1,+∞) are

strictly monotone increasing continuous functions with properties lim+∞ γj =

+∞ and γj(1) = 1. Moreover, suppose that there exist ζ, cj,1, cj,2 > 1 such that

the inequality

cj,1γj(x) ≤ γj(ζx) ≤ cj,2γj(x) (4)

holds for each x ≥ 1. In this case, the functions γj are called CRF (cone-like

restriction functions). Let γ := (γ2, . . . , γd) and βj ≥ 1 be fixed (j = 2, . . . , d).

In this paper we investigate the maximal operator of the multi-dimensional (C,α)

means and the convergence over a cone-like set L (with respect to the first di-

mension), where

L := {n ∈ Nd : β−1j γj(n1) ≤ nj ≤ βjγj(n1), j = 2, . . . , d}.

If each γj is the identical function, then we get a cone. The cone-like sets were

introduced by Gát in dimension two [6]. The condition (4) on the function γ is

natural, because Gát [6] proved that to each cone-like set with respect to the first

dimension there exists a larger cone-like set with respect to the second dimension

and reversely, if and only if the inequality (4) holds.

Weisz defined a new type of martingale Hardy space depending on the func-

tion γ (see [27]). For a given n1 ∈ N, set nj := |γj(2n1)| (j = 2, . . . , d), that is,

nj is the order of γj(2
n1) (this means that 2nj ≤ γj(2n1) < 2nj+1 for j = 2, . . . , d).

Let n1 := (n1, . . . , nd). Since, the functions γj are increasing, the sequence

(n1, n1 ∈ N) is increasing, too. Then there exists a class of one-parameter mar-

tingales f = (fn1 , n1 ∈ N) with respect to the σ-algebras (Fn1 , n1 ∈ N). The

maximal function of a martingale f is defined by f∗ = sup
n1∈N

|fn1 | . For 0 < p ≤ ∞,

the dyadic martingale Hardy space Hγ
p (Gd) consists of all martingales for which

‖f‖Hγp := ‖f∗‖p <∞. It is known (see [26]) that Hγ
p ∼ Lp for 1 < p ≤ ∞, where

∼ denotes the equivalence of norms and spaces.

If f ∈ L1(Gd), then it is easily shown that the sequence (S2n1 ,...,2nd (f) : n1 =

(n1, . . . , nd), n1 ∈ N) is a one-parameter martingale with respect to the σ-algebras
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(Fn1 , n1 ∈ N). In this case, the maximal function can also be given by

f∗(x) = sup
n1∈N

1

mes(In1(x))

∣∣∣∣∣
∫
In1

(x)

f(u)dµ(u)

∣∣∣∣∣ = sup
n1∈N

|S2n1 ,...,2nd (f, x)|

for x ∈ Gd.
We define the maximal operator σκ,α,∗L by

σκ,α,∗L f(x) := sup
n∈L
|σκ,αn f(x)|.

For double Walsh–Paley–Fourier series, Móricz, Schipp and Wade [14]

proved that σnf converge to f a.e. in the Pringsheim sense (that is, no restriction

on the indices other than min(n1, n2) → ∞) for all functions f ∈ L log+ L. The

a.e. convergence of Fejér means σnf of integrable functions, where the set of

indices is inside a positive cone around the identical function, that is β−1 ≤
n1/n2 ≤ β is provided with some fixed parameter β ≥ 1, was proved by Gát [7]

and Weisz [29]. A common generalization of results of Móricz, Schipp, Wade [14]

and Gát [7], Weisz [29] for cone-like set was given by the first author and Gát

in [9]. Namely, a necessary and sufficient condition for cone-like sets in order to

preserve the convergence property, was given. The trigonometric case was treated

by Gát [6].

Relating to the original paper [6] on trigonometric systems, Gát asked the

following: What could we state for other systems, for example, Walsh–Paley,

Walsh–Kaczmarz and Vilenkin systems, and for other means, for example, log-

arithmic means, Riesz means, (C,α) means? Some parts of Gát’s question was

answered by Weisz [27], Blahota and the first author (see [2], [15]), and by

Gát [9].

In 2011, the properties of the maximal operator of the (C,α) and Riesz means

of a multi-dimensional Vilenkin–Fourier series, provided that the supremum in

the maximal operator is taken over a cone-like set, were discussed by Weisz [27].

Namely, it was proved that the maximal operator is bounded from dyadic Hardy

space Hp to the space Lp for p0 < p ≤ ∞ (p0 := max{1/(1 + αk) : k = 1, . . . , d})
and is of weak type (1, 1). Recently, it was shown that the index p0 is sharp.

Namely, it was proved that the maximal operator is not bounded from the dyadic

Hardy space Hp0 to the space Lp0 [2]. A detailed list of the known results for one-

and several dimensional Walsh-like systems can be found in [30].

For the two-dimensional Walsh–Kaczmarz–Fourier series Simon proved [18]

that the cone-restricted maximal operator of the Fejér means is bounded from

the Hardy space Hp to the space Lp for all 1/2 < p (here the set of indices is
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inside a positive cone around the identical function). That is, the a.e. convergence

of cone-restricted Fejér means holds for the Walsh–Kaczmarz system, as well.

Moreover, it was proved that p = 1/2 is essential. In 2007, Goginava and the

first author proved that the cone-restricted maximal operator is not bounded

from the Hardy space H1/2 to the space weak-L1/2 [13]. The cone-like restricted

two-dimensional maximal operator of Fejér means was discussed in [15].

Motivated by the works of Weisz [27], Simon [18] and the above-mentioned

question of Gát, we prove that the maximal operator σκ,α,∗L is bounded from the

dyadic Hardy space Hγ
p to the Lebesgue space Lp for p0 < p (p0 := max{1/(1 +

αk) : k = 1, . . . , d}) and is of weak type (1, 1). As a corollary, we get the theorem

of Simon [18] on the a.e. convergence of cone-restricted Fejér means. In the

endpoint case p = p0, we show that the maximal operator σκ,α,∗L is not bounded

from the Hardy space Hγ
p0 to the space Lp0 .

In dimension 2, the case α1 = α2 = 1 was discussed in [15]. Unfortunately,

the counterexample martingale presented in [15] and the method are not suitable

for case 0 < αi < 1 (i = 1, . . . , d).

2. Auxiliary propositions and main results

First, we formulate our main theorems.

Theorem 1. Let γ be CRF. The maximal operator σκ,α,∗L is bounded from

the dyadic Hardy space Hγ
p to the space Lp for p0 < p ≤ 1 (p0 := max{1/(1 +

αi); i = 1, . . . , d}).

By standard argument we have that if 1 < p ≤ ∞, then σκ,α,∗L is of type

(p, p) and of weak type (1, 1).

Theorem 2. Let γ be CRF. Then for any f ∈ L1,

lim
∧n→∞
n∈L

σκ,αn f = f

holds almost everywhere.

We immediately have the theorem of Simon [18] as a corollary.

Corollary 1 (Simon [18]). Let f ∈ L1 and β ≥ 1 be a fixed parameter.

Then

lim
∧n→∞

β−1≤n1/n2≤β

σκnf = f

holds a.e.



388 Károly Nagy and Mohamed Salim

Theorem 3. Let γ be CRF and α1 ≤ · · · ≤ αd. The maximal operator

σκ,α,∗L is not bounded from the Hardy space Hγ
p0 to the space Lp0 .

To prove our Theorems 1, 2 and 3, we need the following Lemma of Weisz [26],

the concept of the atoms (for more details, see [27]) and a Lemma of Goginava [11].

A bounded measurable function a is a p-atom, if there exists a dyadic

d-dimensional rectangle I ∈ Fn1 , such that

(a) supp a ⊆ I,

(b) ‖a‖∞ ≤ µ(I)−1/p,

(c)
∫
I
adµ = 0.

Lemma 1 (Weisz [26]). Suppose that the operator T is σ-sublinear and

p-quasilocal for any 0 < p < 1. If T is bounded from L∞ to L∞, then

‖Tf‖p ≤ cp‖f‖Hp for all f ∈ Hp.

Lemma 2 (Goginava [11]). Let n ∈ N and 0 < α ≤ 1. Then∫
G

max
1≤N<2n

(AαN−1|Kα
N (x)|)1/(1+α)dµ(x) ≥ c(α)

n

log(n+ 2)
.

3. Proofs of the theorems

Now, we prove our main Theorems.

Proof of Theorem 1. Using Lemma 1 of Weisz, we have to prove that the

operator σκ,α,∗L is bounded from the space L∞ to the space L∞. It immediately

follows from inequality (3).

Let a be a p-atom, with support I. We can assume that I = IN1
× · · · × INd

(with 2Nj ≤γj(2N1)<2Nj+1, j=2, . . . , d), ‖a‖∞≤2(N1+...+Nd)/p and
∫
I
adµ=0.

In the next steps, we use the next inequality and the monotonicity of CRF

functions γj (j = 2, . . . , d). Then

clj,1γj

(
2N1

ζl

)
≤ γj(2N1) = γj

(
2N1

ζl
ζl
)
≤ clj,2γj

(
2N1

ζl

)
holds for all l ∈ P (j = 2, . . . , d).

Set δ := max{ζ logcj,1 2βj+1
: j = 2, . . . , d}. If n1 ≤ 2N1/δ, then

nj≤βjγj(n1)≤βjγj(2N1ζ
− logcj,1 2βj−1)≤βj

1

c
logcj,1 2βj+1

j,1

γj(2
N1)≤ γj(2

N1)

2
≤2Nj .
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ζ, cj,1, cj,2 > 1, βj ≥ 1 imply n1 < 2N1 and nj ≤ γj(2
N1)/2 < 2Nj (j =

2, . . . , d). In this case, the (m1, . . . ,md)-th Fourier coefficients are zeros for m1 ≤
n1, . . . ,md ≤ nd. This gives σna = 0 (n = (n1, . . . , nd)).

That is, we could suppose that n1 > 2N1/δ. This yields that

nj≥
γj(n1)

βj
≥ γj(2

N1/δ)

βj
≥ 1

βjc
max{logcj,1 2βj+2:j=2,...,d}
j,2

γj(2
N1)≥ γj(2

N1)

δ′j
≥ 2Nj

δ′

with the notion δ′j := c
max{logcj,1 2βj+2:j=2,...,d}
j,2 and δ′ := maxj=2,...,d δ

′
j for all

j = 2, . . . , d. δ′ > 1 can be assumed.

The proof will be complete if we show that the maximal operator σκ,α,∗L is

p-quasilocal for p0 < p ≤ 1. That is, there exists a constant cp such that the

inequality ∫
I

|σκ,α,∗L a|pdµ ≤ cp <∞

holds for all atom a in Hγ
p with support I = IN1

× · · · × INd (with N1 =

(N1, . . . , Nd)). It is well known that the concept of p-quasi-locality of the maxi-

mal operator σκ,α,∗ can be modified as follows [18]: there exists r = 0, 1, . . ., such

that ∫
Ir
|σκ,α,∗L a|pdµ ≤ cp <∞, (5)

where Ir := IrN1
×· · ·×IrNd := IN1−r×· · ·×INd−r (Nj−r ≥ 0 for all j = 1, . . . , d).

We will give the value of r later.

Let us set x = (x1, . . . , xd) ∈ Ir.

|σκ,αn a(x)| =
∣∣∣∣∫
I

a(t1, . . . , td)Kκ,α1
n1

(x1 + t1) · · ·Kκ,αd
nd

(xd + td)dµ(t)

∣∣∣∣
≤ 2(N1+···+Nd)/p

∫
IN1

|Kκ,α1
n1

(x1+ t1)|dµ(t1) · · ·
∫
INd

|Kκ,αd
nd

(xd+ td)|dµ(td)

Now, we decompose the set Ir = IrN1
× · · · × IrNd as the following disjoint union:

Ir = (IrN1
× · · · × IrNd)

∪ (IrN1
× IrN2

× · · · × IrNd) ∪ · · · ∪ (IrN1
× · · · × IrNd−1

× IrNd)

...

∪ (IrN1
× IrN2

× · · · × IrNd) ∪ · · · ∪ (IrN1
× · · · × IrNd−1

× IrNd).
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Let us set δ′′ := max{δ, δ′}, set r ∈ P such that 2−r ≤ 1/δ′′ ≤ 2−r+1, and

Lr,l := IrN1
× · · · × IrNl × I

r
Nl+1

× · · · × IrNd for l = 0, . . . , d. We define

Ji :=

∫
IrNi

(
sup

ni≥2Ni/δ′′

∫
INi

|Kκ,αi
ni (xi + ti)|dµ(ti)

)p
µ(xi), i = 1, . . . , l,

Jj :=

∫
IrNj

(
sup

nj≥2Nj /δ′′

∫
INj

|Kκ,αj
nj (xj + tj)|dµ(tj)

)p
µ(xj), j = l + 1, . . . , d.

Now, we get∫
Lr,l
|σκ,α,∗L a|pdµ ≤ 2N1+···+NdJ1 × · · · × Jl × Jl+1 × · · · × Jd.

First, we discuss the integrals Ji (i = 1, . . . , l). Inequality (3) and the defini-

tions of δ′′, r immediately yield that

Ji ≤ 2−(Ni−r)
(

sup
n1∈N

‖Kκ,αi
ni ‖1

)p
≤ cp2−Ni . (6)

Second, we discuss the integrals Jj (j = l+ 1, . . . , d). In the paper [20, pages

48–59], Simon showed that

∫
IN

(
sup
n≥2N

∫
IN

|Kκ,α
n (x+ t)|dµ(t)

)p
µ(x)≤cp2−N , if p >

1

1 + α
(0<α≤1). (7)

Using this, we write

Jj≤
∫
IrNj

(
sup

nj≥2Nj−r

∫
IrNj

|Kκ,αj
nj (xj+tj)|dµ(tj)

)p
µ(xj)≤cp2−Nj , if p>

1

1+αj
. (8)

Inequalities (6), (8) yield∫
Lr,l
|σκ,α,∗L a|pdµ ≤ cp for all l if p > p0.

The decomposition of Ir gives∫
Ir
|σκ,α,∗L a|pdµ ≤ cp,d, if p > p0.

This completes the proof of Theorem 1. �
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The weak type (1, 1) inequality follows by interpolation. The set of Walsh–

Kaczmarz polynomials is dense in L1. The weak-type (1,1) inequality and the

usual density argument imply Theorem 2.

Proof of Theorem 3. In the present proof we use a counterexample mar-

tingale. Let us set

fn1(x) := (D2n1+1(x1)−D2n1 (x1))

d∏
j=2

w2nj−1−1(xj),

where n2, . . . , nd is defined to n1 earlier.

Now, we calculate Sκj (fn1 ;x). Since, ω2n−1−1(x) = rn−2(x)(−1)
∑n−3
i=0 xi =

κ2n−1−1(x), we have

f̂κn1
(k) =

{
1, if k1 = 2n1 , . . . , 2n1+1− 1, and kj= 2nj−1− 1 for all j= 2, . . . , d;

0, otherwise.

Sκj (fn1 , x) =

j1−1∑
ν=0

f̂κn1
(ν, 2n2−1 − 1, . . . , 2nd−1 − 1)κν(x1)

d∏
l=2

κ2nl−1−1(xl)

=



(Dκ
j1(x1)−D2n1 (x1))

∏d
l=2 w2nl−1−1(xl) if j1 = 2n1 + 1, . . . , 2n1+1 − 1,

and jl ≥ 2nl−1 for all l = 2, . . . , d;

fn1(x) if j1 ≥ 2n1+1 and jl ≥ 2nl−1

for all l = 2, . . . , d;

0 otherwise.

(9)

We immediately have that

f∗n1
(x) = sup

m1∈N
|S2m1 ,...,2md (fn1 , x)| = |fn1(x)|,

where m1 = (m1, . . . ,md).

‖fn1
‖Hγp0 = ‖f∗n1

‖p0 = ‖D2n1‖p0 = 2(1−1/p0)n1 <∞. (10)

That is fn1 ∈ Hγ
p0 .

We can write the n-th Dirichlet kernel with respect to the Walsh–Kaczmarz

system in the following form:

Dκ
n(x) = D2|n|(x) +

n−1∑
k=2|n|

r|k|(x)wk−2|n|(τ|k|(x))

= D2|n|(x) + r|n|(x)Dw
n−2|n|(τ|n|(x)) (11)
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We set LN1 := 2n1 + N , where 0 < N < 2n1 and LNj := [γj(2
n1 + N)] for

j = 2, . . . , d (where [x] denotes the integer part of x). In this case, LN :=

(LN1 , . . . , L
N
d ) ∈ L. Let us calculate σκ,α

LN
fn1 .

By inequalities (11) and (9), we get

|σκ,α
LN

fn1
(x)|

=
1∏d

j=1A
αj
LNj

∣∣∣∣∣∣
d∑
j=1

LNj∑
kj=0

d∏
i=1

Aαi−1
LNi −ki

Sκk (fn1
;x)

∣∣∣∣∣∣
=

1∏d
j=1A

αj
LNj

∣∣∣∣∣∣
d∑
j=2

LNj∑
kj=2nj−1

LN1∑
k1=2n1+1

d∏
i=1

Aαi−1
LNi −ki

Sκk (fn1
;x)

∣∣∣∣∣∣
=

1∏d
j=1A

αj
LNj

∣∣∣∣∣∣
d∑
j=2

LNj∑
kj=2nj−1

LN1∑
k1=2n1+1

d∏
i=1

Aαi−1
LNi −ki

×
d∏
l=2

w2nl−1−1(xl)(Dκ
k1(x1)−D2n1 (x1))

∣∣∣∣∣
=

1∏d
j=1A

αj
LNj

∣∣∣∣∣∣
d∑
j=2

LNj −2
nj−1∑

kj=0

d∏
i=2

Aαi−1
LNi −2ni−1−ki

LN1 −2
n1∑

k1=1

Aα1−1
LN1 −2n1−k1

Dw
k1(τn1

(x1))

∣∣∣∣∣∣
=

1∏d
j=1A

αj
LNj

∣∣∣∣∣∣
d∑
j=2

LNj −2
nj−1∑

kj=0

d∏
i=2

Aαi−1
LNi −2ni−1−ki

∣∣∣∣∣∣
∣∣∣Aα1

LN1 −2n1
Kw,α1

LN1 −2n1
(τn1

(x1))
∣∣∣

≥ c(α)

2n1α1
Aα1

N |K
w,α1

N (τn1
(x1))|.

Now, we write that

σκ,α,∗L fn1
(x) ≥ max

1≤N<2n1
|σκ,α
LN

fn1
(x)| ≥ c(α)

2n1α1
max

1≤N<2n1
Aα1

N |K
w,α1

N (τn1
(x1))|.

Inequality (10), properties of the transformation τn1 and Lemma 2 yield

‖σκ,α,∗L fn1‖p0
‖fn1
‖Hγp0

≥ 1

2(1−1/p0)n1

(∫
Gd

max
1≤N<2n1

|σκ,α
LN

fn1
(x)|p0dµ(x)

)1/p0

≥ c(α)2n1α1

2n1α1

(∫
G

max
1≤N<2n1

(
Aα1

N |K
w,α1

N (τn1
(x1))|

)p0
dµ(x1)

)1/p0
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=
c(α)2n1α1

2n1α1

(∫
G

max
1≤N<2n1

(
Aα1

N |K
w,α1

N (x1)|
)1/(1+α1)

dµ(x1)

)1+α1

≥ c(α)

(
n1

log(n1 + 2)

)1+α1

→∞, while n1 →∞.

This completes the proof of Theorem 3. �
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[19] P. Simon, On the Cesàro summability with respect to the Walsh–Kaczmarz system,
J. Approx. Theory 106 (2000), 249–261.

[20] P. Simon, (C,α)-summability of Walsh–Kaczmarz–Fourier series, J. Approx. Theory 127

(2004), 39–60.

[21] V. A. Skvortsov, On Fourier series with respect to the Walsh–Kaczmarz system, Anal.

Math. 7 (1981), 141–150.
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