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Restricted summability of the multi-dimensional Cesaro means
of Walsh—Kaczmarz—Fourier series

By KAROLY NAGY (Nyfregyhdza) and MOHAMED SALIM (Al Ain)

Abstract. The properties of the maximal operator of the (C,a)-means (o =
(a1,...,aq)) of the multi-dimensional Walsh—Kaczmarz—Fourier series are discussed,
where the set of indices is inside a cone-like set. We prove that the maximal op-
erator is bounded from dyadic Hardy space H] to Lebesgue space L, for po < p
(po = max{1/(1 + ax) : k = 1,...,d}) and is of weak type (1,1). As a corollary,
we get a theorem of Simon on the a.e. convergence of cone-restricted two-dimensional
Fejér means of integrable functions. In the endpoint case p = po, we show that the max-
imal operator 07" is not bounded from the dyadic Hardy space Hp, to the Lebesgue
space Lp, .

1. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis (for more
details, see [1] and [16]). Let P denote the set of positive integers, N := P U {0}.
Denote Zs the discrete cyclic group of order 2, that is Z, has two elements 0 and 1,
the group operation is the modulo 2 addition. The topology is given by that
every subset is open. The Haar measure on Zs is given by the assumption that
the measure of a singleton is 1/2, that is, u({0}) = p({1}) = 1/2. Let G be the
complete direct product of countable infinite copies of the compact groups Zs. The
elements of G are sequences of the form = = (9,21, ..., T, ...) with coordinates
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xp € {0,1} (k € N). The group operation on G is the coordinate-wise addition,
the measure (denoted by p) is the product measure, and the topology is the
product topology. The compact Abelian group G is called the Walsh group.
A base for the neighbourhoods of G can be given by

IO (.1?) = G7
I, (iC) =1, (an”'vxnfl) = {y €G: Yy= (m07'~~axn717yn7yn+17~“)}7

(x € G,n € N), where I,(x) are called dyadic intervals. Let 0 = (0:7 € N) € G
denote the null element of G, and for simplicity, we write I,, := I,, (0) (n € N).
Set e, := (0,...,0,1,0,...) € G, the n-th coordinate of which is 1 and the rest
are zeros (n € N).

Let r; denote the k-th Rademacher function, it is defined by

i (2) = (-1)" (keN,z €q).

The Walsh—Paley system is defined as the product system of Rademacher func-
tions. Now, we give more details. If n € N, then n can be expressed in the form

n =Y n;2", where n; € {0,1} (i € N). Define the order of a natural number n
i=0
by |n| := max{j € N:n; # 0}, that is 2"l <n < 2InI+1,

The Walsh—Paley functions are

o0

w (@) = [ (i @)™ = 1y (2) (-1) = ™ (@ e Gn e P).

k=0
The Walsh—Kaczmarz functions, defined by xyo = 1, are

|n|—1
|n|—1

k(@) = iy () [T (rnoa—n (@)™ = vy (@) (=1) =0 "imi=i
k=0

for n > 1. The set of Walsh-Kaczmarz functions and the set of Walsh—Paley
functions are equal in dyadic blocks. Namely,

{kp 28 <n < 2P = {w, : 28 <n < 281}

for all k € P. Moreover, kg = wy.

V. A. SKVORTSOV (see [21]) gave a relation between the Walsh-Kaczmarz
functions and the Walsh—Paley functions. Namely, Skvortsov defined a transfor-
mation 74: G — G

TA(J;) = (xA—laxA—27 <oy L1, L0, LA, LA - - )
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for A € N. The transformation 74 satisfies T4(74(x)) = z for all z € G, and it is
a measure-preserving transformation [21]. By the definition of 74, we have the
following connection:

k() = T (X)W, _gini (T (2))  (n € N,z € G).
Let us set 0 < «, and let

o <j+a> _ (et D(a+2)--(a+])

Y= . - e Nja # —1,-2,...).
¥ j 7 (U # )
It is known that A ~ O(j%) (j € N) (see ZYGMUND [32]). The one-dimensional
Dirichlet kernels and Cesaro kernels are defined by

DY ::iwk, KV (z) == AQZA“ DY (x
™ k=0

for ¢, = wy, (n € P) or ¢, = k, (n € P), DY :=0.

Choosing a = 1 we defined the n-th Fejér mean, as a special case. For Walsh—
Paley-Fejér kernel functions we have K,(x) — 0, while n — oo for every
x # 0. However, they can take negative values, which is a different situation
from the trigonometric case. On the other hand, for Walsh—Kaczmarz—Fejér ker-
nel functions we have K, (z) — oo, while n — oo at every dyadic rational (and
K, (x) can take negative values, as well). The last fact shows that the behavior
of the Walsh-Kaczmarz system is worse than the behavior of the Walsh—Paley
system in this special sense. See later inequality (2), as well.

It is well-known that the 2"-th Dirichlet kernels have a closed form (see, e.g.,
[16]):

D3 (x) = Di(z) = Dn (a) = {0’ L 0
2n, ifxel,.

The Kronecker product (wn 'n € Nd) of d Walsh—(Kaczmarz) systems is said
to be the d-dimensional (multi-dimensional) Walsh—(Kaczmarz) system. That is,

VY (2) = n, (xl) “Uny (xd) )

where n = (ny,...,ngq) and z = (2},.. a:d)
If fe Lt (G’d) then the number fd’ (n) f [t (n € N%) is said to be the

n-th Walsh—(Kaczmarz)-Fourier coefficient of f We can extend this definition
to martingales in the usual way (see WEISzZ [25], [26]).
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The d-dimensional (C,a) (o = (a1, ..., aq)) or Cesaro mean of a martingale
is defined by

7 = S ST st

H i j=1k;=01i=1

It is known that
) _ ;a1 (.1 s d
KU(z) = Ko (zh) - Ko ().

n

In 1948, SNEIDER [22] introduced the Walsh-Kaczmarz system and showed
that the inequality
lim su Di ()
P

msup S >C>0 (2)
holds a.e. This inequality shows a big difference between the two arrangements
of the Walsh system.

In 1974, ScHIPP [17] and YOUNG [31] proved that the Walsh-Kaczmarz sys-
tem is a convergence system. SKVORTSOV in 1981 showed that the Fejér means
with respect to the Walsh—Kaczmarz system converge uniformly to f for any con-
tinuous functions f, see [21]. GAT [5] proved for any integrable functions that
the Fejér means with respect to the Walsh-Kaczmarz system converge almost
everywhere to the function. Moreover, he showed that the maximal operator
o'* of Walsh-Kaczmarz—Fejér means is of weak type (1,1) and of type (p,p)
for all 1 < p < oo. Gé&t’s result was generalized by SIMON [19], who showed
that the maximal operator ¢"* is of type (Hp, L) for p > 1/2. In the endpoint
case p = 1/2, GOGINAVA [10] proved that the maximal operator ¢"* is not of
type (Hi 2, L1/2), and WEISZ [28] showed that the maximal operator is of weak
type (Hisz, L1/2). Recently, the rate of the deviant behaviour in the endpoint
case p = 1/2 was discussed by GOGINAVA and the first author [12]. The case
0 < p < 1/2 can be found in the papers of TEPHNADZE [23], [24].

In 2004, the boundedness of the maximal operator of the Cesaro means (0 <
a < 1) was investigated by SIMON [20]. It was showed that the maximal operator
is bounded from the Hardy space H), to the space L, for p > po :=1/(1 + «) and
of weak type (1,1). Moreover, he showed the inequality

sup || forall 0 < < 1. (3)
n

In the endpoint case, GAT and GOGINAVA showed that the endpoint pg:=1/(1+«)

is essential. That is, they proved that the maximal operator of Cesaro means is

not bounded from the Hardy space Hp, to the space L,, [8]. Other properties
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of the (C, a)-means in the endpoint case py are discussed in [3], and in the case
p < po are investigated in [4].

For x = (2%, 22,...,2%) € GY and n = (ny,na,...,nq) € N, the d-dimensio-
nal rectangles are defined by I,,(z) := I, (z') x --- x I,,(2%). For n € N4
the o-algebra generated by the rectangles {I,(z),z € G} is denoted by F,.
The conditional expectation operators relative to F,, are denoted by E,.

Suppose that for all j = 2,...,d the functions v;: [1,400) — [1,400) are
strictly monotone increasing continuous functions with properties limy.v; =
+00 and v;(1) = 1. Moreover, suppose that there exist ¢,c¢; 1,¢j2 > 1 such that
the inequality

i) < 75(Cx) < ¢j27;(2) (4)

holds for each « > 1. In this case, the functions v; are called CRF (cone-like
restriction functions). Let v := (y2,...,7q4) and §; > 1 be fixed (j = 2,...,d).
In this paper we investigate the maximal operator of the multi-dimensional (C, «)
means and the convergence over a cone-like set L (with respect to the first di-
mension), where

L:={neN": B y;(n1) <nj < Biy(na),j =2,...,d}.

If each vy; is the identical function, then we get a cone. The cone-like sets were
introduced by GAT in dimension two [6]. The condition (4) on the function v is
natural, because G4t [6] proved that to each cone-like set with respect to the first
dimension there exists a larger cone-like set with respect to the second dimension
and reversely, if and only if the inequality (4) holds.

WEIsZ defined a new type of martingale Hardy space depending on the func-
tion vy (see [27]). For a given ny € N, set n; := |y;(2™)] (j = 2,...,d), that is,
n; is the order of ;(2™) (this means that 2% < ~;(2™) < 2%+ for j =2,....d).
Let @7 := (n1,...,nq). Since, the functions v; are increasing, the sequence
(71, n1 € N) is increasing, too. Then there exists a class of one-parameter mar-
tingales f = (fz,, n1 € N) with respect to the o-algebras (Fqy, n1 € N). The

maximal function of a martingale f is defined by f* = sup |fx,|. For 0 < p < oo,
ni1 €N

the dyadic martingale Hardy space H)) (G?) consists of all martingales for which
11l gzy == /7]l < oo. It is known (see [26]) that H] ~ Ly for 1 < p < oo, where
~ denotes the equivalence of norms and spaces.

If f € L1(G?), then it is easily shown that the sequence (Sani _ ona (f) : 71 =
(n1,...,m4),n1 € N) is a one-parameter martingale with respect to the o-algebras
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(Far, n1 € N). In this case, the maximal function can also be given by

/ f(w)dpa(u)
Iy ()

f*(z) = sup !

N ) = 2 1S, ane(f5)

ni €N

for » € G
We define the maximal operator o'®" by

op " () = sup o f ()]
nel

For double Walsh-Paley—Fourier series, MORICZ, SCHIPP and WADE [14]
proved that o, f converge to f a.e. in the Pringsheim sense (that is, no restriction
on the indices other than min(ni,ny) — oo) for all functions f € Llog™ L. The
a.e. convergence of Fejér means o, f of integrable functions, where the set of
indices is inside a positive cone around the identical function, that is =1 <
ny/ng < B is provided with some fixed parameter 8 > 1, was proved by GAT [7]
and WEISzZ [29]. A common generalization of results of Méricz, Schipp, Wade [14]
and Gat [7], Weisz [29] for cone-like set was given by the first author and GAT
in [9]. Namely, a necessary and sufficient condition for cone-like sets in order to
preserve the convergence property, was given. The trigonometric case was treated
by Gé&t [6].

Relating to the original paper [6] on trigonometric systems, G&t asked the
following: What could we state for other systems, for example, Walsh—Paley,
Walsh-Kaczmarz and Vilenkin systems, and for other means, for example, log-
arithmic means, Riesz means, (C,«) means? Some parts of Gét’s question was
answered by Weisz [27], BLAHOTA and the first author (see [2], [15]), and by
Gat [9].

In 2011, the properties of the maximal operator of the (C, ) and Riesz means
of a multi-dimensional Vilenkin-Fourier series, provided that the supremum in
the maximal operator is taken over a cone-like set, were discussed by Weisz [27].
Namely, it was proved that the maximal operator is bounded from dyadic Hardy
space H), to the space L, for po < p < oo (po :=max{l/(1+ ) :k=1,...,d})
and is of weak type (1,1). Recently, it was shown that the index pg is sharp.
Namely, it was proved that the maximal operator is not bounded from the dyadic
Hardy space H,, to the space Ly, [2]. A detailed list of the known results for one-
and several dimensional Walsh-like systems can be found in [30].

For the two-dimensional Walsh-Kaczmarz—Fourier series SIMON proved [18]
that the cone-restricted maximal operator of the Fejér means is bounded from
the Hardy space H), to the space L, for all 1/2 < p (here the set of indices is
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inside a positive cone around the identical function). That is, the a.e. convergence
of cone-restricted Fejér means holds for the Walsh-Kaczmarz system, as well.
Moreover, it was proved that p = 1/2 is essential. In 2007, GOGINAVA and the
first author proved that the cone-restricted maximal operator is not bounded
from the Hardy space Hj/y to the space weak-L; /5 [13]. The cone-like restricted
two-dimensional maximal operator of Fejér means was discussed in [15].

Motivated by the works of Weisz [27], Simon [18] and the above-mentioned
question of Gat, we prove that the maximal operator o7’ is bounded from the
dyadic Hardy space H) to the Lebesgue space L, for pg < p (po := max{1/(1 +
ag):k=1,...,d}) and is of weak type (1,1). As a corollary, we get the theorem
of Simon [18] on the a.e. convergence of cone-restricted Fejér means. In the
endpoint case p = pg, we show that the maximal operator o’ is not bounded
from the Hardy space H, to the space Ly,.

In dimension 2, the case a1 = ay = 1 was discussed in [15]. Unfortunately,
the counterexample martingale presented in [15] and the method are not suitable
forcase 0 < a; <1 (i =1,...,d).

2. Auxiliary propositions and main results

First, we formulate our main theorems.

K, %

Theorem 1. Let v be CRF. The maximal operator o7 is bounded from
the dyadic Hardy space H) to the space L, for po < p <1 (po := max{1/(1 +
;)i =1,...,d}).

K,0 %

By standard argument we have that if 1 < p < oo, then o} is of type
(p,p) and of weak type (1,1).

Theorem 2. Let v be CRF. Then for any f € L',

: K,oe £ __
Arlzlgnoo Un, f B f
neL

holds almost everywhere.
We immediately have the theorem of Simon [18] as a corollary.

Corollary 1 (Simon [18]). Let f € L' and 8 > 1 be a fixed parameter.
Then
i, =
BT <n1/n2<B

holds a.e.
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Theorem 3. Let v be CRF and a1 < --- < ag. The maximal operator

K00, %

oy is not bounded from the Hardy space H) to the space Ly,.

To prove our Theorems 1, 2 and 3, we need the following Lemma of Weisz [26],
the concept of the atoms (for more details, see [27]) and a Lemma of Goginava [11].
A bounded measurable function a is a p-atom, if there exists a dyadic
d-dimensional rectangle I € F5,, such that
(a) suppa C I,
(b) flalloo < p(I)~HP,
(¢) [;adu=0.

Lemma 1 (Weisz [26]). Suppose that the operator T is o-sublinear and
p-quasilocal for any 0 < p < 1. If T is bounded from Ly, to L, then

ITfllp < collflla,  forall f & Hy.

Lemma 2 (Goginava [11]). Let n € N and 0 < o < 1. Then

a o 1/(14a) > n
g 1&3;}{2”(AN71|KN($)|) dp(z) > c(a)ilog(n—l— 2)’

3. Proofs of the theorems

Now, we prove our main Theorems.

PrOOF OF THEOREM 1. Using Lemma 1 of Weisz, we have to prove that the
operator o7*" is bounded from the space Lo, to the space Loo. It immediately
follows from inequality (3).

Let a be a p-atom, with support I. We can assume that I = Iy, X --- X Iy,
(with 25 < (28N1) <2Ni+L =2 . d), [lalleo <21 FFND/P and [} adp=0.

In the next steps, we use the next inequality and the monotonicity of CRF
functions vy, (j =2,...,d). Then

1 2N Ny 2M / 2
Ci17j 7 <y (2M) =1 a C ) <¢0v 7

holds for alll e P (j =2,...,d).
Set § := max{(logcivl SRR j=2,...,d}. Ifny <2M/§ then

“log, . 28;-1 1 v; (2N ,
ny < By (n) < By (2N ¢ e 2 ) <Bi T (2 S ) <om,
c 75

2

g1
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Ciejn,cj2 > 1, B3 > 1imply ny < 2N and n; < 4;(2M)/2 < 2Ni (5 =
2,...,d). In this case, the (mq,...,mg)-th Fourier coefficients are zeros for m; <
ni,...,mqg < ng. This gives 0,6 =0 (n = (n1,...,n4)).

That is, we could suppose that n; > 2¥1/§. This yields that

() _ v (2N/6) 1 Ny (2N 2%
n;> > > — 7 (27) 2 >
J ﬁj B] jc;?;lx{logcj’l 28;+2:5=2,...,d} I 6; &
ax{log, . 2B;+2:j=2,...,d
with the notion &} := C;TEX{ PBega ST ’ and 0’ := max;j_p 40} for all
j=2,...,d. & > 1 can be assumed.

R,0, %

The proof will be complete if we show that the maximal operator o; is
p-quasilocal for pg < p < 1. That is, there exists a constant ¢, such that the
inequality

/7|Jz’a’*a|pdu <ep <00
T

holds for all atom a in H) with support I = Iy, X --- X Iy, (with Ny =
(N1,...,Ng)). It is well known that the concept of p-quasi-locality of the maxi-

mal operator o"** can be modified as follows [18]: there exists r = 0,1,..., such
that
[ o alPdp < ¢ < o0, (5)
VG
where [" := Iy X+ x Iy = In, X XIN, (Nj—r>0forallj=1,...,d).
We will give the value of r later.
Let us set = (x!,... 2% € I".

ot a()| = \ / a(t!, .. K (@t 1) K (2 4 td)du(t)‘
I

< 2(N1+~~-+Nd)/p/

INl

e 1 K, d d d
K +t1)\du(t1)~'/1 (K (@ £9) [dp(t)
Ng

Now, we decompose the set 1" = Iy, x -+ x I} as the following disjoint union:

F:(KX...XE)

U (I, X Tn, X oo x Ty YU+~ U (I, x - x Iy~ x Iy,)

—1

U(IT\,lxI}\}2 X oo x I YU U Iy, x - x Iy, xm).
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Let us set 6" := max{4,8'}, set » € P such that 27" < 1/§” < 27" and
Lrhi= I3 % x Iy x Iy %o x Iy for 1= 0,....,d. We define

P
Ji = / sup / |Kpi(a +¢9)|du(t') | p=h), i=1,...,1,
15, \nix2Nijsr iy,

p
T = /( sup / |Ks;aj<mj+tﬂ‘>|du<tj>) wad), j=1+1,....d,
I INj

Ny \ny>2%i /s

Now, we get

/ ‘O_z,a,*a|pd‘u < 2N1+"'+NdJ1 X oo X ']l X Jl+1 X e X Jd.
Lt

First, we discuss the integrals J; (i = 1,...,1). Inequality (3) and the defini-
tions of §”,r immediately yield that

52 (sup

p
1) S Cp2_Ni. (6)
n1 €N

Second, we discuss the integrals jj (j=1+1,...,d). In the paper [20, pages
48-59], Simon showed that

/( sup / |Kz’°‘(x—|—t)du(t)> wa)<e, 27N ifp > . (0<a<l). (7)
T~ In

nZ2N 1 + «

Using this, we write

p
_ o . . 1
7< ( wp [ |Ks;af<xﬂ+tﬂ>|du<tf>> @) <2, ifp>——. (8)
I I

Ni—r 1+ao;
Ny \ny 227" Iy j

Inequalities (6), (8) yield
/ lof**alPdu < ¢, for all [ if p > po.
Lrt

The decomposition of I™ gives

R,0,%

| oy alPdp < cpa, if p> po.
I'V‘

This completes the proof of Theorem 1. O
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The weak type (1, 1) inequality follows by interpolation. The set of Walsh—
Kaczmarz polynomials is dense in L;. The weak-type (1,1) inequality and the
usual density argument imply Theorem 2.

PROOF OF THEOREM 3. In the present proof we use a counterexample mar-
tingale. Let us set

fﬁ(x) = (D2ﬂ1+1($1) 2ﬂ1 Han 1 1 x]

where ns, ..., ng is defined to n; earlier.

Now, we calculate S¥(fry; ). Since, wyn-1_1(z) = rn_g(x)(fl)zrzo3 Tio=
Kon-1_1(x), we have
- 1, ifkp=2™,...,2mH" 1 and k;=2%"'—1forall j=2,...,d;
fm(k’) = { !

0, otherwise.

Jji1—1

d
fnl’ Z f"l v, 2" t- '~-’2nd71 - 1)”1/(:”1) HH21LZ7171($ )
1=2
(D5, (@) = Dama (@) [Ty wom -1y (2!) if o =2 41,24 — 1,
and j; > 2™ foralll=2,...,d;

= q far(z) if 1 > 2™ and j, > 2™
foralll=2,...,d;

0 otherwise.
9)
We immediately have that
far(@) = sup [Soma . 2ma (frr, )| = | far(2)],
m1€EN
where M1 = (my, ..., mq).
I frzllzg, = Izl = 1 Dant [lpg = 207 1/P00™ < o0, (10)

That is frr € Hy .
We can write the n-th Dirichlet kernel with respect to the Walsh-Kaczmarz
system in the following form:
n—1
DE(x) = Dy (z) + Y 7y (@) wy_ginl (71 ()

Jaln]
= Dajn () + 71n) () D}y _ o) (T (2)) (11)
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We set LYY := 2™ + N, where 0 < N < 2™ and LY := [y;(2" + N)] for
j = 2,...,d (where [z] denotes the integer part of x). In this case, LV :=
(LY, .. LN) € L. Let us calculate o}y far

By inequalities (11) and (9), we get

oy N far ()]
1 d
a;—1
= Hd o Z HALN kSk(fnl’ x)
Hj:l AL?, j=1k;=01=1

N N
LJ‘ Ly

1 d .
H lAaJ Z Z HAL}V 1k Sk fn17 )
j=

J=2 g;=gni 1 k1=2"141i=1

L
Z Z H A(zZN_—lki
—onj

1 =271 41 i=1

a]
HJ lALN J=2

Xsznl @)D, (@ >D2n1<x1>>’

—1

1 d L] —2m d Li\’,gnl
_ a;—1 a;—1 w 1
=T A | Z [1AZ5 e D0 ATV s, DI (7 (21))
G=1LN j=2 k=0 =2 k=1

N _gnj—1
L —2"

d d
1 a;—1 1
H Aa] Z Z HALN 2ni =tk ‘ALN 2”1K2Na12n1(7—n1(x ))
Jj=1 k.= i=2

S c(a)

— 9nioa

AR B (7o, (21))]-
Now, we write that

(@)

2n1an 1<N<2"1

@) 2, g, Vo )] 2

AR KN (1o (@)

Inequality (10), properties of the transformation 7,,, and Lemma 2 yield

|| Ha*fnlnpo S 1 oy po 1/po
Hf’fllHH”’ - 2(171/270)”1 G lg%i};m |JLN fnl (.’E)| ﬂ(l')
PO
S c(a)2m™ (

- 2ni1aq

1/po
[ s, (AR (5 D) dua) )
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1+aq
= C(a)inal ay | prw,ar o 1y L/ (1+a1) 1
= “gmar ( s, (AR KN (@) dp(z")

14+a;
> c(a) M — 00, while n; — oo.
log(n1 + 2)

This completes the proof of Theorem 3. O
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