Some special subclasses of univalent starlike functions

By N. SAMARIS (Patras)

Abstract

Let $0<\lambda<1, \alpha>1, \frac{2(\alpha-1)}{\lambda}<1$ and $T(\lambda, \alpha)$ the class of homomorphic functions in the unit disc for which $f(0)=f^{\prime}(0)-1=0$ and $\operatorname{Re}\left[(1-\lambda) z \frac{f^{\prime}(z)}{f(z)}\right.$ $\left.+\lambda\left(1+\frac{z\left(f^{\prime \prime}(z)\right.}{f^{\prime}(z)}\right)\right]<\alpha$. We find sharp inequalities for the quantities $\operatorname{Re}\left\{z \frac{f^{\prime}(z)}{f(z)}\right\}$, $\operatorname{Re}\left\{\frac{f(z)}{z f^{\prime}(z)}\right\},\left|\frac{z f^{\prime}(z)}{f(z)}\right|,|f(z)|$ for $f \in T(\lambda, \alpha)$. A special result is that if $f \in T(\lambda, \alpha)$ then f is a univalent starlike function.

Introduction

If $\mathbf{H}(\mathbf{U})$ is the class of holomorphic functions defined in the unit disc $\mathbf{U}=\{z:|z|<1\}$ then we denote by:
(i) A the class of functions $f \in \mathbf{H}(\mathbf{U})$ for which $f(0)=f^{\prime}(0)-1=0$.
(ii) $\mathbf{T}(\lambda, \alpha)$ the class of functions $f \in \mathbf{A}$ for which $\operatorname{Re} f_{\lambda}<\alpha$ where

$$
f_{\lambda}(z)=(1-\lambda) z \frac{f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right), \quad 0<\lambda<1, \alpha>1
$$

(iii) \mathbf{P} the class of functions $f \in \mathbf{H}(\mathbf{U})$ for which $f(0)=1$ and $\operatorname{Re} f>0$. Nunokawa [1] has proved the following Theorem.
Theorem 1. If $f \in \mathbf{T}\left(1, \frac{3}{2}\right)$, then

$$
0<\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]<\frac{4}{3} \quad \text { in } \quad \mathbf{U} .
$$

The inequalities in Nunokawa's Theorem are best possible. In the present paper we prove the following Theorem:

1991 Mathematics subject classification 30 c 45 .

Theorem 2. If $f \in \mathbf{T}(\lambda, \alpha), \frac{2(a-1)}{\lambda}<1$ and

$$
P(\lambda, \alpha, z)=\frac{1}{\lambda} \int_{0}^{1}\left(\frac{1+t z}{1+z}\right)^{\frac{2(a-1)}{\lambda}} t^{\frac{1}{\lambda}-1} d t
$$

then
(i) $\frac{1}{P(\lambda, \alpha,-r)}<\left|\frac{z f^{\prime}(z)}{f(z)}\right|<\frac{1}{P(\lambda, \alpha, r)}$ in $\mathbf{U}_{r}=\{z:|z|<r\}$.
(ii) $0<\operatorname{Re}\left[\frac{z f^{\prime}(z)}{f(z)}\right]<P(\lambda, \alpha, 1)$ in \mathbf{U}.
(iii) $P(\lambda, \alpha, r)<\operatorname{Re}\left[\frac{f(z)}{z f^{\prime}(z)}\right]<P(\lambda, \alpha,-r)$ in \mathbf{U}_{r}.
(iv) $|f(z)|<u(\lambda, \alpha, r)$ in U_{r}, where

$$
u(\lambda, \alpha, r)=r \cdot \exp \int_{0}^{r}\left[P^{-1}(\lambda, \alpha, \xi)-1\right] \xi^{-1} d \xi
$$

All the above inequalities are best possible.
Remark. If $a=\frac{1}{2}+1$ then

$$
P(\lambda, \alpha, z)=\frac{1}{1+z}+\frac{z}{(\lambda+1)(z+1)}, u(\lambda, \alpha, r)=r \cdot \frac{(\lambda+1+r)^{\lambda}}{(\lambda+1)^{\lambda}} .
$$

If $\lambda=1$ then

$$
\begin{aligned}
P(\lambda, \alpha, z) & =\frac{1}{(2 \alpha-1) z}\left[(1+z)-\frac{1}{(1+z)^{2 \alpha-1}}\right], u(\lambda, \alpha, r) \\
& =\frac{1}{2 \alpha-1}\left[(1+r)^{2 \alpha-1}-1\right] .
\end{aligned}
$$

In the special case $\lambda=1, \alpha=\frac{3}{2}$ it is now obvious that (ii) coincides with Nunokawa's Theorem. In the same case we also have that

$$
|f(z)|<r\left(1+\frac{r}{2}\right) \text { in } \mathbf{U}_{r}, \quad \text { and } \quad|f(z)|<\frac{3}{2} \text { in } \mathbf{U}
$$

We now prove the following Lemma.
Lemma. If $f \in \mathbf{A}$ then $f_{\lambda}=q, q(0)=1$ if and only if

$$
\begin{aligned}
\frac{z f^{\prime}(z)}{f(z)} & =\left[\frac{1}{\lambda} \int_{0}^{1} \frac{F(t z)}{F(z)} t^{\frac{1}{\lambda}-1} d t\right]^{-1} \quad \text { where } \\
F(z) & =\exp \frac{1}{\lambda} \int_{0}^{z}[q(\omega)-1] \omega^{-1} d \omega
\end{aligned}
$$

Proof. We consider a real intervall $(0, \varepsilon)$ such that $\operatorname{Re} f(x)>0$ in $(0, \varepsilon)$. We shall first prove the required relation in this interval. Then by the uniqueness Theorem for holomorphic functions we get the result in the general case.

From the relation

$$
(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left[1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right]=q(z)
$$

we obtain

$$
(1-\lambda)\left[\frac{f^{\prime}(z)}{f(z)}-\frac{1}{z}\right]+\lambda \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}=\frac{q(z)-1}{z}
$$

or

$$
\left[(1-\lambda) \log \left(\frac{f(z)}{z}\right)+\lambda \log f^{\prime}(z)\right]^{\prime}=\frac{q(z)-1}{z}
$$

or

$$
\begin{equation*}
\left(\frac{f(z)}{z}\right)^{1-\lambda}\left(f^{\prime}(z)\right)^{\lambda}=c \cdot \exp \int_{0}^{z} \frac{q\left(z_{1}\right)-1}{z_{1}} d z_{1} \tag{*}
\end{equation*}
$$

Since $f^{\prime}(0)=1$ for $z \rightarrow 0$ we get $c=1$. Therefore from the relation $(*)$ we have

$$
\begin{equation*}
\lambda\left(f^{\frac{1}{\lambda}}\right)^{\prime}=f^{\frac{1}{\lambda}-1} \cdot f^{\prime}=z^{\frac{1}{\lambda}-1} F(z) \tag{**}
\end{equation*}
$$

and
$(* * *) \quad f^{\frac{1}{\lambda}}=\frac{1}{\lambda} \int_{0}^{z} u^{\frac{1}{\lambda}-1} F(u) d u=\frac{1}{\lambda} z^{\frac{1}{\lambda}} \int_{0}^{1} t^{1-\lambda} F(t z) d t$.
Dividing $(*)^{\frac{1}{\lambda}}$ by $(* * *)$ we obtain the required result.
Conversely, if we set

$$
Q(z)=\int_{0}^{z} u^{\frac{1}{\lambda}-1} F(u) d u
$$

we have

$$
z \frac{f^{\prime}(z)}{f(z)}=\lambda z \frac{Q^{\prime}(z)}{Q(z)} \quad \forall z \in U .
$$

Let $f_{\lambda}=q_{1}$. From q_{1} we define, the functions F_{1} and Q_{1}, in the same manner as F and Q were defined from q. It is now obvious that:

$$
z \frac{Q^{\prime}(z)}{Q(z)}=z \frac{Q_{1}^{\prime}(z)}{Q_{1}(z)} \quad \forall z \in \mathbf{U}
$$

From the above relation we obtain succesively:

$$
\left(\frac{Q}{Q_{1}}\right)^{\prime}=0, Q^{\prime}=c Q_{1}^{\prime}, f=c F_{1}
$$

Since $F(0)=F_{1}(0)=1$ then $c=1$ and

$$
\int_{0}^{z}(q(\omega)-1) \omega^{-1} d \omega=\int_{0}^{z}\left(q_{1}(\omega)-1\right) \omega^{-1} d \omega \quad \forall z \in \mathbf{U}
$$

Differentiating both sides of the above relation we have: $q=q_{1}$
Proof of Theorem 2. If

$$
p_{n}(z)=\sum_{k=1}^{n} \lambda_{k}\left(\frac{1+\varepsilon_{k} z}{1-\varepsilon_{k} z}\right), \quad\left|\varepsilon_{k}\right|=1, \quad \lambda_{k} \geq 0 \quad \text { and } \quad \sum_{k=1}^{n} \lambda_{k}=1
$$

then we will prove the Theorem in case $f_{\lambda}=(1-\alpha) p_{n}+\alpha$. In this case by simple calculations we obtain

$$
\begin{equation*}
F(z)=\prod_{k=1}^{n}\left(1-z \cdot \varepsilon_{k}\right)^{\frac{2(a-1)}{\lambda} \cdot \lambda_{k}} \tag{1}
\end{equation*}
$$

Since the set

$$
\left\{\frac{1+t z}{1+z}:|z|<r\right\}
$$

coincides with the open disc $S\left(R_{0}, R\right)$, where

$$
R_{0}=\frac{1}{2}\left(\frac{1+t r}{1+r}+\frac{1-t r}{1-r}\right), R=\frac{1}{2}\left(\frac{1-t r}{1-r}-\frac{1+t r}{1+r}\right)
$$

from the relation (1) follows

$$
\begin{equation*}
\left(\frac{1+t r}{1+r}\right)^{\frac{2(a-1)}{\lambda}}<\left|\frac{F(t z)}{F(z)}\right|<\left(\frac{1-t r}{1-r}\right)^{\frac{2(a-1)}{\lambda}} \tag{2}
\end{equation*}
$$

The conclusion (i) follows from Lemma and (2).
Since

$$
|\operatorname{Arg\omega }|<\frac{\pi}{2} \quad \forall \omega \in S\left(R_{0}, R\right), \quad \sum_{k=1}^{n} \lambda_{k}=1 \quad \text { and } \frac{2(a-1)}{\lambda}<1
$$

it follows

$$
\begin{equation*}
\operatorname{Re}\left[\frac{F(t z)}{F(z)}\right]>0 \quad \text { in } \mathbf{U} \tag{3}
\end{equation*}
$$

The conclusion (ii) follows from (2) and (3).
The convexity of the function $\tau(\omega)=\left(R_{0}+R \omega\right)^{\frac{2(a-1)}{\lambda}}$ in U implies

$$
\begin{equation*}
\operatorname{Re}\left(\frac{1+t z}{1+z}\right)^{\frac{2(a-1)}{\lambda}}>\left(\frac{1+t r}{1+r}\right)^{\frac{2(a-1)}{\lambda}} \tag{4}
\end{equation*}
$$

If $\tau_{1}(\omega)=\log \tau(\omega)$ then

$$
\operatorname{Re}\left[1+\omega \frac{\tau_{1}^{\prime \prime}(\omega)}{\tau_{1}^{\prime}(\omega)}\right]=\operatorname{Re}\left[\frac{R_{0}}{\tau(\omega)}\right]>0 \quad \text { in } U .
$$

The convexity of the function $\log \tau_{1}(\omega)$ implies hat for every $z \in \mathbf{U}_{r}$ there exists $\omega(z) \in \mathbf{U}_{r}$ such that

$$
\begin{equation*}
\frac{F(t z)}{F(z)}=\left(\frac{1+t \omega(z)}{1+\omega(z)}\right)^{\frac{2(a-1)}{\lambda}} . \tag{5}
\end{equation*}
$$

The conlusion (iii) follows from (4), (5) and Lemma.
If $\frac{z f^{\prime}(z)}{f(z)}=h(z)$ from the relation $(*)$ of the Lemma for $\lambda=1$ then we have

$$
f(z)=z \exp \int_{0}^{z}(h(\omega)-1) \omega^{-1} d \omega
$$

or

$$
|f(z)|=|z| \exp \int_{0}^{1} \operatorname{Re}[h(t z)-1] t^{-1} d t
$$

Since $\operatorname{Reh}(t z)<\frac{1}{P(\lambda, \alpha, t r)}$ the relation (6) implies the conclusion (iv).
If $f_{\lambda}(z)=(1-\alpha)(1+z)(1-z)^{-1}+\alpha$ then $\frac{z f^{\prime}(z)}{f(z)}=P(\lambda, \alpha, z)$.
It is now obvious that the inequalities of the theorem are best possible.
If $p \in \mathbf{P}$ then it is known that there exists a sequence of functions $p_{n} \in \mathbf{P}$ having the form we used such that $\lim _{n \rightarrow \infty} p_{n}(z)=p(z)$ in \mathbf{U}.

In the general case where $\operatorname{Re} f_{\lambda}>\alpha$ or $f_{\lambda}=(1-\alpha) p+\alpha, p \in \mathbf{P}$ we consider the sequence

$$
(1-\lambda) \frac{z f_{n}^{\prime}(z)}{f_{n}(z)}+\lambda\left[1+z \frac{f_{n}^{\prime \prime}(z)}{f_{n}^{\prime}(z)}\right]=(1-\alpha) p_{n}(z)+\alpha
$$

If $F(z)$ and $F_{n}(z)$ are the functions of Lemma corresponding to f and f_{n}, respectively, then from the relation $\left|\frac{(1-\alpha) p_{n}(z)+\alpha-1}{z}\right| \leq \frac{2(a-1)}{r}$ in \mathbf{U}_{r} it follows that $\lim _{n \rightarrow \infty} F_{n}(z)=F(z)$ in \mathbf{U}_{r}. Continuiting in this manner we prove that

$$
\lim _{n \rightarrow \infty}\left[\frac{z f_{n}^{\prime}(z)}{f_{n}(z)}\right]=\frac{z f^{\prime}(z)}{f(z)} \quad \text { and } \quad \lim _{n \rightarrow \infty} f_{n}^{\prime}(z)=f(z)
$$

References

[1] M. Nunokawa, A sufficient condition for Univalence and Strarlikeness, Proc. Japan Acad. 65 Ser. A no. 6 (1989), 163-164.
N. SAMARIS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF PATRAS
26110 PATRAS
GREECE
(Received April 7, 1994; revised November 3, 1994)

