Publ. Math. Debrecen 46 / 3-4 (1995), 315–320

Some special subclasses of univalent starlike functions

By N. SAMARIS (Patras)

Abstract. Let $0 < \lambda < 1$, $\alpha > 1$, $\frac{2(\alpha-1)}{\lambda} < 1$ and $T(\lambda, \alpha)$ the class of homomorphic functions in the unit disc for which f(0) = f'(0) - 1 = 0 and $\operatorname{Re}\left[(1-\lambda)z\frac{f'(z)}{f(z)} + \lambda\left(1 + \frac{z(f''(z)}{f'(z)}\right)\right] < \alpha$. We find sharp inequalities for the quantities $\operatorname{Re}\left\{z\frac{f'(z)}{f(z)}\right\}$, $\operatorname{Re}\left\{\frac{f(z)}{zf'(z)}\right\}$, $\left|\frac{zf'(z)}{f(z)}\right|$, |f(z)| for $f \in T(\lambda, \alpha)$. A special result is that if $f \in T(\lambda, \alpha)$ then f is a univalent starlike function.

Introduction

If $\mathbf{H}(\mathbf{U})$ is the class of holomorphic functions defined in the unit disc $\mathbf{U} = \{z : |z| < 1\}$ then we denote by:

- (i) A the class of functions $f \in \mathbf{H}(\mathbf{U})$ for which f(0) = f'(0) 1 = 0.
- (ii) $\mathbf{T}(\lambda, \alpha)$ the class of functions $f \in \mathbf{A}$ for which $\operatorname{Re} f_{\lambda} < \alpha$ where

$$f_{\lambda}(z) = (1-\lambda)z \frac{f'(z)}{f(z)} + \lambda \left(1 + \frac{zf''(z)}{f'(z)}\right), \quad 0 < \lambda < 1, \ \alpha > 1.$$

(iii) **P** the class of functions $f \in \mathbf{H}(\mathbf{U})$ for which f(0) = 1 and $\operatorname{Re} f > 0$. NUNOKAWA [1] has proved the following Theorem.

Theorem 1. If $f \in \mathbf{T}(1, \frac{3}{2})$, then

$$0 < Re\left[\frac{zf'(z)}{f(z)}\right] < \frac{4}{3} \quad in \quad \mathbf{U}$$

The inequalities in Nunokawa's Theorem are best possible. In the present paper we prove the following Theorem:

¹⁹⁹¹ Mathematics subject classification 30 c 45 .

N. Samaris

Theorem 2. If $f \in \mathbf{T}(\lambda, \alpha)$, $\frac{2(a-1)}{\lambda} < 1$ and

$$P(\lambda, \alpha, z) = \frac{1}{\lambda} \int_0^1 \left(\frac{1+tz}{1+z}\right)^{\frac{2(a-1)}{\lambda}} t^{\frac{1}{\lambda}-1} dt,$$

then

(i)
$$\frac{1}{P(\lambda,\alpha,-r)} < \left| \frac{zf'(z)}{f(z)} \right| < \frac{1}{P(\lambda,\alpha,r)} \text{ in } \mathbf{U}_r = \{ z : |z| < r \}.$$

(ii)
$$0 < \operatorname{Re}\left[\frac{zf'(z)}{f(z)} \right] < P(\lambda,\alpha,1) \text{ in } \mathbf{U}.$$

(iii)
$$P(\lambda,\alpha,r) < \operatorname{Re}\left[\frac{f(z)}{zf'(z)} \right] < P(\lambda,\alpha,-r) \text{ in } \mathbf{U}_r.$$

(iv)
$$|f(z)| < u(\lambda,\alpha,r) \text{ in } U_r, \text{ where}$$

$$u(\lambda,\alpha,r) = r \cdot \exp \int_0^r [P^{-1}(\lambda,\alpha,\xi) - 1] \xi^{-1} d\xi.$$

All the above inequalities are best possible.

Remark. If $a = \frac{1}{2} + 1$ then

$$P(\lambda, \alpha, z) = \frac{1}{1+z} + \frac{z}{(\lambda+1)(z+1)}, u(\lambda, \alpha, r) = r \cdot \frac{(\lambda+1+r)^{\lambda}}{(\lambda+1)^{\lambda}}.$$

If $\lambda=1$ then

$$\begin{split} P(\lambda, \alpha, z) &= \frac{1}{(2\alpha - 1)z} \left[(1 + z) - \frac{1}{(1 + z)^{2\alpha - 1}} \right], u(\lambda, \alpha, r) \\ &= \frac{1}{2\alpha - 1} \left[(1 + r)^{2\alpha - 1} - 1 \right]. \end{split}$$

In the special case $\lambda = 1$, $\alpha = \frac{3}{2}$ it is now obvious that (ii) coincides with Nunokawa's Theorem. In the same case we also have that

$$|f(z)| < r\left(1 + \frac{r}{2}\right)$$
 in \mathbf{U}_r , and $|f(z)| < \frac{3}{2}$ in \mathbf{U} .

We now prove the following Lemma.

Lemma. If $f \in \mathbf{A}$ then $f_{\lambda} = q, q(0) = 1$ if and only if

$$\frac{zf'(z)}{f(z)} = \left[\frac{1}{\lambda}\int_0^1 \frac{F(tz)}{F(z)}t^{\frac{1}{\lambda}-1}dt\right]^{-1} \text{ where}$$
$$F(z) = \exp\frac{1}{\lambda}\int_0^z [q(\omega)-1]\omega^{-1}d\omega.$$

316

PROOF. We consider a real intervall $(0, \varepsilon)$ such that $\operatorname{Re} f(x) > 0$ in $(0, \varepsilon)$. We shall first prove the required relation in this interval. Then by the uniqueness Theorem for holomorphic functions we get the result in the general case.

From the relation

$$(1-\lambda)\frac{zf'(z)}{f(z)} + \lambda \left[1 + \frac{zf''(z)}{f'(z)}\right] = q(z)$$

we obtain

$$(1 - \lambda) \left[\frac{f'(z)}{f(z)} - \frac{1}{z} \right] + \lambda \frac{f''(z)}{f'(z)} = \frac{q(z) - 1}{z}$$

or

$$\left[(1-\lambda) \operatorname{Log}\left(\frac{f(z)}{z}\right) + \lambda \operatorname{Log} f'(z) \right]' = \frac{q(z) - 1}{z}$$

or

(*)
$$\left(\frac{f(z)}{z}\right)^{1-\lambda} (f'(z))^{\lambda} = c \cdot \exp \int_0^z \frac{q(z_1) - 1}{z_1} dz_1.$$

Since f'(0) = 1 for $z \to 0$ we get c = 1. Therefore from the relation (*) we have

(**)
$$\lambda(f^{\frac{1}{\lambda}})' = f^{\frac{1}{\lambda}-1} \cdot f' = z^{\frac{1}{\lambda}-1}F(z)$$

and

$$(***) f^{\frac{1}{\lambda}} = \frac{1}{\lambda} \int_0^z u^{\frac{1}{\lambda} - 1} F(u) du = \frac{1}{\lambda} z^{\frac{1}{\lambda}} \int_0^1 t^{1 - \lambda} F(tz) dt.$$

Dividing $(*)^{\frac{1}{\lambda}}$ by (***) we obtain the required result.

Conversely, if we set

$$Q(z) = \int_0^z u^{\frac{1}{\lambda} - 1} F(u) du$$

we have

$$z\frac{f'(z)}{f(z)} = \lambda z \frac{Q'(z)}{Q(z)} \qquad \forall z \in U.$$

Let $f_{\lambda} = q_1$. From q_1 we define, the functions F_1 and Q_1 , in the same manner as F and Q were defined from q. It is now obvious that:

$$z\frac{Q'(z)}{Q(z)} = z\frac{Q'_1(z)}{Q_1(z)} \qquad \forall z \in \mathbf{U}.$$

From the above relation we obtain successively:

$$\left(\frac{Q}{Q_1}\right)' = 0, Q' = cQ_1', \ f = cF_1.$$

Since $F(0) = F_1(0) = 1$ then c = 1 and

$$\int_0^z (q(\omega) - 1)\omega^{-1} d\omega = \int_0^z (q_1(\omega) - 1)\omega^{-1} d\omega \qquad \forall z \in \mathbf{U}.$$

Differentiating both sides of the above relation we have: $q = q_1$

PROOF of Theorem 2. If

$$p_n(z) = \sum_{k=1}^n \lambda_k \left(\frac{1 + \varepsilon_k z}{1 - \varepsilon_k z} \right), \quad |\varepsilon_k| = 1, \quad \lambda_k \ge 0 \quad \text{and} \quad \sum_{k=1}^n \lambda_k = 1$$

then we will prove the Theorem in case $f_{\lambda} = (1 - \alpha)p_n + \alpha$. In this case by simple calculations we obtain

(1)
$$F(z) = \prod_{k=1}^{n} (1 - z \cdot \varepsilon_k)^{\frac{2(a-1)}{\lambda} \cdot \lambda_k} .$$

Since the set

$$\left\{ \frac{1+tz}{1+z} : |z| < r \right\}$$

coincides with the open disc $S(R_0, R)$, where

$$R_0 = \frac{1}{2} \left(\frac{1+tr}{1+r} + \frac{1-tr}{1-r} \right), \ R = \frac{1}{2} \left(\frac{1-tr}{1-r} - \frac{1+tr}{1+r} \right),$$

.

from the relation (1) follows

(2)
$$\left(\frac{1+tr}{1+r}\right)^{\frac{2(a-1)}{\lambda}} < \left|\frac{F(tz)}{F(z)}\right| < \left(\frac{1-tr}{1-r}\right)^{\frac{2(a-1)}{\lambda}}$$

The conclusion (i) follows from Lemma and (2).

Since

$$|Arg\omega| < \frac{\pi}{2} \quad \forall \omega \in S(R_0, R), \quad \sum_{k=1}^n \lambda_k = 1 \text{ and } \frac{2(a-1)}{\lambda} < 1$$

it follows

(3)
$$\operatorname{Re}\left[\frac{F(tz)}{F(z)}\right] > 0 \quad \text{in } \mathbf{U}.$$

318

The conclusion (ii) follows from (2) and (3).

The convexity of the function $\tau(\omega) = (R_0 + R\omega)^{\frac{2(a-1)}{\lambda}}$ in U implies

(4)
$$\operatorname{Re}\left(\frac{1+tz}{1+z}\right)^{\frac{2(a-1)}{\lambda}} > \left(\frac{1+tr}{1+r}\right)^{\frac{2(a-1)}{\lambda}}$$

If $\tau_1(\omega) = \text{Log}\tau(\omega)$ then

r

$$\operatorname{Re}\left[1+\omega\frac{\tau_1''(\omega)}{\tau_1'(\omega)}\right] = \operatorname{Re}\left[\frac{R_0}{\tau(\omega)}\right] > 0 \quad \text{in } U.$$

The convexity of the function $\text{Log}\tau_1(\omega)$ implies hat for every $z \in \mathbf{U}_r$ there exists $\omega(z) \in \mathbf{U}_r$ such that

(5)
$$\frac{F(tz)}{F(z)} = \left(\frac{1+t\omega(z)}{1+\omega(z)}\right)^{\frac{2(a-1)}{\lambda}}$$

The conclusion (iii) follows from (4), (5) and Lemma.

If $\frac{zf'(z)}{f(z)} = h(z)$ from the relation (*) of the Lemma for $\lambda = 1$ then we have

$$f(z) = z \exp \int_0^z (h(\omega) - 1)\omega^{-1} d\omega$$

or

$$f(z)| = |z| \exp \int_0^1 \operatorname{Re}[h(tz) - 1]t^{-1}dt$$

Since $\operatorname{Re}h(tz) < \frac{1}{P(\lambda,\alpha,tr)}$ the relation (6) implies the conclusion (iv).

If
$$f_{\lambda}(z) = (1-\alpha)(1+z)(1-z)^{-1} + \alpha$$
 then $\frac{zf'(z)}{f(z)} = P(\lambda, \alpha, z)$.
It is now obvious that the inequalities of the theorem are best possible.

If $p \in \mathbf{P}$ then it is known that there exists a sequence of functions $p_n \in \mathbf{P}$ having the form we used such that $\lim_{n\to\infty} p_n(z) = p(z)$ in **U**.

In the general case where $\operatorname{Re} f_{\lambda} > \alpha$ or $f_{\lambda} = (1 - \alpha)p + \alpha$, $p \in \mathbf{P}$ we consider the sequence

$$(1-\lambda)\frac{zf_n'(z)}{f_n(z)} + \lambda \left[1 + z\frac{f_n''(z)}{f_n'(z)}\right] = (1-\alpha)p_n(z) + \alpha.$$

If F(z) and $F_n(z)$ are the functions of Lemma corresponding to f and f_n , respectively, then from the relation $\left|\frac{(1-\alpha)p_n(z)+\alpha-1}{z}\right| \leq \frac{2(a-1)}{r}$ in \mathbf{U}_r it follows that $\lim_{n\to\infty} F_n(z) = F(z)$ in \mathbf{U}_r . Continuiting in this manner we prove that

$$\lim_{n \to \infty} \left[\frac{z f'_n(z)}{f_n(z)} \right] = \frac{z f'(z)}{f(z)} \quad \text{and} \quad \lim_{n \to \infty} f'_n(z) = f(z).$$

N. Samaris : Some special subclasses of univalent starlike functions

References

[1] M. NUNOKAWA, A sufficient condition for Univalence and Strarlikeness, Proc. Japan Acad. 65 Ser. A no. 6 (1989), 163–164.

N. SAMARIS DEPARTMENT OF MATHEMATICS UNIVERSITY OF PATRAS 26110 PATRAS GREECE

(Received April 7, 1994; revised November 3, 1994)

320