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Constructing solvable groups with derived length four and
four character degrees

By MARK L. LEWIS (Kent)

Abstract. In this paper, we present a new method to construct solvable groups

with derived length four and four character degrees. We then use this method to present

a number of new families of groups with derived length four and four character degrees.

1. Introduction

Throughout this paper, all groups will be finite and solvable. The Taketa

problem or alternatively, the Isaacs–Seitz conjecture, conjectures when G is solv-

able that the derived length of G is less than or equal to the number of char-

acter degrees. In general, this conjecture is still open, but it was settled when

G has four character degrees by Garrison in his dissertation [2]. In this pa-

per, we are interested in solvable groups with exactly four character degrees and

derived length four. We will use dl(G) to denote the derived length of G and

cd(G) = {χ(1) | χ ∈ Irr(G)} for the set of character degrees of G.

In Section 2 of [1], we listed all of the solvable groups with four character

degrees and derived length four that we knew at that time. So far as we know,

no other examples have been published since that time. All of the examples in

Section 2 of [1] have Fitting height 3. Riedl proved in Theorem A of [14] that if

G is a solvable group with four character degrees, then G has Fitting height at

most 3. It makes sense to ask whether or not there exist solvable groups with four

character degrees and derived length four whose Fitting height is 1 or 2. We now

resolve the question regarding examples with Fitting height 2.
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Theorem 1.1. There exists a solvable group G with dl(G) = 4, |cd(G)| = 4,

and Fitting height 2.

The question related to this problem that attracts the most attention is

whether or not there exists an example of Fitting height 1. It is easy to see that

this is equivalent to the question: does there exist a p-group with four character

degrees and derived length four? A closely related question is whether or not

there exists a nonnilpotent group with four character degrees and derived length

where all of the degrees are powers of a given prime p. It is not difficult to

see that such a group would have to be a semi-direct product of a p-group with

three character degrees and derived length three acting on an abelian p′-group

where the orbit sizes are highly restricted. Unfortunately, we are not able to

touch on either of these problems in this current work. At this time, we know

of no published research that touches on the existence of nonnilpotent groups

with derived length four and four character degrees that are powers of a prime p,

and the published research regarding the existence p-groups with derived length

four and four character degrees is minimal. On the other hand, researchers are

familiar with the problem for p-groups and there seems to be universal agreement

that these appear to be difficult problems. We would love to see progress on these

problems.

We also mention that none of the examples in the list in [1] have a nonabelian

normal Sylow p-subgroup for some prime p. And every example in that list has

at least one character degree that is a prime. The method of constructing these

groups in this paper has a nonabelian normal Sylow p-subgroup for some prime p.

We will produce examples where this normal Sylow subgroup is an extra-special

group and examples where this normal Sylow subgroup is a Heisenberg group

(i.e., a Sylow p-subgroup of GL3(pa) for some positive integer a). We will also

provide examples where no character degree is a prime (see Theorem 3.6).

One might ask: given that a number of examples of such groups already exist

in the literature, why publish more such groups? As we will note throughout the

paper, the examples we present here have somewhat different properties than the

ones in the literature. While this has value, we do not believe that this is the

main reason to produce these groups. The main reason is as follows. In [1],

we suggested that it might be possible to classify the solvable groups with four

character degrees and derived length four. In particular, we hoped that we might

be able to list the possible degree sets that could arise in this situation, but the

construction in this paper shows that such an approach is probably not feasible.

In fact, we believe that this provides an argument for the counter position that

classifying these groups is either not possible or not worth the effort needed to
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produce it. In any case, if one were to attempt to obtain a classification of these

groups, then one “family” in the classification would be groups that satisfy the

hypotheses of Lemma 2.1.

We will use our construction to produce several different “families” of solv-

able groups with derived length four and four character degrees with the idea of

showing the range of properties and character degree sets that could arise from

this construction. We have put the example with Fitting height 2 in Section 4

so that readers that are not interested in any other examples can skip directly to

them. Since Section 2 of [1] had seven families, one could view that we have dou-

bled the number of families of examples. On the other hand, we have in no way

exhausted the groups that can be produced from our construction. In particular,

all of the families we produce have that the normal Sylow p-subgroup is either

an extraspecial group or is a Heisenberg group. The normal Sylow p-subgroup

found in the construction is more general, and we would expect that there will be

many examples that do not have P as one of these two groups. We decided that

seven families was more than sufficient to make our point.

2. The Key Lemma

In this section, we present our construction for new solvable groups having

derived length 4 and four character degrees.

Lemma 2.1. Let p be a prime, and let P be a p-group so that cd(P ) =

{1, pα} for some positive integer α. Suppose the group H acts via automorphisms

on P and that H satisfies the following hypotheses: p does not divide |H| and

cd(H) = {1, a} for some positive integer a. Let C = CH(P ′) and D = CP (C).

Assume one of the following:

(1) C = 1 and H acts Frobeniusly on P .

(2) C > 1 is abelian, D < P , H acts Frobeniusly on P/D, every nonlinear

character in Irr(P ) is fully ramified with respect to P/D, and H/C acts

Frobeniusly on D. When P ′ < D, assume that |H : C| = a.

If G = P oH, then dl(G) = 4 and cd(G) = {1, a, |H|, |H : C|pα}.

Proof. Suppose first that H acts Frobeniusly on P . Since H is nonabelian,

we have H ′ > 1, so H ′ acts Frobeniusly on P . It follows that P = [P,H ′] ≤ G′,

so P = [P,H ′] ≤ [G′, G′] = G′′. On the other hand, since |cd(G/P )| = 2, we have

G′′ ≤ P ; so G′′ = P . Because P ′′ = 1, we conclude that dl(G) = 4 in this case.
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Suppose (2). Since C centralizes P ′, it follows that P ′ ≤ D. This implies

that D is normal in P . Also, because C is normal in H, we see that D is

normalized by H, so D is normal in G. Observe that C is abelian and H is

nonabelian, which imply that C < H. Since H/C acts Frobeniusly on D, so

D = [D,H] ≤ G′. The fact that H acts Frobeniusly on P/D implies that P/D =

[P/D,H] = [P,H]D/D ≤ (G/D)′ = G′D/D = G′/D. This implies that P ≤ G′.

We now have that G′ = PH ′. We have H ′ > 1 and H acts Frobeniusly on P/D,

so H ′ acts Frobeniusly on P/D. We have two cases to deal with, when H ′ ≤ C

and when H ′ 6≤ C.

Suppose that H ′ ≤ C. It follows that H ′ centralizes D. Since every nonlinear

irreducible character of P is fully-ramified with respect to P/D, this implies that

H ′ fixes every nonlinear irreducible character of P . Applying [6, Theorem 3.3],

we have [P,H ′]′ = P ′. Observe that [P,H ′] ≤ G′′ ≤ P . This implies that

[P,H ′]′ ≤ G′′′ ≤ P ′. We deduce that G′′′ = P ′, and since P ′ > 1 is abelian,

we conclude that dl(G) = 4.

Now, we consider the case where H ′ 6≤ C. In particular, H ′ ∩ C < H ′.

It follows that H ′/H ′ ∩C acts Frobeniusly on D. Hence, we have D = [D,H ′] ≤
G′. Since H acts Frobeniusly on P/D and H ′ > 1, it follows that H ′ acts

Frobeniusly on P/D. This implies that P/D = [P/D,H ′], and so, P = [P,H ′]D =

[P,H ′][D,H ′] = [P,H ′]. Observe that [P,H ′] ≤ G′; thus, P ≤ G′. We then

obtain P = [P,H ′] ≤ [G′, G′] = G′′ ≤ P , and hence, G′′ = P . Because P ′ > 1

and P ′′ = 1, we conclude that dl(G) = 4.

We now compute cd(G). We have cd(G/P ) = cd(H) = {1, a}. If H acts

Frobeniusly on P , then θG ∈ Irr(G) for all θ ∈ Irr(P ) (see [5, Theorem 6.34 (b)]),

and so cd(G) = {1, a, |H|, |H|pα}, which is the desired result since C = 1. Thus,

we assume we have hypothesis (2).

Since H acts Frobeniusly on P/D, we have if 1 6= λ ∈ Irr(P/D), then λG ∈
Irr(G), and so, |H| = λG(1) ∈ cd(G). We deduce that cd(G/D) = {1, a, |H|}.
When D = P ′, we have cd(G/P ′) = cd(G/D).

Suppose that P ′ < D. Consider δ ∈ Irr(D/P ′). Observe that δ is C-invariant,

and since H/C acts Frobeniusly on D and thus on D/P ′, we see that C is the

stabilizer of δ in H. We know that δ extends to Irr(P/P ′). Note that C acts

on the extensions of δ to P , and using Gallagher’s theorem ([5, Corollary 6.17]),

Irr(P/D) acts transitively by right multiplication on the extensions of δ to P .

Applying Glauberman’s lemma ([5, Lemma 13.8]), we see that δ has a C-invariant

extension µ ∈ Irr(P/P ′). Since C acts Frobeniusly on Irr(P/D), we may apply

[5, Corollary 13.9] to see that µ is the unique G-invariant extension of δ to µ.

Note that C will be the stabilizer of µ in H, and so, PC is the stabilizer of µ
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in G. Applying [5, Corollary 6.27], µ extends to PC and by Gallagher’s theorem,

µ only has extensions to PC since C is abelian. This implies that cd(G | µ) =

{|G : PC|} = {|H : C|} = {a}, since a = |H : C| in this case.

Note that any extension of δ to P will have the form µλ for some character

λ ∈ Irr(P/D). If 1 6= λ, we see that if h ∈ CH(µλ), then h stabilizes (µλ)D = δ,

and so, CH(µλ) ≤ CH(δ) = C = CH(µ), and so, µλ = (µλ)h = µλh. Applying

Gallagher’s theorem, we have that h stabilizes λ. Since C acts Frobeniusly on

Irr(P/D) and λ 6= 1, we conclude that h = 1. It follows that CH(µλ) = 1,

and so, (µλ)G ∈ Irr(G). We deduce that cd(G | δ) = {a, |H|}. This yields

cd(G/P ′) = {1, a, |H|} = cd(G/D) in this case.

Finally, suppose 1 6= γ ∈ Irr(P ′), and consider γ̂ ∈ Irr(D | γ). Notice that

the irreducible constituents of γ̂P will be nonlinear, so γ̂ is fully-ramified with

respect to P/D, and let ε ∈ Irr(P ) be the unique irreducible constituent of (γ̂)P .

We know that ε(1) = pα. It follows that ε and γ̂ have the same stabilizer in G.

Because C centralizes D and H/C acts Frobeniusly on D, it follows that PC will

be the stabilizer of γ̂ in G. Applying [5, Corollary 6.28], we see that ε extends to

PC, and since C is abelian, we may use Gallagher’s theorem to see that ε only

has extensions to PC. We obtain cd(G | γ̂) = {|G : PC|ε(1)} = {|H : C|pα}.
We conclude that cd(G) = {1, a, |H|, |H : C|pα}, as desired. �

3. Various constructions

We now find specific families of groups that meet the parameters of

Lemma 2.1. We begin with a family of groups based on the Heisenberg group.

In this first example, G will be a Frobenius group where the Frobenius kernel

is a Heisenberg group and a Frobenius complement is a nonnilpotent metacyclic

group. This example is an example where hypothesis (1) of Lemma 2.1 is applied.

Theorem 3.1. Let p be a prime, and let q be an odd prime that divides

p−1. Then there exists a group G with dl(G) = 4, Fitting height 3, and cd(G) =

{1, q, (pq − 1)/(p− 1))q′(p− 1)qq, p
q((pq − 1)/(p− 1))q′(p− 1)qq}.

Proof. We are going to take P to be the Heisenberg group of order p3q.

We represent P as follows. Let F be the field of order pq. Then we can view P as
 1 a c

0 1 b

0 0 1

 | a, b, c ∈ F
 .
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We write F ∗ for the multiplicative group of F and G for the Galois Group of F

with respect to Zp. It is easy to see that G acts on F ∗ and that the resulting

semi-direct product F ∗G is isomorphic to the semi-linear group Γ(F ). (See [12,

page 37] for the definition of the semilinear group.) We can define an action

by automorphisms for Γ(F ) on P as follows: if λ ∈ F ∗, then 1 a c

0 1 b

0 0 1

 · λ =

 1 λa λ2c

0 1 λb

0 0 1


where the multiplication is in F , and if σ ∈ G, then 1 a c

0 1 b

0 0 1

 · σ =

 1 aσ cσ

0 1 bσ

0 0 1

 .
Notice that if λ has odd order, then the action of λ on P is Frobenius.

Now, let γ be an element of F ∗ of order ((pq − 1)/(p − 1))q′ . Notice that

the order of γ is odd, so γ2 6= 1. Let λ be a generator for the Sylow q-subgroup

of F ∗, and let σ ∈ G correspond to the Frobenius automorphism for F , so σ has

order q. Recall that the fixed field for σ in F has order p− 1. It follows that γ is

not in the fixed field for σ, so γ and σ do not commute. We define H = 〈γ, λσ〉.
It is not difficult to see since σ does not commute with γ and λ does commute

with γ that γ and σλ do not commute; so H is not abelian. On the other hand,

H has a normal abelian subgroup of index q, so cd(H) = {1, q}. We observe that

(λσ)q = λσ
q

· · ·λσ
2

λσ = λp
q−1

· · ·λpλ = λ1+p+···+p
q−1

= λ(p
q−1)/(p−1).

Since q divides p − 1, it follows that λ(p
q−1)/(p−1) 6= 1. Note that Q = 〈λσ〉 is

a Sylow q-subgroup of H, is cyclic, has order (pq−1)q, and acts Frobeniusly on P .

Since q is odd, we know that (pq−1)q = (p−1)qq. Also, observe that 〈γ〉 is a Hall

q-complement of H, has order ((pq−1)/(p−1))q′ , and also acts Frobeniusly on P .

Observe that CH(P ′) = 1 and |H| = ((pq − 1)/(p − 1))q′(p − 1)qq. We conclude

that H and P satisfy the hypotheses of Lemma 2.1, and we obtain the conclusion

from there. Note that P is the Fitting subgroup of G and H has Fitting height 2,

so G has Fitting height 3. �

In this next example, the normal Sylow p-subgroup is again a Heisenberg

group. In this case, G is not a Frobenius group. This example illustrates where

hypothesis (2) of Lemma 2.1 is applied with D = P ′.
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Theorem 3.2. Let p be a prime, let q be an odd prime that divides p− 1,

and let r be a divisor of p− 1 that is coprime to q. Then there exists a group G

with dl(G) = 4, Fitting height 3, and

cd(G) = {1, q, ((pq − 1)/(p− 1))q′(p− 1)qqr, p
q((pq − 1)/(p− 1))q′(p− 1)qq}.

Proof. We again take P to be the Heisenberg group of order p3q, and we

take K to the subgroup H from Theorem 3.1, so |K| = ((pq−1)/(p−1))q′(p−1)qq.

Let η be an element of F ∗ with order r. It is known that the gcd of (pq−1)/(p−1)

and p− 1 is q (see [13]). Thus, since r divides p− 1 and is coprime to q, it follows

that r is coprime to ((pq − 1)/(p− 1))q′ . We can define an action of η on P by 1 a c

0 1 b

0 0 1

 · η =

 1 ηa c

0 1 η−1b

0 0 1


where the multiplication is in F . Note that the action of η will commute with

the actions of λ and γ. Also, notice that η will be in the prime subfield of F ,

so η and σ commute. We deduce that η centralizes K. Thus, we can take

H = K×〈η〉. Notice that η acts Frobeniusly on P/P ′ and centralizes P ′. It follows

that C = CH(P ′) = 〈η〉 and D = CP (C) = P ′. In particular, G = P oH satisfies

the hypotheses of Lemma 2.1, and we obtain the derived length and character

degrees from that lemma. It is easy to see that G has Fitting height 3. �

This next two groups are based on extraspecial groups of order p2q+1 where

q is a prime. In both cases, we use hypothesis (2) of Lemma 2.1 with D = P ′.

In the next theorem, we have that |H : C| = q using the notation of Lemma 2.1.

Theorem 3.3. Let p be a prime, and let q be an odd prime that divides

p−1. Then there exists a group G with dl(G) = 4, Fitting height 3, and cd(G) =

{1, q, (pq − 1)q′(p− 1)qq, p
qq}.

Proof. Let V be a vector space of dimension q over Zp, the field of order p.

Let V̂ be the dual space for V ; that is, V̂ is the set of all linear transformations

from V to Zp. We define P = {(a, α, z) | a ∈ V, α ∈ V̂ , z ∈ Zp} where multiplica-

tion in P is defined by (a1, α1, z1)(a2, α2, z2) = (a1 +a2, α1 +α2, z1 +z2 +α2(a1)).

It is not difficult to see that P is an extraspecial p-group of order p2q+1.

If δ is an automorphism of V , then we obtain an automorphism for V̂ by

defining αδ by αδ(v) = α(vδ
−1

) for all v ∈ V . Note that αδ(vδ) = α(v). It is not

difficult to see that we can define an automorphism on P by (v, α, z)δ = (vδ, αδ, z).



402 Mark L. Lewis

We can identify V with the additive group of the field F of order pq. If

λ is a nonzero element of F , then multiplication by λ yields an automorphism

of V , and we use vλ to denote this map on V and αλ to denote the associated

map on V̂ . Also, the Galois automorphisms of F will yield automorphisms of V .

If σ is a Galois automorphism of F , then we use vσ to be the automorphism

on V and ασ for the associated map on V̂ . We take γ to be a generator of the

Hall q-complement of F ∗. We take λ to be a generator for the Sylow q-subgroup

of F ∗. We take σ to be the Frobenius automorphism. We use these same letters

to denote the automorphisms of P given by each of these elements as above.

Let x be a non-zero element of Zp, then we can view x as element of F ∗,

and so we can define the action of x on V and V̂ as before. Notice that since the

elements of V̂ are linear transformations, we have that α(vx) = α(xv) = xα(v)

and αx
−1

(v) = α(vx), so αx
−1

(vx) = x2α(v). Thus, we define an automorphism

of P by (v, α, z) 7→ (vx, αx
−1

, x2z). Let ξ be this automorphism defined for

an element x of order q in Z∗p . It is easy to see that ξ will commute with γ and

λ as automorphisms of P . Since as a Galois automorphism, σ fixes the elements

in Zp, it is not difficult to see that σ and ξ will commute. Let H = 〈γ, λξσ〉. Since

γ commutes with λ and ξ, but not σ, we see that H is not abelian. Working as in

the proof of the last theorem, we see that (λξσ)q = λ(p
q−1)/(p−1), which will have

order (p − 1)q. Notice that C = 〈γ, λ(pq−1)/(p−1)〉 has index q in H, is abelian,

and centralizes P ′. It follows that cd(H) = {1, q} and C = CH(P ′). Observe

that P ′ = CP (C), which is D in the notation of Lemma 2.1. It is not difficult

to see that H acts Frobeniusly on P/D and that H/C acts Frobeniusly on D,

so the hypotheses of Lemma 2.1 are met. We obtain the derived length and the

character degree set conclusions from that result. Notice that P is the Fitting

subgroup of G and G/P ∼= H has Fitting height 2, so G has Fitting height 3. �

In this next example, we again have an extraspecial group of order p2q+1,

but in this case, we have |H : C| is relatively prime to q, again using the notation

of Lemma 2.1. Note in the three previous examples that q divides all of the

nontrivial degrees in cd(G). This provides an example of our construction where

there is a degree that is coprime to q.

Theorem 3.4. Let p be a prime, let q a prime that divides p−1, and let r be

an odd divisor of p− 1 that is relatively prime to q. Then there exists a group G

with dl(G) = 4, Fitting height 3, and cd(G) = {1, q, (pq − 1){q,r}′(p− 1)qqr, p
qr}.

Proof. As in the proof of Theorem 3.3, we take V to a vector space of

dimension q over Zp, we write V̂ for the dual space for V , and P for the associated

extraspecial group. Again, we take F to be the field of order pq, and we have the
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same action for elements of F ∗ and the Galois group of F on P . We take γ to

be a generator for the Hall {q, r}-complement of F ∗, λ to be a generator for the

Sylow q-subgroup of F ∗, and σ to be the Frobenius automorphism of F . We now

take x to be an element of order r in Z∗p , and we let ξ be the automorphism of P

defined for x. Take H = 〈γ, λσ, ξ〉. Since γ commutes with λ, but not σ, we see

that H is not abelian. We see that (λσ)q = λ(p
q−1)/(p−1), which will have order

(p−1)q. Observe that 〈γ, λ(pq−1)/(p−1), ξ〉 is a normal, abelian subgroup of index q,

so cd(H) = {1, q}. Also, C = CH(P ′) = 〈γ, λσ〉 and D = CP (C) = P ′. It is not

difficult to see that H acts Frobeniusly on P/D and that H/C acts Frobeniusly

on D, so the hypotheses of Lemma 2.1 are met. We obtain the derived length and

the character degree set conclusions from that result. Notice that P is the Fitting

subgroup of G and G/P ∼= H has Fitting height 2, so G has Fitting height 3. �

We now present an example where hypothesis (2) of Lemma 2.1 is used with

P ′ < D = CP (CH(P ′)).

Theorem 3.5. Let p be a prime, let q an odd prime that divides p− 1, and

let n > q be an integer. Then there exists a group G with dl(G) = 4, Fitting

height 3, and cd(G) = {1, q, (pq − 1)q′(p− 1)qq, p
nq}.

Proof. Let P1 be the group P from the Theorem 3.3. We take P2 to be

an extraspecial group of order p2(n−q) and exponent p. We will take P to be

a central product of P1 and P2, and we let H be as in Theorem 3.3. We have

H act on P1 as it acted on P in Theorem 3.3. We will have γ, λ and σ act

trivially on P2, and it is not difficult to see that there is a Frobenius action of x

on P2 so that the action on Z(P2) matches the action of x on Z(P1). This then

defines an action of H on P . Notice that C = CH(P ′) = 〈γ, λ(pq−1)/(p−1)〉 and

D = CP (C) = P2 so P ′ < D. Observe that |H : C| = q. Also, all of the

nonlinear irreducible characters of P are fully-ramified with respect to D, so that

the hypotheses of Lemma 2.1 are met. We obtain the conclusions regarding the

derived length and character degrees from there. The Fitting height follows as in

Theorem 3.3. �

Next we present an example where n is not a prime, and P is the normal

Sylow p-subgroup and cd(P ) = {1, pn}. Note that in the previous examples,

we have had n as a prime. Recall that q is a Zsigmondy prime divisor of pn − 1

for positive integers p and n if q divides pn − 1 and q does not divide pa − 1 for

integers a such that 1 ≤ a < n. Observe that none of the character degrees in

this example is a prime.
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Theorem 3.6. Let p be a prime, and let n be an odd integer so that every

prime divisor of n divides p − 1. Let π be the set of prime divisors of n, let ρ

be the set of Zsigmondy prime divisors of pn − 1 (the definition of Zsigmondy

primes can be found as [12, Definition 6.1]), and let m be an integer so that m

divides n(p− 1)ρ, n divides m, and every prime divisor of (p− 1)ρ divides m/n.

Then there exists a group G with dl(G) = 4, Fitting height 3, and cd(G) =

{1, n, (pn − 1)ρm, p
n(pn − 1)ρm}.

Sketch of proof. We take P to be the Heisenberg group of order p3n,

and let F be the field of order pn. Working as in the proof of Theorem 3.1,

we can define an action of F ∗ and Gal(F ) on P . Applying [9, Theorem 11],

we can find subgroups K and N of F ∗Gal(F ) so that |K| = (pn − 1)ρ, |N | = m,

cd(NK) = {1, n}, K is cyclic, N is nilpotent, and NK acts Frobeniusly on P .

Take G = PNK. We now apply Lemma 2.1 to obtain the conclusion. �

4. Fitting height 2

We begin with an observation suggested by one of the referees. We obtain

some general information regarding examples satisfying Lemma 2.1 with Fitting

height 2.

Lemma 4.1. Let G be a group that satisfies the hypotheses of Lemma 2.1.

If G has nilpotence class 2, then cd(H) = {1, 2}, C > 1 and |H : C|2 = 2.

Proof. Notice that under both hypotheses H is a Frobenius complement.

This implies that all of the Sylow subgroups of H are either cyclic or generalized

quaternion. Also, it is not difficult to see that P is the Fitting subgroup of G.

Since G has Fitting height 2, we see that H must be nilpotent. Since all of the

Sylow subgroups of H for odd primes will be cyclic, we see that H must have

a nonabelian Sylow 2-subgroup. In particular, the Sylow 2-subgroup must be

generalized quaternion. Since the degree set for a generalized quaternion group is

{1, 2} and H is a direct product of its Sylow subgroups, we obtain cd(H) = {1, 2}.
Let T be the Sylow 2-subgroup of G; so T is a generalized quaternion group.

Suppose C = 1 so that we are in hypothesis (1) of Lemma 2.1. Then G is a Frobe-

nius group with Frobenius kernel P and Frobenius complement H. In particular,

T would be a Frobenius complement for P . It is well known that any Frobenius

kernel whose Frobenius complement has even order must be abelian and P is

clearly not abelian, so we have a contradiction. Thus, C > 1, and we have hy-

pothesis (2) of Lemma 2.1. Since C is abelian, we know that C does not contain
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a full Sylow 2-subgroup of H. It follows that T ∩C < T . If T ∩C = 1, then T acts

Frobeniusly on both P/D and D, and this would imply that T acts Frobeniusly

on P , and we have seen that this leads to a contradiction. Thus, we must have

T ∩C > 1. We know that T/(T ∩C) ∼= TC/C is either abelian or dihedral. On the

other hand, we know that H/C acts Frobeniusly on D, so it is a Frobenius com-

plement, and thus, TC/C will be a Frobenius complement. Since a 2-group that

is a Frobenius complement must be cyclic or generalized quaternion, we conclude

that TC/C must be cyclic. However, the only cyclic quotient of a dihedral group

has order 2, we conclude that |H : C|2 = |TC : C| = 2. �

It follows that if G has Fitting height 2 and satisfies the hypotheses of

Lemma 2.1, then H must have even order, and in fact, both H and G have 2

as a character degree. Obviously, this raises the question of whether there can

exist groups of odd order with derived length four and four character degrees.

In light of Lemma 4.1, we can come close to determining the character degree set

for a group G that satisfies the hypotheses of Lemma 2.1 and has Fitting height 2.

When H is a 2-group, we have cd(G) = {1, 2, |H|, 2pα}. The question that arises

is what p-groups can arise as the subgroup P in Lemma 2.1. We now produce

examples with Fitting height 2 when p ≡ 3( mod8) and P is an extraspecial group

of order p5. Notice that this yields Theorem 1.1.

Theorem 4.2. Let p be a prime that is congruent to 3 modulo 8. Then there

exists a group G with dl(G) = 4, Fitting height 2, and cd(G) = {1, 2, 8, 2p2}.

Proof. We somewhat follow the construction found in the proof of Theo-

rem 3.3. We take V to be a vector space of dimension 2 over Zp, and we define P

as in the proof of Theorem 3.3 to be the extraspecial group of order p5 arising

from pairing V with V̂ . Viewing V as a field of order p2, it is not difficult to see

that the multiplicative group will have an element of order 8. Let λ be the au-

tomorphism of V that is obtained by multiplication from that element, and as in

the proof of Theorem 3.3, λ also determines an automorphism of V̂ of order 8, and

we also use λ to denote the automorphism of P given by (a, α, z) 7→ (aλ, αλ, z).

We let σ be the Frobenius automorphism for V viewed as field, and again, σ de-

fines an automorphism of V̂ , and we write σ for the automorphism of P given

by (a, α, z) 7→ (aσ, ασ, z). It is not difficult to see that (λσ)2 = λp+1, and since

p ≡ 3( modulo 8), we see that λp+1 = λ4 = −1.

Let ζ be an element of order 2 in the multiplicative group of Zp, and observe

that the map (a, α, z) 7→ (ζa, α, ζz) is an automorphism of order 2 on P and will

centralize λ and σ as automorphisms of P . We now take H to be the subgroup

of the automorphism group of P given by 〈ζλ2, λσ〉. It is not difficult to see that
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H will be isomorphic to the quaternion group of order 8. Since λ4 = −1, we see

that H acts Frobeniusly on P/P ′. Observe that λσ centralizes P ′, and ζλ2 does

not centralize P ′. Since |H : 〈λσ〉| = 2, we conclude that C = 〈λσ〉. Notice that

H/C acts Frobeniusly on P ′. Thus, the hypotheses of Lemma 2.1 are met, and

we obtain that dl(G) = 4 and the character degrees are as stated. Since H is

nilpotent, we see that G has Fitting height 2. �

When H is not a 2-group, things can be more complicated. Take p = 11,

and let P be an extraspecial group of order 115 and exponent 11. We take Q

to be the quaternions acting as in the proof of Theorem 4.2, so we can view Q

as a subgroup of the automorphisms of Q. It is not difficult to see that P has

an automorphism of order 5 that centralizes Z(P ), acts Frobeniusly on P/Z(P ),

and centralizes Q. Let R be the group of order 5 generated by that automorphism.

TakeH1 = Q×R andG1 = PoH1. One can compute that |H1 : CH1(P ′)| = 2 and

cd(G) = {1, 2, 40, 242}. On the other hand, P also has an automorphism of order 5

that acts Frobeniusly on P and centralizes Q, and we use S to denote the group

of order 5 generated by this automorphism. Define H2 = Q×S and G2 = P oH2.

In this case, we obtain |H2 : CH2
(P ′)| = 10 and cd(G) = {1, 2, 40, 1210}.

To see an even more complicated example, take p = 19 and P to be the extra-

special group of order 195 and exponent 19. In this case, not only does P have

automorphisms as in the previous case, it also has an automorphism of order 9

that acts fixed-point-freely but whose cube centralizes Z(P ) and acts Frobeniusly

on P/Z(P ), and we obtain cd(G) = {1, 2, 72, 6 · 192}. Thus, while it may be

possible to classify the groups with Fitting height 2 that satisfy the hypotheses

of Lemma 2.1, such a classification is going to be more complicated than we wish

to pursue here.
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