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Constructing solvable groups with derived length four and
four character degrees

By MARK L. LEWIS (Kent)

Abstract. In this paper, we present a new method to construct solvable groups
with derived length four and four character degrees. We then use this method to present
a number of new families of groups with derived length four and four character degrees.

1. Introduction

Throughout this paper, all groups will be finite and solvable. The Taketa
problem or alternatively, the Isaacs—Seitz conjecture, conjectures when G is solv-
able that the derived length of G is less than or equal to the number of char-
acter degrees. In general, this conjecture is still open, but it was settled when
G has four character degrees by GARRISON in his dissertation [2]. In this pa-
per, we are interested in solvable groups with exactly four character degrees and
derived length four. We will use dI(G) to denote the derived length of G and
cd(G) = {x(1) | x € Irr(G)} for the set of character degrees of G.

In Section 2 of [1], we listed all of the solvable groups with four character
degrees and derived length four that we knew at that time. So far as we know,
no other examples have been published since that time. All of the examples in
Section 2 of [1] have Fitting height 3. RIEDL proved in Theorem A of [14] that if
G is a solvable group with four character degrees, then G has Fitting height at
most 3. It makes sense to ask whether or not there exist solvable groups with four
character degrees and derived length four whose Fitting height is 1 or 2. We now
resolve the question regarding examples with Fitting height 2.
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Theorem 1.1. There exists a solvable group G with dI(G) = 4, |cd(G)| = 4,
and Fitting height 2.

The question related to this problem that attracts the most attention is
whether or not there exists an example of Fitting height 1. It is easy to see that
this is equivalent to the question: does there exist a p-group with four character
degrees and derived length four? A closely related question is whether or not
there exists a nonnilpotent group with four character degrees and derived length
where all of the degrees are powers of a given prime p. It is not difficult to
see that such a group would have to be a semi-direct product of a p-group with
three character degrees and derived length three acting on an abelian p’-group
where the orbit sizes are highly restricted. Unfortunately, we are not able to
touch on either of these problems in this current work. At this time, we know
of no published research that touches on the existence of nonnilpotent groups
with derived length four and four character degrees that are powers of a prime p,
and the published research regarding the existence p-groups with derived length
four and four character degrees is minimal. On the other hand, researchers are
familiar with the problem for p-groups and there seems to be universal agreement
that these appear to be difficult problems. We would love to see progress on these
problems.

We also mention that none of the examples in the list in [1] have a nonabelian
normal Sylow p-subgroup for some prime p. And every example in that list has
at least one character degree that is a prime. The method of constructing these
groups in this paper has a nonabelian normal Sylow p-subgroup for some prime p.
We will produce examples where this normal Sylow subgroup is an extra-special
group and examples where this normal Sylow subgroup is a Heisenberg group
(i.e., a Sylow p-subgroup of GL3(p®) for some positive integer a). We will also
provide examples where no character degree is a prime (see Theorem 3.6).

One might ask: given that a number of examples of such groups already exist
in the literature, why publish more such groups? As we will note throughout the
paper, the examples we present here have somewhat different properties than the
ones in the literature. While this has value, we do not believe that this is the
main reason to produce these groups. The main reason is as follows. In [1],
we suggested that it might be possible to classify the solvable groups with four
character degrees and derived length four. In particular, we hoped that we might
be able to list the possible degree sets that could arise in this situation, but the
construction in this paper shows that such an approach is probably not feasible.
In fact, we believe that this provides an argument for the counter position that
classifying these groups is either not possible or not worth the effort needed to
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produce it. In any case, if one were to attempt to obtain a classification of these
groups, then one “family” in the classification would be groups that satisfy the
hypotheses of Lemma 2.1.

We will use our construction to produce several different “families” of solv-
able groups with derived length four and four character degrees with the idea of
showing the range of properties and character degree sets that could arise from
this construction. We have put the example with Fitting height 2 in Section 4
so that readers that are not interested in any other examples can skip directly to
them. Since Section 2 of [1] had seven families, one could view that we have dou-
bled the number of families of examples. On the other hand, we have in no way
exhausted the groups that can be produced from our construction. In particular,
all of the families we produce have that the normal Sylow p-subgroup is either
an extraspecial group or is a Heisenberg group. The normal Sylow p-subgroup
found in the construction is more general, and we would expect that there will be
many examples that do not have P as one of these two groups. We decided that
seven families was more than sufficient to make our point.

2. The Key Lemma

In this section, we present our construction for new solvable groups having
derived length 4 and four character degrees.

Lemma 2.1. Let p be a prime, and let P be a p-group so that cd(P) =
{1, p} for some positive integer c. Suppose the group H acts via automorphisms
on P and that H satisfies the following hypotheses: p does not divide |H| and
cd(H) = {1,a} for some positive integer a. Let C = Cy(P’) and D = Cp(C).
Assume one of the following:
(1) C =1 and H acts Frobeniusly on P.

(2) C > 1 is abelian, D < P, H acts Frobeniusly on P/D, every nonlinear
character in Irr(P) is fully ramified with respect to P/D, and H/C acts
Frobeniusly on D. When P’ < D, assume that |H : C| = a.

If G = P x H, then dI(G) =4 and cd(G) = {1,a,|H|,|H : C|p*}.

PROOF. Suppose first that H acts Frobeniusly on P. Since H is nonabelian,
we have H' > 1, so H' acts Frobeniusly on P. It follows that P = [P, H'] < &',
so P =[P, H'] <[G',G'] =G". On the other hand, since |[cd(G/P)| = 2, we have
G" < P; so G” = P. Because P"” = 1, we conclude that dI(G) = 4 in this case.
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Suppose (2). Since C centralizes P’, it follows that P/ < D. This implies
that D is normal in P. Also, because C is normal in H, we see that D is
normalized by H, so D is normal in G. Observe that C is abelian and H is
nonabelian, which imply that C < H. Since H/C acts Frobeniusly on D, so
D = [D,H] < G'. The fact that H acts Frobeniusly on P/D implies that P/D =
[P/D,H| =[P,H|D/D < (G/D)' = G'D/D = G'/D. This implies that P < G’.
We now have that G’ = PH'. We have H' > 1 and H acts Frobeniusly on P/D,
so H' acts Frobeniusly on P/D. We have two cases to deal with, when H' < C
and when H' £ C.

Suppose that H' < C. Tt follows that H' centralizes D. Since every nonlinear
irreducible character of P is fully-ramified with respect to P/D, this implies that
H' fixes every nonlinear irreducible character of P. Applying [6, Theorem 3.3],
we have [P,H']'" = P’. Observe that [P,H'] < G” < P. This implies that
[P,H') < G" < P’. We deduce that G = P’, and since P/ > 1 is abelian,
we conclude that dl(G) = 4.

Now, we consider the case where H' £ C. In particular, H' N C < H'.
It follows that H'/H' N C acts Frobeniusly on D. Hence, we have D = [D, H'] <
G’'. Since H acts Frobeniusly on P/D and H' > 1, it follows that H’ acts
Frobeniusly on P/D. This implies that P/D = [P/D, H'], and so, P = [P, H'|D =
[P,H'|[D,H’'] = [P,H']. Observe that [P,H’] < G'; thus, P < G'. We then
obtain P = [P,H'] < [G',G'] = G” < P, and hence, G’ = P. Because P’ > 1
and P” =1, we conclude that dl(G) = 4.

We now compute cd(G). We have c¢d(G/P) = cd(H) = {1,a}. If H acts
Frobeniusly on P, then 0% € Irr(G) for all 6 € Irr(P) (see [5, Theorem 6.34 (b)]),
and so cd(G) = {1,a,|H|,|H|p*}, which is the desired result since C = 1. Thus,
we assume we have hypothesis (2).

Since H acts Frobeniusly on P/D, we have if 1 # A € Irr(P/D), then \¢ €
Irr(G), and so, |H| = A9(1) € c¢d(G). We deduce that cd(G/D) = {1,a,|H|}.
When D = P/, we have ¢cd(G/P’) = cd(G/D).

Suppose that P’ < D. Consider ¢ € Irr(D/P’). Observe that ¢ is C-invariant,
and since H/C acts Frobeniusly on D and thus on D/P’, we see that C is the
stabilizer of § in H. We know that ¢ extends to Irr(P/P’). Note that C acts
on the extensions of § to P, and using Gallagher’s theorem ([5, Corollary 6.17]),
Irr(P/D) acts transitively by right multiplication on the extensions of ¢ to P.
Applying Glauberman’s lemma ([5, Lemma 13.8]), we see that ¢ has a C-invariant
extension p € Irr(P/P’). Since C acts Frobeniusly on Irr(P/D), we may apply
[5, Corollary 13.9] to see that p is the unique G-invariant extension of § to p.
Note that C will be the stabilizer of p in H, and so, PC is the stabilizer of u
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in G. Applying [5, Corollary 6.27], u extends to PC and by Gallagher’s theorem,
1 only has extensions to PC since C' is abelian. This implies that ¢cd(G | p) =
{|G: PC|} ={|H : C|} = {a}, since a = |H : C| in this case.

Note that any extension of § to P will have the form pA for some character
A€ Irr(P/D). If 1 # X, we see that if h € Cy(pA), then h stabilizes (u\)p = 4,
and so, Cx(p\) < Cg(d) = C = Cy(u), and so, uX = (uA\)* = uA". Applying
Gallagher’s theorem, we have that h stabilizes A. Since C' acts Frobeniusly on
Irr(P/D) and A # 1, we conclude that h = 1. It follows that Cy(uA) = 1,
and so, (uA\)¢ € Trr(G). We deduce that cd(G | §) = {a,|H|}. This yields
cd(G/P") ={1,a,|H|} = cd(G/D) in this case.

Finally, suppose 1 # v € Irr(P’), and consider 4 € Irr(D | 7). Notice that
the irreducible constituents of 4 will be nonlinear, so 4 is fully-ramified with
respect to P/D, and let € € Irr(P) be the unique irreducible constituent of (§)F.
We know that €(1) = p*. Tt follows that € and 4 have the same stabilizer in G.
Because C centralizes D and H/C' acts Frobeniusly on D, it follows that PC will
be the stabilizer of 4 in G. Applying [5, Corollary 6.28], we see that € extends to
PC', and since C' is abelian, we may use Gallagher’s theorem to see that e only
has extensions to PC. We obtain c¢d(G | 4) = {|G : PCle(1)} = {|H : C|p“}.
We conclude that ¢cd(G) = {1, q,|H|,|H : C|p*}, as desired. O

3. Various constructions

We now find specific families of groups that meet the parameters of
Lemma 2.1. We begin with a family of groups based on the Heisenberg group.
In this first example, G will be a Frobenius group where the Frobenius kernel
is a Heisenberg group and a Frobenius complement is a nonnilpotent metacyclic
group. This example is an example where hypothesis (1) of Lemma 2.1 is applied.

Theorem 3.1. Let p be a prime, and let ¢ be an odd prime that divides
p—1. Then there exists a group G with dI(G) = 4, Fitting height 3, and cd(G) =
{Lg, (" =1)/(p = 1))g(p = 1)q@, P*((p? = 1)/(p = 1)) (P — 1)gq}-

PROOF. We are going to take P to be the Heisenberg group of order p3d.
We represent P as follows. Let F' be the field of order p?. Then we can view P as

|a,b,c e F

S O =
S = Q
— o0



400 Mark L. Lewis

We write F* for the multiplicative group of F and G for the Galois Group of F
with respect to Z,. It is easy to see that G acts on F'* and that the resulting
semi-direct product F*§G is isomorphic to the semi-linear group T'(F). (See [12,
page 37] for the definition of the semilinear group.) We can define an action
by automorphisms for I'(F') on P as follows: if A € F*, then

1 a c 1 da M
01 b |- A2=]0 1 X
0 0 1 0 O 1

where the multiplication is in F', and if o € G, then

q

g

1 a c 1 a° ¢
01 b|-c=|0 1 b
0 0 1 0 0 1

Notice that if A has odd order, then the action of A on P is Frobenius.

Now, let v be an element of F* of order ((p? —1)/(p — 1))y. Notice that
the order of «y is odd, so 42 # 1. Let X\ be a generator for the Sylow g-subgroup
of F*, and let o € G correspond to the Frobenius automorphism for F', so ¢ has
order g. Recall that the fixed field for ¢ in F' has order p — 1. It follows that + is
not in the fixed field for o, so v and o do not commute. We define H = (v, Ao).
It is not difficult to see since o does not commute with v and A\ does commute
with v that v and oA do not commute; so H is not abelian. On the other hand,
H has a normal abelian subgroup of index ¢, so ¢d(H) = {1, q}. We observe that

(AG)T = A7 ATTAT = WP R = AL 07D/ (01,

Since ¢ divides p — 1, it follows that A(?"~1/(=1) —£ 1 Note that Q = (\o) is
a Sylow g-subgroup of H, is cyclic, has order (p?—1),, and acts Frobeniusly on P.
Since ¢ is odd, we know that (p?—1), = (p—1),q. Also, observe that () is a Hall
g-complement of H, has order ((p?—1)/(p—1))4, and also acts Frobeniusly on P.
Observe that Cy(P') =1 and |H| = ((p? —1)/(p — 1))¢(p — 1)qq. We conclude
that H and P satisfy the hypotheses of Lemma 2.1, and we obtain the conclusion
from there. Note that P is the Fitting subgroup of G and H has Fitting height 2,
so GG has Fitting height 3. O

In this next example, the normal Sylow p-subgroup is again a Heisenberg
group. In this case, G is not a Frobenius group. This example illustrates where
hypothesis (2) of Lemma 2.1 is applied with D = P’.
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Theorem 3.2. Let p be a prime, let ¢ be an odd prime that divides p — 1,
and let v be a divisor of p — 1 that is coprime to q. Then there exists a group G
with dI(G) = 4, Fitting height 3, and

cd(G) ={1,¢,((p? =1)/(p = 1)) (p — )qqr, p*((p* = 1)/(p — 1)) g (p — 1)qq}-

PROOF. We again take P to be the Heisenberg group of order p3¢, and we
take K to the subgroup H from Theorem 3.1, so | K| = ((p?—1)/(p—1))¢ (p—1)4q.
Let 1 be an element of F* with order r. It is known that the ged of (p?—1)/(p—1)
and p—1is ¢ (see [13]). Thus, since r divides p — 1 and is coprime to g, it follows
that r is coprime to ((p? —1)/(p — 1))¢. We can define an action of n on P by

na c
nth

1
0 1
0 0 1

o = Q2
= S0

1
0

where the multiplication is in F'. Note that the action of 1 will commute with
the actions of A and 7. Also, notice that n will be in the prime subfield of F,
so 7 and o commute. We deduce that n centralizes K. Thus, we can take
H = K x(n). Notice that n acts Frobeniusly on P/P’ and centralizes P’. It follows
that C = Cyx(P’) = (n) and D = Cp(C) = P’. In particular, G = P x H satisfies
the hypotheses of Lemma 2.1, and we obtain the derived length and character
degrees from that lemma. It is easy to see that G has Fitting height 3. (]

This next two groups are based on extraspecial groups of order p?9*! where
q is a prime. In both cases, we use hypothesis (2) of Lemma 2.1 with D = P’.
In the next theorem, we have that |H : C| = ¢ using the notation of Lemma 2.1.

Theorem 3.3. Let p be a prime, and let ¢ be an odd prime that divides
p—1. Then there exists a group G with dI(G) = 4, Fitting height 3, and cd(G) =
{Lg, (0" = Vg (p — 1)qq, pq}-

Proor. Let V be a vector space of dimension ¢ over Z,,, the field of order p.
Let V be the dual space for V; that is, V is the set of all linear transformations
from V to Z,. We define P = {(a,,2) |[a € V,a € V,z € Z,} where multiplica-
tion in P is defined by (a1, a1, z1)(az2, ag, 22) = (a1 +az2, a1 + a9, 21 + 22+ az(aq)).
It is not difficult to see that P is an extraspecial p-group of order p2?+1.

If § is an automorphism of V, then we obtain an automorphism for V by
defining o by a’(v) = a(v‘s_l) for all v € V. Note that a®(v°) = a(v). It is not

difficult to see that we can define an automorphism on P by (v, a, 2)° = (v%,a?, 2).
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We can identify V' with the additive group of the field F' of order p?. If
A is a nonzero element of F, then multiplication by A yields an automorphism
of V, and we use v* to denote this map on V and o to denote the associated
map on V. Also, the Galois automorphisms of F will yield automorphisms of V.
If 0 is a Galois automorphism of F', then we use v to be the automorphism
on V and o’ for the associated map on V. We take v to be a generator of the
Hall g-complement of F*. We take A\ to be a generator for the Sylow g-subgroup
of F*. We take o to be the Frobenius automorphism. We use these same letters
to denote the automorphisms of P given by each of these elements as above.

Let x be a non-zero element of Z,,, then we can view z as element of F*,
and so we can define the action of # on V and V as before. Notice that since the
elements of V are linear transformations, we have that a(v*) = a(zv) = za(v)
and a® (v) = a(v®), so a’”fl(vm) = 22a(v). Thus, we define an automorphism
of P by (v,a,2) (vx,afl,xQ ). Let £ be this automorphism defined for
an element z of order ¢ in Z7. It is easy to see that { will commute with v and
A as automorphisms of P. Since as a Galois automorphism, o fixes the elements
in Z,,, it is not difficult to see that o and £ will commute. Let H = (7, A{c). Since
~v commutes with A and £, but not o, we see that H is not abelian. Working as in
the proof of the last theorem, we see that (A\o)? = AP =1/(r=1) which will have
order (p — 1),. Notice that C' = (y, \?*=D/(P=1) has index ¢ in H, is abelian,
and centralizes P’. It follows that ¢cd(H) = {1,¢q} and C = Cy(P’). Observe
that P’ = Cp(C), which is D in the notation of Lemma 2.1. It is not difficult
to see that H acts Frobeniusly on P/D and that H/C acts Frobeniusly on D,
so the hypotheses of Lemma 2.1 are met. We obtain the derived length and the
character degree set conclusions from that result. Notice that P is the Fitting
subgroup of G and G/P = H has Fitting height 2, so G has Fitting height 3. O

In this next example, we again have an extraspecial group of order p?t!,
but in this case, we have |H : C| is relatively prime to ¢, again using the notation
of Lemma 2.1. Note in the three previous examples that ¢ divides all of the
nontrivial degrees in c¢d(G). This provides an example of our construction where
there is a degree that is coprime to q.

Theorem 3.4. Let p be a prime, let ¢ a prime that divides p—1, and let r be
an odd divisor of p — 1 that is relatively prime to q. Then there exists a group G
with dI(G) = 4, Fitting height 3, and cd(G) = {1,q, (p? — 1) (g,ry (0 — 1)qqr, pI7}.

PROOF. As in the proof of Theorem 3.3, we take V to a vector space of
dimension g over Z,, we write V for the dual space for V, and P for the associated
extraspecial group. Again, we take F' to be the field of order p?, and we have the
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same action for elements of F* and the Galois group of F on P. We take v to
be a generator for the Hall {g, r}-complement of F*, X to be a generator for the
Sylow g-subgroup of F*, and o to be the Frobenius automorphism of F'. We now
take x to be an element of order 7 in Z;, and we let § be the automorphism of P
defined for x. Take H = (v, Ao, &). Since v commutes with A, but not o, we see
that H is not abelian. We see that (Ao)? = A®*=1/(P=1) which will have order
(p—1)4. Observe that (v, APT=D/(p=1) ¢} is a normal, abelian subgroup of index g,
so cd(H) = {1,q}. Also, C = Cy(P') = (v, o) and D = Cp(C) = P'. It is not
difficult to see that H acts Frobeniusly on P/D and that H/C acts Frobeniusly
on D, so the hypotheses of Lemma 2.1 are met. We obtain the derived length and
the character degree set conclusions from that result. Notice that P is the Fitting
subgroup of G and G/P = H has Fitting height 2, so G has Fitting height 3. O

We now present an example where hypothesis (2) of Lemma 2.1 is used with
P <D= CP(CH(P/))

Theorem 3.5. Let p be a prime, let ¢ an odd prime that divides p — 1, and
let n > ¢q be an integer. Then there exists a group G with dI(G) = 4, Fitting
height 3, and c¢d(G) = {1,q,(p? — 1)y (p — 1)4q, 0" q}-

PrOOF. Let P; be the group P from the Theorem 3.3. We take P, to be
an extraspecial group of order p?>("~% and exponent p. We will take P to be
a central product of P; and P,, and we let H be as in Theorem 3.3. We have
H act on P; as it acted on P in Theorem 3.3. We will have v, A and o act
trivially on P, and it is not difficult to see that there is a Frobenius action of z
on P, so that the action on Z(P;) matches the action of  on Z(P;). This then
defines an action of H on P. Notice that C' = Cy(P’) = (v, \P*=D/(P=1)) and
D = Cp(C) = P, so PP < D. Observe that |H : C| = q. Also, all of the
nonlinear irreducible characters of P are fully-ramified with respect to D, so that
the hypotheses of Lemma 2.1 are met. We obtain the conclusions regarding the
derived length and character degrees from there. The Fitting height follows as in
Theorem 3.3. (]

Next we present an example where n is not a prime, and P is the normal
Sylow p-subgroup and cd(P) = {1,p"}. Note that in the previous examples,
we have had n as a prime. Recall that ¢ is a Zsigmondy prime divisor of p” — 1
for positive integers p and n if g divides p™ — 1 and ¢ does not divide p® — 1 for
integers a such that 1 < a < n. Observe that none of the character degrees in
this example is a prime.
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Theorem 3.6. Let p be a prime, and let n be an odd integer so that every
prime divisor of n divides p — 1. Let m be the set of prime divisors of n, let p
be the set of Zsigmondy prime divisors of p™ — 1 (the definition of Zsigmondy
primes can be found as [12, Definition 6.1]), and let m be an integer so that m
divides n(p — 1),, n divides m, and every prime divisor of (p — 1), divides m/n.
Then there exists a group G with dI(G) = 4, Fitting height 3, and cd(G) =
{1,n, (" = 1),m,p"(p" — 1),m}.

SKETCH OF PROOF. We take P to be the Heisenberg group of order p3",
and let F' be the field of order p™. Working as in the proof of Theorem 3.1,
we can define an action of F* and Gal(F') on P. Applying [9, Theorem 11],
we can find subgroups K and N of F*Gal(F) so that |K|= (p" —1),, |[N| =m,
cd(NK) = {1,n}, K is cyclic, N is nilpotent, and NK acts Frobeniusly on P.
Take G = PNK. We now apply Lemma 2.1 to obtain the conclusion. O

4. Fitting height 2

We begin with an observation suggested by one of the referees. We obtain
some general information regarding examples satisfying Lemma 2.1 with Fitting
height 2.

Lemma 4.1. Let G be a group that satisfies the hypotheses of Lemma 2.1.
If G has nilpotence class 2, then cd(H) = {1,2}, C > 1 and |H : Cly = 2.

Proor. Notice that under both hypotheses H is a Frobenius complement.
This implies that all of the Sylow subgroups of H are either cyclic or generalized
quaternion. Also, it is not difficult to see that P is the Fitting subgroup of G.
Since G has Fitting height 2, we see that H must be nilpotent. Since all of the
Sylow subgroups of H for odd primes will be cyclic, we see that H must have
a nonabelian Sylow 2-subgroup. In particular, the Sylow 2-subgroup must be
generalized quaternion. Since the degree set for a generalized quaternion group is
{1,2} and H is a direct product of its Sylow subgroups, we obtain cd(H) = {1, 2}.

Let T be the Sylow 2-subgroup of G; so T is a generalized quaternion group.
Suppose C' = 1 so that we are in hypothesis (1) of Lemma 2.1. Then G is a Frobe-
nius group with Frobenius kernel P and Frobenius complement H. In particular,
T would be a Frobenius complement for P. It is well known that any Frobenius
kernel whose Frobenius complement has even order must be abelian and P is
clearly not abelian, so we have a contradiction. Thus, C' > 1, and we have hy-
pothesis (2) of Lemma 2.1. Since C is abelian, we know that C' does not contain



Derived length 4 and 4 character degrees 405

a full Sylow 2-subgroup of H. It follows that TNC < T. If TNC' = 1, then T acts
Frobeniusly on both P/D and D, and this would imply that T acts Frobeniusly
on P, and we have seen that this leads to a contradiction. Thus, we must have
TNC > 1. We know that T/(T'NC) =2 T'C/C is either abelian or dihedral. On the
other hand, we know that H/C acts Frobeniusly on D, so it is a Frobenius com-
plement, and thus, TC'/C will be a Frobenius complement. Since a 2-group that
is a Frobenius complement must be cyclic or generalized quaternion, we conclude
that T'C'/C must be cyclic. However, the only cyclic quotient of a dihedral group
has order 2, we conclude that |H : C|o = [TC : C| = 2. O

It follows that if G has Fitting height 2 and satisfies the hypotheses of
Lemma 2.1, then H must have even order, and in fact, both H and G have 2
as a character degree. Obviously, this raises the question of whether there can
exist groups of odd order with derived length four and four character degrees.
In light of Lemma 4.1, we can come close to determining the character degree set
for a group G that satisfies the hypotheses of Lemma 2.1 and has Fitting height 2.
When H is a 2-group, we have c¢d(G) = {1,2,|H|,2p*}. The question that arises
is what p-groups can arise as the subgroup P in Lemma 2.1. We now produce
examples with Fitting height 2 when p = 3( mod8) and P is an extraspecial group
of order p°. Notice that this yields Theorem 1.1.

Theorem 4.2. Let p be a prime that is congruent to 3 modulo 8. Then there
exists a group G with dI(G) = 4, Fitting height 2, and c¢d(G) = {1,2,8, 2p*}.

PrROOF. We somewhat follow the construction found in the proof of Theo-
rem 3.3. We take V' to be a vector space of dimension 2 over Z,, and we define P
as in the proof of Theorem 3.3 to be the extraspecial group of order p° arising
from pairing V with V. Viewing V as a field of order p2, it is not difficult to see
that the multiplicative group will have an element of order 8. Let A be the au-
tomorphism of V' that is obtained by multiplication from that element, and as in
the proof of Theorem 3.3, A also determines an automorphism of V of order 8, and
we also use A to denote the automorphism of P given by (a,a, z) — (a*,a?, 2).
We let o be the Frobenius automorphism for V' viewed as field, and again, o de-
fines an automorphism of V, and we write o for the automorphism of P given
by (a,a,z) — (a”,a%,z). Tt is not difficult to see that (Ao)? = AP*! and since
p = 3( modulo 8), we see that \PT1 =\ = —1.

Let ¢ be an element of order 2 in the multiplicative group of Z,, and observe
that the map (a, a, 2) — (Ca, a, z) is an automorphism of order 2 on P and will
centralize A and o as automorphisms of P. We now take H to be the subgroup
of the automorphism group of P given by ((A?, Ag). It is not difficult to see that
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H will be isomorphic to the quaternion group of order 8. Since \* = —1, we see
that H acts Frobeniusly on P/P’. Observe that Ao centralizes P’, and (A? does
not centralize P’. Since |H : (Ao)| = 2, we conclude that C' = (Ao). Notice that
H/C acts Frobeniusly on P’. Thus, the hypotheses of Lemma 2.1 are met, and
we obtain that dl(G) = 4 and the character degrees are as stated. Since H is
nilpotent, we see that G has Fitting height 2. (Il

When H is not a 2-group, things can be more complicated. Take p = 11,
and let P be an extraspecial group of order 11° and exponent 11. We take @
to be the quaternions acting as in the proof of Theorem 4.2, so we can view
as a subgroup of the automorphisms of Q). It is not difficult to see that P has
an automorphism of order 5 that centralizes Z(P), acts Frobeniusly on P/Z(P),
and centralizes (). Let R be the group of order 5 generated by that automorphism.
Take H; = QxR and G; = PxH;. One can compute that |[Hy : Cp, (P’)] = 2 and
cd(G) = {1,2,40,242}. On the other hand, P also has an automorphism of order 5
that acts Frobeniusly on P and centralizes ), and we use S to denote the group
of order 5 generated by this automorphism. Define Hy = @ xS and G = P x Hs.
In this case, we obtain |Hy : Cg, (P')] = 10 and ¢d(G) = {1, 2,40, 1210}.

To see an even more complicated example, take p = 19 and P to be the extra-
special group of order 19° and exponent 19. In this case, not only does P have
automorphisms as in the previous case, it also has an automorphism of order 9
that acts fixed-point-freely but whose cube centralizes Z(P) and acts Frobeniusly
on P/Z(P), and we obtain c¢d(G) = {1,2,72,6 - 192}. Thus, while it may be
possible to classify the groups with Fitting height 2 that satisfy the hypotheses
of Lemma 2.1, such a classification is going to be more complicated than we wish
to pursue here.
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