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Invariant property for discontinuous mean-type mappings

By PAWEL PASTECZKA (Krakéw)

Abstract. It is known that if M, N are continuous two-variable means such that
|M(z,y) — N(z,y)| < |z — y| for every z, y with x # y, then there exists a unique
invariant mean (which is continuous too).

We are looking for invariant means for pairs satisfying the inequality above, but
their continuity is not assumed.

In this setting the invariant mean is no longer uniquely defined, but we prove that
there exist the smallest and the biggest one. Furthermore, it is shown that there exists
at most one continuous invariant mean related to each pair.

1. Introduction

The idea of invariant means was first introduced by Gauss [11], who consid-
ered the so-called arithmetic-geometric mean. It was obtained as a limit in the
iteration process

tasr = Iy = VETe (e N U{O}),
where xg, yo are two positive arguments. Then it is known that both (z,,) and (y,,)
are convergent to a common limit, which is called the arithmetic-geometric mean
(of the initial arguments o := x and yo := y).
In a more general setting a mean is an arbitrary function M: I? — I (from
now on [ stands for an arbitrary interval) such that

min(z,y) < M(z,y) < max(z,y) forall x,yel.
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If the inequalities above remain strict unless x = y, then the mean M itself is
called strict.
For two means M, N on I, we define a selfmapping (M, N): I?> — I? by

(Ma N)(x,y) = (M(:E,y),N(x,y))

A mean K on I is said to be an (M, N)-invariant mean if K = K o (M, N); more
precisely,

K(z,y) = K(M(z,y),N(z,y)) foral z,yel.

In this setting the arithmetic-geometric mean is an invariant mean for arith-
metic and geometric means. In fact, it was proved [5, Theorem 8.2] that if M
and N are continuous and strict, then such K always exists and is uniquely de-
termined. Later MATKOWSKI [14] proved that the strictness assumption can be
relax to

|M(z,y) = N(z,y)| < |z —y| forall =z, yel z#y. (1.1)

Finally, similarly like in the case of the arithmetic-geometric mean, we know
(see, e.g. [5]) that the (M, N)-invariant mean is obtained as a common limit of
iterates of the mean-type mapping (M, N) given by

To =&, Yo =Y;

Tnt1 = M(Tn, Yn), Ynt+1 = N(zpn,yn) for all n > 0; (1.2)

where  and y are its arguments. In fact, these sequences of iterates are used
so often that whenever the quadruple (M, N, z,y) is defined, sequences (z,,) and
(yn) are also given.

Invariant means were extensively studied during recent years, see, for exam-
ple, papers by BAJAK-PALES [1]-[4], by DAROCZY-PALES [8]-[10], by GLAZOW-
SKA [12]-13], by MATKOWSKI [14]-[18], by MATKOWSKI-PALES [19], by the au-
thor [20]-[22], and in the seminal book BORWEIN-BORWEIN [5].

We will consider (M, N)-invariant means where M, N satisfies inequality (1.1)
but continuity is replaced by symmetry (i.e., M (z,y) = M(y,z) for all z, y € I).

Let us just mention that we do not require the means to be discontinuous.
On the other hand, if both of them are continuous, then our consideration reduces
to the one which was already done many times (see references above).
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2. Invariant means with no continuity assumption

In this section we are going to present some examples of constructions which
provide (M, N)-invariant means, where M and N are not necessarily continuous.

There are two somehow independent ways of defining such means. The first
idea is to extend the meaning of limit in the definition of invariant mean (for
example, to liminf or limsup). We realize this idea in Section 2.1. The second
one is related with transfinite iterations (Section 2.2).

Let us begin with two elementary, however useful, results

Lemma 1. If M,N: I? — I are symmetric means, then every (M, N)-
invariant mean is symmetric.

Indeed, if K is an arbitrary (M, N)-invariant mean, then for every x, y € T
we get

K(.T,y) = K(M(z,y),N(x,y)) = K(M(y’x)vN(y7$)) = K(y,l‘)

Lemma 2. If M, N: I? — I are symmetric means, then a mean is (M, N)-
invariant if and only if it is (M A N, M V N)-invariant, where

(M AN)(z,y) = min(M(z,y), N(z,y)), @, yel,
(M V N)(z,y) := max(M(z,y), N(z,y)), =z, ye€l.

By the previous lemma, every (M, N)-invariant (or (M AN, MV N)-invariant)
mean is symmetric. Furthermore, for every symmetric function K: I? — T
we have Ko (M,N)=Ko (M AN,MV N).

2.1. Boundary invariant means. This idea is motivated by generalized limit
functions. Our consideration covers all standard type of limits (i.e., lim, liminf,
limsup) but also more general functionals such as Banach limit'. A function
@: £°(I) — I is called 2-limit-like if for every a = (a1,as9,...) € £°(1),

(i) ¢(a1,as,as,...) = ¢(as,aq,as,...), and

(ii) liminf, o an < ¢(a1,as,...) < limsup,,_, . an.

Note that whenever the sequence a is convergent, then ¢(a) = lim, o @y

IBanach limit is a linear functional L: £°° — R such that IL||o = 1; L is shift invariant, i.e.,
L(az,as,...) = L(ai,a2,as,...) for every a € £°°; L(a) > 0 whenever a,, > 0 for all n; and
L(a) = limy— o0 an for every convergent sequence (an) (cf. CONWAY [7]).
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Let us emphasize that 2-limit-like functions are much more general objects
than common (or even Banach) limits. In fact, we can construct 2°¢ different 2-
limit-like functions. Indeed, each function w: [0,1] — [0, 1] leads to a 2-limit-like
function on ¢°°[0, 1] given by

¢w(a) :=liminf a, + w(lim inf agn) . (lim sup a,, — lim inf an).
n—00 n— 00 n—00 n— 00

Furthermore, by taking a family of 4-periodic sequences (0,z,0,1,...) for = €
[0,1], it can be verified that the mapping w — ¢,, is one-to-one.

At the moment, we can use this definition to introduce the wide class of
(M, N)-invariant means.

Proposition 1. Let M,N: I? — I be two means, and ¢: {*(I) — I be
a 2-limit-like function. Then the function By: I 2 & R given by

‘B¢(Z‘,y) = QS(IO,yO,Il,yth,yQ, . )

is a mean on I, which is (M, N)-invariant.
Conversely, every (M, N)-invariant mean equals B, for some 2-limit-like
function ¢.

PROOF. By the definition of mean we have, for all n > 0,
max(xn+1a yn—‘rl) S max(a:n, yn)
Thus the sequence (max(z,, yn))nen is nondecreasing and

lim sup (.130, Yo, T1,Y1,T2,Y2, .- ) =lim sup max(mn, yn) Sma‘x(x07 yO) :max(x, y)
n—o0

Similarly, we obtain liminf (z¢, yo, €1, Y1, T2, Y2, ... ) > min(z,y).
Now, as ¢ is between liminf and limsup, we obtain that By is a mean.
Moreover,

By(M(z,y), N(z,y))
=¢(M(xo,yo)7N(wo,yo)yM(M(xoyyo),N(xoyyO))vN(M(xmyo%N(myO»"")
= o¢(x1,Y1, 22, Y2, - .. ) = O(T0, Y0, T1, Y1, T2, Y2, - . )

= By(wo,y0) = By(z,9),

which concludes the proof.
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To prove the converse, for an arbitrary (M, N)-invariant mean K, we define
function ¢ on the orbit of (z,y) by

¢(x07y03x13y1~") = K(l’, y)a z, yGI, (21)
fulfilled by
¢(a1,as,as,aq,...)=liminf a,. (2.2)
n—oo

By the definition of sequences (), (y») and elementary properties of lim inf,
we obtain that ¢ satisfies (i). Moreover, in view of (i) and the easy-to-check
inequality inf(a) < ¢(a) < sup(a), the property (ii) is also valid. O

In two particular cases ¢ = liminf and ¢ = limsup, as
[min(M (x,y), N(z,y)), max(M(x,y), N(z,y))] C [z, y]

is valid for every =,y € I with < y, we obtain two very important (M, N)-
invariant means. Define lower- and upper-invariant means £, U: I? — I by
L(2,y) = Blimint(z,y) = lim min(zn, yn),
n—oo

u(x,y) = Blimsup(xvy) = ll)m max(xnayn)'

In fact, £ and U are the smallest and the greatest (M, N)-invariant means, re-
spectively, as every (M, N)-invariant mean is bounded from below by min(z;,, yx)
and from above by max(z,,y,) (for all n € N).

2.2. Transfinite invariant means. The transfinite invariant mean is the third
(after lower- and upper-) natural invariant mean. In order to define it, we assume
the comparability of means M and N — more precisely, M (z,y) < N(z,y) for
all z, y € I. Moreover, we assume that inequality (1.1) is valid.

Let us consider two transfinite sequences? (z,) and (y,) by fulfilling conven-
tion (1.2) in the following way:

To = lim z = lim for all limit ordinals «. 2.3
o= lm zg, Yo = lim ys (2.3)
To provide the correctness of this definition we observe that (z,) is nondecreasing
while (y,) is nonincreasing. Still, whenever M, N, x, and y are given, these
sequences are automatically provided.

2that is sequences which are enumerated by ordinal numbers; cf. CANTOR [6].
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Inequality M < N implies that z, < y, for every @ > 0. In particular,
by the definition of £ and U, we get

L(x,y) =2, and Uz, y)="y. (2.4)
Thus
Ag: I? 3 (z,y) = xo €1 and By: I3 (z,y) = ya €1

are expressed as a function of L(z, y) and U(z, y) for all @ > w. In particular,
they are all (M, N)-invariant. Moreover, A, = £ and B, = U.

The next lemma shows that iteration sequences (A, ) and (B,) are eventually
fixed. They reach that state after at most w; iterations (w; stands for the first
uncountable ordinal). This implies that there is no point to consider indexes
greater than w; as no new means are obtained.

Lemma 3. Let M, N: I?> — I be two means having property (1.1) such
that M < N. Then A, (x,y) = By, (z,y) for all x, y € I.

PrOOF. We need to prove that z,, = y,,. Inequality M < N implies
Zo < Yo for all @ > 1. Moreover, (1.1) yields that for every o < w; either
Yo = To (equivalently, Yo — 2o = 0) OF Yot1 — Tat1 < Yo — Lo

If 20y = Yo, for some ap < wi, then, by reflexivity of means, we obtain
ZTo = Yo for all a € [ag,w:]. In particular, x,, = Y, -

From now on, we may assume that (Yo — Za)a<w, 1S strictly decreasing.
As x4 < yo, we know that this sequence consists of nonnegative entries only.
This leads to a contradiction as every strictly decreasing sequence of nonnegative
numbers is countable. (]

Remark 1. As both M and N are means, we obtain, applying the inequality
M < N, that the sequence (Zq)a<w, is nondecreasing, while (yu)a<w, iS nonin-
creasing.

Based on the lemma above, we can define, for M < N, a transfinite tnvariant
mean T: I? = I by

‘.T(x,y) = Awl (xvy) = By, (x,y) (25)

By virtue of Lemma 2, we can skip the comparability assumption whenever
both means are symmetric (as it was already done in the case of £ and U).

Let us now present the following important property of a transfinite invariant
mean.
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Theorem 1. Let I be an interval, M, N: I? — I be means with M < N
satisfying (1.1). Either T, defined in (2.5), is a unique continuous (M, N )-invariant
mean or there are no continuous (M, N)-invariant means.

PRrROOF. Let K be an arbitrary continuous (M, N)-invariant mean. We show
that K =7.

Fix z, y € I. Using the definition of T, it suffices to prove that K(z,y) = ., .
We will prove by transfinite induction that

K(z,y) = K(za,Ya) forall a>0. (2.6)
Indeed, as K is (M, N)-invariant, we obtain

K(Zat1,Yat1) = K(M(-Taaya)vN(xa>ya)) = K(7a,Ya)-

Furthermore, as K is continuous, for every limit ordinal number «, we get

K(z,, :K(limx,lim ):lime7 .
(Tar Ya) Jim zp, lim ys ) = lim K(zp, ys)

Now (2.6) easily follows. Finally, reflexivity of K binded with equality z, = Y,
concludes the proof. O

Remark. By Lemma 2, we can skip the comparability assumption whenever
both M and N are symmetric.

3. Applications and conclusions

3.1. Example of invariant property for noncontinuous means. Fix an in-
terval I with |I| > 1 and functions M, N: I? — I defined by

iz +y) for |z —y| <1
M(%y)::{2 - z,y €l

s(r+y— Iz —yl) for lz—y|l>1,
N(xy):{%(m—'_y) for Jo -yl < 1, z,yel

ta+y+lo—yl) for [z—yl>1,

It is easy to check that both M and N are symmetric and strict means on I.
Furthermore, the arithmetic mean is (M, N)-invariant. Whence, by Theorem 1,
it is a transfinite invariant mean for this pair.
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Let (x4) and (y,) be two transfinite sequences corresponding to the iteration
(M,N). Obviously, as N > M, we have y, > x, for all « > 0. Thus, for all
a >0,

0, if |Yyo —xal <1,

Yat+1 — Tat1l = .
{\/|ya —Zol, i Yo — xal > 1.

However, the iteration of square root is well known, so we obtain

0, if l—yl <1,
Yo — T = o=yl < (3.1)
1, if je—y| > 1.

On the other hand, we can check by simple induction that
To+Ya=c+y forala>0. (3.2)

We now bind (2.4), (3.1), and (3.2) for @ = w to obtain

SHEL i oy > 1
zty i —l <
Ue =1t b MEL
=, if -yl > 1

To express it briefly, for every ¢ € [—1,1], define the mean K.: I? — I by

o -yl <

Ke(z,y) = {2’
%, |z —y| > 1.

Having this new notation, we can simply write L = K_;, U= K7, and T = Kj.
If we now continue this in inductive steps, we get A,+1 = By+1 = Ko = 7.
Thus (in this example) the sequences (Aq)a>w and (Ba)a>. contain the lower-,
upper-, and transfinite- invariant means only.
On the other hand, every convex combination of invariant means is again
an invariant mean. Thus K. is (M, N)-invariant for all ¢ € [—1,1]. This shows
that not every (M, N)-invariant mean is obtained in sequences (Ay), (Ba)-

3.2. Application to functional equations. There appears a natural problem:
which results known for continuous means can be adapted to the discontinuous
setting?

In this section we are going to prove just a single result inspired by
MATKOWSKI [17, Theorem 4].
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Proposition 2. Let M,N: I? — I be two means with M < N, having
property (1.1), and ®: I? — R be a continuous function. Then

®(z,y) = ®(M(z,y), N(z,y)) forallz,yel (3.3)
if and only if there exists a continuous function f: I — R such that
d=foT.

Moreover, if x > ®(x,x) is an injective function, then T is continuous.

Recall that, like in many other results, comparability may be replaced by
symmetry.

PRrOOF. Take z, y € I arbitrarily. Using (2.3), equality (3.3) can be rewrit-
ten as (Tq, Yo) = P(Tat1, Yat1) for every a.

By continuity of ®, we may extend the inductive proof to limit ordinals and
obtain ®(x4,ya) = P(xo,yo) for every a. If we put a = wy, by (2.5), we obtain

O(T(x,y), T(2,y)) = @(z,y). (3.4)

To complete the first implication, we can simply define f(z) := ®(z, ).
The converse implication is immediate in view of (M, N)-invariance of T.
Additionally, if z + ®(x,z) is injective, then so is f. In particular, f=1
exists and it is a continuous function.
Consequently, T = f~! o ® is continuous, too. ([

3.3. Conclusions. In this paper we discussed some invariant means which nat-
urally emerged in a case of two noncontinuous mean, either comparable or both
symmetric (sometimes additionally satisfying condition (1.1) ).

There appear some natural problems concerning this new aspect. For ex-
ample: (i) find out the 'noncontinuous counterpart’ of results which are stated
for continuous means; (ii) find out some additional assumption(s) to invariant
mean which can be made in order to obtain the uniqueness of the solution (we
presented three of those: minimality, maximality, and continuity); (iii) generalize
this concept to multivariable means (it is relatively natural in case of £ and U
only).

Some progress toward (i) and (ii) was presented while the third aspect is
outside the scope of the present paper.
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