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Invariant property for discontinuous mean-type mappings

By PAWE L PASTECZKA (Kraków)

Abstract. It is known that if M , N are continuous two-variable means such that

|M(x, y) − N(x, y)| < |x − y| for every x, y with x 6= y, then there exists a unique

invariant mean (which is continuous too).

We are looking for invariant means for pairs satisfying the inequality above, but

their continuity is not assumed.

In this setting the invariant mean is no longer uniquely defined, but we prove that

there exist the smallest and the biggest one. Furthermore, it is shown that there exists

at most one continuous invariant mean related to each pair.

1. Introduction

The idea of invariant means was first introduced by Gauss [11], who consid-

ered the so-called arithmetic-geometric mean. It was obtained as a limit in the

iteration process

xn+1 =
xn + yn

2
, yn+1 =

√
xnyn (n ∈ N+ ∪ {0}),

where x0, y0 are two positive arguments. Then it is known that both (xn) and (yn)

are convergent to a common limit, which is called the arithmetic-geometric mean

(of the initial arguments x0 := x and y0 := y).

In a more general setting a mean is an arbitrary function M : I2 → I (from

now on I stands for an arbitrary interval) such that

min(x, y) ≤M(x, y) ≤ max(x, y) for all x, y ∈ I.
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If the inequalities above remain strict unless x = y, then the mean M itself is

called strict.

For two means M , N on I, we define a selfmapping (M, N) : I2 → I2 by

(M, N)(x, y) := (M(x, y), N(x, y)).

A mean K on I is said to be an (M,N)-invariant mean if K = K ◦ (M,N); more

precisely,

K(x, y) = K
(
M(x, y), N(x, y)

)
for all x, y ∈ I.

In this setting the arithmetic-geometric mean is an invariant mean for arith-

metic and geometric means. In fact, it was proved [5, Theorem 8.2] that if M

and N are continuous and strict, then such K always exists and is uniquely de-

termined. Later Matkowski [14] proved that the strictness assumption can be

relax to

|M(x, y)−N(x, y)| < |x− y| for all x, y ∈ I, x 6= y. (1.1)

Finally, similarly like in the case of the arithmetic-geometric mean, we know

(see, e.g. [5]) that the (M,N)-invariant mean is obtained as a common limit of

iterates of the mean-type mapping (M,N) given by

x0 = x, y0 = y;

xn+1 = M(xn, yn), yn+1 = N(xn, yn) for all n ≥ 0; (1.2)

where x and y are its arguments. In fact, these sequences of iterates are used

so often that whenever the quadruple (M,N, x, y) is defined, sequences (xn) and

(yn) are also given.

Invariant means were extensively studied during recent years, see, for exam-

ple, papers by Baják–Páles [1]–[4], by Daróczy–Páles [8]–[10], by G lazow-

ska [12]–[13], by Matkowski [14]–[18], by Matkowski–Páles [19], by the au-

thor [20]–[22], and in the seminal book Borwein–Borwein [5].

We will consider (M,N)-invariant means whereM,N satisfies inequality (1.1)

but continuity is replaced by symmetry (i.e., M(x, y) = M(y, x) for all x, y ∈ I).

Let us just mention that we do not require the means to be discontinuous.

On the other hand, if both of them are continuous, then our consideration reduces

to the one which was already done many times (see references above).
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2. Invariant means with no continuity assumption

In this section we are going to present some examples of constructions which

provide (M,N)-invariant means, where M and N are not necessarily continuous.

There are two somehow independent ways of defining such means. The first

idea is to extend the meaning of limit in the definition of invariant mean (for

example, to lim inf or lim sup). We realize this idea in Section 2.1. The second

one is related with transfinite iterations (Section 2.2).

Let us begin with two elementary, however useful, results

Lemma 1. If M,N : I2 → I are symmetric means, then every (M,N)-

invariant mean is symmetric.

Indeed, if K is an arbitrary (M,N)-invariant mean, then for every x, y ∈ I
we get

K(x, y) = K(M(x, y), N(x, y)) = K(M(y, x), N(y, x)) = K(y, x).

Lemma 2. If M,N : I2 → I are symmetric means, then a mean is (M,N)-

invariant if and only if it is (M ∧N,M ∨N)-invariant, where

(M ∧N)(x, y) := min(M(x, y), N(x, y)), x, y ∈ I,
(M ∨N)(x, y) := max(M(x, y), N(x, y)), x, y ∈ I.

By the previous lemma, every (M,N)-invariant (or (M∧N,M∨N)-invariant)

mean is symmetric. Furthermore, for every symmetric function K : I2 → I

we have K ◦ (M,N) = K ◦ (M ∧N,M ∨N).

2.1. Boundary invariant means. This idea is motivated by generalized limit

functions. Our consideration covers all standard type of limits (i.e., lim, lim inf,

lim sup) but also more general functionals such as Banach limit1. A function

φ : `∞(I)→ I is called 2-limit-like if for every a = (a1, a2, . . . ) ∈ `∞(I),

(i) φ(a1, a2, a3, . . . ) = φ(a3, a4, a5, . . . ), and

(ii) lim infn→∞ an ≤ φ(a1, a2, . . . ) ≤ lim supn→∞ an.

Note that whenever the sequence a is convergent, then φ(a) = limn→∞ an.

1Banach limit is a linear functional L : `∞ → R such that ‖L‖∞ = 1; L is shift invariant, i.e.,

L(a2, a3, . . . ) = L(a1, a2, a3, . . . ) for every a ∈ `∞; L(a) ≥ 0 whenever an ≥ 0 for all n; and

L(a) = limn→∞ an for every convergent sequence (an) (cf. Conway [7]).
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Let us emphasize that 2-limit-like functions are much more general objects

than common (or even Banach) limits. In fact, we can construct 2c different 2-

limit-like functions. Indeed, each function w : [0, 1]→ [0, 1] leads to a 2-limit-like

function on `∞[0, 1] given by

φw(a) := lim inf
n→∞

an + w
(

lim inf
n→∞

a2n
)
·
(

lim sup
n→∞

an − lim inf
n→∞

an

)
.

Furthermore, by taking a family of 4-periodic sequences (0, x, 0, 1, . . . ) for x ∈
[0, 1], it can be verified that the mapping w 7→ φw is one-to-one.

At the moment, we can use this definition to introduce the wide class of

(M,N)-invariant means.

Proposition 1. Let M,N : I2 → I be two means, and φ : `∞(I) → I be

a 2-limit-like function. Then the function Bφ : I2 → R given by

Bφ(x, y) := φ(x0, y0, x1, y1, x2, y2, . . . )

is a mean on I, which is (M,N)-invariant.

Conversely, every (M,N)-invariant mean equals Bφ for some 2-limit-like

function φ.

Proof. By the definition of mean we have, for all n ≥ 0,

max(xn+1, yn+1) ≤ max(xn, yn).

Thus the sequence (max(xn, yn))n∈N is nondecreasing and

lim sup (x0, y0, x1, y1, x2, y2, . . . )=lim sup
n→∞

max(xn, yn)≤max(x0, y0)=max(x, y).

Similarly, we obtain lim inf (x0, y0, x1, y1, x2, y2, . . . ) ≥ min(x, y).

Now, as φ is between lim inf and lim sup, we obtain that Bφ is a mean.

Moreover,

Bφ(M(x, y), N(x, y))

=φ
(
M(x0, y0), N(x0, y0),M

(
M(x0, y0), N(x0, y0)

)
, N
(
M(x0, y0), N(x0, y0)

)
, . . .
)

= φ(x1, y1, x2, y2, . . . ) = φ(x0, y0, x1, y1, x2, y2, . . . )

= Bφ(x0, y0) = Bφ(x, y),

which concludes the proof.
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To prove the converse, for an arbitrary (M,N)-invariant mean K, we define

function φ on the orbit of (x, y) by

φ(x0, y0, x1, y1 . . . ) := K(x, y), x, y ∈ I, (2.1)

fulfilled by

φ(a1, a2, a3, a4, . . . ) = lim inf
n→∞

an. (2.2)

By the definition of sequences (xn), (yn) and elementary properties of lim inf,

we obtain that φ satisfies (i). Moreover, in view of (i) and the easy-to-check

inequality inf(a) ≤ φ(a) ≤ sup(a), the property (ii) is also valid. �

In two particular cases φ = lim inf and φ = lim sup, as

[min(M(x, y), N(x, y)), max(M(x, y), N(x, y))] ⊂ [x, y]

is valid for every x, y ∈ I with x < y, we obtain two very important (M,N)-

invariant means. Define lower- and upper-invariant means L, U : I2 → I by

L(x, y) := Blim inf(x, y) = lim
n→∞

min(xn, yn),

U(x, y) := Blim sup(x, y) = lim
n→∞

max(xn, yn).

In fact, L and U are the smallest and the greatest (M,N)-invariant means, re-

spectively, as every (M,N)-invariant mean is bounded from below by min(xn, yn)

and from above by max(xn, yn) (for all n ∈ N).

2.2. Transfinite invariant means. The transfinite invariant mean is the third

(after lower- and upper-) natural invariant mean. In order to define it, we assume

the comparability of means M and N — more precisely, M(x, y) ≤ N(x, y) for

all x, y ∈ I. Moreover, we assume that inequality (1.1) is valid.

Let us consider two transfinite sequences2 (xα) and (yα) by fulfilling conven-

tion (1.2) in the following way:

xα := lim
β↗α

xβ , yα := lim
β↗α

yβ for all limit ordinals α. (2.3)

To provide the correctness of this definition we observe that (xα) is nondecreasing

while (yα) is nonincreasing. Still, whenever M , N , x, and y are given, these

sequences are automatically provided.

2 that is sequences which are enumerated by ordinal numbers; cf. Cantor [6].
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Inequality M ≤ N implies that xα ≤ yα for every α > 0. In particular,

by the definition of L and U, we get

L(x, y) = xω and U(x, y) = yω . (2.4)

Thus

Aα : I2 3 (x, y) 7→ xα ∈ I and Bα : I2 3 (x, y) 7→ yα ∈ I

are expressed as a function of L(x, y) and U(x, y) for all α > ω. In particular,

they are all (M,N)-invariant. Moreover, Aω = L and Bω = U.

The next lemma shows that iteration sequences (Aα) and (Bα) are eventually

fixed. They reach that state after at most ω1 iterations (ω1 stands for the first

uncountable ordinal). This implies that there is no point to consider indexes

greater than ω1 as no new means are obtained.

Lemma 3. Let M, N : I2 → I be two means having property (1.1) such

that M ≤ N . Then Aω1
(x, y) = Bω1

(x, y) for all x, y ∈ I.

Proof. We need to prove that xω1
= yω1

. Inequality M ≤ N implies

xα ≤ yα for all α ≥ 1. Moreover, (1.1) yields that for every α < ω1 either

yα = xα (equivalently, yα − xα = 0) or yα+1 − xα+1 < yα − xα.

If xα0
= yα0

for some α0 < ω1, then, by reflexivity of means, we obtain

xα = yα for all α ∈ [α0, ω1]. In particular, xω1
= yω1

.

From now on, we may assume that (yα − xα)α<ω1
is strictly decreasing.

As xα ≤ yα, we know that this sequence consists of nonnegative entries only.

This leads to a contradiction as every strictly decreasing sequence of nonnegative

numbers is countable. �

Remark 1. As both M and N are means, we obtain, applying the inequality

M ≤ N , that the sequence (xα)α≤ω1 is nondecreasing, while (yα)α≤ω1 is nonin-

creasing.

Based on the lemma above, we can define, for M ≤ N , a transfinite invariant

mean T : I2 → I by

T(x, y) := Aω1
(x, y) = Bω1

(x, y). (2.5)

By virtue of Lemma 2, we can skip the comparability assumption whenever

both means are symmetric (as it was already done in the case of L and U).

Let us now present the following important property of a transfinite invariant

mean.
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Theorem 1. Let I be an interval, M, N : I2 → I be means with M ≤ N

satisfying (1.1). Either T, defined in (2.5), is a unique continuous (M,N)-invariant

mean or there are no continuous (M,N)-invariant means.

Proof. Let K be an arbitrary continuous (M,N)-invariant mean. We show

that K = T.

Fix x, y ∈ I. Using the definition of T, it suffices to prove that K(x, y) = xω1
.

We will prove by transfinite induction that

K(x, y) = K(xα, yα) for all α ≥ 0. (2.6)

Indeed, as K is (M,N)-invariant, we obtain

K(xα+1, yα+1) = K
(
M(xα, yα), N(xα, yα)

)
= K(xα, yα).

Furthermore, as K is continuous, for every limit ordinal number α, we get

K(xα, yα) = K
(

lim
β↗α

xβ , lim
β↗α

yβ

)
= lim
β↗α

K(xβ , yβ).

Now (2.6) easily follows. Finally, reflexivity of K binded with equality xω1 = yω1

concludes the proof. �

Remark. By Lemma 2, we can skip the comparability assumption whenever

both M and N are symmetric.

3. Applications and conclusions

3.1. Example of invariant property for noncontinuous means. Fix an in-

terval I with |I| > 1 and functions M, N : I2 → I defined by

M(x, y) :=

{
1
2 (x+ y) for |x− y| ≤ 1,
1
2

(
x+ y −

√
|x− y|

)
for |x− y| > 1,

x, y ∈ I;

N(x, y) :=

{
1
2 (x+ y) for |x− y| ≤ 1,
1
2

(
x+ y +

√
|x− y|

)
for |x− y| > 1,

x, y ∈ I.

It is easy to check that both M and N are symmetric and strict means on I.

Furthermore, the arithmetic mean is (M,N)-invariant. Whence, by Theorem 1,

it is a transfinite invariant mean for this pair.
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Let (xα) and (yα) be two transfinite sequences corresponding to the iteration

(M,N). Obviously, as N ≥ M , we have yα ≥ xα for all α > 0. Thus, for all

α ≥ 0,

yα+1 − xα+1 =

{
0, if |yα − xα| ≤ 1,√
|yα − xα|, if |yα − xα| > 1.

However, the iteration of square root is well known, so we obtain

yω − xω =

{
0, if |x− y| ≤ 1,

1, if |x− y| > 1.
(3.1)

On the other hand, we can check by simple induction that

xα + yα = x+ y for all α ≥ 0. (3.2)

We now bind (2.4), (3.1), and (3.2) for α = ω to obtain

L(x, y) =

{
x+y
2 , if |x− y| ≤ 1,

x+y−1
2 , if |x− y| > 1;

U(x, y) =

{
x+y
2 , if |x− y| ≤ 1,

x+y+1
2 , if |x− y| > 1.

To express it briefly, for every c ∈ [−1, 1], define the mean Kc : I2 → I by

Kc(x, y) :=

{
x+y
2 , |x− y| ≤ 1,

x+y+c
2 , |x− y| > 1.

Having this new notation, we can simply write L = K−1, U = K1, and T = K0.

If we now continue this in inductive steps, we get Aω+1 = Bω+1 = K0 = T.

Thus (in this example) the sequences (Aα)α≥ω and (Bα)α≥ω contain the lower-,

upper-, and transfinite- invariant means only.

On the other hand, every convex combination of invariant means is again

an invariant mean. Thus Kc is (M,N)-invariant for all c ∈ [−1, 1]. This shows

that not every (M,N)-invariant mean is obtained in sequences (Aα), (Bα).

3.2. Application to functional equations. There appears a natural problem:

which results known for continuous means can be adapted to the discontinuous

setting?

In this section we are going to prove just a single result inspired by

Matkowski [17, Theorem 4].
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Proposition 2. Let M,N : I2 → I be two means with M ≤ N , having

property (1.1), and Φ: I2 → R be a continuous function. Then

Φ(x, y) = Φ(M(x, y), N(x, y)) for all x, y ∈ I (3.3)

if and only if there exists a continuous function f : I → R such that

Φ = f ◦ T.

Moreover, if x 7→ Φ(x, x) is an injective function, then T is continuous.

Recall that, like in many other results, comparability may be replaced by

symmetry.

Proof. Take x, y ∈ I arbitrarily. Using (2.3), equality (3.3) can be rewrit-

ten as Φ(xα, yα) = Φ(xα+1, yα+1) for every α.

By continuity of Φ, we may extend the inductive proof to limit ordinals and

obtain Φ(xα, yα) = Φ(x0, y0) for every α. If we put α = ω1, by (2.5), we obtain

Φ(T(x, y),T(x, y)) = Φ(x, y). (3.4)

To complete the first implication, we can simply define f(x) := Φ(x, x).

The converse implication is immediate in view of (M,N)-invariance of T.

Additionally, if x 7→ Φ(x, x) is injective, then so is f . In particular, f−1

exists and it is a continuous function.

Consequently, T = f−1 ◦ Φ is continuous, too. �

3.3. Conclusions. In this paper we discussed some invariant means which nat-

urally emerged in a case of two noncontinuous mean, either comparable or both

symmetric (sometimes additionally satisfying condition (1.1) ).

There appear some natural problems concerning this new aspect. For ex-

ample: (i) find out the ’noncontinuous counterpart’ of results which are stated

for continuous means; (ii) find out some additional assumption(s) to invariant

mean which can be made in order to obtain the uniqueness of the solution (we

presented three of those: minimality, maximality, and continuity); (iii) generalize

this concept to multivariable means (it is relatively natural in case of L and U

only).

Some progress toward (i) and (ii) was presented while the third aspect is

outside the scope of the present paper.
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