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Local characterization of Jordan *-derivations on B(H)

By XIAOFEI QI (Taiyuan) and MIAOMIAO WANG (Taiyuan)

Abstract. Let H be an infinite-dimensional real Hilbert space, and B(H) the

algebra of all bounded linear operators on H. Assume that δ : B(H) → B(H) is a real

linear map and P ∈ B(H) is zero, or the unit element, or a nontrivial idempotent with

infinite-dimensional range and infinite-dimensional kernel. It is shown that δ satisfies

δ(A2) = δ(A)A∗ + Aδ(A) for all A ∈ B(H) with A2 = P if and only if δ is an inner

Jordan *-derivation. An example is also given to illustrate that this is not necessarily

true when H is finite-dimensional.

1. Introduction

An additive map x 7→ x∗ on a ring R satisfying (xy)∗ = y∗x∗ and (x∗)∗ = x

is called an involution. A ring R equipped with an involution is called a *-ring.

The pioneering paper [16] settled the definition and first results on Jordan *-

derivations. An additive map δ : R → R is called a Jordan *-derivation if the

identity δ(a2) = δ(a)a∗ + aδ(a) holds for all a ∈ R. It is easily verified that,

for every r ∈ R, the map δ defined by δ(a) = ar − ra∗ = [a, r]∗ is a Jordan

*-derivation; and such δ is called an inner Jordan *-derivation. Here we point out

that the term is also used in the literature with another meaning. For example,

if A is a C*-algebra, a *-derivation (respectively, a Jordan *-derivation) on A
is a linear map D : A → A satisfying D(ab) = D(a)b + aD(b) (respectively,
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D(a2) = D(a)a+aD(a)) and D(a∗) = D(a)∗ for all a, b ∈ A. A similar definition

is also valid when A is a JB*-algebra.

The study of Jordan *-derivations has been motivated by the problem of

the representability of quasi-quadratic functionals by sesquilinear ones. It turns

out that the question of whether each quasi-quadratic functional is generated by

some sesquilinear functional is intimately connected with the structure of Jordan

*-derivations (see [9], [14]–[15], and the references therein). Let B(H) be the

algebra of all bounded linear operators on a real or complex Hilbert space H

with dimH > 1, and let A be a standard operator algebra on H. Šemrl proved

in [16] that every additive Jordan *-derivation δ : A → B(H) is of the form

δ(A) = AT − TA∗ for some T ∈ B(H). Recently, Lee, Wong and Zhou [10]–

[11] gave a characterization of additive Jordan *-derivations on noncommutative

prime *-rings. For other related results, see [2]–[3], [6], and the references therein.

A wide number of papers have been devoted to study conditions under which

Jordan derivations of operator algebras can be completely determined by the

action on some sets of operators. For example, Jing in [8] proved that if a linear

map δ on B(H) (here H is an infinite-dimensional complex Hilbert space) satisfies

δ(A2) = δ(A)A + Aδ(A) for each operator A ∈ B(H) with A2 = 0 and δ(I) = 0

(resp. δ(A2) = δ(A)A + Aδ(A) for each operator A ∈ B(H) with A2 = I), then

there exists a bounded linear operator T on H such that δ(A) = TA − AT for

each A ∈ B(H). Dolinar et al. in [4] gave a characterization of linear maps

satisfying δ(A2) = δ(A)A + Aδ(A) for each operator A ∈ B(H) with A2 = P ,

where P is a fixed idempotent operator.

In some studies, such as in [13], the notion “derivable at” is used with a

slightly different meaning. To avoid confusions, we shall employ the term “pairs-

derivable”. One of the mains results in [12] shows that ifX is a BanachA-bimodule

over a Banach algebra A, then a linear map δ : A→ X is a derivation whenever it

is continuous and pairs-derivable at an element z which is left (or right) invertible

in the sense that δ(ab) = δ(a)b+ aδ(b) for all a, b ∈ A with ab = z. Zhu, Xiong

and Li showed that, for a Hilbert space H, a linear map δ : B(H) → B(H)

is a derivation if and only if it is pairs-derivable at a non-zero point in B(H)

(see [17]). The identity on B(H) is pairs-derivable at zero but it is not a derivation.

In a recent contribution (see [5]), Essaleh and Peralta proved that a continuous

linear map T on a unital C*-algebra A is a generalized derivation (i.e. T (ab) =

T (a)b+aT (b)−aT (1)b for all a, b ∈ A) whenever it is a triple derivation at the unit

element (i.e. δ({a, b, c}) = {δ(a), b, c}+{a, δ(b), c}+{a, b, δ(c)} for every a, b, c ∈ A
with {a, b, c} = 1, where {a, b, c} = 1

2 (ab∗c+ cb∗a)). If under the same hypothesis

we also assume that T (1) = 0, then T is a derivation, a symmetric map and a triple
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derivation. Furthermore, a continuous linear map on a unital C*-algebra which is

a triple derivation at the unit element is a triple derivation. Similar conclusions

are obtained for continuous linear maps which are derivations or triple derivations

at zero. The same authors establish an automatic continuity result by showing

that generalized derivations on a von Neumann algebra and linear maps on a von

Neumann algebra which are pairs-derivable or triple derivations at zero are all

continuous.

Motivated by these, we say that a map δ on a *-ring R is Jordan *-derivable

at a point Z ∈ R if δ(A2) = δ(A)A∗ + Aδ(A) holds for all A ∈ R with A2 = Z.

The purpose of the present paper is to give a characterization of real linear maps

Jordan *-derivable at an idempotent operator in B(H). Note that if R is 2-

torsion free, then a Jordan *-derivation on R can be equivalently defined by

the identity δ(AB + BA) = δ(A)B∗ + Aδ(B) + δ(B)A∗ + Bδ(A). In [13], the

authors studied additive maps δ on prime *-ring R that satisfy δ(AB + BA) =

δ(A)B∗ +Aδ(B) + δ(B)A∗ +Bδ(A) whenever AB = 0 for A,B ∈ R. We remark

here that the question of characterizing maps Jordan *-derivable at some point Z

is relatively more difficult than the question of characterizing maps satisfying

δ(AB + BA) = δ(A)B∗ + Aδ(B) + δ(B)A∗ +Bδ(A) for any A,B with AB = Z,

since it is more difficult to find A satisfying A2 = Z.

The paper is organized as follows. In Section 2, we give some useful propo-

sitions and lemmata, which are of independent interest. Let H be an infinite-

dimensional real Hilbert space, and B(H) the algebra of all bounded linear oper-

ators on H. Assume that δ : B(H)→ B(H) is a real linear map. In Section 3, we

show that δ is Jordan *-derivable at zero (respectively, at the unit operator, or at

an idempotent operator with infinite rank and co-rank) if and only if δ is an inner

Jordan *-derivation (Theorems 3.1–3.3). There is a counterexample to illustrate

that the results may not be true when H is finite-dimensional (Remark 3.4).

Finally let us fix some notations. For any Hilbert space H, denote by F(H)

the set of all finite rank linear operators in B(H). An operator P ∈ B(H) is an

idempotent operator if P 2 = P and is a square zero operator if P 2 = 0. For any

A ∈ B(H), ranA and kerA stand for the range and the kernel of A, respectively.

2. Preliminaries

In this section, we will give some propositions and lemmata, which are useful

in the proofs of the main theorems and are of independent interest.

Proposition 1. Let A = Mn(R) be the algebra of all n×n matrices over the
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real field R with n ≥ 2, and letM be an A-bimodule. Assume that δ : A →M is

an R-linear map. If δ satisfies δ(P ) = δ(P )P ∗+Pδ(P ) for all idempotent operators

P ∈ A, then δ(A2) = δ(A)A∗ + Aδ(A) holds for all A ∈ A. Furthermore, there

exists some T ∈M such that δ(A) = AT − TA∗ for all A ∈ A.

Proof. It should be acknowledged that the proof of Proposition 1 owes too

much to the ideas in [16]. For the sake of completeness, we will give a brief proof

here.

Define a multiplication in B =

(
A M
0 A

)
by

(
A1 M1

0 B1

)(
A2 M2

0 B2

)
=

(
A1A2 A1M2 +M1B2

0 B1B2

)
.

It is easy to check that B becomes an algebra over R. Define an R-linear map

φ : A → B by

φ(A) =

(
A δ(A)

0 A∗

)
for all A ∈ A.

By the assumption about δ and the definition of φ, we see that

φ(P )2 = φ(P ) holds for all idempotent operators P ∈ A.

By [1, Theorem 2.1], φ is a Jordan homomorphism, that is, φ(A2) = φ(A)2

for all A ∈ A. It follows from the definition of φ that the identity δ(A2) =

δ(A)A∗ +Aδ(A) holds for all A ∈ A.

Moreover, by [1, Theorem 2.1], φ is an orthogonal sum of ϕ and ψ, where

ϕ : A → B is a homomorphism and ψ : A → B is an antihomomorphism. So we

can respectively write ϕ and ψ as

ϕ(A) =

(
ϕ1(A) ϕ2(A)

0 ϕ3(A)

)
, ψ(A) =

(
ψ1(A) ψ2(A)

0 ψ3(A)

)
.

By a similar argument to that in [16], one can show that ϕ3 ≡ 0 and ψ3(A) = A∗

for all A ∈ A. So

ϕ(A) =

(
ϕ1(A) ϕ2(A)

0 0

)
, ψ(A) =

(
0 ψ2(A)

0 A∗

)
.

By the properties of ϕ and ψ, it is easily checked that ϕ2 and ψ2 are R-linear

maps satisfying

ϕ2(AB) = Aϕ2(B) and ψ2(AB) = ψ2(B)A∗ for all A,B ∈ A.
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Particularly, we get

ϕ2(A) = Aϕ2(I) and ψ2(A) = ψ2(I)A∗ for all A ∈ A.

In addition, note that δ(A) = ϕ2(A) + ψ2(A) for all A ∈ A; and δ(I) = 0 as

δ(I) = δ(I)I∗+Iδ(I). It follows that ϕ2(I)+ψ2(I) = 0. Now, let T = ϕ2(I) ∈M;

then δ(A) = AT − TA∗, as desired. �

Lemma 2.1 ([7, Lemma 7]). Let H be an infinite-dimensional Hilbert space.

Then every operator A ∈ B(H) is a sum of a finite number of idempotent operators

in B(H), and is also a finite sum of square zero operators in B(H).

By using Lemma 2.1, we can prove the following proposition.

Proposition 2. Let H be an infinite-dimensional Hilbert space over the

field F of all real or complex numbers. Assume that δ : B(H) → B(H) is an

additive map. If δ satisfies δ(N)N∗ + Nδ(N) = 0 for N ∈ B(H) with N2 = 0,

then δ(P ) = δ(P )P ∗ + Pδ(P ) holds for all P ∈ B(H) with P 2 = P .

Proof. The proof is similar to that of [8, Theorem 2.2]. Here, we will give

a sketch of the proof.

Pick any idempotent operator P ∈ B(H) with infinite-dimensional range and

infinite-dimensional kernel. Write P1 = P and P2 = I −P . We first give a claim.

Claim. For any operators A,B ∈ B(H) satisfying P1AP1 =A and P2BP2 =B,

we have δ(A)B∗ +Aδ(B) + δ(B)A∗ +Bδ(A) = 0.

Take any operators A,B ∈ B(H) with P1AP1 = A and P2BP2 = B. Under

the space decomposition H = P1H⊕P2H, A and B have the forms A =

(
A1 0

0 0

)

and B =

(
0 0

0 B2

)
, where A1 ∈ B(P1H) and B2 ∈ B(P2H). By using Lemma 2.1

to A1 and B2, one can find square zero operators Nk,Ml ∈ B(H) with Nk + Ml

still square-zero operators (k = 1, . . . , n; l = 1, . . . ,m) such that A =
∑n

k=1Nk

and B =
∑m

l=1Ml. By the assumption, one can get

δ(Nk)M∗l + δ(Ml)N
∗
k +Nkδ(Ml) +Mlδ(Nk) = 0, k = 1, . . . , n; l = 1, . . . ,m.

Hence, by the additivity of δ, the claim is true.

Now, take any idempotent operator P ∈ B(H). If dim ranP =dim kerP =∞,

applying Claim to P and I − P , we have

2δ(P ) = 2δ(P )P ∗ + 2Pδ(P )− Pδ(I)− δ(I)P ∗. (2.1)
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Multiplying by P and P ∗ from the left and the right in equation (2.1), respectively,

one can obtain Pδ(I) = δ(I)P ∗. So equation (2.1) reduces to δ(P ) = δ(P )P ∗ +

Pδ(P )− δ(I)P ∗.

If dim ranP <∞, choose two idempotent operators R1, R2 ∈ B(H) such that

dim ranR1 = dim ranR2 =∞, PRi = RiP = 0 (i = 1, 2), R1R2 = R2R1 = 0 and

I = P + R1 + R2. Obviously, dim kerR1 = dim kerR2 = ∞. From Claim and

what has been proved above, one can easily show that δ(P ) = δ(P )P ∗+Pδ(P )−
Pδ(I) = δ(P )P ∗ + Pδ(P )− δ(I)P ∗.

If dim kerP < ∞, a similar argument still can achieve δ(P ) = δ(P )P ∗ +

Pδ(P )− δ(I)P ∗ and Pδ(I) = δ(I)P ∗.

To sum up, we have proved that δ(P ) = δ(P )P ∗ + Pδ(P ) − δ(I)P ∗ and

δ(I)P ∗ = Pδ(I) hold for all P ∈ B(H) with P 2 = P .

To complete the proof, one still needs to check δ(I)=0. In fact, by Lemma 2.1,

δ(I)A∗ = Aδ(I) holds for all A ∈ B(H). Particularly, δ(I)S = Sδ(I) holds for all

self-adjoint operators S ∈ B(H). This implies δ(I)A = Aδ(I) for each A ∈ B(H),

and so δ(I) = λI for some scalar λ. It follows from δ(I)A∗ = Aδ(I) that λ must

be zero, as desired. �

3. Real linear maps Jordan *-derivable at an idempotent operator

In this section, we will give a characterization of real linear maps which are

Jordan *-derivable at an idempotent operator P .

If P is a trivial idempotent operator, that is, P = 0, I, we have

Theorem 3.1. Let H be an infinite-dimensional real Hilbert space. Assume

that δ : B(H)→ B(H) is a real linear map. Then δ is Jordan *-derivable at zero,

that is, δ satisfies δ(N)N∗ + Nδ(N) = 0 for all N ∈ B(H) with N2 = 0, if and

only if there exists some T ∈ B(H) such that δ(A) = AT −TA∗ for all A ∈ B(H),

that is, δ is an inner Jordan *-derivation.

Theorem 3.2. Let H be an infinite-dimensional real Hilbert space. Assume

that δ : B(H) → B(H) is a real linear map. Then δ is Jordan *-derivable at I

if and only if there exists some T ∈ B(H) such that δ(A) = AT − TA∗ for all

A ∈ B(H).

For a nontrivial idempotent operator, we have

Theorem 3.3. Let H be an infinite-dimensional real Hilbert space. Assume

that δ : B(H)→ B(H) is a real linear map and P ∈ B(H) is any fixed nontrivial

idempotent with infinite-dimensional range and infinite-dimensional kernel. Then
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δ is Jordan *-derivable at P if and only if there exists some T ∈ B(H) and a real

linear map f : B(H) → B(H) such that δ(X) = XT − TX∗ + f(PX(I − P )) +

f((I − P )XP ) for all X ∈ B(H).

Remark 3.1. We remark that Theorems 3.1–3.3 may not be true on finite-

dimensional Hilbert spaces.

Let H be the real Hilbert space R2 with a standard basis {e1, e2}. Then

B(H) can be identified with the space M2(R) of 2 × 2 real matrices. For any

A ∈M2(R), if A2 = 0, then A is of rank at most one, and so it can be written as

A =

(
a1b1 a1b2
a2b1 a2b2

)
∈M2(R) with a1b1 + a2b2 = 0.

Define a map δ on M2(R) by

δ

(
a11 a12
a21 a22

)
=

(
a12 0

−2a11 −a21

)
for all

(
a11 a12
a21 a22

)
∈M2(R).

Clearly, δ is real linear. In addition, it is not difficult to check that δ is Jordan

*-derivable at the idempotent P = 0, that is, δ(N2) = δ(N)N∗ +Nδ(N) for any

N ∈M2(R) with N2 = 0. However, if there exists some T =

(
t11 t12
t21 t22

)
∈M2(R)

such that δ(A) = AT−TA∗ for all A =

(
a11 a12
a21 a22

)
∈M2(R), then T must satisfy

the conditions a12 = a21(t21 − t12) and a21 = a12(t21 − t12), which is impossible.

So δ cannot be of the form A 7→ [A, T ]∗.

Now we are at a position to give our proofs of Theorems 3.1–3.3.

Proof of Theorem 3.1. The “if” part is obvious. For the “only if” part,

by Proposition 2, we have

δ(P ) = δ(P )P ∗ + Pδ(P ) for all idempotent operators P ∈ B(H). (3.1)

Pick any A,B ∈ F(H). Then there is a finite rank projection Q ∈ F(H) such

that QAQ = A and QBQ = B. Let {x1, x2, . . . , xn} be a basis of ranQ, and let

C ⊆ F(H) be the algebra of all operators C of the form C =
∑n

i,j=1 tijxi ⊗ xj ,
tij ∈R, and note that C is isomorphic toMn(R) via the isomorphism C 7→ (tij)n×n.

Thus, for the restriction of δ to C, Proposition 1 entails that there exists some

S ∈ B(H) depending on n such that δ(A) = AS − SA∗ for all A ∈ F(H) with
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QAQ = A, which implies that δ|F(H) (i.e. the restriction of δ to F(H)) is a Jordan

*-derivation. Now, by [16], there exists some T ∈ B(H) such that

δ(A) = AT − TA∗ holds for all A ∈ F(H). (3.2)

Next, take any idempotent operator P ∈ B(H) and any rank-one idempotent

operator Q ∈ B(H). If PQ = QP = 0, then (P+Q)2 = P+Q. By equation (3.1),

we have δ((P +Q)2) = δ(P +Q)(P +Q)∗ + (P +Q)δ(P +Q), that is,

δ(P )Q∗ + Pδ(Q) + δ(Q)P ∗ +Qδ(P ) = 0.

Since Q is rank-one, by equation (3.2), the equation implies

δ(P )Q∗ − PTQ∗ +QTP ∗ +Qδ(P ) = 0,

and so Qδ(P )Q∗ = 0. Hence

[δ(P )−PT+TP ∗]Q∗=PTQ∗−QTP ∗Q∗−Qδ(P )Q∗−PTQ∗+TP ∗Q∗=0. (3.3)

If PQ = QP = Q, then (P −Q)2 = P −Q and (P −Q)Q = Q(P −Q) = 0.

By what has been proved, one gets [δ(P −Q)− (P −Q)T + T (P −Q)∗]Q∗ = 0,

which and equation (3.2) yield

[δ(P )− PT + TP ∗]Q∗ = 0. (3.4)

Combining equations (3.3)–(3.4) entails that [δ(P )−PT + TP ∗]Q∗ = 0 holds for

each rank-one idempotent Q ∈ B(H), which entails δ(P ) = PT − TP ∗ for all

idempotent operators P ∈ B(H).

Finally, by Lemma 2.1, every operator in B(H) can be written as a finite sum

of idempotents. Hence δ(A) = AT − TA∗ holds for all A ∈ B(H), completing the

proof. �

Proof of Theorem 3.2. For any idempotent operator P ∈ B(H), it is

obvious that (I − 2P )2 = I. By the assumption, one has

δ(I) = δ(I − 2P )(I − 2P )∗ + (I − 2P )δ(I − 2P ).

Note that δ(I) = 0, as δ(I) = δ(I)I∗ + Iδ(I). The above equation reduces to

δ(P ) = δ(P )P ∗ + Pδ(P ) for all idempotent operators P ∈ B(H).

Now, by a similar proof to that of Theorem 3.1, one can check that the

theorem is true. �
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Proof of Theorem 3.3. For the “if” part, assume that A2 = P . Then

AP = AA2 = A2A = PA, and so (I − P )AP = PA(I − P ) = 0. Note that

f(0) = 0 by the additivity of f . Hence

δ(A)A∗ +Aδ(A) = (AT − TA∗ + f(PA(I − P )) + f((I − P )AP ))A∗

+A(AT − TA∗ + f(PA(I − P )) + f((I − P )AP ))

= A2T − T (A2)∗ = PT − TP ∗ = δ(P ).

That is, δ is Jordan *-derivable at P .

For the “only if” part, assume that δ satisfies δ(A)A∗ + Aδ(A) = δ(P ) for

any A ∈ B(H) with A2 = P .

Denote by H1 = ranP and H2 = kerP the range and the kernel of P ,

respectively. For P and any X ∈ B(H), according to the space decomposition

H = H1 ⊕ H2, we may write P =

(
IH1

0

0 0

)
, X =

(
X11 X12

X21 X22

)
and

δ(X) =

(
δ11(X) δ12(X)

δ21(X) δ22(X)

)
, where Xij ∈ B(Hj , Hi) and δij : B(H)→ B(Hj , Hi)

are real linear maps.

Observe that δ(P ) = δ(P )P ∗ + Pδ(P ). By a simple matrix computation,

it is easy to see that

Pδ(P )P = (I − P )δ(P )(I − P ) = 0, that is, δ11(P ) = δ22(P ) = 0. (3.5)

Define two linear operators τ11 : B(H1) → B(H1) and τ22 : B(H2) → B(H2)

respectively by

τ11(X11) = δ11

(
X11 0

0 0

)
and τ22(X22) = δ22

(
IH1

0

0 X22

)
for each X11 ∈ B(H1) and X22 ∈ B(H2).

Take any operator X =

(
X11 0

0 X22

)
with X2

11 = IH1
and X2

22 = 0. Since

δ is real linear, by the definitions of τ11, τ22 and noting that equation (3.5), τ11
and τ22 are also real linear. In addition, as δ is Jordan *-derivable at P , a simple

calculation entails that τ11 is Jordan *-derivable at IH1
and τ22 is Jordan *-

derivable at 0. Note that both H1 and H2 are infinite-dimensional Hilbert spaces.

So, by Theorems 3.1 and 3.2, there exist some A11 ∈ B(H1) and A22 ∈ B(H2)

such that

τ11(X11) = [X11, A11]∗ and τ22(X22) = [X22, A22]∗
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for all X11 ∈ B(H1) and all X22 ∈ B(H2). Thus, for any

X =

(
X11 0

0 X22

)
=

(
X11 − IH1

0

0 0

)
+

(
IH1

0

0 X22

)
.
= X1 +X2 ∈ B(H),

we have

δ(X) = δ(X1) + δ(X2)

=

(
δ11(X1) 0

0 δ22(X2)

)
+

(
δ11(X2) 0

0 δ22(X1)

)
+

(
0 δ12(X)

δ21(X) 0

)

=

(
τ11(X11 − IH1

) 0

0 τ22(X22)

)
+

(
δ11(X2) 0

0 δ22(X1)

)
+

(
0 δ12(X)

δ21(X) 0

)

=

(
[X11, A11]∗ 0

0 [X22, A22]∗

)
+

(
δ11(X2) 0

0 δ22(X1)

)
+

(
0 δ12(X)

δ21(X) 0

)
. (3.6)

Take any A =

(
A1 0

0 N2

)
with A2

1 = IH and N2
2 = 0. Then A2 = P , and so

δ

(
A1 0

0 N2

)(
A1 0

0 N2

)∗
+

(
A1 0

0 N2

)
δ

(
A1 0

0 N2

)
= δ(P ). (3.7)

By using equations (3.5)–(3.6) to equation (3.7), we have

δ11

(
A1 0

0 N2

)
A∗1 +A1δ22

(
A1 0

0 N2

)
= 0, (3.8)

δ12

(
A1 0

0 N2

)
N∗2 +A1δ12

(
A1 0

0 N2

)
= δ12(P ), (3.9)

δ21

(
A1 0

0 N2

)
A∗1 +N2δ21

(
A1 0

0 N2

)
= δ21(P ) (3.10)

and

δ22

(
A1 0

0 N2

)
N∗2 +N2δ22

(
A1 0

0 N2

)
= 0 (3.11)

for all A1 ∈ B(H1) and all N2 ∈ B(H2) with A2
1 = IH1

and N2
2 = 0.
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For equation (3.8), by taking A1 = IH1
, one easily gets δ11

(
IH1

0

0 N2

)
= 0

for all square-zero operators N2 ∈ B(H2). Since kerP is infinite-dimensional,

by Lemma 2.1, we have

δ11(X2) = δ11

(
IH1 0

0 X22

)
= 0 for every X22 ∈ B(H2). (3.12)

For equation (3.9), letting N2 = 0, one has A1δ12

(
A1 0

0 0

)
= δ12(P ), and so

δ12

(
A1 0

0 0

)
= A1δ12(P ) for all A1 ∈ B(H1) with A2

1 = IH1 .

Take any idempotent Q ∈ B(H1). As (IH1 − 2Q)2 = IH1 , the above equation

implies

δ12

(
IH1
− 2Q 0

0 0

)
= (IH1 − 2Q)δ12(P ),

that is, δ12

(
Q 0

0 0

)
= Qδ12(P ). Note that each operator is a sum of finite idem-

potents (Lemma 2.1). Hence

δ12

(
X11 0

0 0

)
= X11δ12(P ) for all X11 ∈ B(H1). (3.13)

Taking A1 = IH1
in equation (3.9), one gets

δ12(P )N∗2 + δ12

(
0 0

0 N2

)
N∗2 + δ12(P ) + δ12

(
0 0

0 N2

)
= δ12(P ).

Multiplying by N∗2 from the right in the above equation, we have δ12

(
0 0

0 N2

)
N∗2 =

0, and so δ12

(
0 0

0 N2

)
= −δ12(P )N∗2 for all square-zero operators N2.

By Lemma 2.1 again, one obtains

δ12

(
0 0

0 X22

)
= −δ12(P )X∗22 for all operators X22 ∈ B(H2). (3.14)
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Combining equation (3.13) and (3.14), we achieve that

δ12

(
X11 0

0 X22

)
=X11δ12(P )−δ12(P )X∗22 for all X11 ∈ B(H1), X22 ∈ B(H2).

(3.15)

Likewise, by an argument for equation (3.10), one can show that

δ21

(
X11 0

0 X22

)
=−X22δ21(P )+δ21(P )X∗11 for all X11 ∈ B(H1), X22 ∈ B(H2).

(3.16)

Note that equation (3.11) can be written as

δ22

(
A1 − IH1

0

0 0

)
N∗2 + δ22

(
IH1

0

0 N2

)
N∗2

+N2δ22

(
A1 − IH1

0

0 0

)
+N2δ22

(
IH1

0

0 N2

)
= 0,

and equation (3.11) also implies δ22

(
IH1

0

0 N2

)
N∗2 + N2δ22

(
IH1

0

0 N2

)
= 0.

Thus

δ22

(
A1 − IH1 0

0 0

)
N∗2 +N2δ22

(
A1 − IH1 0

0 0

)
= 0

holds for all A1 ∈ B(H1) and all N2 ∈ B(H2) with A2
1 = IH1 and N2

2 = 0.

By Lemma 2.1, one can easily see that

δ22

(
A1 − IH1

0

0 0

)
= 0 holds for all A1 ∈ B(H1) with A2

1 = IH1
.

Thus, by a similar argument to that of equation (3.13), we obtain

δ22

(
X11 0

0 0

)
= 0 for all X11 ∈ B(H1). (3.17)

Now, let T =

(
A11 δ12(P )

−δ21(P ) A22

)
. Then, combining equation (3.12) and

equations (3.15)–(3.17), one has proved that

δ(X) = XT − TX∗ for all X =

(
X11 0

0 X22

)
∈ B(H).
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Hence, for any X =

(
X11 X12

X21 X22

)
∈ B(H), we have

δ(X) = δ

(
X11 0

0 X22

)
+ δ

(
0 X12

X21 0

)

= XT − TX∗ −

(
0 X12

X21 0

)
T + T

(
0 X12

X21 0

)∗
+ δ

(
0 X12

X21 0

)
.

Define a map f : B(H)→ B(H) by f(X) = δ(X)−(XT−TX∗) for all X ∈ B(H).

It is obvious that f is real linear and δ(X) = XT −TX∗+f(PX(I−P ))+f((I−
P )XP ) for all X ∈ B(H), completing the proof. �
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