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Local characterization of Jordan *-derivations on B(H)

By XIAOFEI QI (Taiyuan) and MIAOMIAO WANG (Taiyuan)

Abstract. Let H be an infinite-dimensional real Hilbert space, and B(H) the
algebra of all bounded linear operators on H. Assume that ¢ : B(H) — B(H) is a real
linear map and P € B(H) is zero, or the unit element, or a nontrivial idempotent with
infinite-dimensional range and infinite-dimensional kernel. It is shown that § satisfies
§(A%) = §(A)A* + AS(A) for all A € B(H) with A = P if and only if § is an inner
Jordan *-derivation. An example is also given to illustrate that this is not necessarily
true when H is finite-dimensional.

1. Introduction

An additive map z — x* on a ring R satisfying (zy)* = y*z* and (z*)* =«

is called an involution. A ring R equipped with an involution is called a *-ring.
The pioneering paper [16] settled the definition and first results on Jordan *-
derivations. An additive map § : R — R is called a Jordan *-derivation if the
identity 6(a?) = d(a)a* + ad(a) holds for all a € R. It is easily verified that,
for every r € R, the map J defined by §(a) = ar — ra* = [a,7]« is a Jordan
*_derivation; and such ¢ is called an inner Jordan *-derivation. Here we point out
that the term is also used in the literature with another meaning. For example,
if A is a C*-algebra, a *-derivation (respectively, a Jordan *-derivation) on A
is a linear map D : A — A satisfying D(ab) = D(a)b + aD(b) (respectively,
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D(a?) = D(a)a+aD(a)) and D(a*) = D(a)* for all a,b € A. A similar definition
is also valid when A is a JB*-algebra.

The study of Jordan *-derivations has been motivated by the problem of
the representability of quasi-quadratic functionals by sesquilinear ones. It turns
out that the question of whether each quasi-quadratic functional is generated by
some sesquilinear functional is intimately connected with the structure of Jordan
*-derivations (see [9], [14]-[15], and the references therein). Let B(H) be the
algebra of all bounded linear operators on a real or complex Hilbert space H
with dim H > 1, and let A be a standard operator algebra on H. SEMRL proved
in [16] that every additive Jordan *-derivation 6 : A — B(H) is of the form
§(A) = AT — T A* for some T € B(H). Recently, LEE, WoNG and ZHOU [10]-
[11] gave a characterization of additive Jordan *-derivations on noncommutative
prime *-rings. For other related results, see [2]-[3], [6], and the references therein.

A wide number of papers have been devoted to study conditions under which
Jordan derivations of operator algebras can be completely determined by the
action on some sets of operators. For example, JING in [8] proved that if a linear
map 6 on B(H) (here H is an infinite-dimensional complex Hilbert space) satisfies
§(A?) = §(A)A + AS(A) for each operator A € B(H) with A2 =0 and §(I) =0
(resp. §(A%) = §(A)A + AJ(A) for each operator A € B(H) with A% = I), then
there exists a bounded linear operator T' on H such that §(A) = TA — AT for
each A € B(H). DOLINAR et al. in [4] gave a characterization of linear maps
satisfying §(A%) = 6(A)A + AJ(A) for each operator A € B(H) with A2 = P,
where P is a fixed idempotent operator.

In some studies, such as in [13], the notion “derivable at” is used with a
slightly different meaning. To avoid confusions, we shall employ the term “pairs-
derivable”. One of the mains results in [12] shows that if X is a Banach A-bimodule
over a Banach algebra A, then a linear map § : A — X is a derivation whenever it
is continuous and pairs-derivable at an element z which is left (or right) invertible
in the sense that d(ab) = 6(a)b + ad(b) for all a,b € A with ab = z. ZHU, XIONG
and LI showed that, for a Hilbert space H, a linear map ¢ : B(H) — B(H)
is a derivation if and only if it is pairs-derivable at a non-zero point in B(H)
(see [17]). The identity on B(H) is pairs-derivable at zero but it is not a derivation.
In a recent contribution (see [5]), ESSALEH and PERALTA proved that a continuous
linear map T on a unital C*-algebra A is a generalized derivation (i.e. T(ab) =
T(a)b+aT(b)—aT(1)bfor all a,b € A) whenever it is a triple derivation at the unit
element (i.e. §({a,b,c}) = {0(a),b,c}+{a,d(b),c}+{a,b,6(c)} for every a,b,c € A
with {a,b, ¢} = 1, where {a,b,c} = (ab*c+ cb*a)). If under the same hypothesis
we also assume that T'(1) = 0, then T is a derivation, a symmetric map and a triple
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derivation. Furthermore, a continuous linear map on a unital C*-algebra which is
a triple derivation at the unit element is a triple derivation. Similar conclusions
are obtained for continuous linear maps which are derivations or triple derivations
at zero. The same authors establish an automatic continuity result by showing
that generalized derivations on a von Neumann algebra and linear maps on a von
Neumann algebra which are pairs-derivable or triple derivations at zero are all
continuous.

Motivated by these, we say that a map ¢ on a *-ring R is Jordan *-derivable
at a point Z € R if §(A?) = §(A)A* + AS(A) holds for all A € R with 4% = Z.
The purpose of the present paper is to give a characterization of real linear maps
Jordan *-derivable at an idempotent operator in B(H). Note that if R is 2-
torsion free, then a Jordan *-derivation on R can be equivalently defined by
the identity 6(AB + BA) = 6(A)B* + AJ(B) + §(B)A* + Bi(A). In [13], the
authors studied additive maps § on prime *-ring R that satisfy §(AB + BA) =
d(A)B* + A§(B) + 6(B)A* + B6(A) whenever AB =0 for A, B € R. We remark
here that the question of characterizing maps Jordan *-derivable at some point Z
is relatively more difficult than the question of characterizing maps satisfying
0(AB + BA) = §(A)B* + Ad(B) + §(B)A* + Bi(A) for any A, B with AB = Z,
since it is more difficult to find A satisfying A% = Z.

The paper is organized as follows. In Section 2, we give some useful propo-
sitions and lemmata, which are of independent interest. Let H be an infinite-
dimensional real Hilbert space, and B(H) the algebra of all bounded linear oper-
ators on H. Assume that § : B(H) — B(H) is a real linear map. In Section 3, we
show that § is Jordan *-derivable at zero (respectively, at the unit operator, or at
an idempotent operator with infinite rank and co-rank) if and only if ¢ is an inner
Jordan *-derivation (Theorems 3.1-3.3). There is a counterexample to illustrate
that the results may not be true when H is finite-dimensional (Remark 3.4).

Finally let us fix some notations. For any Hilbert space H, denote by F(H)
the set of all finite rank linear operators in B(H). An operator P € B(H) is an
idempotent operator if P2 = P and is a square zero operator if P2 = 0. For any
A € B(H), ran A and ker A stand for the range and the kernel of A, respectively.

2. Preliminaries

In this section, we will give some propositions and lemmata, which are useful
in the proofs of the main theorems and are of independent interest.

Proposition 1. Let A = M, (R) be the algebra of all n x n matrices over the
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real field R with n > 2, and let M be an A-bimodule. Assume that § : A — M is
an R-linear map. If ¢ satisfies 6(P) = §(P)P*+Pd(P) for all idempotent operators
P € A, then 6(A?) = §(A)A* + AS(A) holds for all A € A. Furthermore, there
exists some T € M such that §(A) = AT — TA* for all A € A.

PROOF. It should be acknowledged that the proof of Proposition 1 owes too
much to the ideas in [16]. For the sake of completeness, we will give a brief proof
here.

Define a multiplication in B = <€ g) by

Ay M\ (A Mo\  [A1Ay A My + M B,
0 B 0 By \ 0 BBy '

It is easy to check that B becomes an algebra over R. Define an R-linear map

¢: A— Bby
P(A) = <1§ 5%9) for all A € A.

By the assumption about ¢ and the definition of ¢, we see that
$(P)? = ¢(P) holds for all idempotent operators P € A.

By [1, Theorem 2.1], ¢ is a Jordan homomorphism, that is, ¢(A?) = ¢(A)?
for all A € A. Tt follows from the definition of ¢ that the identity 6(A2?) =
d(A)A* + AS(A) holds for all A € A.

Moreover, by [1, Theorem 2.1], ¢ is an orthogonal sum of ¢ and 1, where
¢ : A — Bis a homomorphism and % : 4 — B is an antihomomorphism. So we
can respectively write ¢ and ¢ as

_[e1(A) p2(A) ~ [1(A) a(A)
9"“‘"( 0 ¢3<A>)’ “A)‘( 0 %(A))'

By a similar argument to that in [16], one can show that ¢3 = 0 and 13(A) = A*
for all A € A. So

_ [e1(4) p2(A) [0 a(A)
so(A)< (el ) w<A><O A*)-

By the properties of ¢ and 4, it is easily checked that o and 1 are R-linear
maps satisfying

w2 (AB) = Apa(B) and 9(AB) = 2(B)A* for all A,B € A.
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Particularly, we get
pa(A) = Apa(I) and o(A) =o(I)A* for all A € A.

In addition, note that §(A) = w2(A) + ¥2(A) for all A € A; and §(I) = 0 as
§(I) = 6(I)I*+I5(I). It follows that oo (1) +1p2(1) = 0. Now, let T = @o(I) € M;
then 6(A) = AT — T A*, as desired. O

Lemma 2.1 ([7, Lemma 7]). Let H be an infinite-dimensional Hilbert space.
Then every operator A € B(H) is a sum of a finite number of idempotent operators
in B(H), and is also a finite sum of square zero operators in B(H).

By using Lemma 2.1, we can prove the following proposition.

Proposition 2. Let H be an infinite-dimensional Hilbert space over the
field F of all real or complex numbers. Assume that ¢ : B(H) — B(H) is an
additive map. If § satisfies 6(N)N* + N&6(N) = 0 for N € B(H) with N* = 0,
then §(P) = 6(P)P* + P§(P) holds for all P € B(H) with P?> = P.

PROOF. The proof is similar to that of [8, Theorem 2.2]. Here, we will give
a sketch of the proof.

Pick any idempotent operator P € B(H) with infinite-dimensional range and
infinite-dimensional kernel. Write P, = P and P, = I — P. We first give a claim.

Claim. For any operators A, B € B(H ) satisfying Py AP, = A and P,BP, =B,
we have §(A)B* + Ad(B) + §(B)A* + B§(A) = 0.
Take any operators A, B € B(H) with PyAP, = A and P,BP, = B. Under

A O
the space decomposition H = PLH® P> H, A and B have the forms A = < 01 0)

and B = 8 39 , where A; € B(P,H) and By € B(P2H). By using Lemma 2.1
2

to Ay and Bs, one can find square zero operators Ny, M; € B(H) with Ny + M

still square-zero operators (k = 1,...,n; I = 1,...,m) such that A = Y} | Ny

and B =3, M;. By the assumption, one can get
O(Ng) M + 0(M;)Nf + Nipo(M;) + Mid6(Ng) =0, k=1,....,n; Il=1,...,m.

Hence, by the additivity of §, the claim is true.

Now, take any idempotent operator P € B(H). If dimran P=dimker P = o0,
applying Claim to P and I — P, we have

25(P) = 20(P)P* + 2P(P) — P§(I) — 6(I)P*. (2.1)
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Multiplying by P and P* from the left and the right in equation (2.1), respectively,
one can obtain P§(I) = §(I)P*. So equation (2.1) reduces to 6(P) = 6(P)P* +
P§(P) — 6(I)P*.

If dimran P < oo, choose two idempotent operators Ry, Ry € B(H) such that
dimran R; = dimran Ry = 0o, PR; = R;P =0 (i = 1,2), RiRy = RoRy = 0 and
I = P+ Ry + Rs. Obviously, dimker R; = dimker Ry = oco. From Claim and
what has been proved above, one can easily show that §(P) = §(P)P*+ P§(P) —
P6(I) = 0(P)P* + PS(P) — 6(1)P~.

If dimker P < oo, a similar argument still can achieve §(P) = 6(P)P* +
P§(P) — 6(I)P* and PS(I) = §(I)P*.

To sum up, we have proved that §(P) = §(P)P* + Po(P) — 6(I)P* and
§(I)P* = P§(I) hold for all P € B(H) with P? = P.

To complete the proof, one still needs to check §(1)=0. In fact, by Lemma 2.1,
d(I)A* = AS(I) holds for all A € B(H). Particularly, 6(I)S = S§(I) holds for all
self-adjoint operators S € B(H). This implies 6(I)A = Ad(I) for each A € B(H),
and so 6(I) = A for some scalar A. It follows from &(1)A* = Ad(I) that A must
be zero, as desired. O

3. Real linear maps Jordan *-derivable at an idempotent operator

In this section, we will give a characterization of real linear maps which are
Jordan *-derivable at an idempotent operator P.
If P is a trivial idempotent operator, that is, P = 0,1, we have

Theorem 3.1. Let H be an infinite-dimensional real Hilbert space. Assume
that § : B(H) — B(H) is a real linear map. Then ¢ is Jordan *-derivable at zero,
that is, § satisfies 6(N)N* + N§(N) = 0 for all N € B(H) with N? = 0, if and
only if there exists some T € B(H) such that §(A) = AT —TA* for all A € B(H),
that is, ¢ is an inner Jordan *-derivation.

Theorem 3.2. Let H be an infinite-dimensional real Hilbert space. Assume
that § : B(H) — B(H) is a real linear map. Then § is Jordan *-derivable at I
if and only if there exists some T € B(H) such that §(A) = AT — TA* for all
A€ B(H).

For a nontrivial idempotent operator, we have

Theorem 3.3. Let H be an infinite-dimensional real Hilbert space. Assume
that 0 : B(H) — B(H) is a real linear map and P € B(H) is any fixed nontrivial
idempotent with infinite-dimensional range and infinite-dimensional kernel. Then
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4 is Jordan *-derivable at P if and only if there exists some T € B(H) and a real
linear map f : B(H) — B(H) such that §(X) = XT —TX*+ f(PX(I — P)) +
F((I — P)XP) for all X € B(H).

Remark 3.1. We remark that Theorems 3.1-3.3 may not be true on finite-
dimensional Hilbert spaces.

Let H be the real Hilbert space R? with a standard basis {ej,ez}. Then
B(H) can be identified with the space M3(R) of 2 x 2 real matrices. For any
A € My(R), if A2 =0, then A is of rank at most one, and so it can be written as

A arby  arby € M3(R) with a1b; + agbs = 0.
asby  asbs

Define a map ¢ on Ms(R) by

5(““ 0“2) :< az 0 ) for all (a“ ‘“2> € My(R).
az1 a2 —2a11  —ao az1 G2

Clearly, ¢ is real linear. In addition, it is not difficult to check that ¢ is Jordan
*_derivable at the idempotent P = 0, that is, §(N?) = §(N)N* + N§(N) for any

N € My(R) with N? = 0. However, if there exists some T’ = ill ?2 € M>(R)
21 o2

such that 6(A) = AT-TA* forall A = au a12> € M3(R), then T must satisfy
a1 a22

the conditions aja = a1 (t21 — t12) and as; = aia(ta1 — t12), which is impossible.
So ¢ cannot be of the form A — [A,T]..

Now we are at a position to give our proofs of Theorems 3.1-3.3.

PROOF OF THEOREM 3.1. The “if” part is obvious. For the “only if” part,
by Proposition 2, we have

d(P)=6(P)P* + P§(P) for all idempotent operators P € B(H). (3.1)

Pick any A, B € F(H). Then there is a finite rank projection @ € F(H) such
that QAQ = A and QBQ = B. Let {x1,z9,...,2,} be a basis of ran @, and let
C C F(H) be the algebra of all operators C' of the form C = szzl tijx; @ xj,
t;; €R, and note that C is isomorphic to M, (R) via the isomorphism C' + (¢;;)nxn-
Thus, for the restriction of § to C, Proposition 1 entails that there exists some

S € B(H) depending on n such that 6(4) = AS — SA* for all A € F(H) with
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QAQ = A, which implies that d| 7z (i.e. the restriction of d to F(H)) is a Jordan
*-derivation. Now, by [16], there exists some T € B(H) such that

0(A) = AT —TA* holds for all A € F(H). (3.2)

Next, take any idempotent operator P € B(H) and any rank-one idempotent
operator Q € B(H). If PQ = QP = 0, then (P+Q)? = P+Q. By equation (3.1),
we have §((P+ Q)?) = 6(P+ Q)(P+ Q)" + (P + Q)§(P + Q), that is,

5(P)Q" + P3(Q) + 5(Q)P* + Q3(P) = 0.
Since @ is rank-one, by equation (3.2), the equation implies
J(P)Q* — PTQ* + QTP* + Q3(P) = 0,
and so Q5(P)Q* = 0. Hence
[6(P)— PT+TP*|Q* = PTQ*—QTP* Q" —Q5(P)Q*— PTQ*+TP*Q* =0. (3.3)

If PQ=QP =@Q,then (P-Q)?=P—-Qand (P-Q)Q =Q(P—-Q)=0.
By what has been proved, one gets [0(P — Q) — (P — Q)T + T(P — Q)*]Q* =0,
which and equation (3.2) yield

[6(P) — PT + TP*|Q* = 0. (3.4)

Combining equations (3.3)—(3.4) entails that [0(P) — PT +TP*]Q* = 0 holds for
each rank-one idempotent Q € B(H), which entails 6(P) = PT — TP* for all
idempotent operators P € B(H).

Finally, by Lemma 2.1, every operator in B(H) can be written as a finite sum
of idempotents. Hence 6(A) = AT — T A* holds for all A € B(H), completing the
proof. O

PROOF OF THEOREM 3.2. For any idempotent operator P € B(H), it is
obvious that (I —2P)? = I. By the assumption, one has

§(I) = 8(I — 2P)(I — 2P)* + (I — 2P)5(I — 2P).

Note that §(I) = 0, as §(I) = §(I)I* + I§(I). The above equation reduces to
d(P) = 6(P)P* + Po(P) for all idempotent operators P € B(H).

Now, by a similar proof to that of Theorem 3.1, one can check that the
theorem is true. O



Local characterization of Jordan *-derivations 429

PROOF OF THEOREM 3.3. For the “if’ part, assume that A> = P. Then
AP = AA? = A%2A = PA, and so (I — P)AP = PA(I — P) = 0. Note that
f(0) = 0 by the additivity of f. Hence

S(A)A* 4+ AS(A) = (AT — TA* + f(PA(I — P)) + f((I — P)AP))A*
+ A(AT — TA* + f(PA(I — P)) + f((I — P)AP))
= A’T —T(A*)* = PT — TP* = §(P).

That is, ¢ is Jordan *-derivable at P.

For the “only if” part, assume that 0 satisfies 0(A)A* + AJ(A) = §(P) for
any A € B(H) with A? = P.

Denote by H; = ran P and Hs = ker P the range and the kernel of P,
respectively. For P and any X € B(H), according to the space decomposition

H = H, & Hy, we may write P = Igl 8), X = (?; §22> and

_ (01(X) 012(X)
C\6a1(X) da2(X)
are real linear maps.

Observe that §(P) = 6(P)P* + Po(P). By a simple matrix computation,
it is easy to see that

(X , where X;; € B(H;, H;) and 6;; : B(H) — B(H,, H;)

P§(P)P = (I — P)§(P)(I — P) =0, thatis, 0;;(P)=00(P)=0. (3.5)

Define two linear operators 711 : B(H1) — B(H1) and 792 : B(H2) — B(Ha)
respectively by

Xll O IH O
= = 1
7'11(X11) o1 ( 0 0) and 7'22(X22) 022 ( 0 X22>

for each X1; € B(H;) and Xoo € B(Ha).
X1 0

0 Xo

d is real linear, by the definitions of 711, T2 and noting that equation (3.5), 711

Take any operator X = ) with X% = Iy, and X3, = 0. Since

and 799 are also real linear. In addition, as § is Jordan *-derivable at P, a simple
calculation entails that 717 is Jordan *-derivable at Iy, and 792 is Jordan *-
derivable at 0. Note that both H; and Hs are infinite-dimensional Hilbert spaces.
So, by Theorems 3.1 and 3.2, there exist some Ay, € B(H;) and Agy € B(Hs)

such that

m11(X11) = [X11, A1) and  792(Xa2) = [Xa2, A2o]s
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for all X1, € B(H;) and all X9y € B(Hz). Thus, for any

Xu 0 Xu—1Img, O Iy 0 )
X = = : : =X+ Xp € B(H

we have

(X)) =6(X1) +6(X2)

511 X1 I 511(X2) 0 n 0 (512(X)

522 (X2) 0 022(X1) 021 (X) 0
7'11 X11 -1 1 0 511(X2) O 0 (512(X)
< “ 7’22(X22)> * ( 0 522(X1)> * (521(X) 0 >

X117A11 0 511(Xo) 0 0 512(X)
[Xa2, Ada]s >+< 0 522(X1)>+<521(X) 0 ) (3.6)

Ay
0

A 0 A 0 " Ay 0 A 0
5(0 N2> (0 N2> +<0 N2>5<0 N2>—5(P). (3.7)

By using equations (3.5)—(3.6) to equation (3.7), we have

A, 0
<01 N2> A%+ Aoy

Take any A = ( 23 ) with A? = Iy and N3 = 0. Then A2 = P, and so
2

and

( ) N3 4 Nadao

for all Ay € B(H;) and all Ny € B(Hy) with A? = I, and N3 = 0.
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Iy, O _0
0 Ny
for all square-zero operators No € B(Hs). Since ker P is infinite-dimensional,

For equation (3.8), by taking A; = Iy, , one easily gets 411

by Lemma 2.1, we have

Iy 0
011(Xe) =6 !
11(X2) =dn ( 0 Xu

) =0 for every Xas € B(Ha2). (3.12)
A 0

For equation (3.9), letting No = 0, one has 41412 ( 0 0

) = 012(P), and so

012 <I£(1)1 8) = A1512(P) for all A; € B(Hl) with A% = IH1~

Take any idempotent Q € B(H;). As (Iy, — 2Q)? = Iy,, the above equation

implies
Ig, —2 0
012 ( o 0 @ 0) = Iy, —2Q)d12(P),

. Q 0 . o
that is, 12 0o ol = Qd12(P). Note that each operator is a sum of finite idem-
potents (Lemma 2.1). Hence

X
512 ( 011 8) = X11512(P) for all X11 S B(Hl) (313)

Taking A; = I, in equation (3.9), one gets

" 0 O N 0 0
512(P)N2 + 012 <0 N2> N2 —|—512(P) + 12 <0 Ng) = 512(P).

Multiplying by V5 from the right in the above equation, we have J12 <8 ]8_ >N2* =
2

0, and so d12 8 ]8 = —d12(P)NJ for all square-zero operators Nj.
2

By Lemma 2.1 again, one obtains

d12 (8 XO ) = —012(P) X3, for all operators Xos € B(H>). (3.14)
22
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Combining equation (3.13) and (3.14), we achieve that

X 0 *
510 ( 0” X ) =X11012(P)—612(P) X3, for all X11 € B(H,), Xao € B(Hy).
22

(3.15)
Likewise, by an argument for equation (3.10), one can show that

X 0 *
021 ( 011 X ) :—X22521(P)+521(P)X11 for all X7 € B(Hl), X9 € B(HQ)
22

(3.16)
Note that equation (3.11) can be written as

A — Iy 0 Iy, 0
5 1 N+ 6 1 N
2 ( 0 0) 2 + 02 ( 0 N2> 2

Al—IH 0 IH 0
N5 ! Noo ! =0
+222< 0 0)+ 222(0 N2> )

I I 0
and equation (3.11) also implies da9 < gl JS) N§ + Noboo ( gl N) = 0.
2 2

A -1 0 N A -1 0
622<10H1 0>N2+N2522<10H1 O>:0

holds for all A; € B(H;) and all No € B(Hz) with A = Iy, and N3 = 0.
By Lemma 2.1, one can easily see that

Thus

822 (Al BIHI 8) =0 holds for all Ay € B(H,) with A? = Iy, .

Thus, by a similar argument to that of equation (3.13), we obtain

J29 (XO“ 8) =0 forall Xy; € B(H,). (3.17)
Now, let T = Au 012(P) . Then, combining equation (3.12) and
—021(P)  Ago

equations (3.15)—(3.17), one has proved that

§(X)=XT —TX* forall X = A 0 € B(H).
0 Xo
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Hence, for any X = X Xuz € B(H), we have
Xo1 Xoo
X 0 0 X2
§(X)=2¢
0 X12 0 X12 : 0 X12
=XT-TX" - T+T 1)
X21 0 * X21 0 X21 0

Define amap f : B(H) — B(H) by f(X) = 0(X)—(XT-TX*) for all X € B(H).
It is obvious that f is real linear and §(X) = XT—-TX*+ f(PX(I—-P))+ f((I—
P)XP) for all X € B(H), completing the proof. O
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