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On Baker’s explicit abc-conjecture
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Dedicated to the memory of Professor Alan Baker

Abstract. We derived from Baker’s explicit abc-conjecture that a + b = c, where

a, b and c are relatively prime positive integers, implies that c < N1.72 for N ≥ 1 and

c < 32N1.6 for N ≥ 1. This sharpens an estimate of Laishram and Shorey. We also

show that it implies c < 6
5
N1+G(N) for N ≥ 3, and c < 6

5
N1+G1(N) for N ≥ 297856,

where G(N) and G1(N) are explicitly given positive valued decreasing functions of N

tending to zero as N tends to infinity. Finally, we give applications of our estimates

on triples of consecutive powerful integers and generalized Fermat equation.

1. Introduction

The well-known abc-conjecture was formulated by Joseph Oesterlé [9] and

David Masser [6] in 1988. It states that

Conjecture 1.1. For any given ε > 0, there exists a number Kε depending

only on ε such that if

a+ b = c (1)
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where a, b and c are relatively prime positive integers, then

c ≤ Kε

( ∏
p|abc

p
)1+ε

,

where the product is taken over all primes p dividing abc.

The name abc-conjecture derives from letters a, b, c used in the statement.

There are several works on the abc-conjecture and its variations.

For a positive integer ν, we define the radical N(ν) of ν by the product

of primes dividing ν and ω(ν) for the number of distinct prime divisors of ν.

The letter p always denotes a prime number in this paper except in Theorem 1.6

and its proof. We denote the radical of abc by

N = N(abc) =
∏
p|abc

p (2)

unless otherwise specified. Further, we write ω = ω(N) for the number of distinct

prime divisors of N . We see when ω = 0 or N is odd, then (1) does not hold, and

trivially 1+1 = 2 when ω = 1. Therefore, we always have N being even and ω ≥ 2

unless (a, b, c) = (1, 1, 2) when ω = 1. We understand that log2 x = log log x for

x ≥ 2, and log3 x = log log log x for x ≥ 3. We observe that Conjecture 1.1 is not

explicit in the sense that Kε is not explicit. Alan Baker [1] in 2004 formulated

the following explicit version of Conjecture 1.1.

Conjecture 1.2. Let a, b and c be relatively prime positive integers satis-

fying (1) with N > 2. Then

c <
6

5
N

(logN)ω

ω!
, (3)

where N = N(abc) and ω = ω(N).

We refer to Conjecture 1.1 as abc-conjecture and Conjecture 1.2 as an explicit

version of the abc-conjecture. For integer N > 2, let

A(N) = log2N − log3N,A1(N) = A(N) + logA(N)− 1.076869,

and

G(N) =
1 + logA(N)

A(N)
. (4)
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Further, we define G(x) = G([x]) for x > 2. We observe that G(N) is a positive-

valued function that tends to zero as N tends to infinity. It is decreasing if

A′(N) logA(N) > 0, which is the case when N ≥ 16, since

A′(N) =
1

N logN

(
1− 1

log2N

)
. (5)

Thus G(N) is decreasing for N ≥ 16. Further, for integer N ≥ 40, let

G1(N) =
1 + logA1(N)

A1(N)
(6)

and G1(x) = G1([x]) for x ≥ 40. We observe that G1(N) is positive for N ≥
574 and tends to zero as N tends to infinity. Further, G1(N) is decreasing

if A′1(N) logA1(N) > 0. Let N ≥ 297856. Then A1(N) > 1. Further, A(N) > 0

and A′(N) > 0 by (5). Since

A′1(N) = A′(N) +
A′(N)

A(N)
=
A′(N)

A(N)
(1 +A(N)),

we see that A′1(N) logA1(N) > 0. Hence, G1(N) is decreasing whenever N ≥
297856.

We compare these functions. For this, we observe that the function F (x) =
1+log x

x is decreasing for x > 1 and

1 < A(N) < A1(N) for N ≥ 1.5× 1036,

since A(N) > e1.076869 for N ≥ 1.5× 1036. Therefore,

G(N) = F (A(N)) ≥ F (A1(N)) = G1(N) for N ≥ 1.5× 1036,

and similarly, we derive that

G(N) ≤ G1(N) for 297856 ≤ N ≤ 1036. (7)

Conjecture 1.2 implies the following sharper and explicit version of abc-

conjecture in which we allow ε to be a function of N tending to zero as N tends

to infinity.

Theorem 1.3. Let a, b and c be relatively prime positive integers satisfy-

ing (1). Then (3) implies that

c <
6

5
N1+G(N) for N > 2, (8)

and

c <
6

5
N1+G1(N) for N ≥ 297856. (9)
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On the other hand, Stewart and Tijdeman [11] showed that there are

infinitely many relatively prime positive integers a, b, c satisfying (1) such that for

δ > 0, we have

c > N
1+ 4−δ√

logN log logN .

The constant 4− δ was improved by van Frankenhuysen in [13].

Laishram and Shorey [5] showed that Conjecture 1.2 implies that forN>2,

we have

c < N1+θ with θ =
3

4
. (10)

Further, they also derived under Conjecture 1.2 that for 0 < θ < 3/4, (10) holds

when N ≥ Nθ, where Nθ is an effectively computable number depending only

on θ. Theorem 1.3 provides a value of Nθ for every 0 < θ < 1 determined by

an explicitly given function; we do not have to compute for every θ. Now we

prove the following Theorem with a sharper exponent than (10).

Theorem 1.4. Let a, b and c be relatively prime positive integers satisfy-

ing (1). Then (3) implies that for N > 2, we have

c < N1.72. (11)

Further,

c < 10N1.62991 (12)

and

c < 32N1.6. (13)

Remark 1.1. The exponent 1.72 in (11) has been improved to 1.7 by Chim,

Nair and Shorey in [2].

E. Reyssat [3] considered (1.1) with a = 2, b = 310 × 109, c = 235 and

N = 15042. This implies c > N1.62991, which we may compare with (12).

The following theorem follows immediately from (11), (13) and (9).

Theorem 1.5. Let a, b and c be relatively prime positive integers satisfy-

ing (1). Then (3) implies that

c <


N1.72, if N > 2,

32N1.6, if N ≥ 1012.55,
6
5N

1+G1(N), if N ≥ 1080.53.
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The result can be applied to give an explicit bound for the magnitude of

solutions of the generalized Fermat equation. Let (p, q, r) ∈ Z≥2 with (p, q, r) 6=
(2, 2, 2). The equation

xp + yq = zr, (x, y, z) = 1 with integers x > 0, y > 0, z > 0 (14)

is called the generalized Fermat equation. It is conjectured that there are no

nontrivial solutions to (14) once min{p, q, r} ≥ 3. We consider (14) with p ≥ 3,

q ≥ 3, r ≥ 3. For solving (14), there is no loss of generality in assuming x > 1,

y > 1 and z > 1, since otherwise (14) is completely solved by Mihăilescu [7].

Let [p, q, r] denote all permutations of the ordered triple (p, q, r). Let

Q = {[3, 5, p] : 7 ≤ p ≤ 23, p prime} ∪ {[3, 4, p] : p prime}. (15)

Then Laishram and Shorey [5] proved that (14) with x > 1, y > 1, z > 1, p ≥ 3,

q ≥ 3, r ≥ 3 implies that [p, q, r] ∈ Q such that max (xp, yq, zr) < e1758.3353

whenever (3) holds. This implies that max{p, q, r} < 1758.3353
log 2 < 2537 trivially.

Let Q1 = {[3, 5, p] : 7 ≤ p ≤ 19, p prime} ∪ {[3, 4, p] : 11 ≤ p < 253, p prime}.
We sharpen the above result as follows.

Theorem 1.6. Assume (3). Then (14) with x > 1, y > 1, z > 1, p ≥ 3,

q ≥ 3 and r ≥ 3 implies that [p, q, r] ∈ Q1. Further, for each [p, q, r] ∈ Q1, we have

the following upper bound for max(xp, yq, zr).

[p, q, r] max(xp, yq, zr) < [p, q, r] max(xp, yq, zr) <

[3, 4, p], 37≤ p < 253, p prime 8.1× 1075 [3, 4, 11] 2.2× 10599

[3, 4, 31] 1.3× 10123 [3, 5, 19] 1.6× 1061

[3, 4, 29] 4.3× 10130 [3, 5, 17] 6.7× 1069

[3, 4, 23] 1.2× 10167 [3, 5, 13] 3.9× 10107

[3, 4, 19] 9.8× 10217 [3, 5, 11] 3.9× 10155

[3, 4, 17] 1.2× 10263 [3, 5, 7] 6.6× 10645

[3, 4, 13] 1.5× 10481

Next, we give some applications of our theorems to powerful numbers. An in-

teger ν is called powerful if ν > 0 and p2|ν whenever p|ν for every prime p.

Golomb [4] proved in 1970 that there are infinitely many pairs of consecutive

powerful integers and there exists no four (or more) consecutive powerful in-

tegers. Erdős conjectured that there does not exist three consecutive powerful

integers. Trudgian [12] proved, under Conjecture 1.2, that t < 1020000 whenever
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(t−1, t, t+1) is a triple of consecutive powerful integers. Mollin and Walsh [8]

obtained the following results. Assume t− 1, t, t+ 1 are powerful. Put

P = t, Q = (t− 1)(t+ 1) = my2,

wherem is squarefree. Thenm ≡ 7 (mod 8), and (t, y) is a solution of x2−my2 =1.

For the case when m = 7, Mollin and Walsh [8] proved that

t > 10108

. (16)

Hence, together with the result by Trudgian [12], there is no triple (t− 1, t, t+ 1)

of consecutive powerful integers such that t2 − 7y2 = 1 under Conjecture 1.2.

By following the arguments given in Mollin and Walsh [8], we have checked that

if m = 7 is replaced by m ∈ {15, 23, 31, 39, 47, 55, 87}, then (16) can be replaced by

t > 103×1013

.

Therefore, combining with the result by Trudgian [12], there is no triple (t − 1,

t, t + 1) of consecutive powerful integers such that t2 − my2 = 1 with m ∈
{7, 15, 23, 31, 39, 47, 55, 87} under Conjecture 1.2.

Next, we prove the following result on triples of (a+kd, a+(k+1)d, a+(k+2)d)

of consecutive powerful integers in arithmetic progression.

Theorem 1.7. Let a > 0, d > 0 and k ≥ 0 be integers such that (a, d) = 1.

Assume that ak+i := a + (k + i)d, 0 ≤ i ≤ 2 are all powerful integers. Then (3)

implies the following:

(1) Let ε > 0. There exists an effectively computable number k0 depending only

on ε such that for k ≥ k0, we have

ak+1 < (1.2d)2+ε. (17)

(2) We have

ak+1 < max{2.31× 10158d2666, 1051075}. (18)

If (t − 1, t, t + 1) is a triple of powerful integers, then N(t(t2 − 1)) < t3/2.

In the next result we show that N(t(t2 − 1)) > t3/2 for all sufficiently large t

whenever (3) holds.

Theorem 1.8. If t > 1051075, then (3) implies that

N > t1.52,

where N is the square free part of t(t2 − 1).

We use SAGE for calculation and, in particular, for extracting values of

a, b, c that fulfill specified conditions to come to the conclusion that (11) holds for

5 ≤ ω ≤ 9 when proving Theorem 1.4.
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2. Preliminaries

For any real number x > 0, let θ(x) =
∑
p≤x log p. In 1983, G. Robin [10]

proved the following lemma for θ(x).

Lemma 2.1. Let pn be the n-th prime. Then

θ(pn) ≥ n
(

log n+ log2 n− 1.076869
)

for n > 1. (19)

Lemma 2.2. For N ≥ 4, the function u(x) = ( e logN
x )x is increasing in

1 ≤ x < logN.

Lemma 2.3. Let ω = ω(N) ≥ 13. Then

logN > ω logω.

Proof. Let N = Q1Q2 · · ·Qω, where Q1 < Q2 < · · · < Qω are prime

numbers. Now if pi denotes the i-th prime, then we have

N =

ω∏
i=1

Qi ≥
ω∏
i=1

pi.

This gives

logN ≥
ω∑
i=1

log pi = θ(pω).

Therefore, it suffices to show that θ(pω) > ω logω for ω ≥ 13. This follows

by Lemma 2.1 for ω ≥ 19, since log2 ω − 1.07869 is positive. Further, we check

that θ(pω) > ω logω for 13 ≤ ω ≤ 18 by direct computation. �

Lemma 2.4. Assume that logN > ω logω. Then

ω <
logN

A(N)
.

Proof. Let logN > ω logω. Then we have

ω <
logN

logω
. (20)

Without loss of generality, we may assume ω > logN
log2N

. Then

logω > log2N − log3N = A(N). (21)

By combining (20) and (21), we get ω < logN
A(N) . �
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Lemma 2.5. Equation (1) with (3) implies that c < 6
5N

1+G(N) for logN >

ω logω where G(N) is given by (4).

Proof. Let N < 16 and logN > ω logω. Then ω = 2 and N = 2p with

p ∈ {3, 5, 7}. Now we re-write (1.1) as 2x − py = ±1, where x ≥ 1 and y ≥ 1

are integers. We may suppose that x > 1 and y > 1, otherwise the assertion

follows. Mihăilescu [7] proved that Catalan equation xp − yq = 1 with p > 1,

q > 1 has unique integral solution (x, y, p, q) = (3, 2, 2, 3), and this implies that

the solutions of (1) are given by (a, b, c) ∈ {(8, 1, 9), (1, 8, 9)}, and the assertion

follows for each of these triplets.

Thus we may assume that N ≥ 16. Let logN > ω logω. Since ω! ≥ ωωe−ω

by induction on ω, we derive from (3) that

c <
6

5
N

(logN)ω

ω!
≤ 6

5
N
(e logN

ω

)ω
. (22)

Since A(N) > 1 for N ≥ 16, we derive from Lemma 2.4 that

ω <
logN

A(N)
< logN.

Then Lemma 2.2 implies that(e logN

ω

)ω
≤ (eA(N))

logN
A(N) = NG(N).

Thus, by (22), we get c < 6
5N

1+G(N). �

Corollary 2.6. Equation (1) with (3) implies that c < 6
5N

1+G(N) for ω ≥ 13

where G(N) is given by (4).

Proof. The assertion follows from Lemma 2.3 and 2.5. �

Lemma 2.7. Equation (1) with (3) implies that c < 6
5N

1+G(N) for N > 2.

Proof. By Corollary 2.6 and Lemma 2.5, we have to consider 2 ≤ ω ≤ 12

and logN ≤ ω logω. Let ω = 2. Then 6 ≤ N ≤ 4, which is not possible.

Let ω = 3. Then N ≤ 27, which is not possible, since the product of the first

three prime numbers is equal to 30. Thus ω ≥ 4 and N ≥ 210. Therefore G(N) is

decreasing. We check that G(1023) > 3
4 , and therefore G(N) > 3

4 for N ≤ 1023,

since G(N) is decreasing. Hence the assertion follows for N ≤ 1023 by (10). Thus

we may assume that N > 1023. Then ωω ≥ N > 1023, which implies that ω > 12.

This is a contradiction. �
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For given 0 < θ < 1, m ≥ 2 and K > 0, let

f(x) =
(log x)m

m!
−Kxθ.

Then

g(x) = x1−θ(m− 1)!f ′(x) =
(log x)m−1

xθ
−Kθ(m− 1)!,

and

g′(x) =
(log x)m−2

x1+θ

(
m− 1− θ log x

)
. (23)

Then we have the following Lemma.

Lemma 2.8. Assume that there exist positive numbers x0 and x1 with

1 < x1 ≤ x0 such that

f(x0) < 0, g(x0) < 0 and g′(x1) < 0. (24)

Then f(x) < 0 for x ≥ x0.

Proof. Since g′(x1) < 0, we see from (23) that g′(x) < 0 for x ≥ x1.

Therefore, g is a decreasing function for x ≥ x1. Then, since g(x0) < 0 and

x0 ≥ x1, we derive that g(x) < 0 for x ≥ x0, which implies that f ′(x) < 0 for

x ≥ x0. Thus f(x) is decreasing for x ≥ x0. Hence the assertion follows, since

f(x0) < 0. �

Lemma 2.9. Let a, b and c be relatively prime positive integers satisfy-

ing (1). Then (3) implies that

c < 32N1.6 for N > 2.

Proof. Following the same proof as in [5, Theorem 1], we have ω1 = ωε = 42

for ε = 0.6 such that

ε ≥ 1 + logX0(i)

X0(i)
for i ≥ ω1, and

i!Θ(pi)
ε

θ(pi)i
>
√

2πi for i ≥ ωε (25)

holds. Here X0(i) = log i + log2 i − 1.076869 and i!Nε

(logN)i >
i!Θ(pi)

ε

θ(pi)i
. We check

that for 35 ≤ ω < 42, we have

ω!Θ(pω)ε

θ(pω)ω
>

6

5
. (26)
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Then
(logN)ω

ω!
<

5

6
N0.6 for N > 2, ω ≥ 35,

and the assertion follows from (3). Let 2 ≤ ω ≤ 34. We check that, for all ω,

we may choose x0, x1 as in Lemma 2.8 with x1 = x0 =
∏
p≤pω p, K = 80/3 and

θ = 0.6 so that (24) is satisfied. Thus f(x) < 0 for x ≥ x0. Therefore f(N) < 0,

since N ≥
∏
p≤pω p = x0. Hence Lemma 2.9 follows. �

Lemma 2.10. Let a, b and c be relatively prime positive integers satisfy-

ing (1). Then (3) implies that

c < 10N1.62991 for N > 2.

Proof. Let ε = 0.62991. As in Lemma 2.9, we have ω1 = 33, ωε = 32

such that (25) holds. We check that for 26 ≤ ω < 32, we have (26). Therefore,

c < 10N1.62991 for N > 2 with ω ≥ 26. Let 2 ≤ ω ≤ 25. We may choose

x1 = x0 =
∏
p≤pω p with K = 25/3 and θ = 0.62991 in Lemma 2.8, we get

f(x) < 0 for x ≥ x0, which implies that f(N) < 0 for N ≥
∏
p≤pω p = x0. Hence

Lemma 2.10 follows. �

3. Proof of Theorem 1.3

By Lemma 2.7, we have (8). Now by (7), we have

c <
6

5
N1+G(N) ≤ 6

5
N1+G1(N) for 297856 ≤ N ≤ 1036.

Therefore, we may assume that N > 1036. By Lemma 2.1 with n = ω, we have

ω ≤ logN

logω + log2 ω − 1.076869
. (27)

Let ω ≥ logN
log2N

. Then logω ≥ A(N), log2 ω ≥ logA(N). Thus (27) gives ω ≤
logN
A1(N) . Therefore

ω ≤ max
( logN

log2N
,

logN

A1(N)

)
<

logN

A1(N)
< logN, (28)

since A1(N) ≤ log2N − 1.076869 < log2N and A1(N) > 1 by N ≥ 297856. Then

we derive from (3), (28) and Lemma 2.2 that

c <
6

5
N
(e logN

ω

)ω
≤ 6

5
N(eA1(N))

logN
A1(N) =

6

5
N1+G1(N).



Explicit abc-conjecture 445

4. Proof of Theorem 1.4

Assertions (12) and (13) follow from Lemmas 2.10 and 2.9, respectively.

We proceed with the proof of assertion (11).

As in Lemma 2.9, we have ω = 18 and ωε = 17 for ε = 0.72 such that (25)

holds. We check that for 10 ≤ ω < 17, we have (26). Thus we get

(logN)ω

ω!
<

5

6
N0.72 for N > 2, ω ≥ 10.

Let ω ≤ 9. We apply Lemma 2.8 with x1 = x0, K = 5/6 and θ = 0.72. Then

N ’s lie in the range
[∏

p≤pω p, x0

)
.

We observe that for ω ≤ 4, we may choose x1 = x0 =
∏
p≤pω p so that (24)

is satisfied. Then (11) follows by Lemma 2.8 with K = 5/6.

For 5 ≤ ω ≤ 9, we choose x1 = x0 as given in Table 1 so that they

satisfy (24), and we extract all square free N with ω(N) = ω that lie in the

range
[∏

p≤pω p, x0

)
. Hence we obtain Table 1.

ω
∏
p≤pω p x0, x1 N ∈

[∏
p≤pω p, x0

)
5 2310 4100 2310, 2730, 3570, 3990.

6 30030 87900

30030, 39270, 43890, 46410, 51870, 53130,

62790, 66990, 67830, 71610, 72930, 79170,

81510, 82110, 84630, 85470.

7 510510 1510000

510510, 570570, 690690, 746130, 870870,

881790, 903210, 930930, 1009470, 1067430,

1111110, 1138830, 1193010, 1217370, 1231230,

1272810, 1291290, 1345890, 1360590, 1385670,

1411410, 1438710, 1452990, 1504230.

8 9699690 24500000

9699690, 11741730, 13123110, 14804790,

15825810, 16546530, 17160990, 17687670,

18888870, 20030010, 20281170, 20930910,

21111090, 21411390, 21637770, 21951930,

23130030, 23393370, 23993970.

9 223092870 391000000
223092870, 281291010, 300690390, 340510170,

358888530, 363993630, 380570190.

Table 1. Data for 5 ≤ ω ≤ 9.
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By (3), for each N = Q1Q2 · · ·Qω where Q1, Q2, . . . , Qω are distinct primes

and 5 ≤ ω ≤ 9, it suffices to restrict c ∈
[
N1.72, 6

5N
(logN)ω

ω!

)
, otherwise (11)

holds. We perform searching of c with SAGE by identifying all integers falling

in this interval having only prime factors in the set {Q1, . . . , Qω}. For each c

with rad(c) < N , we construct all possible choices of a satisfying a < b, which we

may assume without loss of generality, so that a < c
2 and the property that a has

only prime factors in {Q1, . . . , Qω} and (a, c) = 1. Then for each pair of (c, a)

obtained with rad(ac) < N , we construct the corresponding b by (1). We note

that (a, b, c) = 1. We check that for each case, there does not exist any a, b, c such

that the radical of abc is equal to N . Besides, it is clear that if rad(c) = N or

rad(ac) = N , then there exist no relatively prime positive integers a, b, c satisfying

(1) with rad(abc) = N . Hence (11) holds.

To illustrate, for ω = 5, N = 3990 = 2× 3× 5× 7× 19, the only c extracted

is 1562500 = 22× 58, and there are a total of 117 a’s. For ω = 7, N = 1504230 =

2× 3× 5× 7× 13× 19× 29, the only c’s extracted are

42168581000, 42169420800, 42174006784, 42174732915, 42176295000,

42178070844, 42182400000, 42185786580 and 42185937500.

For each c in the above list, the number of corresponding a’s is 22, 54, 599, 181,

10, 71, 186, 147 and 115, respectively. Table 2 lists the number of c extracted for

some selected cases of ω and N .

ω N No. of c extracted ω N No. of c extracted

5
2310 32

8
9699690 25548

3570 9 23993970 648

6
30030 631

9
223092870 98273

85470 18 380570190 4885

7
510510 4565

1452990 183

Table 2. Number of c extracted in selected cases of ω and N .

5. Proof of Theorem 1.6

We may assume that each of p, q, r is either 4 or an odd prime. Let [p, q, r]

denote all permutations of the ordered triple (p, q, r). Laishram and Shorey [5]
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proved that (14) with the assumptions in Theorem 1.6 implies that [p, q, r] ∈ Q,

where Q is in (15). Therefore we shall restrict our attention to those (p, q, r) ∈ Q.

Note that

x < zr/p, y < zr/q.

We observe that N (xpyqzr) = N(xyz), and we always write N = N(xyz) in the

proof of Theorem 1.6. Then by using (11), we get

zr < N1.72 ≤ (xyz)
1.72

< z1.72(1+r/p+r/q),

implying
1

1.72
<

1

p
+

1

q
+

1

r
.

Thus we need to consider (p, q, r) ∈ Q2 = {[3, 5, p] : 7 ≤ p ≤ 19, p prime} ∪
{[3, 4, p] : 11 ≤ p < 2537, p prime}. For N < 297856, we apply (11) to get

max (xp, yq, zr) < N1.72 < 2978561.72 < 2.7× 109.

Therefore, we may assume that N ≥ 297856. We deduce the upper bound for each

case of [p, q, r] separately. We present the proof of [3, 4, p] with 37 ≤ p < 2537,

p prime as follows. Let N > e107.07, where we observe that
∏
p≤p30 p < e107.07.

By following the proof as in [5, Theorem 1], we have ω1 = 31, ωε = 30 for

ε = 173/271 such that (25) holds and

zr <
6

5
√

2πωε
N1+ε ≤ (xyz)1+ε.

Then zr < z(1+ε)(1+r/p+r/q), implying

1

p
+

1

q
+

1

r
>

1

1 + ε
=

271

444
=

1

3
+

1

4
+

1

37
.

This is a contradiction. Therefore, we may suppose that N < e107.07. By (13),

we have

max (xp, yq, zr) < 32N1.6 < 32e107.07(1.6) < 8.1× 1075.

This also implies that max{p, q, r} < log(8.1×1075)
log 2 < 253 trivially.

Let [p, q, r] = [3, 5, 7]. First, we consider N ≥ e1004.763. We apply [5, The-

orem 1] with ε = 34/71. We observe that ωε = 175 and
∏
p≤p175 p < e1004.763.

Therefore, by [5, Theorem 1], we have zr < N1+ε ≤ (xyz)1+ε < z(1+ε)(1+r/p+r/q).

This implies that

1

p
+

1

q
+

1

r
>

1

1 + ε
=

71

105
=

1

3
+

1

5
+

1

7
,

which is a contradiction. Therefore, we may suppose that N < e1004.763. Now we

apply Theorem 1.5 repetitively to obtain upper bound for zr as follows:
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(1) For N < 1012.55, we have zr < N1.72 < 1012.55(1.72) < 3.9× 1021.

(2) For 1012.55 ≤ N < 1080.53, zr < 32N1.6 < 32
(
1080.53

)1.6
< 2.3× 10130.

(3) For 1080.53 ≤ N < e900, we use G1(1080.53) ≤ 0.61771 to get

zr <
6

5
N1+G1(1080.53) <

6

5
e900(1.61771) < e1457.

(4) For e900 ≤ N < e984, we use G1(e900) ≤ 0.49781 to get

zr <
6

5
N1+G1(e900) <

6

5
e984(1.49781) < e1475.

(5) For e984 ≤ N < e1004.763, we observe that
∏
p≤p172 p < e984. By following

the proof as in [5, Theorem 1] with ε = 0.48, ω1 = 173 and ωε = 172, we get

zr <
6

5
√

2πωε
N1+ε < e1004.763(1.48) < e1488.

Now we combine all the above estimates. We get max (xp, yq, zr) < e1488 <

6.6× 10645.

The proof of [3, 4, 11] is similar. In this case, we suppose N < e928.667,

by following the proof of [5, Theorem 1] with ε = 43/89 and observing that

ωε = 164,
∏
p≤p164 p < e928.667. We apply Theorem 1.5 repetitively to obtain

max (xp, yq, zr) < e1380 < 2.2× 10599.

We now present the proof of the case [3, 5, 19] with r = 3. We first suppose

that z < 1.21× 1015 =: Z[3,5,19]. By (13),

zr < 32N1.6 ≤ 32(xyz)1.6 < 32z1.6(1+r/p+r/q)

< 32Z[3,5,19]
1.6(1+3/5+3/19) < 8.5× 1043 =: A[3,5,19].

Next, suppose that z ≥ Z[3,5,19]. From (9) we have

zr<
6

5
(xyz)1+G1(N)<

6

5
z(1+r/p+r/q)(1+G1(N))<z0.00525+r(1/r+1/p+1/q)(1+G1(N)),

giving

1

1 +G1(N)
<

r

r − 0.00525

(
1

r
+

1

p
+

1

q

)
=

3

3− 0.00525

(
167

285

)
. (29)
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If N ≥ 2× 1037 =: N[3,5,19], we use the fact that G1 is decreasing to get G1(N) ≤
0.7036 =: G1[3,5,19]. Then 1

1+G1(N) exceeds the right-hand side of (29). Thus,

we may assume N < 2× 1037, and hence

zr < 32
(
2× 1037

)1.6
< 1.6× 1061 =: B[3,5,19].

For r = 5 and r = 19, the proofs are similar with the corresponding parameters

Z[3,5,19], A[3,5,19], G1[3,5,19], N[3,5,19] and B[3,5,19] as shown in Table 4. Hence we

conclude

max (xp, yq, zr) < 1.6× 1061 =: C[3,5,19].

The proofs for the remaining cases of [p, q, r] can be deduced similarly. The results

for all cases of [p, q, r] are shown in Table 3 and Table 4.

[p, q, r] Upper bound for max (xp, yq, zr)

[3, 4, p], 37 ≤ p < 253, p prime 8.1× 1075

[3, 5, 7] 6.6× 10645

[3, 4, 11] 2.2× 10599

Table 3. Upper bound for max (xp, yq, zr) for [3, 4, p] (37 ≤ p < 253, p

prime), [3, 5, 7] and [3, 4, 11].

[p, q, r] r Z[p,q,r] A[p,q,r] G1[p,q,r] N[p,q,r] B[p,q,r] C[p,q,r]

[3, 5, 19]

3 1.21 × 1015 8.5 × 1043 0.7036 2 × 1037 1.6 × 1061

1.6×
10615 1.12 × 109 8.5 × 1043 0.7036 2 × 1037 1.6 × 1061

19 241 8.7 × 1043 0.7036 2 × 1037 1.6 × 1061

[3, 5, 17]

3 6.8 × 1021 3.7 × 1063 0.6867 5 × 1042 6.7 × 1069

6.7×
10695 1.26 × 1013 3.7 × 1063 0.6867 5 × 1042 6.7 × 1069

17 7125 3.7 × 1063 0.6867 5 × 1042 6.7 × 1069

[3, 5, 13]

3 5.2 × 1029 3.6 × 1088 0.6372 2 × 1066 3.9 × 10107

3.9×
101075 6.8 × 1017 3.7 × 1088 0.6372 2 × 1066 3.9 × 10107

13 7.21 × 106 3.6 × 1088 0.6372 2 × 1066 3.9 × 10107

[3, 5, 11]

3 7.9 × 1044 1.1 × 10136 0.601 2 × 1096 3.9 × 10155

3.9×
101555 8.7 × 1026 1.1 × 10136 0.601 2 × 1096 3.9 × 10155

11 1.8 × 1012 1.5 × 10136 0.601 2 × 1096 3.9 × 10155

[3, 4, 31]

3 4.72 × 1040 4.9 × 10121 0.6234 1076 1.3 × 10123

1.3×
101234 3.2 × 1030 4.9 × 10121 0.6234 1076 1.3 × 10123

31 8635 5 × 10121 0.6234 1076 1.3 × 10123

Table 4 – Continued on next page
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Continued from previous page

[p, q, r] r Z[p,q,r] A[p,q,r] G1[p,q,r] N[p,q,r] B[p,q,r] C[p,q,r]

[3, 4, 29]

3 3.4 × 1042 4.3 × 10127 0.6176 5 × 1080 4.3 × 10130

4.3×
101304 7.9 × 1031 4.3 × 10127 0.6176 5 × 1080 4.3 × 10130

29 25065 4.1 × 10127 0.6176 5 × 1080 4.3 × 10130

[3, 4, 23]

3 1.3 × 1048 1.9 × 10146 0.5945 3 × 10103 1.2 × 10167

1.2×
101674 1.2 × 1036 1.8 × 10146 0.5945 3 × 10103 1.2 × 10167

23 1.9 × 106 2.2 × 10146 0.5945 3 × 10103 1.2 × 10167

[3, 4, 19]

3 1.4 × 1058 1.1 × 10179 0.5717 2 × 10135 9.8 × 10217

9.8×
102174 4.1 × 1043 1.1 × 10179 0.5717 2 × 10135 9.8 × 10217

19 1.52 × 109 1.1 × 10179 0.5717 2 × 10135 9.8 × 10217

[3, 4, 17]

3 3 × 1074 1.2 × 10231 0.5567 3 × 10163 1.2 × 10263

1.2×
102634 7.2 × 1055 1.2 × 10231 0.5567 3 × 10163 1.2 × 10263

17 1.4 × 1013 1.4 × 10231 0.5567 3 × 10163 1.2 × 10263

[3, 4, 13]

3 1.3 × 10110 3.1 × 10350 0.5142 6 × 10299 1.5 × 10481

1.5×
104814 3.8 × 1082 2.9 × 10350 0.5142 6 × 10299 1.5 × 10481

13 2.6 × 1025 3.5 × 10350 0.5142 6 × 10299 1.5 × 10481

Table 4. Upper bound for max (xp, yq, zr) for the remaining cases of [p, q, r].

6. Proof of Theorem 1.7

We denote M = N(akak+1ak+2) and M1 = N(dakak+1ak+2). Note that

2ak+1 = ak + ak+2 (30)

and ak ≡ ak+2 (mod 2). First, we obtain a lower bound for M and M1 in terms

of ak by using (13). We consider the cases 2 - ak and 2|ak separately.

Case 1. 2 - ak. Then (2ak+1, ak) = 1, implying (2ak+1, ak, ak+2) = 1. Thus,

by (13), after taking a = ak, b = ak+2 and c = 2ak+1 in (30), we obtain

2ak+1 < 32 (N(2akak+1ak+2))
1.6 ≤ 98M1.6.

Case 2. 2|ak. Then 2|ak+2, so from (30), we have

ak+1 =
ak
2

+
ak+2

2
, (31)

where ak+1,
ak
2 ,

ak+2

2 ∈ Z and
(
ak+1,

ak
2 ,

ak+2

2

)
= 1. We observe that d is odd,

since (a, d) = 1, and therefore ak+1 is odd. This time, by taking a = ak
2 , b = ak+2

2

and c = ak+1 in (31), we obtain from (13) that

ak+1 < 32

(
N

(
1

4
akak+1ak+2

))1.6

≤ 32M1.6.
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Hence, in both cases, we get ak+1 < 49M1.6, which implies that

M1 ≥M >
(ak+1

49

)1/1.6

. (32)

Next, we note that akak+2 = a2
k+1 − d2 < a2

k+1 and (d2, akak+2, a
2
k+1) = 1.

Assume

M ≥ 297856. (33)

Then (9) holds. Since G1 is decreasing, we have G1(M1) ≤ G1(M). By apply-

ing (9) with a = akak+2, b = d2 and c = a2
k+1, we obtain

a2
k+1 <

6

5
M

1+G1(M1)
1 ≤ 6

5
M

1+G1(M)
1 .

Further,

M1 ≤ N(d)M ≤ N(d) (akak+1ak+2)
1/2

< da
3/2
k+1,

since ak, ak+1 and ak+2 are powerful. Thus we get

a2
k+1 <

6

5

(
da

3/2
k+1

)1+G1(M)

,

that is

ak+1 < 1.2
2

1−3G1(M) d
2(1+G1(M))

1−3G1(M) , (34)

implying

ak+1 < (1.2d)
2(1+G1(M))

1−3G1(M) . (35)

(1) Let ε > 0. We take ε1 = ε
8+3ε . We may assume that k ≥ k0, where k0 is

a sufficiently large effectively computable number depending only on ε such

that from (32) the assumption (33) is satisfied and G1(M) < ε1, using the

facts that G1 is decreasing and tends to 0. From (35) we have

ak+1 < (1.2d)
2(1+G1(M))

1−3G1(M) < (1.2d)
2(1+ε1)
1−3ε1 = (1.2d)2+ε.

(2) Suppose on the contrary that (18) does not hold. Then we have

ak+1 ≥ max{2.31× 10158d2666, 1051075}. (36)

Applying (36) to (32), we have M1 ≥ M >
(ak+1

49

)1/1.6

≥ e73500, and so

assumption (33) is satisfied. Further, we derive that G1(M1) ≤ G1(M) ≤
0.333 by (6) and the monotonicity of G1. Now we derive from (34) to give

ak+1 < 1.22000d2666 < 2.31× 10158d2666.

This is a contradiction.
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7. Proof of Theorem 1.8

We assume (3) and write

t2 = (t2 − 1) + 1.

By (1) with a = 1, b = t2 − 1 and c = t2 and (13), we have

102×51075 < t2 < 32N1.6, (37)

which implies that N > 1063842. Then

G1(N) < 0.317315. (38)

Thus we obtain a sharper upper bound for t2, and we can revise (37) with the

use of (9) and (38) to give

102×51075 < t2 <
6

5
N1.317315. (39)

This time we have N > 1077544. Then, by following as above, we obtain G1(N) <

0.313229 and N > 1077785. Then

G1(N) < 0.313165. (40)

Finally, we apply (9) and (40) to derive that

t2 <
6

5
N1.313165,

which implies that

N > 0.87t1.523037 > t1.52.

Acknowledgements. The authors would like to thank Samrat Kadge

(samkadge@gmail.com) for his help in sage programming. Part of the work in

this paper was done when the first and second authors visited the Max Plank

Institute for Mathematics in Bonn. They would like to thank the MPIM for the

invitation, support, hospitality and computer facilities. The third author would

like to thank SERB. The authors would like to thank the referees for their remarks

and suggestions on an earlier draft of this paper.



Explicit abc-conjecture 453

References

[1] A. Baker, Experiments on the abc-conjecture, Publ. Math. Debrecen 65 (2004), 253–260.

[2] K. C. Chim, S. G. Nair and T. N. Shorey, Explicit abc-conjecture and its applications,

Hardy-Ramanujan Journal 41 (2018), 143–156.

[3] B. de Smit, ABC triples, 2012, http://www.math.leidenuniv.nl/~desmit/abc/.

[4] S. W. Golomb, Powerful numbers, Amer. Math. Monthly 77 (1970), 848–855.

[5] S. Laishram and T. N. Shorey, Baker’s explicit abc-conjecture and applications, Acta

Arith. 34 (2012), 419–429.

[6] D. W. Masser, Note on a conjecture of Szpiro, Astérisque 183 (1990), 19–23.
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