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On Baker’s explicit abc-conjecture
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Dedicated to the memory of Professor Alan Baker

Abstract. We derived from Baker’s explicit abc-conjecture that a + b = ¢, where
a, b and c are relatively prime positive integers, implies that ¢ < N''7? for N > 1 and
¢ < 32N*6 for N > 1. This sharpens an estimate of Laishram and Shorey. We also
show that it implies ¢ < gNHG(N) for N > 3, and ¢ < gNHGl(N) for N > 297856,
where G(N) and G1(NN) are explicitly given positive valued decreasing functions of N
tending to zero as N tends to infinity. Finally, we give applications of our estimates
on triples of consecutive powerful integers and generalized Fermat equation.

1. Introduction

The well-known abc-conjecture was formulated by JOSEPH OESTERLE [9] and
DAVID MASSER [6] in 1988. It states that

Conjecture 1.1. For any given € > 0, there exists a number K. depending
only on € such that if

a+b=c (1)
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where a,b and c are relatively prime positive integers, then

c< Ke( 11 p)HE,

plabe

where the product is taken over all primes p dividing abc.

The name abc-conjecture derives from letters a, b, ¢ used in the statement.
There are several works on the abe-conjecture and its variations.

For a positive integer v, we define the radical N(v) of v by the product
of primes dividing v and w(v) for the number of distinct prime divisors of v.
The letter p always denotes a prime number in this paper except in Theorem 1.6
and its proof. We denote the radical of abc by

N = N(abc) = H D (2)

plabe

unless otherwise specified. Further, we write w = w(N) for the number of distinct
prime divisors of N. We see when w = 0 or N is odd, then (1) does not hold, and
trivially 1+1 = 2 when w = 1. Therefore, we always have N being even and w > 2
unless (a,b,¢) = (1,1,2) when w = 1. We understand that log, = loglog z for
x > 2, and logs x = logloglog « for x > 3. We observe that Conjecture 1.1 is not
explicit in the sense that K. is not explicit. ALAN BAKER [1] in 2004 formulated
the following explicit version of Conjecture 1.1.

Conjecture 1.2. Let a, b and c be relatively prime positive integers satis-
fying (1) with N > 2. Then

< 6y (log V) ’
5 w!

3)

where N = N(abc) and w = w(N).

We refer to Conjecture 1.1 as abc-conjecture and Conjecture 1.2 as an explicit
version of the abe-conjecture. For integer N > 2, let

A(N) =logy N —logy N, A1(N) = A(N) + log A(N) — 1.076869,

and
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Further, we define G(x) = G([z]) for > 2. We observe that G(N) is a positive-
valued function that tends to zero as N tends to infinity. It is decreasing if
A'(N)log A(N) > 0, which is the case when N > 16, since

1 1
A(N) = (1- ). 5

(W) Nlog N logy N (5)
Thus G(N) is decreasing for N > 16. Further, for integer N > 40, let

Gi() = L) (6

and Gi(z) = Gi([z]) for z > 40. We observe that G1(N) is positive for N >
574 and tends to zero as N tends to infinity. Further, G;(N) is decreasing
if AJ(N)logA;1(N) > 0. Let N > 297856. Then A;(N) > 1. Further, A(N) > 0
and A'(N) > 0 by (5). Since

A'(N) _ A'(N)
A(N) — A(N)
we see that A} (N)log A;(N) > 0. Hence, G1(N) is decreasing whenever N >

297856.

We compare these functions. For this, we observe that the function F'(z) =
1+4log x
x

Aj(N) = A'(N) + (1+ A(N)),

is decreasing for > 1 and
1< A(N) < A;(N) for N >1.5x 10,
since A(N) > e076869 for N > 1.5 x 1035, Therefore,
G(N) = F(A(N)) > F(A1(N)) = G1(N) for N > 1.5 x 10%¢,
and similarly, we derive that
G(N) < Gi(N) for 297856 < N < 10%. (7)

Conjecture 1.2 implies the following sharper and explicit version of abc-
conjecture in which we allow € to be a function of N tending to zero as N tends
to infinity.

Theorem 1.3. Let a, b and ¢ be relatively prime positive integers satisfy-
ing (1). Then (3) implies that

c< gNHG(N) for N > 2, (8)

and 6
c< 3N1+G1(N) for N > 297856. (9)
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On the other hand, STEWART and TIIDEMAN [11] showed that there are
infinitely many relatively prime positive integers a, b, ¢ satisfying (1) such that for
6 > 0, we have

1+$
¢c> N T ViogNloglog N |

The constant 4 — § was improved by VAN FRANKENHUYSEN in [13].

LAISHRAM and SHOREY [5] showed that Conjecture 1.2 implies that for N >2,

we have

3
c< N7 with 0 = T (10)

Further, they also derived under Conjecture 1.2 that for 0 < 6 < 3/4, (10) holds
when N > Ny, where Ny is an effectively computable number depending only
on #. Theorem 1.3 provides a value of Ny for every 0 < € < 1 determined by
an explicitly given function; we do not have to compute for every 6. Now we
prove the following Theorem with a sharper exponent than (10).

Theorem 1.4. Let a, b and ¢ be relatively prime positive integers satisfy-
ing (1). Then (3) implies that for N > 2, we have

c< NV, (11)
Further,
¢ < 10N162991 (12)
and
c< 32N'S, (13)

Remark 1.1. The exponent 1.72 in (11) has been improved to 1.7 by CHIM,
NAIR and SHOREY in [2].

E. REYSSAT [3] considered (1.1) with a = 2, b = 3'° x 109, ¢ = 23° and
N = 15042. This implies ¢ > N162991 which we may compare with (12).
The following theorem follows immediately from (11), (13) and (9).

Theorem 1.5. Let a, b and ¢ be relatively prime positive integers satisfy-
ing (1). Then (3) implies that

N2 if N> 2,
c < { 32N, if N > 10125,
g‘]\]'lJrGl(N)7 it N> 1080-53
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The result can be applied to give an explicit bound for the magnitude of
solutions of the generalized Fermat equation. Let (p,¢,7) € Z>o with (p,q,7) #
(2,2,2). The equation

2P +y?=2", (z,y,2) =1 with integers x > 0,y >0,z >0 (14)

is called the generalized Fermat equation. It is conjectured that there are no

nontrivial solutions to (14) once min{p,q,r} > 3. We consider (14) with p > 3,

q > 3, r > 3. For solving (14), there is no loss of generality in assuming z > 1,

y > 1 and z > 1, since otherwise (14) is completely solved by MIHAILESCU [7].
Let [p, q,7] denote all permutations of the ordered triple (p,q,r). Let

Q={[3,5,p] : 7 < p <23,p prime} U {[3,4, p] : p prime}. (15)

Then Laishram and Shorey [5] proved that (14) with x > 1,y > 1,2 > 1, p > 3,
q > 3, r > 3 implies that [p,q,r] € @Q such that max (zP,y9,2") < el758:3353
whenever (3) holds. This implies that max{p,q,r} < 175&% < 2537 trivially.
Let Q1 = {[3,5,p] : 7 < p < 19, p prime} U {[3,4,p] : 11 < p < 253, p prime}.

We sharpen the above result as follows.

Theorem 1.6. Assume (3). Then (14) withx > 1,y > 1, 2z > 1, p > 3,
q > 3 and r > 3 implies that [p, q,r] € Q1. Further, for each [p, q,r] € Q1, we have
the following upper bound for max(zP,y?,z").

[p,q,7] max(2?,y?,2") < | [p,q,r] | max(aP,y?,2") <

(3,4,p],37< p < 253, p prime 8.1 x 107 (3,4, 11] 2.2 x 10°%9
(3,4, 31] 1.3 x 10123 [3,5,19] 1.6 x 1061
(3, 4,29] 4.3 x 10139 [3,5,17] 6.7 x 1099
3,4, 23] 1.2 x 10167 [3,5,13] 3.9 x 10107
(3,4, 19] 9.8 x 10217 3,5, 11] 3.9 x 1015°
3,4,17] 1.2 x 10263 [3,5,7] 6.6 x 1004
[3,4,13] 1.5 x 10481

Next, we give some applications of our theorems to powerful numbers. An in-
teger v is called powerful if v > 0 and p?|v whenever p|v for every prime p.
GoLOMB [4] proved in 1970 that there are infinitely many pairs of consecutive
powerful integers and there exists no four (or more) consecutive powerful in-
tegers. Erd6s conjectured that there does not exist three consecutive powerful
integers. TRUDGIAN [12] proved, under Conjecture 1.2, that ¢ < 102°0°0 whenever
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(t—1,¢,t+1) is a triple of consecutive powerful integers. MOLLIN and WALSH [§]
obtained the following results. Assume ¢t — 1, ¢, t + 1 are powerful. Put

P=t,  Q=(@t—-1)(t+1)=my’

where m is squarefree. Then m = 7 (mod 8), and (¢, y) is a solution of 2>~my?=1.
For the case when m = 7, Mollin and Walsh [8] proved that

t> 101" (16)
Hence, together with the result by Trudgian [12], there is no triple (¢ — 1,¢,t+ 1)
of consecutive powerful integers such that ¢ — 7y? = 1 under Conjecture 1.2.

By following the arguments given in Mollin and Walsh [8], we have checked that
if m = 7isreplaced by m € {15,23,31,39,47,55,87}, then (16) can be replaced by

> 103%10"

Therefore, combining with the result by Trudgian [12], there is no triple (¢ — 1,
t,t + 1) of consecutive powerful integers such that t> — my? = 1 with m €
{7,15,23,31,39,47,55,87} under Conjecture 1.2.

Next, we prove the following result on triples of (a+kd, a+(k+1)d, a+(k+2)d)
of consecutive powerful integers in arithmetic progression.

Theorem 1.7. Let a > 0, d > 0 and k > 0 be integers such that (a,d) = 1.
Assume that ajy; == a+ (k+14)d, 0 < i < 2 are all powerful integers. Then (3)
implies the following:

(1) Let € > 0. There exists an effectively computable number ko depending only
on ¢ such that for k > kg, we have

ary1 < (1.2d)%Te. (17)

(2) We have
arr1 < max{2.31 x 105842666 1051075, (18)

If (t — 1,t,t + 1) is a triple of powerful integers, then N(t(t? — 1)) < 3/2.
In the next result we show that N(t(t> — 1)) > t3/2 for all sufficiently large ¢
whenever (3) holds.

Theorem 1.8. Ift > 1051°7° then (3) implies that
N > 52
where N is the square free part of t(t? — 1).

We use SAGE for calculation and, in particular, for extracting values of
a, b, ¢ that fulfill specified conditions to come to the conclusion that (11) holds for
5 < w <9 when proving Theorem 1.4.
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2. Preliminaries

For any real number z > 0, let 6(z) = >
proved the following lemma for 6(x).

logp. In 1983, G. ROBIN [10]

p<z

Lemma 2.1. Let p, be the n-th prime. Then
0(pn) > n(logn + logyn — 1.076869) forn > 1. (19)
Lemma 2.2. For N > 4, the function u(z) = (%)x is increasing in
1<z <logN.
Lemma 2.3. Let w =w(N) > 13. Then

log N > wlogw.

PrROOF. Let N = Q1Q2--Q,, where 1 < Q2 < --- < @, are prime
numbers. Now if p; denotes the i-th prime, then we have

N = H Qi > Hpi-
i=1 i=1
This gives
log N > "logpi = 0(p.,)-
i=1
Therefore, it suffices to show that 6(p,) > wlogw for w > 13. This follows

by Lemma 2.1 for w > 19, since logy w — 1.07869 is positive. Further, we check
that 0(p,) > wlogw for 13 < w < 18 by direct computation. O

Lemma 2.4. Assume that log N > wlogw. Then

< log N
A(N)

PRrROOF. Let log N > wlogw. Then we have

log N
logw

Without loss of generality, we may assume w > 110052 ]X, Then

logw > logy N —logs N = A(N). (21)

By combining (20) and (21), we get w < I;(x)(gAl/\;' N
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Lemma 2.5. Equation (1) with (3) implies that ¢ < $N'*¢W) forlog N >
wlogw where G(N) is given by (4).

PrOOF. Let N < 16 and log N > wlogw. Then w = 2 and N = 2p with
p € {3,5,7}. Now we re-write (1.1) as 2* — p¥ = £1, where x > 1 and y > 1
are integers. We may suppose that > 1 and y > 1, otherwise the assertion
follows. Mihéilescu [7] proved that Catalan equation a2? — y? = 1 with p > 1,
g > 1 has unique integral solution (z,y,p,q) = (3,2,2,3), and this implies that
the solutions of (1) are given by (a,b,¢) € {(8,1,9),(1,8,9)}, and the assertion
follows for each of these triplets.
Thus we may assume that N > 16. Let log N > wlogw. Since w! > w¥e™%
by induction on w, we derive from (3) that
6 (log N)“

< =N
5 w!

< gN(elogNyv.

£ (22

Since A(N) > 1 for N > 16, we derive from Lemma 2.4 that

log N
—— < log N.
w<A(N) < log

Then Lemma 2.2 implies that

(elOgN)w < (e A(N)) K5 — NG(N)
w

Thus, by (22), we get ¢ < SNITEW), O

Corollary 2.6. Equation (1) with (3) implies that c < SN1*¢(WV) forw > 13
where G(N) is given by (4).

PROOF. The assertion follows from Lemma 2.3 and 2.5. O
Lemma 2.7. Equation (1) with (3) implies that ¢ < SN'*C¢M) for N > 2.

ProoF. By Corollary 2.6 and Lemma 2.5, we have to consider 2 < w < 12
and log N < wlogw. Let w = 2. Then 6 < N < 4, which is not possible.
Let w = 3. Then N < 27, which is not possible, since the product of the first
three prime numbers is equal to 30. Thus w > 4 and N > 210. Therefore G(N) is
decreasing. We check that G(10?%) > 3, and therefore G(N) > 2 for N < 10?3,
since G(N) is decreasing. Hence the assertion follows for N < 10?3 by (10). Thus
we may assume that N > 1022, Then w* > N > 10?3, which implies that w > 12.

This is a contradiction. O
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For given 0 < 8 <1, m > 2 and K > 0, let

fla) = B gt
Then m—1
o) = ' = 11 ) = CELT — Kpm -1
and ] m—2
5 ):%(m—l—ﬂlogm). (23)

Then we have the following Lemma.

Lemma 2.8. Assume that there exist positive numbers xy and xi with
1 < x1 < x¢ such that

f(xo) <0, g(zo) <0 and g¢'(x1)<0. (24)

Then f(x) <0 for x > xy.

PROOF. Since ¢'(z1) < 0, we see from (23) that ¢'(z) < 0 for x > x;.
Therefore, g is a decreasing function for z > z;. Then, since g(zg) < 0 and
xg > 1, we derive that g(x) < 0 for > x, which implies that f/(x) < 0 for
x > x9. Thus f(x) is decreasing for z > xy. Hence the assertion follows, since
f(LL'()) <0. [

Lemma 2.9. Let a, b and ¢ be relatively prime positive integers satisfy-
ing (1). Then (3) implies that

¢ < 32N for N > 2.

PRrOOF. Following the same proof as in [5, Theorem 1], we have wy = w, = 42
for e = 0.6 such that

1O (p;)©

> 1+ lOg Xo(%)
0(p:)’

€ - > V2mwi for i > w, 25
- Xo(7) (25)

for i > wy, and

holds. Here X((i) = logi + log, i — 1.076869 and (lé!gN]:,)i > “9@(1()’:';26. We check
that for 35 < w < 42, we have

w!O(py)°
0(po,)*

ol o

> (26)
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Then "
(og N)™ 5006 for N > 2,00 > 35,
w! 6
and the assertion follows from (3). Let 2 < w < 34. We check that, for all w,
we may choose xg, 1 as in Lemma 2.8 with 7 = z¢ = Hpgpw p, K =80/3 and
6 = 0.6 so that (24) is satisfied. Thus f(x) < 0 for x > xg. Therefore f(N) < 0,

since N > Hpépw p = xg. Hence Lemma 2.9 follows. O
Lemma 2.10. Let a, b and ¢ be relatively prime positive integers satisfy-
ing (1). Then (3) implies that
c < 1ON*29L for N > 2.

PROOF. Let ¢ = 0.62991. As in Lemma 2.9, we have w; = 33, w. = 32
such that (25) holds. We check that for 26 < w < 32, we have (26). Therefore,
¢ < 10N16291 for N > 2 with w > 26. Let 2 < w < 25. We may choose
z1 = 9 = [[,<,, p With K = 25/3 and 6 = 0.62991 in Lemma 2.8, we get
f(z) <0 for x > g, which implies that f(N) <0 for N >[[ ., p=xo. Hence
Lemma 2.10 follows. (]

3. Proof of Theorem 1.3
By Lemma 2.7, we have (8). Now by (7), we have
c< gN”G(N) < gNHGl(N) for 297856 < N < 10%.

Therefore, we may assume that N > 1036, By Lemma 2.1 with n = w, we have

log N
w < .
~ logw + log, w — 1.076869

(27)

Let w > ]L"gi]yv. Then logw > A(N), logyw > log A(N). Thus (27) gives w <
log N

FREIR Therefore

logN log N ) log N

<
WS max (log2 N AN S 4

< log N, (28)

since A;(N) <log, N —1.076869 < log, N and A;(N) > 1 by N > 297856. Then
we derive from (3), (28) and Lemma 2.2 that

6 relogN\v 6 log N 6
*N( ) < ZN(ed;(N)R® = - N1H+G1(N)
°<3 o) SN =2
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4. Proof of Theorem 1.4

Assertions (12) and (13) follow from Lemmas 2.10 and 2.9, respectively.
We proceed with the proof of assertion (11).

As in Lemma 2.9, we have w = 18 and w. = 17 for ¢ = 0.72 such that (25)
holds. We check that for 10 < w < 17, we have (26). Thus we get

log N)¥
w<%NO'72 for N > 2 ,w > 10.
w!

Let w < 9. We apply Lemma 2.8 with z; = xo, K = 5/6 and § = 0.72. Then

N’s lie in the range [Hpgpw D, xo).
We observe that for w < 4, we may choose 1 = 29 = []
is satisfied. Then (11) follows by Lemma 2.8 with K = 5/6.
For 5 < w < 9, we choose 1 = x(p as given in Table 1 so that they

p<p,, D so that (24)

satisfy (24), and we extract all square free N with w(N) = w that lie in the

range Hpﬁpw P, m0>. Hence we obtain Table 1.

w Hpgpwp Zo, T1 N e \‘Hpgpw b, IO)
5 | 2310 4100 2310, 2730, 3570, 3990.

30030, 39270, 43890, 46410, 51870, 53130,
6 | 30030 87900 62790, 66990, 67830, 71610, 72930, 79170,

81510, 82110, 84630, 85470.

510510, 570570, 690690, 746130, 870870,
881790, 903210, 930930, 1009470, 1067430,

7 | 510510 1510000 1111110, 1138830, 1193010, 1217370, 1231230,
1272810, 1291290, 1345890, 1360590, 1385670,
1411410, 1438710, 1452990, 1504230.
9699690, 11741730, 13123110, 14804790,
15825810, 16546530, 17160990, 17687670,

8 19699690 24500000 | 18888870, 20030010, 20281170, 20930910,
21111090, 21411390, 21637770, 21951930,
23130030, 23393370, 23993970.

223092870, 281291010, 300690390, 340510170,
358888530, 363993630, 380570190.

9 | 223092870 | 391000000

Table 1. Data for 5 < w < 9.
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By (3), for each N = Q1Q2 - - - Q,, where Q1,Q2, ..., Q. are distinct primes
and 5 < w < 9, it suffices to restrict ¢ € Nl'n,gNW), otherwise (11)
holds. We perform searching of ¢ with SAGE by identifying all integers falling
in this interval having only prime factors in the set {Q1,...,Q.}. For each ¢
with rad(c) < N, we construct all possible choices of a satisfying a < b, which we
may assume without loss of generality, so that a < § and the property that a has
only prime factors in {Q1,...,Q,} and (a,c) = 1. Then for each pair of (c,a)
obtained with rad(ac) < N, we construct the corresponding b by (1). We note
that (a,b,c) = 1. We check that for each case, there does not exist any a, b, ¢ such
that the radical of abe is equal to N. Besides, it is clear that if rad(c) = N or
rad(ac) = N, then there exist no relatively prime positive integers a, b, ¢ satisfying
(1) with rad(abc) = N. Hence (11) holds.

To illustrate, for w =5, N = 3990 = 2 x 3 x 5 x 7 x 19, the only ¢ extracted
is 1562500 = 22 x 58, and there are a total of 117 a’s. For w =7, N = 1504230 =
2x3x5xT7x13x19 x 29, the only ¢’s extracted are

42168581000, 42169420800, 42174006784, 42174732915, 42176295000,
42178070844, 42182400000, 42185786580 and  42185937500.

For each c in the above list, the number of corresponding a’s is 22, 54, 599, 181,
10, 71, 186, 147 and 115, respectively. Table 2 lists the number of ¢ extracted for
some selected cases of w and N.

w | N No. of ¢ extracted w | N No. of ¢ extracted
5 2310 32 8 9699690 25548
3570 9 23993970 | 648
6 30030 631 9 223092870 | 98273
85470 18 380570190 | 4885
. 510510 | 4565
1452990 | 183

Table 2. Number of ¢ extracted in selected cases of w and N.

5. Proof of Theorem 1.6

We may assume that each of p, g, r is either 4 or an odd prime. Let [p, g, ]
denote all permutations of the ordered triple (p,gq,r). Laishram and Shorey [5]
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proved that (14) with the assumptions in Theorem 1.6 implies that [p,q,r] € Q,
where @ is in (15). Therefore we shall restrict our attention to those (p,q,r) € Q.
Note that

x < 2P, y < 2"
We observe that N (2Py?z") = N(xyz), and we always write N = N(zyz) in the
proof of Theorem 1.6. Then by using (11), we get

ST <« NLT2 < (xyz)”z < Zl.?2(1+r/p+r/q),

implying
1 1 1 1
17 < ]; + 6 + .
Thus we need to consider (p,q,r) € Q2 = {[3,5,p] : 7 < p < 19, p prime} U
{[3,4,p] : 11 < p < 2537, p prime}. For N < 297856, we apply (11) to get

max (2P, y?,2") < N7 < 297856' 7% < 2.7 x 10°.

Therefore, we may assume that N > 297856. We deduce the upper bound for each
case of [p, ¢, 7] separately. We present the proof of [3,4, p] with 37 < p < 2537,

p prime as follows. Let N > e'%7:07 where we observe that Hp<p30p < 0707,
By following the proof as in [5, Theorem 1], we have w; = 31, w. = 30 for
e = 173/271 such that (25) holds and
6
2" < ——=N < (zyz)Te.
5/ 2w, < (wyz)

Then 2" < z(1+9)(+r/p+r/9) implying

L1 1o 1 am 111

p ¢q r 1+e 444 3 4 37
This is a contradiction. Therefore, we may suppose that N < e!0797. By (13),
we have

max (2P, y?, 2") < 32N16 < 32¢107:071:6) < 81 % 107,

75
This also implies that max{p, q,r} < % < 253 trivially.

Let [p,q,7] = [3,5,7]. First, we consider N > 904763 We apply [5, The-
orem 1] with e = 34/71. We observe that we = 175 and [[,, p < 1004763
Therefore, by [5, Theorem 1], we have 2" < N1te¢ < (zyz)'te < A+ 0+r/ptr/a),
This implies that

L1t 1 m1
p q r 14+ 105 3 5 7

which is a contradiction. Therefore, we may suppose that N < e

1004.763 Now we

apply Theorem 1.5 repetitively to obtain upper bound for z" as follows:
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(1) For N < 1025 we have 2" < N172 < 1012:5°(1.72) < 3.9 x 102,
(2) For 10125 < N < 108058, 27 < 32N16 < 32 (108058) "% < 2.3 % 10130,

(3) For 108053 < N < €999 we use G1(1089-%3) < 0.61771 to get

§N1+G1(108°-53) < §6900(1.61771) < 1457

Z" <
5

(4) For €29 < N < %4 we use G1(e%%?) < 0.49781 to get

T < §N1+G1(e9°°) < §6984(1.49781) < 1475
5

(5) For e < N < ¢'09%7%3 we observe that [[ ., p < % By following
the proof as in [5, Theorem 1] with ¢ = 0.48, w; = 173 and w, = 172, we get

6
r Nl-‘re < 61004.763(1.48) < 61488.

<
5/ 2w,

Now we combine all the above estimates. We get max (2P, y?,2") <
6.6 x 10947,

The proof of [3,4,11] is similar. In this case, we suppose N < e
by following the proof of [5, Theorem 1] with ¢ = 43/89 and observing that
we = 164, [],<p., P < €72%97. We apply Theorem 1.5 repetitively to obtain
max (2P, y?,2") < e!380 < 2.2 x 10°99.

We now present the proof of the case [3,5,19] with r = 3. We first suppose
that z < 1.21 x 10" =: Z3 5 19. By (13),

61488 <

928.667
)

Z’I‘ < 32N16 S 32(xyz)16 < 3221.6(1+T/p+7‘/q)
< 32703519 0T/ <85 % 10% =1 Ap3519).
Next, suppose that z > Z[3 5 19). From (9) we have
e (N) O (tr/ptr /) (1461 (N)) _ L0.005254+(1/r+1/p41/a) 14G1 (V)

6
z' < R (xyz)

giving

1 < B LR 3 167 (29)
1+Gi(N) ~r—000525 \r p ¢/ 3-000525\285)"
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If N >2x10%" =: Njg 519, we use the fact that Gy is decreasing to get G1(N) <
0.7036 =: Gy[3,5,19. Then m exceeds the right-hand side of (29). Thus,
we may assume N < 2 x 1037, and hence

27 <32(2 x 10°7)"° < 1.6 x 10°) =: Bpg 5 10)-

For r = 5 and r = 19, the proofs are similar with the corresponding parameters
Z[?,,5719]7 14[3,5719]7 G1[3,5719], N[375,19] and B[375,19] as ShOWIl in Table 4. Hence we
conclude

max (z”,y?,2") < 1.6 x 10°" =: C3 5 19].

The proofs for the remaining cases of [p, ¢, r] can be deduced similarly. The results
for all cases of [p,q,r] are shown in Table 3 and Table 4.

[p, q,7] Upper bound for max (z?, y?, z")
[3,4,p],37 < p < 253, p prime 8.1 x 107

(3,5,7)] 6.6 x 10645

(3,4,11] 2.2 x 10°%

Table 3. Upper bound for max (z?,y?, 2") for [3,4,p] (37 < p < 253, p
prime), [3,5,7] and [3,4,11].

[p,q, 7] r Zipa,r) Alp,g,r] Gip,qg,r] Nip,q,r] Bip,q,r] Clp,a,r]
3 [1.21 x10% | 85x10% | 0.7036 | 2 x 103" | 1.6 x 10°! 16x
[3,5,19] | 5 | 1.12x10° | 85 x 10** | 0.7036 | 2 x 10%7 | 1.6 x 10%! st
19 241 8.7x10% | 07036 | 2x10° | 1.6 x 106t | 1©
3 | 6.8x10%" | 3.7x10° | 0.6867 | 5x 10%? | 6.7 x 10%° 6.7 %
[3,5,17] | 5 | 1.26 x 10" | 3.7 x 10%® | 0.6867 | 5x 10** | 6.7 x 10%° 6o
17 7125 3.7x 109 | 0.6867 | 5x10° | 6.7x 10% | 10
3] 5.2x%x10% | 3.6x10% | 0.6372 | 2 x10% | 3.9 x 101°7 3.0
[3,5,13] | 5 | 6.8 x 10'7 | 3.7 x 10*® | 0.6372 | 2x 10% | 3.9 x 107 | -
13| 721 x 10° | 3.6 x 10%° | 0.6372 | 2x 10 | 3.9 x 107 | 10
3 [ 79%x10* [1.1x10™% | 0.601 | 2x10° [3.9x 10
[3,5,11] | 5 | 8.7x10%® | 1.1 x 10"%¢ | 0.601 | 2 x 10 | 3.9 x 10'5° 3'91;5
1] 1.8x102 | 1.5 100 | 0601 | 2x 10° | 3.9 x 1055 | 10
3 | 4.72 x10% | 4.9 x 10! | 0.6234 107 1.3 x 1023
[3,4,31] | 4 | 3.2x10% | 4.9 x 10! | 0.6234 107 1.3 x 1023 131;)
31 8635 5x 102 | 0.6234 1076 13x 1028 | 10

Table 4 — Continued on next page
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Continued from previous page

[p, q, 7] r Zip,q,r] Alp,g,r] Gilp,qg,r] Nip,q,] Bip,q,r) Clp,q,7]
3 | 34x10" [43x10"" | 0.6176 | 5 x 1030 [ 4.3 x 10*°

31 127 30 130 | 43X

[3,4,29] | 4 | 7.9x 10 4.3 x 10 0.6176 | 5x 10 4.3 x 10 10180
29 25065 4.1 %1027 | 0.6176 | 5x 10%° | 4.3 x 10*3°
3| 1.3x10" | 1.9x 10" | 0.5945 | 3 x 10'°% | 1.2 x 107

36 146 103 167 | 12X

[3,4,23] | 4 | 1.2x10 1.8 x 10 0.5945 | 3 x 10 1.2 x 10 10167
23| 1.9x10% | 2.2x 106 | 0.5945 | 3 x 10'% | 1.2 x 10'%7

3| 1.4x10°® [1.1x10"° [ 05717 | 2 x 10™° | 9.8 x 1027 0.8

[3,4,19] | 4 | 4.1x10* | 1.1 x 10'™ | 0.5717 | 2 x 10"® | 9.8 x 10°'7 16217
19| 1.52x10° | 1.1 x 10 | 0.5717 | 2 x 103 | 9.8 x 10%'7
3 3x10™ |1.2x10% | 0.5567 | 3 x10'% | 1.2 x 10%%3

55 231 163 263 | 12X

[3,4,17] | 4 | 7.2x 10 1.2 x 10 0.5567 | 3 x 10 1.2 x 10 10263
17 | 1.4 x 10" | 1.4 x 10% | 0.5567 | 3 x 10'%3 | 1.2 x 1023

3 | 1.3x10M° [ 3.1x10%° | 0.5142 | 6 x 10%°° | 1.5 x 10%8! L5

[3,4,13] | 4 | 3.8 x10%* | 2.9x 10%° | 0.5142 | 6 x 10**° | 1.5 x 10*®" 16481
13| 2.6 x10% | 3.5 x10%°° | 0.5142 | 6 x 10%*° | 1.5 x 10*8!

Table 4. Upper bound for max (z”,y?, 2") for the remaining cases of [p, q,r].

6. Proof of Theorem 1.7

We denote M = N(apagiiars2) and My = N(dagakriagt2). Note that
2ak4+1 = ap, + ag42 (30)
and ap = ag42 (mod 2). First, we obtain a lower bound for M and M; in terms
of aj, by using (13). We consider the cases 2 { a and 2|a;, separately.
Case 1. 24 ay. Then (2ag41,ar) = 1, implying (2ax+1, ag, ag+2) = 1. Thus,
by (13), after taking a = ag, b = agy2 and ¢ = 2ax41 in (30), we obtain
Q41 < 32 (N(2apaps1aps2)) ® < 98MMS.

Case 2. 2|ay. Then 2|ag42, so from (30), we have
ag Gf4-2

Ak+1 = 3 9 (31)
where apy1, %, “52 € Z and (ap41, %, “52) = 1. We observe that d is odd,
Ak+2

since (a,d) = 1, and therefore ay1 is odd. This time, by taking a = %4, b = =

and ¢ = agy; in (31), we obtain from (13) that

1.6
1
ap4+1 < 32 <N (4akak+1ak+2>) < 32M 16,
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Hence, in both cases, we get ap 1 < 49M 6, which implies that
a 1/1.6
My >M> (%l) . (32)

Next, we note that ararys = aj,, —d*> < ai,, and (d® apapy2,ai,,) = 1.
Assume
M > 297856. (33)

Then (9) holds. Since G; is decreasing, we have G1(M7) < G1(M). By apply-
ing (9) with @ = aga42, b = d* and ¢ = a} , ;, we obtain

6 6
ai_},_l < ngl"rGl(Ml) S M11+G1(M)

Further,

M, < N(d)M < N(d) (apaps1aps2)"? < day/?,

since ag, ax+1 and ag4o are powerful. Thus we get

)

6 3/2 1+G1 (M)
Gy < 5 (dakérl)

that is
2 2(1+G4 (M)
apr1 < 1.2T-38G1(M) ( 1-3G1 (M) , (34)
implying
2(1+G4 (M)
1 < (1.2d) 1500 (35)

(1) Let € > 0. We take e = sfﬁ' We may assume that & > kg, where kg is
a sufficiently large effectively computable number depending only on e such
that from (32) the assumption (33) is satisfied and G1(M) < €1, using the
facts that Gy is decreasing and tends to 0. From (35) we have

214Gy (M) 2(1+e)

apr1 < (1.2d) 75600 < (1.2d) =91 = (1.2d)*T=.
(2) Suppose on the contrary that (18) does not hold. Then we have

apy1 > max{2.31 x 1017842666 1051075} (36)

1/1.6
Applying (36) to (32), we have M; > M > (M

assumption (33) is satisfied. Further, we derive that G1(M;) < G1(M) <
0.333 by (6) and the monotonicity of G;. Now we derive from (34) to give

> €750 and so

apy1 < 1.2200042666 < 9 31 x 1015842056,

This is a contradiction.
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7. Proof of Theorem 1.8

We assume (3) and write
2=t —1)+ 1.
By (1) with a=1,b=1¢? -1 and ¢ = ? and (13), we have
102X51075 42 39 N16 (37)
which implies that N > 1053842, Then
G1(N) < 0.317315. (38)

Thus we obtain a sharper upper bound for 2, and we can revise (37) with the
use of (9) and (38) to give

6
102><51075 < t2 < 5N1'317315. (39)

This time we have N > 1077544, Then, by following as above, we obtain G (N) <
0.313229 and N > 1077785, Then

G1(N) < 0.313165. (40)

Finally, we apply (9) and (40) to derive that

2 < §N1.313165

5 b
which implies that
N > 0.87¢1:523037 4152,

ACKNOWLEDGEMENTS. The authors would like to thank SAMRAT KADGE
(samkadge@gmail.com) for his help in sage programming. Part of the work in
this paper was done when the first and second authors visited the Max Plank
Institute for Mathematics in Bonn. They would like to thank the MPIM for the
invitation, support, hospitality and computer facilities. The third author would
like to thank SERB. The authors would like to thank the referees for their remarks
and suggestions on an earlier draft of this paper.



Explicit abc-conjecture 453

References

[1] A. BAKER, Experiments on the abc-conjecture, Publ. Math. Debrecen 65 (2004), 253-260.

[2] K.C. CHIM, S.G. NaAIR and T. N. SHOREY, Explicit abc-conjecture and its applications,
Hardy-Ramanujan Journal 41 (2018), 143-156.

[3] B. pE SmIT, ABC triples, 2012, http://www.math.leidenuniv.nl/~desmit/abc/.
[4] S. W. GoLomB, Powerful numbers, Amer. Math. Monthly 77 (1970), 848-855.

[5] S. LaisHRAM and T. N. SHOREY, Baker’s explicit abc-conjecture and applications, Acta
Arith. 34 (2012), 419-429.

[6] D. W. MASSER, Note on a conjecture of Szpiro, Astérisque 183 (1990), 19-23.

[7] P. MIHAILESCU, Primary cyclotomic units and a proof of Catalan conjecture, J. Reine
Angew Math. 572 (2004), 167-195.

[8] R. A. MoLLIN and P. G. WALSH, A note on powerful numbers, quadratic fields and the
Pellian, C. R. Math. Rep. Acad. Sci. Canada 8 (1986), 109-114.

[9] J. OESTERLE, Nouvelles approches du “théoréme” de Fermat, Astérisque 161-162 (1988),
Exp. No. 694 (1989), 165-186.

[10] G. RoBIN, Estimation de la fonction de Tchebychef 6 sur le k-iéme nombre premier et
grandes valeurs de la fonction w(n) nombre de diviseurs premiers de n, Acta Arith. 42
(1983), 367-389.

[11] C. L. STEWART AND R. TIIDEMAN, On the Oesterlé—-Masser conjecture, Monatsh. Math.
102 (1986), 251-257.

[12] T. TRUDGIAN, Baker’s explicit ABC conjecture implies there is no hat-trick of powerful
numbers, American Mathematical Monthly 121 (2016).

[13] M. vAN FRANKENHUYSEN, A lower bound in the abc conjecture, J. Number Theory 82
(2000), 91-95.

KWOK CHI CHIM

INSTITUTE OF ANALYSIS AND NUMBER THEORY
GRAZ UNIVERSITY OF TECHNOLOGY
KOPERNIKUSGASSE 24/I1

A-8010 GRAZ

AUSTRIA

E-mail: chim@math.tugraz.at
TARLOK NATH SHOREY
NATIONAL INSTITUTE OF ADVANCED STUDIES

BANGALORE 560012
INDIA

E-mail: shorey@math.iitb.ac.in

SNEH BALA SINHA

INDIAN INSTITUTE OF SCIENCES
BANGALORE 560012

INDIA

E-mail: 24.sneh@gmail.com

(Received July 22, 2018; revised December 28, 2018)



