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On the zeros of reciprocal polynomials
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Abstract. The purpose of this paper is to study reciprocal polynomials whose
zeros are located in certain subsets of the complex plane. Of particular interest are the
half planes Rz < 0, Rz > 0, the positive and negative half-lines and the unit circle. Our
main tool is the Chebyshev transform (see, e.g., LAKATOS [8]) and a Viéta-like formula
for reciprocal polynomials (see LosoNczi [12]). Using these, we find necessary condi-
tions, in some cases necessary and sufficient conditions for the reciprocal polynomials to
have their zeros in the above sets.

1. Introduction

The aim of this paper is to study reciprocal polynomials whose zeros are
located in certain subsets of the complex plane. Of particular interest are the
half planes %z < 0, Rz > 0, the positive and negative half-lines and the unit
circle. Our main tool is the Chebyshev transform (see e.g., LAKATOS [8]) and
a Viéta-like formula for reciprocal polynomials (see, LOSONCZI [12]). Using these
we find necessary conditions, in some cases necessary and sufficient conditions for
the reciprocal polynomials to have their zeros in the above sets.

There is an extensive literature dealing with polynomials all of whose ze-
ros are on the unit circle. There are necessary and sufficient conditions by
CoHN [2] (see also [13, p. 14, Theorem 2.1.6]), and several sufficient conditions
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(see CHEN [1], DIP1PPO and HOWE [3], Lakatos [8], SCHINZEL [16], LAKATOS and
Losonczr [9]-[11], Kim and PARK [5], PETERSEN and SINCLAIR [15], SINCLAIR
and VAALER [17], KwON [6]-[7]). VIERA [18] found sufficient conditions for the
coefficients of self-inversive polynomials to have a definite number of zeros on
the unit circle. The book of OBRESCHKOFF [14] contains a number of results on
polynomials with real (positive or negative) zeros.

Definition 1. A polynomial P,,(z) = Y a;z?, where m € N, a,, # 0,
3=0

agy . .., 0, € C and
aj = am_j (.] = 07 e 7m)7
is called a reciprocal polynomial of degree m.

A reciprocal polynomial Py, of degree 2n (n € N) can be written as
i 1 1
Pn — 2n—k k " n_,n n, - N — n
on(2) kg_oak(z +2")tan2"=2"|ag| 2 +z" 4+t a1 z-i—z +ap|,

which shows that if 5 is a zero of P,,, then so is % Hence in the factorization of
this polynomial, there are factors of the form

(z—ﬁ)(z—;):zz—az—kl

where o = § + % Arranging the zeros of P, into pairs (ﬁk, é) k=1,....n
and multiplying the corresponding factors, we obtain
n
Py, (2) = ag H (2% — gz + 1),
k=1
with a = B + 5~ € C.
- n
We remark that the polynomial Py, (z) := ag [] (x — o) is exactly the
k=1

Chebyshev transform 7T P, of Ps, (concerning Cﬁebyshev transforms, see
Lakatos [8]).

2. Characterizations

We would like to characterize reciprocal polynomials whose zeros are located
in some subsets D of the complex plane. We can deal with subsets for which

(i) O#ﬂeDimplieS%GDandazﬂ—l—%ED*;
(i) 0# 8 € Difand only if « = § + § € D*.
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Lemma 1. Each of the following pairs (D;, D;)7 (j =1,...,6) satisfies con-

ditions (i), (ii):

e D;=Di={2€C:Rz<0};

e Dy=D5={2e€C: Rz >0}

« D3 =R, =]0,00], D = [2,00];

* Dy =R_ =] —00,0[, Dj =] — o0, —2;

e D5 =R, D} =] — 00, 2] U[2,00[;

e Dg={z€C:|z| =1}, D§ =[-2,2];
where Rz denotes the real part of z € C.

Proor. The proofs for (Dj, Dj),(j = 1,2) are almost obvious, hence we
omit them. The proofs for (Dj, DY), (j = 3,4,5) are similar, we give the proof
for j = 3 only.

If0# 8 €Dy =Ry, then 5 € Ry and a =+ § > 2,/85 = 2, showing
that a € DJ.

Conversely, suppose that a = B—i—% > 2. Writing 3 # 0 as 8 = |Ble? (b € R),
we get

a—5+ \5|e“’+me i (|B|+B|)cosb+i<5| |ﬁ|>s1nb€D3,
hence (|ﬂ\ Iﬁl) sinb = 0. Then either |3|— Iﬁ\ = 0orsinb = 0. In the first case,
we conclude that |3] = 1, 3 =€, a = ,BJrB = 2cosb > 2, hence b = 2k, (k € Z)
and 3 =1 € D3. In the second case, sinb =0, b = kr, (k € Z) and 8 = (—1)*|3|.
Here k cannot be odd, since then 8 < 0 and a = — (—[3—1— %ﬂ> < =2 <0,
contradicting to our assumption. Hence k is even and S > 0.

Although the proof for (Dg, D) can be obtained by a slight modification of
the proof of Lakatos [8, Lemma 1], for the sake of completeness we give its proof.

If B € Dg, then 8 = €™ with a suitable b € R, hence \%| =le7? =1, % € Dg
and

1 . _
a=0+—-=e+e " =2cosbe Dj.

B
Conversely, if « = §+ % € D} = [-2,2], then with 3 = |B]e® (b € R) we get

a—ﬁ—&—f (|ﬁ+|5|)cosb+i<|6| |B|>smb€[ 2,2].

Hence either |3] — \T%I = 0 or sinb = 0. Arguing similarly as in the previous
case (j=3), we conclude that either 8 = e® thus |8| = 1, or 8 = (—1)*|3| and
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(18] + ﬁ)(—l)k € [-2,2]. From this we get that |3| + \T%I <2 (|| -1)?% <0,
|8] = 1. In both cases 8 € Dg, completing our proof. |

An important consequence of this Lemma is

Theorem 1 (First Characterization Theorem). A complex monic reciprocal

polynomial
n—1
Pon(2) = > AR(Z"F 425 + An2" (Ag=1, 4, €C(k=1,...,n)
k=0

of even degree 2n has 0 < | < n pairs (8;, i) of zeros in D; if and only if in its
factorization

P (z) = H (22 — oz + 1)
k=1

there are | values a; € D} (j =1,...,6).

In the terms of Chebyshev transforms we can reformulate this theorem as
follows.

Corollary 1. The complex monic reciprocal polynomial Ps,, of even degree
2n has 0 <1 < n pairs (i, Bi) of zeros in Dj if and only if its Chebyshev transform

T Poy(z) = H (x — ag)

k=1
has | zeros o; € D} (j =1,...,6).

Corollary 1 can also be easily formulated for monic polynomials of odd de-
gree. For odd degree polynomials, z = —1 is always a zero, hence Py, 1(z) =
(z + 1)P5,(2), where P5,(z) is also monic reciprocal, thus for Py, Corollary 1 is
applicable, and we can easily state the result analogous to Corollary 1.

We remark that there is a classical theorem of HURWITZ [4] which gives
necessary and sufficient conditions (in terms of the coefficients) of an arbitrary
polynomial (with real coefficients) to have all zeros in Dq (or in D). As far as we
know, these are the only cases when necessary and sufficient conditions in terms of
the coefficients are known for a polynomial to have all zeros in D, (j =1,...,6).

To formulate another characterization theorem, we need the Viéta-like for-
mula proved in [12].
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Lemma 2. For every n € N and z,aq,...,a, € C, we have the identity
n n—1
H(ZQ—OékZ+1):ZAk(ZQn_k+Zk)+Anzn7 (1)
k=1 k=0
where

Ay = (*1)]C Z <n - kl: * 2l>0/(;i)2[ (k =0,1,... 7”)7 (2)

and J,E,") = ali") (a1,...,ay,)(k =0,1,...,n) denotes the k-th elementary sym-

(n) (n)
0

metric function of the variables an, a2, ..., 0, and oy’ =0 (Q1,...,0p) = 1.

By the help of this lemma, we can formulate a stronger characterization
theorem.

Theorem 2 (Second Characterization Theorem). A complex monic recip-
rocal polynomial

n—1

Pon(2) = Y Ap(2®F 4 2F) + Ap2" (Ag=1, A4, €C(k=1,...,n) (3)
k=0

of even degree 2n (n € N) has all of its zeros on the positive or negative half-line
or the real line if and only if there exist real numbers ay € [2,00[(k =1,...,n)
oray €] —o0,=2](k=1,...,n) or |ag| > 2(k=1,...,n), respectively, such that

[

[5]
A = (~1)F <n1§+2l)a,§@21(a1,...,an) fork=0,1,...,n  (4)
=0

holds.

A complex monic reciprocal polynomial Pa,11(z) of odd degree 2n+1 (n € N)
has all of its zeros on the negative half-line or the real line if and only if there exist
real numbers ay, €]—o0, —2[(k=1,...,n) or |ag| > 2(k =1,...,n), respectively,
such that Pa,11(z) = (2+1)P5, (%) and for the coefficients of the monic reciprocal
polynomial Py, the equations in (4) hold.

PROOF. For even degree polynomials, this follows from Lemmas 1 and 2.
For odd degree polynomials, we have Py, 11(z) = (z + 1) P, (2), where Pj, (z) is
also reciprocal, thus the first part of the statement applies. ([l
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3. Bounds for the coefficients, further necessary conditions

In this section, we find bounds for the coefficients of reciprocal polynomials
all of whose zeros are either positive or negative, i.e., they are in one of the sets
D;(j = 3,4). Unfortunately, if all roots are in D;(j = 1,2,5), then by our method,
we cannot find reasonable bounds or conditions for the coefficients. The case
of Dg, however, has already been dealt with in [12].

Theorem 3. If all zeros of the complex monic reciprocal polynomial (3) of
even degree are positive, then

(“1)F A > (25) (k=0,1,...,n). (5)

In (5), there is always equality for k = 0. Moreover, if equality holds in (5) for
some k, (1 < k < n), then equality holds for all k = 0,1,...,n, and in this case
Po,(2) = (z — 1)%",

PrOOF. We have a;; > 2(j = 1,...,n), hence using the second characteri-
zation theorem and the estimate

" n
U,i )(oq,...,ozn) > (k)Qk’ (6)

we get from (2) for k =0,1,...,n,

n—k+20\ o
(1)kAk_Z< l >0,(€_)2l(041,...,an)

B

In the last step above we used the identity

4] n—k+2l n 2n

> ()G )= () ®
— l k—2l k

This can easily be obtained by expanding (1 + z)** = (1 + 2z + 2?)" by the
binomial and by the polynomial theorem, rearranging the sums according to the
powers of x and comparing the coefficients of z* (for details, see [12]).

From (7) it can be seen that if equality holds in (5) for some k, (1 < k < n),
then equality holds for this & in (6). This is, however, possible only if a; = 2 for
all j =1,...,n, hence there is equality in (6) for all k =0,1,...,n implying that

2n 2
Py, (z) = k;)(—l)’“( :)l‘k = (z —1)*" as claimed. O
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Remark 1. For k =1, (5) gives —A; > 2n. This inequality can also be easily
obtained from the usual Viéta formula applied for Ps,. In this case, the zeros of
P, can be arranged into pairs 8;,1/8; (j = 1,...,n) of positive numbers and by
Viéta’s formula

—A1 =B+ 1/B1) 4+ (B +1/B8n) 2 2611/P1 + -+ + 28,1/ Bn = 2n.

For the other values of k, this is, however, not the case.

Remark 2. If (5) holds, then there are 2n sign changes in the sequence of
coefficients of (3), hence by Descartes sign rule (see, e.g., [14, p. 54, Theorem 13.1])
our polynomial has 2n — 2l positive zeros where 0 <[ < n.

Theorem 4. If all zeros of the complex monic reciprocal polynomial (3) of
even degree are negative, then

Ay > (25) (k=0,1,...,n). )

If equality holds in (9) for some k,(1 < k < n), then equality holds for all
k=0,1,...,n and in this case Pa,(x) = (z + 1)?".

PRrROOF. If our polynomial is Py,, then applying Theorem 3 for the polyno-
mial z — P, (—z), we obtain Theorem 4. O

4. Demonstration of the results by degree four reciprocal polynomials

Here we consider the reciprocal polynomial py(z) 1= 24+ A,23+ A022 + A2+
1(A1, As € R) of degree four with real coefficients. Using the method described
at the end of the introduction, we easily obtain for the Chebyshev transform of py
(see also pp. 659-660 [8])

Tpa(z) = 224+ Ajx + As — 2.

For p4, we can relatively easily find the regions of the coefficients (A1, Ag) for
which all zeros lie in the sets D;, (i = 1,...,6) and compare them to the existing
conditions.

Zeros in Dy and Ds. All zeros of py have negative (positive) real parts if and
only if all zeros of T p, have negative (positive) real parts. By Hurwitz theorem all
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Aq 0
1oAY
or if A; > 0 and Ay > 2. All zeros of Tp4 have positive real parts if and only if
all zeros of Tps(—z) = 22 — Ajz + Ay — 2 have negative real parts, and from this
we get that D3 is given by A; < 0 and Ay > 2.

The next figure shows the domains Di and D3 (colored in light and dark

zeros of Tpy have negative real parts exactly if 4; > 0, and

grey; in green and red in the online version) in the plane (Ag, A1). By continuity
arguments on the half-line { (42, A1) : A3 = 0,42 > 2} (colored black) all zeros
of py are imaginary.

Figure 1. The domains D] and D5.

Zeros in D3 and Dy. All zeros of py are positive (negative) if and only if
both zeros

xlz(—A1+\/m>/2 xgz(—Al— A2 —4(A 2—2))/2

of Tpy are in the interval [2,00] ([—00, —2[). These zeros are real if and only if
the discriminant A := A? — 4(A, — 2) is non-negative, which holds if and only

if 24/max{Ay — 2,0} < |A1] (see [8, pp. 659-660]). An elementary calculation
shows that (z1 >)x2 > 2 holds if and only if

—(A2+2)/2 < A; < min{—4,2+/max{A; — 2,0}}. (10)

Similarly, (zo <)x; < —2 holds if and only if

max{4,2y/max{A4s —2,0}} < A; < (A2 +2)/2. (11)
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Thus the domains D} and D} are given by (10) and (11). Below these domains
are colored in light grey (and green in the online version). The infinite rectangles
with corners (6,—4) and (6,4) indicate the sets obtained from Theorem 3 and
Theorem 4.

Figure 2. The domain D3.

\

Figure 3. The domain Dj.
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Zeros in Dg. All zeros of py are real if and only if all zeros of Tpy are in
R\] — 2,2[. The latter condition holds if and only if A > 0 and |z1]| > 2, |za| > 2.
For the zeros there are three possibilities (j) z2 > 2, (jj) 1 < =2, or (jjj) =1 > 2
and x9 < —2. The cases (j) and (jj) have been dealt with previously. In the
case (jjj), p4 has two positive and two negative zeros as the zeros are pairwise
positive or negative. Again, some elementary (but in this case somewhat longer)
calculations give that A > 0, and x; > 2 holds exactly if

—(As +2)/2 if A, <6
S A e )
—2v/ Ay — 2, if A; > 6.
Similarly, A > 0 and xzo < —2 holds exactly if
Ay +2)/2 if A, <6
Az A2t D/2 il A <6 (13)
2¢/ Ay — 2, if Ay > 6.

Finally, we get that the region D* where ps has two positive and two negative
zeros is given by (12) and (13), or in equivalent form, by

|A1| < —(A3+2)/2 and Ay < —2.
Clearly, D = D} U D; U D*.

The set D* is shown in the next picture. It it remarkable that this set is
given by linear inequalities.

Figure 4. The domain D*.
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Zeros in Dg. This case has been considered in [8, pp. 659-660], and there it
was proved that all zeros of ps are on the unit circle if and only if

2¢/max{A4s — 2,0} < |A;] < min{4, (43 + 2)/2}.
Our last two pictures show Dg and the set S* of pairs (As, A1), which can be

obtained from the sufficient conditions of Lakatos and Losonczi [11, Remark 3,
p. 763] for all zeros of py to be on the unit circle.

Al
64
4 4
2
A2
. : . . .
-N 4 6 8 10 12
\ x
g
it
—& 4
Figure 5. The domain Dg.
1aa
6
4
2
A2

Figure 6. The domain S*.
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