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Abstract. The purpose of this paper is to study reciprocal polynomials whose

zeros are located in certain subsets of the complex plane. Of particular interest are the

half planes <z < 0, <z > 0, the positive and negative half-lines and the unit circle. Our

main tool is the Chebyshev transform (see, e.g., Lakatos [8]) and a Viéta-like formula

for reciprocal polynomials (see Losonczi [12]). Using these, we find necessary condi-

tions, in some cases necessary and sufficient conditions for the reciprocal polynomials to

have their zeros in the above sets.

1. Introduction

The aim of this paper is to study reciprocal polynomials whose zeros are

located in certain subsets of the complex plane. Of particular interest are the

half planes <z < 0, <z > 0, the positive and negative half-lines and the unit

circle. Our main tool is the Chebyshev transform (see e.g., Lakatos [8]) and

a Viéta-like formula for reciprocal polynomials (see, Losonczi [12]). Using these

we find necessary conditions, in some cases necessary and sufficient conditions for

the reciprocal polynomials to have their zeros in the above sets.

There is an extensive literature dealing with polynomials all of whose ze-

ros are on the unit circle. There are necessary and sufficient conditions by

Cohn [2] (see also [13, p. 14, Theorem 2.1.6]), and several sufficient conditions
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(see Chen [1], DiPippo and Howe [3], Lakatos [8], Schinzel [16], Lakatos and

Losonczi [9]–[11], Kim and Park [5], Petersen and Sinclair [15], Sinclair

and Vaaler [17], Kwon [6]–[7]). Viera [18] found sufficient conditions for the

coefficients of self-inversive polynomials to have a definite number of zeros on

the unit circle. The book of Obreschkoff [14] contains a number of results on

polynomials with real (positive or negative) zeros.

Definition 1. A polynomial Pm(z) =
m∑
j=0

ajz
j , where m ∈ N, am 6= 0,

a0, . . . , am ∈ C and

aj = am−j (j = 0, . . . ,m),

is called a reciprocal polynomial of degree m.

A reciprocal polynomial P2n of degree 2n (n ∈ N) can be written as

P2n(z)=

n−1∑
k=0

ak(z2n−k+zk)+anz
n=zn

[
a0

(
zn+

1

zn

)
+ · · ·+ an−1

(
z+

1

z

)
+ an

]
,

which shows that if β is a zero of P2n, then so is 1
β . Hence in the factorization of

this polynomial, there are factors of the form

(z − β)

(
z − 1

β

)
= z2 − αz + 1

where α = β + 1
β . Arranging the zeros of P2n into pairs

(
βk,

1
βk

)
, k = 1, . . . , n

and multiplying the corresponding factors, we obtain

P2n(z) = a0

n∏
k=1

(z2 − αkz + 1),

with αk = βk + 1
βk
∈ C.

We remark that the polynomial P̃2n(x) := a0
n∏
k=1

(x − αk) is exactly the

Chebyshev transform T P2n of P2n (concerning Chebyshev transforms, see

Lakatos [8]).

2. Characterizations

We would like to characterize reciprocal polynomials whose zeros are located

in some subsets D of the complex plane. We can deal with subsets for which

(i) 0 6= β ∈ D implies 1
β ∈ D and α = β + 1

β ∈ D
∗;

(ii) 0 6= β ∈ D if and only if α = β + 1
β ∈ D

∗.
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Lemma 1. Each of the following pairs (Dj , D
∗
j ), (j = 1, . . . , 6) satisfies con-

ditions (i), (ii):

• D1 = D∗1 = {z ∈ C : <z < 0};
• D2 = D∗2 = {z ∈ C : <z > 0};
• D3 = R+ =]0,∞], D∗3 = [2,∞[;

• D4 = R− =]−∞, 0[, D∗4 =]−∞,−2];

• D5 = R, D∗5 =]−∞,−2] ∪ [2,∞[;

• D6 = {z ∈ C : |z| = 1}, D∗6 = [−2, 2];

where <z denotes the real part of z ∈ C.

Proof. The proofs for (Dj , D
∗
j ), (j = 1, 2) are almost obvious, hence we

omit them. The proofs for (Dj , D
∗
j ), (j = 3, 4, 5) are similar, we give the proof

for j = 3 only.

If 0 6= β ∈ D3 = R+, then 1
β ∈ R+ and α = β + 1

β ≥ 2
√
β 1
β = 2, showing

that α ∈ D∗3 .

Conversely, suppose that α = β+ 1
β ≥ 2. Writing β 6= 0 as β = |β|eib (b ∈ R),

we get

α = β +
1

β
= |β|eib +

1

|β|
e−ib =

(
|β|+ 1

|β|

)
cos b+ i

(
|β| − 1

|β|

)
sin b ∈ D∗3 ,

hence
(
|β| − 1

|β|

)
sin b = 0. Then either |β|− 1

|β| = 0 or sin b = 0. In the first case,

we conclude that |β| = 1, β = eib, α = β+ 1
β = 2 cos b ≥ 2, hence b = 2kπ, (k ∈ Z)

and β = 1 ∈ D3. In the second case, sin b = 0, b = kπ, (k ∈ Z) and β = (−1)k|β|.
Here k cannot be odd, since then β < 0 and α = −

(
−β + 1

−β

)
≤ −2 < 0,

contradicting to our assumption. Hence k is even and β > 0.

Although the proof for (D6, D
∗
6) can be obtained by a slight modification of

the proof of Lakatos [8, Lemma 1], for the sake of completeness we give its proof.

If β ∈ D6, then β = eib with a suitable b ∈ R, hence | 1β | = |e
−ib| = 1, 1

β ∈ D6

and

α = β +
1

β
= eib + e−ib = 2 cos b ∈ D∗6 .

Conversely, if α = β + 1
β ∈ D

∗
6 = [−2, 2], then with β = |β|eib (b ∈ R) we get

α = β +
1

β
=

(
|β|+ 1

|β|

)
cos b+ i

(
|β| − 1

|β|

)
sin b ∈ [−2, 2].

Hence either |β| − 1
|β| = 0 or sin b = 0. Arguing similarly as in the previous

case (j=3), we conclude that either β = eib thus |β| = 1, or β = (−1)k|β| and
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(|β| + 1
|β| )(−1)k ∈ [−2, 2]. From this we get that |β| + 1

|β| ≤ 2, (|β| − 1)2 ≤ 0,

|β| = 1. In both cases β ∈ D6, completing our proof. �

An important consequence of this Lemma is

Theorem 1 (First Characterization Theorem). A complex monic reciprocal

polynomial

P2n(z) =

n−1∑
k=0

Ak(z2n−k + zk) +Anz
n (A0 = 1, Ak ∈ C (k = 1, . . . , n)

of even degree 2n has 0 ≤ l ≤ n pairs (βi,
1
βi

) of zeros in Dj if and only if in its

factorization

P2n(z) =

n∏
k=1

(z2 − αkz + 1)

there are l values αi ∈ D∗j (j = 1, . . . , 6).

In the terms of Chebyshev transforms we can reformulate this theorem as

follows.

Corollary 1. The complex monic reciprocal polynomial P2n of even degree

2n has 0 ≤ l ≤ n pairs (βi,
1
βi

) of zeros in Dj if and only if its Chebyshev transform

T P2n(x) =

n∏
k=1

(x− αk)

has l zeros αi ∈ D∗j (j = 1, . . . , 6).

Corollary 1 can also be easily formulated for monic polynomials of odd de-

gree. For odd degree polynomials, z = −1 is always a zero, hence P2n+1(z) =

(z + 1)P ∗2n(z), where P ∗2n(z) is also monic reciprocal, thus for P ∗2n Corollary 1 is

applicable, and we can easily state the result analogous to Corollary 1.

We remark that there is a classical theorem of Hurwitz [4] which gives

necessary and sufficient conditions (in terms of the coefficients) of an arbitrary

polynomial (with real coefficients) to have all zeros in D1 (or in D2). As far as we

know, these are the only cases when necessary and sufficient conditions in terms of

the coefficients are known for a polynomial to have all zeros in Dj (j = 1, . . . , 6).

To formulate another characterization theorem, we need the Viéta-like for-

mula proved in [12].
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Lemma 2. For every n ∈ N and z, α1, . . . , αn ∈ C, we have the identity

n∏
k=1

(z2 − αkz + 1) =

n−1∑
k=0

Ak(z2n−k + zk) +Anz
n, (1)

where

Ak = (−1)k
[ k
2 ]∑
l=0

(
n− k + 2l

l

)
σ
(n)
k−2l (k = 0, 1, . . . , n), (2)

and σ
(n)
k = σ

(n)
k (α1, . . . , αn) (k = 0, 1, . . . , n) denotes the k-th elementary sym-

metric function of the variables α1, α2, . . . , αn and σ
(n)
0 = σ

(n)
0 (α1, . . . , αn) := 1.

By the help of this lemma, we can formulate a stronger characterization

theorem.

Theorem 2 (Second Characterization Theorem). A complex monic recip-

rocal polynomial

P2n(z) =

n−1∑
k=0

Ak(z2n−k + zk) +Anz
n (A0 = 1, Ak ∈ C (k = 1, . . . , n) (3)

of even degree 2n (n ∈ N) has all of its zeros on the positive or negative half-line

or the real line if and only if there exist real numbers αk ∈ [2,∞[ (k = 1, . . . , n)

or αk ∈]−∞,−2] (k = 1, . . . , n) or |αk| ≥ 2 (k = 1, . . . , n), respectively, such that

Ak = (−1)k
[ k
2 ]∑
l=0

(
n− k + 2l

l

)
σ
(n)
k−2l(α1, . . . , αn) for k = 0, 1, . . . , n (4)

holds.

A complex monic reciprocal polynomial P2n+1(z) of odd degree 2n+1 (n ∈ N)

has all of its zeros on the negative half-line or the real line if and only if there exist

real numbers αk ∈]−∞,−2[ (k = 1, . . . , n) or |αk| ≥ 2 (k = 1, . . . , n), respectively,

such that P2n+1(z) = (z+1)P ∗2n(z) and for the coefficients of the monic reciprocal

polynomial P ∗2n the equations in (4) hold.

Proof. For even degree polynomials, this follows from Lemmas 1 and 2.

For odd degree polynomials, we have P2n+1(z) = (z + 1)P ∗2n(z), where P ∗2n(z) is

also reciprocal, thus the first part of the statement applies. �
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3. Bounds for the coefficients, further necessary conditions

In this section, we find bounds for the coefficients of reciprocal polynomials

all of whose zeros are either positive or negative, i.e., they are in one of the sets

Dj(j = 3, 4). Unfortunately, if all roots are in Dj(j = 1, 2, 5), then by our method,

we cannot find reasonable bounds or conditions for the coefficients. The case

of D6, however, has already been dealt with in [12].

Theorem 3. If all zeros of the complex monic reciprocal polynomial (3) of

even degree are positive, then

(−1)kAk ≥
(

2n

k

)
(k = 0, 1, . . . , n). (5)

In (5), there is always equality for k = 0. Moreover, if equality holds in (5) for

some k, (1 ≤ k ≤ n), then equality holds for all k = 0, 1, . . . , n, and in this case

P2n(x) = (x− 1)2n.

Proof. We have αj ≥ 2 (j = 1, . . . , n), hence using the second characteri-

zation theorem and the estimate

σ
(n)
k (α1, . . . , αn) ≥

(
n

k

)
2k, (6)

we get from (2) for k = 0, 1, . . . , n,

(−1)kAk =

[ k
2 ]∑
l=0

(
n− k + 2l

l

)
σ
(n)
k−2l(α1, . . . , αn)

≥
[ k
2 ]∑
l=0

(
n− k + 2l

l

)(
n

k − 2l

)
2k−2l =

(
2n

k

)
. (7)

In the last step above we used the identity

[ k
2 ]∑
l=0

(
n− k + 2l

l

)(
n

k − 2l

)
2k−2l =

(
2n

k

)
. (8)

This can easily be obtained by expanding (1 + x)2n = (1 + 2x + x2)n by the

binomial and by the polynomial theorem, rearranging the sums according to the

powers of x and comparing the coefficients of xk (for details, see [12]).

From (7) it can be seen that if equality holds in (5) for some k, (1 ≤ k ≤ n),

then equality holds for this k in (6). This is, however, possible only if αj = 2 for

all j = 1, . . . , n, hence there is equality in (6) for all k = 0, 1, . . . , n implying that

P2n(x) =
2n∑
k=0

(−1)k
(

2n

k

)
xk = (x− 1)2n as claimed. �
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Remark 1. For k = 1, (5) gives −A1 ≥ 2n. This inequality can also be easily

obtained from the usual Viéta formula applied for P2n. In this case, the zeros of

P2n can be arranged into pairs βj , 1/βj (j = 1, . . . , n) of positive numbers and by

Viéta’s formula

−A1 = (β1 + 1/β1) + · · ·+ (βn + 1/βn) ≥ 2β11/β1 + · · ·+ 2βn1/βn = 2n.

For the other values of k, this is, however, not the case.

Remark 2. If (5) holds, then there are 2n sign changes in the sequence of

coefficients of (3), hence by Descartes sign rule (see, e.g., [14, p. 54, Theorem 13.1])

our polynomial has 2n− 2l positive zeros where 0 ≤ l ≤ n.

Theorem 4. If all zeros of the complex monic reciprocal polynomial (3) of

even degree are negative, then

Ak ≥
(

2n

k

)
(k = 0, 1, . . . , n). (9)

If equality holds in (9) for some k, (1 ≤ k ≤ n), then equality holds for all

k = 0, 1, . . . , n and in this case P2n(x) = (x+ 1)2n.

Proof. If our polynomial is P2n, then applying Theorem 3 for the polyno-

mial x→ P2n(−x), we obtain Theorem 4. �

4. Demonstration of the results by degree four reciprocal polynomials

Here we consider the reciprocal polynomial p4(z) := z4+A1z
3+A2z

2+A1z+

1 (A1, A2 ∈ R) of degree four with real coefficients. Using the method described

at the end of the introduction, we easily obtain for the Chebyshev transform of p4
(see also pp. 659–660 [8])

T p4(x) = x2 +A1x+A2 − 2.

For p4, we can relatively easily find the regions of the coefficients (A1, A2) for

which all zeros lie in the sets Di, (i = 1, . . . , 6) and compare them to the existing

conditions.

Zeros in D1 and D2. All zeros of p4 have negative (positive) real parts if and

only if all zeros of T p4 have negative (positive) real parts. By Hurwitz theorem all
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zeros of T p4 have negative real parts exactly if A1 > 0, and

∣∣∣∣∣ A1 0

1 A2 − 2

∣∣∣∣∣ > 0,

or if A1 > 0 and A2 > 2. All zeros of T p4 have positive real parts if and only if

all zeros of T p4(−x) = x2−A1x+A2− 2 have negative real parts, and from this

we get that D∗2 is given by A1 < 0 and A2 > 2.

The next figure shows the domains D∗1 and D∗2 (colored in light and dark

grey; in green and red in the online version) in the plane (A2, A1). By continuity

arguments on the half-line { (A2, A1) : A1 = 0, A2 ≥ 2 } (colored black) all zeros

of p4 are imaginary.

Figure 1. The domains D∗
1 and D∗

2 .

Zeros in D3 and D4. All zeros of p4 are positive (negative) if and only if

both zeros

x1 =

(
−A1 +

√
A2

1 − 4(A2 − 2)

)
/2, x2 =

(
−A1 −

√
A2

1 − 4(A2 − 2)

)
/2

of T p4 are in the interval [2,∞[ ([−∞,−2[). These zeros are real if and only if

the discriminant ∆ := A2
1 − 4(A2 − 2) is non-negative, which holds if and only

if 2
√

max{A2 − 2, 0} ≤ |A1| (see [8, pp. 659–660]). An elementary calculation

shows that (x1 ≥)x2 ≥ 2 holds if and only if

−(A2 + 2)/2 ≤ A1 ≤ min{−4, 2
√

max{A2 − 2, 0}}. (10)

Similarly, (x2 ≤)x1 ≤ −2 holds if and only if

max{4, 2
√

max{A2 − 2, 0}} ≤ A1 ≤ (A2 + 2)/2. (11)
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Thus the domains D∗3 and D∗4 are given by (10) and (11). Below these domains

are colored in light grey (and green in the online version). The infinite rectangles

with corners (6,−4) and (6, 4) indicate the sets obtained from Theorem 3 and

Theorem 4.

Figure 2. The domain D∗
3 .

Figure 3. The domain D∗
4 .
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Zeros in D5. All zeros of p4 are real if and only if all zeros of T p4 are in

R\]− 2, 2[. The latter condition holds if and only if ∆ ≥ 0 and |x1| ≥ 2, |x2| ≥ 2.

For the zeros there are three possibilities (j) x2 ≥ 2, (jj) x1 ≤ −2, or (jjj) x1 ≥ 2

and x2 ≤ −2. The cases (j) and (jj) have been dealt with previously. In the

case (jjj), p4 has two positive and two negative zeros as the zeros are pairwise

positive or negative. Again, some elementary (but in this case somewhat longer)

calculations give that ∆ ≥ 0, and x1 ≥ 2 holds exactly if

A1 ≤

{
−(A2 + 2)/2, if A2 ≤ 6,

−2
√
A2 − 2, if A2 > 6.

(12)

Similarly, ∆ ≥ 0 and x2 ≤ −2 holds exactly if

A1 ≥

{
(A2 + 2)/2, if A2 ≤ 6,

2
√
A2 − 2, if A2 > 6.

(13)

Finally, we get that the region D∗ where p4 has two positive and two negative

zeros is given by (12) and (13), or in equivalent form, by

|A1| ≤ −(A2 + 2)/2 and A2 ≤ −2.

Clearly, D∗5 = D∗3 ∪D∗4 ∪D∗.
The set D∗ is shown in the next picture. It it remarkable that this set is

given by linear inequalities.

Figure 4. The domain D∗.
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Zeros in D6. This case has been considered in [8, pp. 659–660], and there it

was proved that all zeros of p4 are on the unit circle if and only if

2
√

max{A2 − 2, 0} ≤ |A1| ≤ min{4, (A2 + 2)/2}.

Our last two pictures show D∗6 and the set S∗ of pairs (A2, A1), which can be

obtained from the sufficient conditions of Lakatos and Losonczi [11, Remark 3,

p. 763] for all zeros of p4 to be on the unit circle.

Figure 5. The domain D∗
6 .

Figure 6. The domain S∗.
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