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A generalization of Menon’s identity to higher exponent

By YAN LI (Beijing), DAEYEOUL KIM (Jeonju) and RUI QIAO (Beijing)

Abstract. In this note, we shall explicitly compute the following sum

> ged(a —1,b1, ..., bk, n),

1<a,by,...,bp<n

ged(a,n)=1

where n > 1, k > 0, [ > 1 are integers. Our results extend Menon’s identity and Sury’s
identity (i.e., £ =1 in the above summation) to higher exponents. Note that in the case
k = 0, some of our results are recovered by the results of [21].

1. Introduction

In 1965, P. K. MENON [6] discovered the following beautiful identity:
Z ged(a —1,n) = ¢(n)7(n), (1)
a€ly

where for a positive integer n, Z7 is the group of units of the ring Z,, = Z/nZ,
ged( , ) represents the greatest common divisor, ¢ is the Euler totient function
and 7(n) is the number of positive divisors of n.

Mathematics Subject Classification: 11A07, 11A25.

Key words and phrases: Menon’s identity, Dirichlet character, Dirichlet convolution, divisor
function, Euler’s totient function, Chinese remainder theorem.

The first author was supported by the Open Project funded by State Key Laboratory of In-
formation Security (Institute of Information Engineering, Chinese Academy of Sciences), and
the second author was supported by the Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-
2018R1D1A1B07041132).

The second author is the corresponding author.



468 Yan Li, Daeyeoul Kim and Rui Qiao

Menon’s identity (1) is an interesting number-theoretical identity. Many
researchers generalized it in various directions. In 2009, B. SURy [19] found that

Z ng(CL— 17b17'--;bkan) = QO(TL)O']C(TZ), (2)
a€ly
by,....,b, €Ly,

where oy (n) = 324, d*, by using the Cauchy-Frobenius-Burnside lemma. It is
also interesting to note that MIGUEL [12]-[13] extended identities (1) and (2)
from Z to any residually finite Dedekind domain.

Recently, ZHAO and CAO [25] derived the following elegant Menon-type iden-
tity with a Dirichlet character

> sed(a —Ln)x(a) = p(m)7 (%) (3)

a€ly,

where x is a Dirichlet character modulo n with conductor d. Identity (3) can be
viewed giving the explicit Fourier coefficients of the function f(a) = ged(a —1,n)
on the Abelian group (Z/nZ)*.

A function f : Z — C is called an even function (mod n) if f(ged(k,n)) =
f(k) holds for any k € Z. In [22], TOTH further extended (3) from the ged function
to any even function (mod n). In fact, let f be an even function (mod n) and
s € Z. Toth got the following identity :

- . (= f)(od)
k—s)x(k)=pn S , 4
k§:1f( Ix(k) = @(n)x"(s) 6|§n/d ) (4)

(8,8)=1

where x* is the primitive character (mod d) that induces x, and u * f denotes
the Dirichlet convolution of the Mobius function p and the arithmetic function f
(see [22, Theorem 2.4]).

In [10], L1, Hu and KM further extended identities (2) and (3). They ob-
tained the following identity with a Dirichlet character y:

n
> eedla—Lby, b n)x(a) = p(n)or (5. (5)
a€ly,
b1,..,bi €L,

For other related works on Menon’s identity, see [2]-[5], [7]-]9], [11], [14],
[16]-[18], [20]-[24], and references therein.
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In this note, as an application of (5), we will explicitly compute

Z ged(a® —1,by, ..., b, n) (6)

a€ly

by techniques of characters, where ¢ is any positive integer. Our main result is
Theorem 2.5, which relates (6) to a certain kind of Dirichlet convolution. For £=1,
Theorem 2.5 easily reduces to Sury’s identity (2).

Note that in the case k = 0, Corollary 2.6 is recovered by [21, Corollary 15]).
Also, if kK =0 and n is odd, then Theorem 2.5 is recovered by [21, Corollary 16]).
RICHARDS [14] remarked that for any polynomial g with integer coefficients,

NIE

ged(g(k),n) = @(n) Y ng(d),

k=1 d|n
ged(k,n)=1

where n4(d) stands for the number of solutions x (mod d) of the congruence
g(x) =0 (mod d) such that ged(x,d) =1 (see [21]).

2. Main results

Let
7: L 7% La)=a', VaecZr,

be the ¢-th power map. Denote its image by im L and its kernel by ker L. Clearly,
we have

Z ged(a®—1,by, ..., by, n)=|ker L] Z ged(a—1,by,...,bk,n), (7)
a€Z}, a€im L
b1,... bl €20, b1,...,b1 €Zm,
where | | represents the cardinality.
To proceed on, we need the following lemma, which transforms the sum-
mation on the subgroup im L to the summation on the whole group Z; with
characters. From now on, for a finite Abelian group G, we denote the group of

~

characters of G by G.

Lemma 2.1. For a € Z},,

| ker L|, ifacimlL,
> x(a) =

7= 0, otherwise.
XEZ,

x‘=1
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PROOF. By definition of ZEL[Z], we derive
Zyl) = {x € Z;|x" = 1} = {x € Zy|x(im L) = 1}. (8)
Therefore, if a € im L, then
Z x(a) = Z 1 =|ker L.
x¢=1 xt=1

The last equality is due to 2% « 7% as Abelian groups (see [1, Proposition 2.1.16]).
Otherwise, for a ¢ im L, there is a character ¢ of Z}/im L such that ¢(a) # 1,
where @ is the image of a in Z}/im L (see [1, Corollary 2.1.18]). Denote the

o~

lifting of % in Z%, i.e., the composition of ¢ and the natural homomorphism
ZF — 7% /im L, still by 1. Hence, ¥(a) # 1 and ¢(im L) = 1, which implies that
¥ € Z[¢] by (8). Since Z}[¢] is a group and 1 belongs to it, we have

> x(a) =Y ¥x(a) = () Y x(a).

szl X£:1

As ¢(a) # 1, we get
Z x(a) =0, foralla¢imL. 0
x‘=1

Substituting Lemma 2.1 into (7) and changing the order of summation,
we obtain

Z ged(a® —1,by,...,b,n)

a€ly,
bl,...,bkEZn
1
= | ker L] Z Teer I Z x(a) | ged(a —1,bq,...,bx,n)
a€Zy xt=1
by, by €Ly
= Z x(a)ged(a — 1,by,...,bg,n).
x{=1  a€Z;
bl,...,kaZn

Substituting (5) into the above equation, finally we prove the following theorem:

Theorem 2.2. For { € NU {0},

n
Z ged(a® — 1,b1,...,bg,n) = p(n) Z Ok (d) , 9)
a€’Z;, a€Z, X
b1, ,bi €Ln

where d,, is the conductor of x.
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For d|n, let
NO(d) = |{x € Z%\Xe = 1, the conductor of x is d}|. (10)

In the following, we will calculate N (d) explicitly.

To do this, we first show Nr(f)(d) does not depend on n.

For m|n, since the natural homomorphism Z* — Z¥ sending ¢ mod n to
a mod m is surjective, the induced homomorphism Zﬁ — ZEL is injective. Denote

—
*

the image of Z#, in Z% by T,,. If m/|m”|n, then the following diagram of natural

m
homomorphisms is commutative.

Z, =7y,
s
oy
This implies that -
Ty C Ty CZ2%,  if m/|m"|n. (11)
Let n = ﬁ p;* be the prime factorization of n. The Chinese remainder

=1
theorem implies that Z; is isomorphic to the direct product of Z;m naturally, i.e.,

Lr Ty X LFoy X oo X Lo, .
n I psy° Ps

Therefore, ii is the direct product of T, i.e.,
Z;‘Z = Tp11J1 X Tpgz X oo X Tpgs. (12)

Now for m/,m” |n, let

S S
! 1"
! U 173 v
m:”pil and m:”pil,
i=1 i=1

where 0 < v}, v) < v;. The same reasoning shows that

TmIZTUiXTvéX-“XTUQ, Tm//ZTvi/XTUé/X“-XTUg, (13)
Pq Do Ds” Py Po Ps’

where T ,;, T ;v are subgroups of T v for 1 < <s. As (12) is a direct product,
Pt Pt i

we get

S S
T me” = HT ) ﬂT vl = HT min{v}, v} (14)
=1 i Pi =1 P
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by (13). Therefore,

T ﬂTmu = Tycd(m/,my, for m/,m|n. (15)

For x € Z}L, the conductor of x is the smallest (for divisibility) positive
integer d|n such that x € Ty. Since Z; — 77 is an injective homomorphism,
the following two sets

—
*
7

‘ .
{x € Zz|x" = 1, the conductor of y is d}

and
7%

{x € Z%|x" = 1, the conductor of x is d}
are in one-to-one correspondence. Hence, by (10),

NO() = NP (d) (16)

does not depend on n. We denote N y) (d), i.e., the number of primitive characters
modulo d with orders dividing ¢, by N (d) in short.

Lemma 2.3. For ¢/ € N, let
CO(n) = {x € Zylx" = 1}. (17)

Then C“)(n) is a multiplicative arithmetic function such that

CO(p¥) = ged (£, 0(p*)), (18)
and
C(e) (21)) — {ng(& @(21)))7 v = 17 27 (19)
ged(£,2)ged(€, 0(2°71)), v =3,

where p is an odd prime and v is a positive integer.

PRrROOF. From [1, Proposition 2.1.16], we know ZEL is non-canonically isomor-
phic to Z}. Therefore,

Y (n) = |{a € Z*|a" =1}. (20)

Equation (20) and the Chinese remainder theorem imply that C)(n) is multi-
plicative with respect to n. Since Zy. is a cyclic group of order ¢(p”) for p being
an odd prime, Zj. is cyclic for v = 1,2 and Z}. is isomorphic to Z/2°~2Z x Z/27
for v > 3 (see [1, Proposition 2.1.24] or [15, p. 44]), we get the desired result. O
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Lemma 2.4. The number of primitive characters modulo d with orders
dividing ¢ is equal to
NO(d) = (uxC9)(@). (21)

PrROOF. Combining (10) and (17), we get

S NO() = CO ). (22)
d|n
By (16),
NO(d) = NO(a) (23)

does not depend on n. Substituting (23) into (22) and using the Mdbius inversion
formula, we get (21). O

Theorem 2.5. For { € NU {0},

Z ged(a® —1,by, ..., bk, n) = o(n)(idg *C ) (n),
a€ly
bi,...,bx €EZn

which is a multiplicative

arithmetic function explicitly determined by (18) and (19), and idg(n) = n*.

where C'¥) (n) is the number of {-torsion elements of 7

n’

PRrROOF. By Theorem 2.2 and equation (10), we have

Z ged(a®—1,bq,... , b, n) Zak< ) ZUk( )N(K d).

a€ly, XEZZ d|n
X ‘=1

Substituting Lemma 2.4 and equation (23) into the above equation, we get

Z ged(a® —1,by,...,bg,n) = @(n)(or x NO)(n) = p(n)(op * px CO)(n).

Since o * p = idg, we get the desired identity. O

Corollary 2.6. Let w(n) be the number of distinct prime divisors of n.
Then
Z ged(a? — 1,by, ..., b, n) = p(n)(idy *C?)(n),

an:‘
b1, bk €ELp



474 Yan Li, Daeyeoul Kim and Rui Qiao
where id(n) = n* and

2w(m)=t 2ln,
CP(n) = { 2vm), 21 n or 22||n,
2w+l 23p,

Here, p||n means p'|n and p*t! fn.
PROOF. Let £ =2 in Theorem 2.5, equations (18) and (19). O

Remark. Note that C®(n) is closely related to 2°(™) i.e., the number of
square-free divisors of n.

Remark. When /=1, Theorem 2.5 reduces to Sury’s identity (2), as C¥) (n)=1
for all positive integers n. In the case k = 0, Corollary 2.6 is recovered by
[21, Corollary 15]). Also, if k = 0 and n is odd, then Theorem 2.5 is recovered by
[21, Corollary 16]).
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