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A generalization of Menon’s identity to higher exponent

By YAN LI (Beijing), DAEYEOUL KIM (Jeonju) and RUI QIAO (Beijing)

Abstract. In this note, we shall explicitly compute the following sum∑
1≤a,b1,...,bk≤n

gcd(a,n)=1

gcd(a` − 1, b1, . . . , bk, n),

where n ≥ 1, k ≥ 0, l ≥ 1 are integers. Our results extend Menon’s identity and Sury’s

identity (i.e., ` = 1 in the above summation) to higher exponents. Note that in the case

k = 0, some of our results are recovered by the results of [21].

1. Introduction

In 1965, P. K. Menon [6] discovered the following beautiful identity:∑
a∈Z∗n

gcd(a− 1, n) = ϕ(n)τ(n), (1)

where for a positive integer n, Z∗n is the group of units of the ring Zn = Z/nZ,

gcd( , ) represents the greatest common divisor, ϕ is the Euler totient function

and τ(n) is the number of positive divisors of n.
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Menon’s identity (1) is an interesting number-theoretical identity. Many

researchers generalized it in various directions. In 2009, B. Sury [19] found that∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, . . . , bk, n) = ϕ(n)σk(n), (2)

where σk(n) =
∑
d|n d

k, by using the Cauchy–Frobenius–Burnside lemma. It is

also interesting to note that Miguel [12]–[13] extended identities (1) and (2)

from Z to any residually finite Dedekind domain.

Recently, Zhao and Cao [25] derived the following elegant Menon-type iden-

tity with a Dirichlet character∑
a∈Z∗n

gcd(a− 1, n)χ(a) = ϕ(n)τ
(n
d

)
, (3)

where χ is a Dirichlet character modulo n with conductor d. Identity (3) can be

viewed giving the explicit Fourier coefficients of the function f(a) = gcd(a− 1, n)

on the Abelian group (Z/nZ)∗.

A function f : Z → C is called an even function (mod n) if f(gcd(k, n)) =

f(k) holds for any k ∈ Z. In [22], Tóth further extended (3) from the gcd function

to any even function (mod n). In fact, let f be an even function (mod n) and

s ∈ Z. Tóth got the following identity :

n∑
k=1

f(k − s)χ(k) = ϕ(n)χ∗(s)
∑
δ|n/d
(δ,s)=1

(µ ∗ f)(δd)

ϕ(δd)
, (4)

where χ∗ is the primitive character (mod d) that induces χ, and µ ∗ f denotes

the Dirichlet convolution of the Möbius function µ and the arithmetic function f

(see [22, Theorem 2.4]).

In [10], Li, Hu and Kim further extended identities (2) and (3). They ob-

tained the following identity with a Dirichlet character χ:∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a− 1, b1, ..., bk, n)χ(a) = ϕ(n)σk

(n
d

)
. (5)

For other related works on Menon’s identity, see [2]–[5], [7]–[9], [11], [14],

[16]–[18], [20]–[24], and references therein.



Menon-type identity 469

In this note, as an application of (5), we will explicitly compute∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a` − 1, b1, . . . , bk, n) (6)

by techniques of characters, where ` is any positive integer. Our main result is

Theorem 2.5, which relates (6) to a certain kind of Dirichlet convolution. For `=1,

Theorem 2.5 easily reduces to Sury’s identity (2).

Note that in the case k = 0, Corollary 2.6 is recovered by [21, Corollary 15]).

Also, if k = 0 and n is odd, then Theorem 2.5 is recovered by [21, Corollary 16]).

Richards [14] remarked that for any polynomial g with integer coefficients,

n∑
k=1

gcd(k,n)=1

gcd(g(k), n) = ϕ(n)
∑
d|n

ηg(d),

where ηg(d) stands for the number of solutions x (mod d) of the congruence

g(x) ≡ 0 (mod d) such that gcd(x, d) = 1 (see [21]).

2. Main results

Let

Z∗n
L−→ Z∗n : L(a) = a`, ∀ a ∈ Z∗n,

be the `-th power map. Denote its image by imL and its kernel by kerL. Clearly,

we have∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a`−1, b1, . . . , bk, n)= | kerL|
∑

a∈imL
b1,...,bk∈Zn

gcd(a−1, b1, . . . , bk, n), (7)

where | | represents the cardinality.

To proceed on, we need the following lemma, which transforms the sum-

mation on the subgroup imL to the summation on the whole group Z∗n with

characters. From now on, for a finite Abelian group G, we denote the group of

characters of G by Ĝ.

Lemma 2.1. For a ∈ Z∗n,

∑
χ∈Ẑ∗n
χ`=1

χ(a) =

{
| kerL|, if a ∈ imL,

0, otherwise.
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Proof. By definition of Ẑ∗n[`], we derive

Ẑ∗n[`] = {χ ∈ Ẑ∗n|χ` = 1} = {χ ∈ Ẑ∗n|χ(imL) = 1}. (8)

Therefore, if a ∈ imL, then∑
χ`=1

χ(a) =
∑
χ`=1

1 = | kerL|.

The last equality is due to Ẑ∗n w Z∗n as Abelian groups (see [1, Proposition 2.1.16]).

Otherwise, for a /∈ imL, there is a character ψ of Z∗n/ imL such that ψ(a) 6= 1,

where a is the image of a in Z∗n/ imL (see [1, Corollary 2.1.18]). Denote the

lifting of ψ in Ẑ∗n, i.e., the composition of ψ and the natural homomorphism

Z∗n → Z∗n/ imL, still by ψ. Hence, ψ(a) 6= 1 and ψ(imL) = 1, which implies that

ψ ∈ Ẑ∗n[`] by (8). Since Ẑ∗n[`] is a group and ψ belongs to it, we have∑
χ`=1

χ(a) =
∑
χ`=1

ψχ(a) = ψ(a)
∑
χ`=1

χ(a).

As ψ(a) 6= 1, we get ∑
χ`=1

χ(a) = 0, for all a /∈ imL. �

Substituting Lemma 2.1 into (7) and changing the order of summation,

we obtain ∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a` − 1, b1, . . . , bk, n)

= | kerL|
∑
a∈Z∗n

b1,··· ,bk∈Zn

 1

| kerL|
∑
χ`=1

χ(a)

 gcd(a− 1, b1, . . . , bk, n)

=
∑
χ`=1

∑
a∈Z∗n

b1,...,bk∈Zn

χ(a)gcd(a− 1, b1, . . . , bk, n).

Substituting (5) into the above equation, finally we prove the following theorem:

Theorem 2.2. For ` ∈ N ∪ {0},∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a` − 1, b1, . . . , bk, n) = ϕ(n)
∑
a∈Ẑ∗n
χ`=1

σk

(
n

dχ

)
, (9)

where dχ is the conductor of χ.
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For d|n, let

N (`)
n (d) := |{χ ∈ Ẑ∗n|χ` = 1, the conductor of χ is d}|. (10)

In the following, we will calculate N
(`)
n (d) explicitly.

To do this, we first show N
(`)
n (d) does not depend on n.

For m|n, since the natural homomorphism Z∗n → Z∗m sending a mod n to

a mod m is surjective, the induced homomorphism Ẑ∗m → Ẑ∗n is injective. Denote

the image of Ẑ∗m in Ẑ∗n by Tm. If m′|m′′|n, then the following diagram of natural

homomorphisms is commutative.

Z∗n → Z∗m′
↓ ↗
Z∗m′′

This implies that

Tm′ ⊂ Tm′′ ⊂ Ẑ∗n, if m′|m′′|n. (11)

Let n =
s∏
i=1

pvii be the prime factorization of n. The Chinese remainder

theorem implies that Z∗n is isomorphic to the direct product of Z∗
p
vi
i

naturally, i.e.,

Z∗n ' Z∗
p
v1
1
× Z∗

p
v2
2
× · · · × Z∗pvss .

Therefore, Ẑ∗n is the direct product of Tpvii
, i.e.,

Ẑ∗n = Tpv11 × Tpv22 × · · · × Tpvss . (12)

Now for m′,m′′|n, let

m′ =

s∏
i=1

p
v′i
i and m′′ =

s∏
i=1

p
v′′i
i ,

where 0 6 v′i, v
′′
i 6 vi. The same reasoning shows that

Tm′ = T
p
v′1
1

× T
p
v′2
2

× · · · × T
p
v′s
s

, Tm′′ = T
p
v′′1
1

× T
p
v′′2
2

× · · · × T
p
v′′s
s

, (13)

where T
p
v′
i

i

, T
p
v′′
i

i

are subgroups of Tpvii
for 1 6 i 6 s. As (12) is a direct product,

we get

Tm′
⋂
Tm′′ =

s∏
i=1

T
p
v′
i

i

⋂
T
p
v′′
i

i

=

s∏
i=1

T
p
min{v′

i
,v′′

i
}

i

(14)
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by (13). Therefore,

Tm′
⋂
Tm′′ = Tgcd(m′,m′′), for m′,m′′|n. (15)

For χ ∈ Ẑ∗n, the conductor of χ is the smallest (for divisibility) positive

integer d|n such that χ ∈ Td. Since Ẑ∗d → Ẑ∗n is an injective homomorphism,

the following two sets

{χ ∈ Ẑ∗n|χ` = 1, the conductor of χ is d}

and

{χ ∈ Ẑ∗d|χ
` = 1, the conductor of χ is d}

are in one-to-one correspondence. Hence, by (10),

N (`)
n (d) = N

(`)
d (d) (16)

does not depend on n. We denote N
(`)
d (d), i.e., the number of primitive characters

modulo d with orders dividing `, by N (`)(d) in short.

Lemma 2.3. For ` ∈ N, let

C(`)(n) := |{χ ∈ Ẑ∗n|χ` = 1}|. (17)

Then C(`)(n) is a multiplicative arithmetic function such that

C(`)(pv) = gcd(`, ϕ(pv)), (18)

and

C(`)(2v) =

{
gcd(`, ϕ(2v)), v = 1, 2,

gcd(`, 2)gcd(`, ϕ(2v−1)), v > 3,
(19)

where p is an odd prime and v is a positive integer.

Proof. From [1, Proposition 2.1.16], we know Ẑ∗n is non-canonically isomor-

phic to Z∗n. Therefore,

C(`)(n) = |{a ∈ Z∗n|a` = 1}. (20)

Equation (20) and the Chinese remainder theorem imply that C(`)(n) is multi-

plicative with respect to n. Since Z∗pv is a cyclic group of order ϕ(pv) for p being

an odd prime, Z∗2v is cyclic for v = 1, 2 and Z∗2v is isomorphic to Z/2v−2Z×Z/2Z
for v > 3 (see [1, Proposition 2.1.24] or [15, p. 44]), we get the desired result. �
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Lemma 2.4. The number of primitive characters modulo d with orders

dividing ` is equal to

N (`)(d) = (µ ∗ C(`))(d). (21)

Proof. Combining (10) and (17), we get∑
d|n

N (`)
n (d) = C(`)(n). (22)

By (16),

N (`)
n (d) = N (`)(d) (23)

does not depend on n. Substituting (23) into (22) and using the Möbius inversion

formula, we get (21). �

Theorem 2.5. For ` ∈ N ∪ {0},∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a` − 1, b1, . . . , bk, n) = ϕ(n)(idk ∗C(`))(n),

where C(`)(n) is the number of `-torsion elements of Z∗n, which is a multiplicative

arithmetic function explicitly determined by (18) and (19), and idk(n) = nk.

Proof. By Theorem 2.2 and equation (10), we have

∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a`−1, b1, . . . , bk, n)=ϕ(n)
∑
χ∈Ẑ∗n
χ`=1

σk

(
n

dχ

)
=ϕ(n)

∑
d|n

σk

(n
d

)
N (`)
n (d).

Substituting Lemma 2.4 and equation (23) into the above equation, we get∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a` − 1, b1, . . . , bk, n) = ϕ(n)(σk ∗N (`))(n) = ϕ(n)(σk ∗ µ ∗C(`))(n).

Since σk ∗ µ = idk, we get the desired identity. �

Corollary 2.6. Let w(n) be the number of distinct prime divisors of n.

Then ∑
a∈Z∗n

b1,...,bk∈Zn

gcd(a2 − 1, b1, . . . , bk, n) = ϕ(n)(idk ∗C(2))(n),



474 Yan Li, Daeyeoul Kim and Rui Qiao

where idk(n) = nk and

C(2)(n) =


2w(n)−1, 2||n,
2w(n), 2 - n or 22||n,
2w(n)+1, 23|n.

Here, pi||n means pi|n and pi+1 6 |n.

Proof. Let ` = 2 in Theorem 2.5, equations (18) and (19). �

Remark. Note that C(2)(n) is closely related to 2w(n), i.e., the number of

square-free divisors of n.

Remark. When `=1, Theorem 2.5 reduces to Sury’s identity(2), as C(`)(n)=1

for all positive integers n. In the case k = 0, Corollary 2.6 is recovered by

[21, Corollary 15]). Also, if k = 0 and n is odd, then Theorem 2.5 is recovered by

[21, Corollary 16]).
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