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On two open problems of the theory of permutable
subgroups of finite groups
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Abstract. Let σ = {σi|i ∈ I} be some partition of the set of all primes P,

G a finite group and σ(G) = {σi|σi ∩ π(G) 6= ∅}.

A set H of subgroups of G is said to be a complete Hall σ-set of G if every member

6= 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one Hall

σi-subgroup of G for every σi ∈ σ(G); G is said to be σ-full if G possesses a complete

Hall σ-set.

A subgroup A of G is said to be σ-permutable in G if G possesses a complete Hall

σ-set and A permutes with each Hall σi-subgroup H of G, that is, AH = HA for all

i ∈ I.

We prove that if G is σ-full, then the set Lσ per(G), of all σ-permutable subgroups

of G, forms a sublattice of the lattice of all subgroups of G. Also, answering to [9, Ques-

tion 6.13], we describe the conditions under which the lattice Lσ per(G) is distributive.

1. Introduction

Throughout this paper, G always denotes a finite group. Moreover, we use

L(G) to denote the lattice of all subgroups of G, and Ln(G) is the lattice of all

normal subgroups of G. The symbol P denotes the set of all primes, π ⊆ P and

π′ = P \ π. As usual, π(G) is the set of all primes dividing the order |G| of G.
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The subgroups A and B of G are said to be permutable if AB = BA. In this case

they also say that A permutes with B. If A permutes with all Sylow subgroups

of G, then A is called S-permutable in G [1]. Recall also that an element a of the

lattice L is called meet-distributive [8, p. 136] if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for

all b, c ∈ L.

In what follows, σ = {σi|i ∈ I} is some partition of P, that is, P =
⋃
i∈I σi

and σi ∩ σj = ∅ for all i 6= j.

A set H of subgroups of G is a complete Hall σ-set of G [9] if every member

6= 1 of H is a Hall σi-subgroup of G for some σi ∈ σ and H contains exactly one

Hall σi-subgroup of G for every i such that σi ∩ π(G) 6= ∅; G is said to be σ-full

[9] if G possesses a complete Hall σ-set.

Recall that a subgroup A of G is said to be σ-permutable in G [10] if G

possesses a complete Hall σ-set H such that AHx = HxA for all H ∈ H and all

x ∈ G.

Our first observations are the following useful facts.

Proposition 1.1. Suppose thatG is σ-full and A is a σ-permutable subgroup

of G. Then A permutes with all Hall σi-subgroups of G for all i.

Theorem A. Suppose that G is σ-full. Then the set Lσ per(G), of all σ-

permutable subgroups of G, forms a sublattice of the lattice L(G).

Note that Theorem A improves Theorem C in [10] and, in fact, gives an al-

ternative proof for the following well-known result.

Corollary 1.2 (Kegel in [5]). The set LS(G) of all S-permutable subgroups

of G forms a sublattice of the lattice L(G).

Example 1.3. (i) G is called σ-nilpotent [9] if G = H1 × · · · × Ht, where

{H1, . . . ,Ht} is a complete Hall σ-set of G. It is not difficult to show that G is

σ-nilpotent if and only if every subgroup of G is σ-permutable in G.

(ii) In the classical case when σ = σ1 = {{2}, {3}, . . .} (we use here the

terminology in [11]), a subgroup A of G is σ1-permutable in G if and only if it is

S-permutable in G.

(iii) In the other classical case when σ = σπ = {π, π′}, a subgroup A of

a π-separable group G is σπ-permutable in G if and only if A permutes with all

Hall π-subgroups and with all Hall π′-subgroups of G.

(iv) In fact, in the theory of π-soluble groups (π = {p1, . . . , pn}) we deal with

the partition σ = σ1π = {{p1}, . . . , {pn}, π′} of P. In view of Proposition 1.1,

a subgroup A of G is σ1π-permutable in G if and only if G possesses a Hall
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π′-subgroup V , and A permutes with all conjugates of V and with all Sylow

p-subgroups of G for all p ∈ π.

The conditions under which the lattice Lsn(G) of all subnormal subgroups

of G is modular or distributive are known (see [8, Theorems 9.2.3, 9.2.4]). It is

well-known also that the lattice Ln(G) of all normal subgroups of G is modular

and this lattice is distributive if and only if in every factor group G/R, any

two G/R-isomorphic normal subgroups coincide (see [7] and [8, Theorem 9.1.6]).

Kegel proved [5] that the set LS(G) of all S-permutable subgroups of G forms

a sublattice of the lattice Lsn(G). Since Ln(G) ⊆ LS(G) ⊆ Lsn(G), where both

inclusions in general are strict, it seems natural to ask: Under what conditions

the lattice LS(G) is modular or distributive? Moreover, in view of Theorem A,

it makes sense to consider the following general

Question 1.4 (see Questions 6.11 and 6.13 in [9]). Under what conditions the

lattice Lσ per(G) is modular or distributive?

Note that if K E H and K,H ∈ Lσi per(G), where Lσi per(G) is the set

of all σ-permutable σi-subgroups of G, then Oσi(G) normalizes both subgroups

K and H [10, Lemma 3.1], and hence we can consider Oσi(G) as a group of

operators for H/K (assuming, as usual, that (hK)a = haK for all hK ∈ H/K
and a ∈ Oσi(G)).

We do not know under which conditions onG the lattice Lσ per(G) is modular.

Nevertheless, we give the full answer to the second part of Question 1.4.

Recall thatGNσ denotes the σ-nilpotent residual ofG, that is, the intersection

of all normal subgroups N of G with σ-nilpotent quotient G/N .

Let G be a σ-full group and L = Lσ per(G). Then we say that the lattice L
satisfies the weak distributivity condition with respect to σ (the WσD-condition,

in short) if the following hold: (i) every two members of L are permutable; (ii) the

lattice Ln(G) is distributive; (iii) G/GNσ is cyclic and GNσ is a meet-distributive

element of L.

Theorem B. Suppose thatG is σ-full. Let L = Lσ per(G). Then the following

conditions are equivalent:

(i) The lattice L is distributive.

(ii) L satisfies the WσD-condition and in every factor group Ḡ = G/R, any two

Oσi(Ḡ)-isomorphic sections H̄/K̄ and L̄/K̄, where K̄, H̄, L̄ ∈ Lσi per(Ḡ) for

some i, coincide.

(iii) L satisfies the WσD-condition and in every factor group Ḡ = G/R, any two
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Oσi(Ḡ)-isomorphic sections H̄/K̄ and L̄/K̄, where K̄, H̄, L̄ ∈ Lσi per(Ḡ) (for

some i) and the subgroups H̄ and L̄ cover K̄ in Lσ per(Ḡ), coincide.

In the case when σ = σπ, we get from Theorem B the following result.

Corollary 1.5. Suppose that G is π-separable, and let L = Lσπ per(G).

Then the lattice L is distributive if and only if L satisfies the WσπD-condition

and the following hold:

(1) In every factor group Ḡ = G/R, any two Oπ(Ḡ)-isomorphic sections H̄/K̄

and L̄/K̄, where K̄, H̄ and L̄ are σπ-permutable π-subgroups of Ḡ, coincide.

(2) In every factor group Ḡ = G/R, any two Oπ
′
(Ḡ)-isomorphic sections H̄/K̄

and L̄/K̄, where K̄, H̄ and L̄ are σπ-permutable π′-subgroups of Ḡ, coincide.

In the case when σ = σ1π, we get from Theorem B the following fact.

Corollary 1.6. Suppose that G possesses a Hall π′-subgroup and let L =

Lσ1π per(G). Then the lattice L is distributive if and only if L satisfies theWσ1πD-

condition and the following hold:

(1) In every factor group Ḡ = G/R, any two Op(Ḡ)-isomorphic sections H̄/K̄

and L̄/K̄, where K̄, H̄, L̄ ∈ LpS(Ḡ) and p ∈ π, coincide;

(2) In every factor group Ḡ = G/R, any two Oπ
′
(Ḡ)-isomorphic sections H̄/K̄

and L̄/K̄, where K̄, H̄ and L̄ are σπ-permutable π′-subgroups of Ḡ, coincide.

In this corollary, LpS(Ḡ) denotes the set of all S-permutable p-subgroups

of Ḡ.

In the case when π = P, we get from Corollary 1.6 the following

Corollary 1.7 (see [12, Theorem A]). Let L = LS(G). Then the lattice L
is distributive if and only if L satisfies the Wσ1D-condition and in every factor

group Ḡ = G/R, any two Op(Ḡ)-isomorphic sections H̄/K̄ and L̄/K̄, where

K̄, H̄, L̄ ∈ LpS(Ḡ) and p is a prime, coincide.

The proof of Theorem B consists of many steps, and the following result

together with Proposition 1.1 and Theorem A are three of them.

Proposition 1.8. A σ-nilpotent subgroup A of G is σ-permutable in G if

and only if each characteristic subgroup of A is σ-permutable in G.

Corollary 1.9 (see [1, Theorem 1.2.17]). Let A be a nilpotent subgroup

of G. Then the following statements are equivalent:

(i) A is S-permutable in G.

(ii) Each Sylow subgroup of A is S-permutable in G.

(iii) Each characteristic subgroup of A is S-permutable in G.
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2. Proofs of Theorems A and Propositions 1.1 and 1.8

Lemma 2.1 (see [3, A, Lemma 1.6]). Let A, B and H be subgroups of G.

If AH = HA and BH = HB, then 〈A,B〉H = H〈A,B〉.

A subgroup A of G is called σ-subnormal in G [10] if there is a subgroup

chain A = A0 ≤ A1 ≤ · · · ≤ At = G such that either Ai−1 E Ai or Ai/(Ai−1)Ai
is σ-primary for all i = 1, . . . , t.

The importance of this concept is related to the following result.

Lemma 2.2 (see [10, Theorem B]). Every σ-permutable subgroup A of G

is σ-subnormal in G and A/AG is σ-nilpotent.

Proof of Theorem A. In fact, in view of Lemmas 2.1 and 2.2, it is enough

to show that if A and B are σ-subnormal subgroups of G such that for a Hall σi-

subgroup H of G we have AH = HA and BH = HB, then (A∩B)H = H(A∩B).

Assume that this is false and let G be a counterexample of minimal order. Then

G is not a σi-group, since otherwise we have H = G and so G = (A ∩ B)H =

H(A ∩B).

Let E = AH ∩BH. Then A∩E and B ∩E are σ-subnormal subgroups of E

by [10, Lemma 2.6(1)]. Moreover, AH ∩ E = H(A ∩ E) = (A ∩ E)H. Similarly,

(B ∩ E)H = H(B ∩ E). Hence the hypothesis holds for (A ∩ E,B ∩ E,H,E).

Assume that E < G. Then the choice of G implies that A∩B = (A∩E)∩(B∩E)

is permutable with H. Hence E = G, so G = AH = BH. Thus |G : A|
and |G : B| are σi-numbers. Hence we have Oσi(A) = Oσi(G) = Oσi(B) by

[10, Lemma 2.6(8)]. Therefore, since G is not a σi-group, it follows that V =

AG ∩ BG 6= 1. Moreover, A/V and B/V are σ-subnormal subgroups of G/V

by [10, Lemma 2.6(4)]. Also, we have (A/V )(HV/V ) = AH/V = HA/V =

(HV/V )(A/V ) and (B/V )(HV/V ) = (HV/V )(B/V ), where HV/V is a Hall

σi-subgroup of G/V . Hence the choice of G implies that

(A ∩B/V )(HV/V ) = ((A/V ) ∩ (B/V ))(HV/V )

= (HV/V )((A/V ) ∩ (B/V )) = (HV/V )(A ∩B/V ).

But then (A∩B)H = (A∩B)HV = HV (A∩B) = H(A∩B). This contradiction

completes the proof of the result. �

Proposition 2.3. Let A be a σ-nilpotent σ-subnormal subgroup of G, and

B a characteristic subgroup of A. LetH be a Hall σi-subgroup ofG. If AH = HA,

then BH = HB.
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Proof. Assume that this proposition is false, and let G be a counterexample

with |G|+ |B|+ |A| minimal.

By hypothesis, A = A1 × · · · × At, where {A1, . . . , At} is a complete Hall

σ-set of A. Hence B = (A1 ∩B)× · · · × (At ∩B), where {A1 ∩B, . . . , At ∩B} is

a complete Hall σ-set of B. We can assume without loss of generality that Ak is

a σk-subgroup of A for all k = 1, . . . , t.

It is clear that Ai ∩ B is characteristic in A for all i = 1, . . . , t. Therefore,

if Ai ∩B < B, then (Ai ∩B)H = H(Ai ∩B) by the choice of G and so for some

j, j = 1 say, we have A1 ∩B = B, since otherwise we have

BH = ((A1 ∩B)× · · · × (At ∩B))H = H((A1 ∩B)× · · · × (At ∩B)) = HB.

Thus B ≤ A1. It is clear that A1 is a σ-subnormal subgroup of G, so in the

case when i = 1, we have B ≤ A1 ≤ H by [10, Lemma 2.6(7)]. But then

BH = H = HB, a contradiction. Thus i > 1.

Now we show that A1H = HA1. First note that Ai is σ-subnormal in G,

so Ai ≤ H by [10, Lemma 2.6(7)]. Therefore A = A1 × V × Ai, where V =

A2 · · ·Ai−1Ai+1 · · ·At, and so

AH = HA = (A1 × V ×Ai)H = (A1 × V )H = H(A1 × V ),

where A1×V is a σ-subnormal σ′i-subgroup of G. Then A1×V is σ-subnormal in

(A1×V )H by [10, Lemma 2.6(1)]. Hence H ≤ NG(A1×V ) by [10, Lemma 2.6(8)].

Since A1 is a characteristic subgroup of A1 × V , we have H ≤ NG(A1), and so

A1H = HA1. But B is a characteristic subgroup of A1, since B is characteristic

in A by hypothesis and A = A1 × · · · × At. Therefore H ≤ NG(B), and so

BH = HB, a contradiction. The proposition is proved. �

Corollary 2.4. Let A be a σ-nilpotent subgroup of a σ-full group G. Then

the following statements are equivalent:

(i) A is σ-permutable in G.

(ii) Each Hall σi-subgroup of A is σ-permutable in G for all i.

(iii) Each characteristic subgroup of A is σ-permutable in G.

Proof. By hypothesis, A = A1×· · ·×At, where {A1, . . . , At} is a complete

Hall σ-set of A. Then Ai is characteristic in A for all i = 1, . . . , t. Therefore (ii),

(iii) ⇒ (i).

(i) ⇒ (ii), (iii) This follows from Proposition 2.3.

The corollary is proved. �
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Proof of Proposition 1.8. This directly follows from Corollary 2.4. �

Now we are ready to prove Proposition 1.1.

Proof of Proposition 1.1. Assume that this proposition is false, and

let G be a counterexample with |G|+ |A| minimal. Then for some i and some Hall

σi-subgroup H of G, we have AH 6= HA but A1H = HA1 for every σ-permutable

subgroup A1 of G with A1 < A. By hypothesis, G possesses a complete Hall σ-

set H = {H1, . . . ,Ht} such that ALx = LxA for all L ∈ H and all x ∈ G. We

can assume without loss of generality that Hk is a σk-group for all k = 1, . . . , t.

Let V = Hi.

First we show that AG = 1. Indeed, assume that R = AG 6= 1. Then

H0 = {H1R/R, . . . ,HtR/R} is a complete Hall σ-set of G/R such that

ALx/R = (A/R)(LR/R)xR = (LR/R)xR(A/R) = LxA/R

for all LR/R ∈ H0 and all xR ∈ G/R. On the other hand, HR/R is a Hall

σi-subgroup of G/R. Hence the choice of G implies that

AH/R = (A/R)(HR/R) = (HR/R)(A/R) = HA/R,

and so AH = HA, a contradiction. Therefore AG = 1, hence A = A1 × · · · ×
At, where {A1, . . . , At} is a complete Hall σ-set of A by Lemma 2.2. Moreover,

Lemma 2.2 implies also that A is σ-subnormal in G.

First assume that A = A1 is a σj-group. If j = i, then A ∩H = A by [10,

Lemma 2.6(7)], and so AH = H = HA. Hence j 6= i. By hypothesis, AV x = V xA

for each x ∈ G. Then V x ≤ NG(A) for all x ∈ G by [10, Lemma 3.1]. Hence

V G ≤ NG(A). But then H ≤ V G ≤ NG(A), which implies that AH = HA. This

contradiction shows that A 6= A1.

The subgroups A1, . . . , At are characteristic in A, so AiL
x = LxAi for all

L ∈ H and all x ∈ G by Proposition 1.8. Therefore, the minimality of |G| + |A|
implies that AiH = HAi for all i = 1, . . . , t, so AH = HA. This contradiction

completes the proof of the result. �

3. Proof of Theorem B

Now we use Proposition 1.1 to prove the following fact.

Lemma 3.1. Let R ≤ V be subgroups of a σ-full group G, where R is normal

in G. If V/R is σ-permutable in G/R, then V is σ-permutable in G.
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Proof. Let i ∈ I and H be a Hall σi-subgroup of G. Then HR/R is a Hall

σi-subgroup of G/R, and so

V H/R = (V/R)(HR/R) = (HR/R)(V/R) = HV/R

by hypothesis and Proposition 1.1, hence V H = HV . The lemma is proved. �

Lemma 3.2 (see Lemma 5.2 in [6]). Let L be a modular sublattice of the

lattice L(G), and U, V,N ∈ L with N E 〈U, V 〉. If U permutes both with V ∩UN
and V N , then U permutes with V .

Proposition 3.3. Let G be σ-full and L = Lσi per(G). Then: (i) L is

a sublattice of Lσ per(G) and (ii) if L is distributive, then AB = BA for all

A,B ∈ L.

Proof. (i) Let A,B ∈ L. By hypothesis, for some Hall σi-subgroup H

of G and for each x ∈ G, we have Hx = AHx = HxA, so A ≤ HG ≤ Oσi(G).

Similarly, B ≤ Oσi(G). Thus 〈A,B〉 is a σi-subgroup of G and this subgroup is

σ-permutable in G by Lemma 2.1. Finally, A ∩B is also a σi-subgroup of G and

this subgroup is σ-permutable in G by Theorem A. Thus we have (i).

(ii) Suppose that this assertion is false, and let G be a counterexample with

|G| + |A| + |B| minimal. Thus AB 6= BA but A1B1 = B1A1 for all A1, B1 ∈ L
such that A1 ≤ A, B1 ≤ B and either A1 6= A or B1 6= B. Let V = 〈A,B〉Oσi(G)

and R = 〈A,B〉 ∩Oσi(G). Then V is σ-subnormal in G.

(1) The group V is σ-full and Lσi per(V ) is a sublattice of L.

First note that each Hall σj-subgroup of G is contained in V for all j 6= i,

since Oσi(G) is the subgroup of G generated by all its σ′i-elements. On the other

hand, H ∩V is a Hall σi-subgroup of V for each Hall σi-subgroup H of G by [10,

Lemma 2.6(7)], so V is σ-full.

Now, let H ∈ Lσi per(V ). Then H ≤ Oσi(V ) ≤ Oσi(G) by [10, Lemma

2.6(11)]. Therefore H permutes with each Hall σi-subgroup of G. On the other

hand, for every j 6= i and for every Hall σj-subgroup W of G, we have HW = WH

since W ≤ V . Hence H ∈ Lσ per(G), which implies (1).

(2) V = G, so 〈A,B〉 E G.

Claim (1) implies that the hypothesis holds for Lσi per(V ), and so in the case

when V 6= G, the choice of G implies that AB = BA. Thus G = 〈A,B〉Oσi(G).

Therefore, since Oσi(G) ≤ NG(〈A,B〉) by [10, Lemma 3.1], 〈A,B〉 is normal in G.
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(3) R = 1.

Assume that R = 〈A,B〉∩Oσi(G) 6= 1. First we show that BRA = 〈A,B〉R.

Indeed, let H/R be a σi-subgroup of G/R. Then H is a σi-group since 〈A,B〉 ≤
Oσi(G). Moreover, Lemma 3.1 and [10, Lemma 2.8(2)] imply that H/R is σ-

permutable in G/R if and only if H is σ-permutable in G. Therefore the lattice

Lσi per(G/R) is isomorphic to the interval [G/R] in the distributive lattice L.

Therefore, by the minimality of G, (AR/R)(BR/R) = (BR/R)(AR/R), and so

BRA = 〈A,B〉R.

Now we show that BRA = BR. Assume that this is false. Then A∩BR < A.

But Theorem A implies that A ∩BR is σ-permutable in G, so the minimality of

|G|+ |A|+ |B| implies that B permutes with A∩BR. Also, B permutes with RA

since B(RA) = 〈A,B〉R, so AB = BA by Lemma 3.2, Part (i) and Theorem A.

This contradiction shows that A ≤ BR, so BRA = BR. But R ≤ Oσi(G) ≤
NG(B) by [10, Lemma 3.1], hence B is normal in BR, and since A ≤ BR,

it follows that AB = BA. This contradiction shows that we have (3).

Final contradiction. Claims (2) and (3) imply that G = 〈A,B〉Oσi(G) =

〈A,B〉×Oσi(G), so every subgroup H of 〈A,B〉 is Oσi(G)-invariant since 〈A,B〉 ≤
Oσi(G). It follows that every subgroup of 〈A,B〉 is σ-permutable in G. Hence

L(〈A,B〉) is a sublattice of the distributive lattice L. Thus 〈A,B〉 is cyclic by the

Ore theorem [8, Theorem 1.2.3], so AB = BA, a contradiction. The proposition

is proved. �

Corollary 3.4. If G is σ-full and the lattice L = Lσ per(G) is distributive,

then every two members A and B of L are permutable.

Proof. Suppose that this corollary is false, and let G be a counterexample

with |G|+ |A|+ |B| minimal.

Let R be a minimal normal subgroup of G. Then the lattice Lσ per(G/R)

is isomorphic to the interval [G/R] in the distributive lattice L by Lemma 3.1

and [10, Lemma 2.8(2)]. Therefore [10, Lemma 2.8(2)] and the minimality of G

imply that (AR/R)(BR/R) = (BR/R)(AR/R). It follows that RAB = 〈A,B〉R
is a subgroup of G, so AG = 1 = BG. Hence, because of Lemma 2.2, A and B

are σ-nilpotent. The minimality of |G| + |A| + |B| implies that for some i we

have A,B ≤ Oσi(G), and so A,B ∈ Lσi per(G). But Lσi per(G) is a sublattice of

the distributive lattice Lσ per(G) by Proposition 3.3(i). Therefore, AB = BA by

Proposition 3.3(ii), a contradiction. The corollary is proved. �

Lemma 3.5 (see [4, p. 59]). A modular lattice L is distributive if and only

if L has no distinct elements a, b and c such that a ∨ b = a ∨ c = b ∨ c and

a ∧ b = a ∧ c = b ∧ c.
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Lemma 3.6 (see [8, Theorem 1.6.2]). Let G = A × B, f : A → B be

an isomorphism and C = {aaf | a ∈ A}. Then G = AC = BC and A ∩ C = 1 =

B ∩ C.

Proof of Theorem B. Let D = GNσ . (i) ⇒ (ii) First note that every

two members of L are permutable by Corollary 3.4. Moreover, since the lattice

Ln(G) is a sublattice of the lattice L, it is distributive. Now note that since

G/D = G/GNσ is σ-nilpotent, every subgroup E of G satisfying D ≤ E ≤ G is

σ-permutable in G by Lemma 3.1. Hence L(G/D) = Lσ per(G/D). In view of

Lemma 3.1 and [10, Lemma 2.8(2)], the lattice Lσ per(G/D) is isomorphic to the

interval [G/D] in lattice L, so Lσ per(G/D) is distributive. Hence G/D is cyclic by

the Ore theorem [8, Theorem 1.2.3]. It is clear also that D is a meet-distributive

element of L. Thus the lattice L satisfies the WσD-condition.

We show that in every factor group Ḡ = G/R, any two Oσi(Ḡ)-isomorphic

sections H̄/K̄ and L̄/K̄, where K̄, H̄, L̄ ∈ Lσi per(Ḡ), coincide. In view of

Lemma 3.1 and [10, Lemma 2.8(2)], it is enough to consider the case when Ḡ = G

and K̄ = K, H̄ = H, L̄ = L ∈ Lσi per(G).

Suppose that H 6= L. Then H 6= K. Let K < H0 ≤ H, where H0 covers

K in L, and let L0/K = (H0/K)f , where f : H/K → L/K is an Oσi(G)-

isomorphism. For g ∈ Oσi(G) and l0K = (hK)f ∈ L0/K, where h ∈ H0, we have

(l0K)g = ((hK)f )g = ((hK)g)f = (hgK)f = (h0K)f ,

where h0 ∈ H0, since H0 is Oσi(G)-invariant by [10, Lemma 3.1]. Hence (l0K)g ∈
L0/K. It follows that L0 is Oσi(G)-invariant, and so L0 covers K in L, since the

inverse map f−1 : L/K → H/K is an Oσi(G)-isomorphism too.

First assume that H0 6= L0, and let E0/K = {hK(hK)f |hK ∈ H0/K}. Then

(H0/K)(L0/K) = (H0/K)×(L0/K). Indeed, ifHx
0 6= H0 for some x ∈ L0, then (i)

and the fact thatH0 and L0 coverK in L would imply that {K;H0;Hx
0 ;L0;H0L0}

would be a diamond in the distributive lattice L, contradicting Lemma 3.5. Hence,

by Lemma 3.6, E0/K is a subgroup of (H0/K)× (L0/K), and we have

(H0/K)× (L0/K) = (H0/K)× (E0/K) = (L0/K)× (E0/K).

Note that if g ∈ Oσi(G) and hK(hK)f ∈ E0/K, then

(hK(hK)f )g = (hK)g((hK)f )g = (hgK)(hgK)f ∈ E0/K,

since fH0/K is an Oσi(G)-isomorphism from H0/K onto L0/K = (H0/K)f .

Hence E0/K is Oσi(G)-invariant, so Oσi(G) ≤ NG(E0). Therefore, H0, L0 and E0
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are distinct elements of L such that H0 ∩ L0 = H0 ∩ E0 = L0 ∩ E0 = K and

H0L0 = H0E0 = L0E0, which is impossible by Lemma 3.5, since H0L0 is a σ-

permutable subgroup of G. Therefore H0 = L0. Now f induces an Oσi(G)-

isomorphism f ′ : H/H0 → L/H0, and an obvious induction yields that H = L.

Hence the implication (i) ⇒ (ii) holds.

(ii) ⇒ (iii) This implication is evident.

(iii)⇒ (i) Suppose that this is false, and letG be a counterexample of minimal

order.

First note that if A,B,C ∈ Lσ per(G) and A ≤ C, then

C ∩ 〈A,B〉 = C ∩AB = A(C ∩B) = 〈A,C ∩B〉

by hypothesis, so the lattice Lσ per(G) is modular. Hence, by Lemma 3.5, there

are distinct σ-permutable subgroups A, B and C of G such that for some σ-

permutable subgroups E and T of G, we have E = A ∩B = A ∩ C = B ∩ C and

T = AB = AC = BC.

(1) The lattice Lσ per(G/R) is distributive for each non-identity normal sub-

group R of G.

In view of the choice of G, it is enough to show that the hypothesis holds for

Ḡ = G/R.

Let K̄, H̄ ∈ Lσ per(Ḡ). Then K,H ∈ L by Lemma 3.1, and so KH = HK by

hypothesis, which implies that (K/R)(H/R) = (H/R)(K/R). It is clear also that

the lattice Ln(Ḡ) is isomorphic to some sublattice of the lattice Ln(G), so Ln(Ḡ)

is distributive.

In view of [2, Proposition 2.2.8] and [10, Corollary 2.4 and Lemma 2.5],

we have ḠNσ = GNσR/R = DR/R. Thus Ḡ/ḠNσ = (G/R)/(DR/R) ' G/DR '
(G/D)/(DR/D) is cyclic, since G/D is cyclic by hypothesis.

By hypothesis we have also that D∩ 〈K,H〉 = D∩KH = 〈D∩K,D∩H〉 =

(D∩K)(D∩H), since D∩K and D∩H are σ-permutable in G by Theorem A, so

ḠNσ ∩ 〈K̄, H̄〉=(DR ∩KH)/R=R(D ∩KH)/R=((D ∩K)R/R)((D ∩H)R/R)

=((DR/R) ∩ (K/R))((DR/R) ∩ (H/R)) = 〈ḠNσ ∩ K̄, ḠNσ ∩ H̄〉.

Hence ḠNσ is a meet-distributive element of Lσ per(Ḡ). Thus the lattice Lσ per(Ḡ)

satisfies the WσD-condition.

Finally, let N̄ be any normal subgroup of Ḡ. Let Ĝ = Ḡ/N̄ , and let Ĥ/K̂ =

(H̄/N̄)/(K̄/N̄) and L̂/K̂ = (L̄/N̄)/(K̄/N̄) be Oσi(Ĝ)-isomorphic sections, where

K̂, Ĥ, L̂ ∈ Lσi per(Ĝ) and the subgroups Ĥ and L̂ cover K̂ in Lσ per(Ĝ). Then

we have (H/N)/(K/N) and (L/N)/(K/N) are Oσi(G/N)-isomorphic sections,



488 Bin Hu, Jianhong Huang and Alexander N. Skiba

where K/N,H/N,L/N ∈ Lσi per(G/N) and the subgroups H/N and L/N cover

K/N in Lσ per(G/N). But then H/N = L/N by hypothesis, which implies that

Ĥ/K̂ = L̂/K̂. Therefore the hypothesis holds for G/R, so we have (1).

(2) EG = 1.

In view of Lemma 3.1, this follows from Claim (1), Lemma 3.5 and the choice

of G.

(3) AGBG ∩AGCG ∩BGCG = 1.

Since A ∩ B = E, we have BG ∩ AG ≤ EG = 1 by Claim (2). Similarly,

BG ∩ CG = 1 and AG ∩ CG = 1. Therefore,

(AGBG ∩AGCG) ∩BGCG
= AG(BG ∩AGCG) ∩BGCG = AG(BG ∩AG)(BG ∩ CG) ∩BGCG
= AG ∩BGCG = (AG ∩BG)(AG ∩ CG) = 1

by hypothesis.

(4) The subgroup T is σ-nilpotent.

Note that

T/AGBG = AB/AGBG = (AAGBG/AGBG)(BAGBG/AGBG),

where

AAGBG/AGBG'A/A ∩AGBG=A/AG(A ∩BG)'(A/AG)/(AG(A ∩BG)/AG)

and

BAGBG/AGBG ' (B/BG)/(BG(B ∩AG)/BG)

are σ-nilpotent by Lemma 2.2. We know that the subgroups AAGBG/AGBG and

BAGBG/AGBG are σ-subnormal in G/AGBG by Lemma 2.2. Hence T/AGBG
is σ-nilpotent by [10, Lemma 2.6(11)]. Similarly, T/AGCG and T/CGBG are σ-

nilpotent. Hence from Claim (3) it follows that T ' T/(AGBG ∩AGCG ∩BGCG)

is σ-nilpotent by Corollary 2.4 and [10, Lemma 2.5].

(5) For some i, there are distinct σi-subgroups Ai, Bi, Ci ∈ L such that

Hi = AiBi = AiCi = BiCi and Ki = Ai ∩ Bi = Ai ∩ Ci = Bi ∩ Ci are σ-

permutable subgroups of G.

Let σi ∈ σ(T ), that is, σi∩π(T ) 6= ∅. Then, by Claim (4), Hi = Oσi(T ) is the

Hall σi-subgroup of T and Ai = Oσi(A), Bi = Oσi(B) and Ci = Oσi(C) are the

Hall σi-subgroups of A, B and C, respectively. Hence Hi = AiBi = AiCi = BiCi.

Moreover, Ai, Bi and Ci are σ-permutable in G by Proposition 1.8. It is clear

also that Ki = Ai ∩Bi = Ai ∩ Ci = Bi ∩ Ci = Oσi(E).



Permutable subgroups of finite groups 489

Suppose that Ai = Bi. Then Hi = AiBi = Ai = Bi = Ki ≤ Ci ≤ Hi. Hence

Ai = Bi = Ci. Therefore, since A 6= B 6= C and A 6= C, there is σi ∈ σ(T ) such

that Ai 6= Bi 6= Ci and Ai 6= Ci. Finally, Hi and Ki are evidently σ-permutable

subgroups of G, so we have (5).

(6) There are distinct σi-subgroups A0, B0, C0 ∈ L such that H0 = A0B0 =

A0C0 = B0C0 and K0 = A0∩B0 = A0∩C0 = B0∩C0 are σ-permutable subgroups

of G and A0, B0, C0 are normal subgroups of Oσi(G).

Let A0 = Ai ∩ D, B0 = Bi ∩ D and C0 = Ci ∩ D. Then A0, B0 and C0

are σ-permutable σi-subgroups of G by Claim (5) and Theorem A. Moreover,

Claim (5) implies that

K0 = A0 ∩B0 = Ai ∩Bi ∩D = Ai ∩Ci ∩D = A0 ∩C0 = Bi ∩Ci ∩D = B0 ∩C0.

Since D is a meet-distributive element of L by hypothesis,

H0 =D ∩AiBi=(D ∩Ai)(D ∩Bi)=A0B0 =A0C0 =D ∩AiCi=D ∩BiCi=B0C0.

Now we show that A0, B0, C0 are distinct elements of L. First note that

|Hi : Ki| = |Ai : Ki||Bi : Ki| = |Ai : Ki||Ci : Ki| = |Bi : Ki||Ci : Ki|,

so |Ai : Ki| = |Bi : Ki| = |Ci : Ki|. Hence |Ai| = |Bi| = |Ci|. Suppose that

A0 = B0. Then

D ∩Hi = D ∩AiBi = (D ∩Ai)(D ∩Bi) = A0B0 = A0 = B0 = D ∩Ki.

Hence KiD ∩Hi = Ki(D ∩Hi) = Ki is normal in Hi and DHi/DKi ' Hi/(Hi ∩
KiD) = Hi/Ki(Hi ∩ D) = Hi/Ki is cyclic, since G/D is cyclic by hypothesis.

On the other hand, Hi/Ki = (Ai/Ki)(Bi/Ki), where |Ai/Ki| = |Bi/Ki|, so

Ai/Ki = Bi/Ki = 1, which implies that Ai = Bi. This contradiction shows

that A0 6= B0. Similarly, A0 6= C0 and B0 6= C0. Finally, A0, B0, C0 are normal

subgroups of Oσi(G) by [10, Lemma 3.1]. Finally, Claim (5) and Theorem A

imply that K0 and H0 are σ-permutable in G.

(7) A0/K0 and B0/K0 are Oσi(G)-isomorphic.

From Claim (6) we get that

H0/K0 = (A0/K0)× (B0/K0) = (A0/K0)× (C0/K0) = (B0/K0)× (C0/K0).
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Therefore,

A0/K0 ' ((A0/K0)× (C0/K0))/(C0/K0) = (H0/K0)/(C0/K0)

and

B0/K0 ' ((B0/K0)× (C0/K0))/(C0/K0) = (H0/K0)/(C0/K0)

are Oσi(G)-isomorphisms by [10, Lemma 3.1]. Hence we have (7).

Final contradiction. Let f : A0/K0 → B0/K0 be an Oσi(G)-isomorphism.

Let K0 < X ≤ A0, where X covers K0 in L. Then X/K0 is a chief factor of

Oσi(G) by [10, Lemma 3.1], so L/K0 = f(X/K0) is also a chief factor of Oσi(G).

Hence L covers K0 in L. Now f induces an Oσi(G)-isomorphism from X/K0

onto L/K0, and so L = X by hypothesis. Hence K0 < A0 ∩ B0, contrary to (6).

The implication is proved.

The theorem is proved. �
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