

On two open problems of the theory of permutable subgroups of finite groups

By BIN HU (Xuzhou), JIANHONG HUANG (Xuzhou)
and ALEXANDER N. SKIBA (Gomel)

Abstract. Let $\sigma = \{\sigma_i | i \in I\}$ be some partition of the set of all primes \mathbb{P} , G a finite group and $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$.

A set \mathcal{H} of subgroups of G is said to be a *complete Hall σ -set* of G if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every $\sigma_i \in \sigma(G)$; G is said to be σ -*full* if G possesses a complete Hall σ -set.

A subgroup A of G is said to be σ -*permutable* in G if G possesses a complete Hall σ -set and A permutes with each Hall σ_i -subgroup H of G , that is, $AH = HA$ for all $i \in I$.

We prove that if G is σ -full, then the set $\mathcal{L}_{\sigma \text{ per}}(G)$, of all σ -permutable subgroups of G , forms a sublattice of the lattice of all subgroups of G . Also, answering to [9, Question 6.13], we describe the conditions under which the lattice $\mathcal{L}_{\sigma \text{ per}}(G)$ is distributive.

1. Introduction

Throughout this paper, G always denotes a finite group. Moreover, we use $\mathcal{L}(G)$ to denote the lattice of all subgroups of G , and $\mathcal{L}_n(G)$ is the lattice of all normal subgroups of G . The symbol \mathbb{P} denotes the set of all primes, $\pi \subseteq \mathbb{P}$ and $\pi' = \mathbb{P} \setminus \pi$. As usual, $\pi(G)$ is the set of all primes dividing the order $|G|$ of G .

Mathematics Subject Classification: 20D10, 20D30, 20E15.

Key words and phrases: finite group, σ -permutable subgroup, subgroup lattice, modular lattice, distributive lattice.

This paper is supported by an NNSF grant of China (Grant No. 11401264) and a TAPP of Jiangsu Higher Education Institutions (PPZY 2015A013).

The second author is the corresponding author.

The subgroups A and B of G are said to be *permutable* if $AB = BA$. In this case they also say that A *permutes* with B . If A permutes with all Sylow subgroups of G , then A is called *S-permutable* in G [1]. Recall also that an element a of the lattice \mathcal{L} is called *meet-distributive* [8, p. 136] if $a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c)$ for all $b, c \in \mathcal{L}$.

In what follows, $\sigma = \{\sigma_i | i \in I\}$ is some partition of \mathbb{P} , that is, $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

A set \mathcal{H} of subgroups of G is a *complete Hall σ -set* of G [9] if every member $\neq 1$ of \mathcal{H} is a Hall σ_i -subgroup of G for some $\sigma_i \in \sigma$ and \mathcal{H} contains exactly one Hall σ_i -subgroup of G for every i such that $\sigma_i \cap \pi(G) \neq \emptyset$; G is said to be σ -*full* [9] if G possesses a complete Hall σ -set.

Recall that a subgroup A of G is said to be σ -*permutable* in G [10] if G possesses a complete Hall σ -set \mathcal{H} such that $AH^x = H^x A$ for all $H \in \mathcal{H}$ and all $x \in G$.

Our first observations are the following useful facts.

Proposition 1.1. *Suppose that G is σ -full and A is a σ -permutable subgroup of G . Then A permutes with all Hall σ_i -subgroups of G for all i .*

Theorem A. *Suppose that G is σ -full. Then the set $\mathcal{L}_{\sigma \text{ per}}(G)$, of all σ -permutable subgroups of G , forms a sublattice of the lattice $\mathcal{L}(G)$.*

Note that Theorem A improves Theorem C in [10] and, in fact, gives an alternative proof for the following well-known result.

Corollary 1.2 (KEGEL in [5]). *The set $\mathcal{L}_S(G)$ of all S -permutable subgroups of G forms a sublattice of the lattice $\mathcal{L}(G)$.*

Example 1.3. (i) G is called σ -*nilpotent* [9] if $G = H_1 \times \cdots \times H_t$, where $\{H_1, \dots, H_t\}$ is a complete Hall σ -set of G . It is not difficult to show that G is σ -nilpotent if and only if every subgroup of G is σ -permutable in G .

(ii) In the classical case when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \dots\}$ (we use here the terminology in [11]), a subgroup A of G is σ^1 -permutable in G if and only if it is S -permutable in G .

(iii) In the other classical case when $\sigma = \sigma^\pi = \{\pi, \pi'\}$, a subgroup A of a π -separable group G is σ^π -permutable in G if and only if A permutes with all Hall π -subgroups and with all Hall π' -subgroups of G .

(iv) In fact, in the theory of π -soluble groups ($\pi = \{p_1, \dots, p_n\}$) we deal with the partition $\sigma = \sigma^{1\pi} = \{\{p_1\}, \dots, \{p_n\}, \pi'\}$ of \mathbb{P} . In view of Proposition 1.1, a subgroup A of G is $\sigma^{1\pi}$ -permutable in G if and only if G possesses a Hall

π' -subgroup V , and A permutes with all conjugates of V and with all Sylow p -subgroups of G for all $p \in \pi$.

The conditions under which the lattice $\mathcal{L}_{sn}(G)$ of all subnormal subgroups of G is modular or distributive are known (see [8, Theorems 9.2.3, 9.2.4]). It is well-known also that the lattice $\mathcal{L}_n(G)$ of all normal subgroups of G is modular and this lattice is distributive if and only if in every factor group G/R , any two G/R -isomorphic normal subgroups coincide (see [7] and [8, Theorem 9.1.6]). Kegel proved [5] that the set $\mathcal{L}_S(G)$ of all S -permutable subgroups of G forms a sublattice of the lattice $\mathcal{L}_{sn}(G)$. Since $\mathcal{L}_n(G) \subseteq \mathcal{L}_S(G) \subseteq \mathcal{L}_{sn}(G)$, where both inclusions in general are strict, it seems natural to ask: *Under what conditions the lattice $\mathcal{L}_S(G)$ is modular or distributive?* Moreover, in view of Theorem A, it makes sense to consider the following general

Question 1.4 (see Questions 6.11 and 6.13 in [9]). Under what conditions the lattice $\mathcal{L}_{\sigma \text{per}}(G)$ is modular or distributive?

Note that if $K \trianglelefteq H$ and $K, H \in \mathcal{L}_{\sigma_i \text{per}}(G)$, where $\mathcal{L}_{\sigma_i \text{per}}(G)$ is the set of all σ -permutable σ_i -subgroups of G , then $O^{\sigma_i}(G)$ normalizes both subgroups K and H [10, Lemma 3.1], and hence we can consider $O^{\sigma_i}(G)$ as a group of operators for H/K (assuming, as usual, that $(hK)^a = h^aK$ for all $hK \in H/K$ and $a \in O^{\sigma_i}(G)$).

We do not know under which conditions on G the lattice $\mathcal{L}_{\sigma \text{per}}(G)$ is modular. Nevertheless, we give the full answer to the second part of Question 1.4.

Recall that $G^{\mathfrak{N}_\sigma}$ denotes the σ -nilpotent residual of G , that is, the intersection of all normal subgroups N of G with σ -nilpotent quotient G/N .

Let G be a σ -full group and $\mathcal{L} = \mathcal{L}_{\sigma \text{per}}(G)$. Then we say that the lattice \mathcal{L} satisfies the *weak distributivity condition with respect to σ* (*the $W\sigma D$ -condition*, in short) if the following hold: (i) every two members of \mathcal{L} are permutable; (ii) the lattice $\mathcal{L}_n(G)$ is distributive; (iii) $G/G^{\mathfrak{N}_\sigma}$ is cyclic and $G^{\mathfrak{N}_\sigma}$ is a meet-distributive element of \mathcal{L} .

Theorem B. Suppose that G is σ -full. Let $\mathcal{L} = \mathcal{L}_{\sigma \text{per}}(G)$. Then the following conditions are equivalent:

- (i) The lattice \mathcal{L} is distributive.
- (ii) \mathcal{L} satisfies the $W\sigma D$ -condition and in every factor group $\bar{G} = G/R$, any two $O^{\sigma_i}(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma_i \text{per}}(\bar{G})$ for some i , coincide.
- (iii) \mathcal{L} satisfies the $W\sigma D$ -condition and in every factor group $\bar{G} = G/R$, any two

$O^{\sigma_i}(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma_i \text{ per}}(\bar{G})$ (for some i) and the subgroups \bar{H} and \bar{L} cover \bar{K} in $\mathcal{L}_{\sigma \text{ per}}(\bar{G})$, coincide.

In the case when $\sigma = \sigma^\pi$, we get from Theorem B the following result.

Corollary 1.5. *Suppose that G is π -separable, and let $\mathcal{L} = \mathcal{L}_{\sigma^\pi \text{ per}}(G)$. Then the lattice \mathcal{L} is distributive if and only if \mathcal{L} satisfies the $W\sigma^\pi D$ -condition and the following hold:*

- (1) *In every factor group $\bar{G} = G/R$, any two $O^\pi(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L}$ are σ^π -permutable π -subgroups of \bar{G} , coincide.*
- (2) *In every factor group $\bar{G} = G/R$, any two $O^{\pi'}(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where \bar{K}, \bar{H} and \bar{L} are σ^π -permutable π' -subgroups of \bar{G} , coincide.*

In the case when $\sigma = \sigma^{1\pi}$, we get from Theorem B the following fact.

Corollary 1.6. *Suppose that G possesses a Hall π' -subgroup and let $\mathcal{L} = \mathcal{L}_{\sigma^{1\pi} \text{ per}}(G)$. Then the lattice \mathcal{L} is distributive if and only if \mathcal{L} satisfies the $W\sigma^{1\pi} D$ -condition and the following hold:*

- (1) *In every factor group $\bar{G} = G/R$, any two $O^p(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{pS}(\bar{G})$ and $p \in \pi$, coincide;*
- (2) *In every factor group $\bar{G} = G/R$, any two $O^{\pi'}(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where \bar{K}, \bar{H} and \bar{L} are σ^π -permutable π' -subgroups of \bar{G} , coincide.*

In this corollary, $\mathcal{L}_{pS}(\bar{G})$ denotes the set of all S -permutable p -subgroups of \bar{G} .

In the case when $\pi = \mathbb{P}$, we get from Corollary 1.6 the following

Corollary 1.7 (see [12, Theorem A]). *Let $\mathcal{L} = \mathcal{L}_S(G)$. Then the lattice \mathcal{L} is distributive if and only if \mathcal{L} satisfies the $W\sigma^1 D$ -condition and in every factor group $\bar{G} = G/R$, any two $O^p(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{pS}(\bar{G})$ and p is a prime, coincide.*

The proof of Theorem B consists of many steps, and the following result together with Proposition 1.1 and Theorem A are three of them.

Proposition 1.8. *A σ -nilpotent subgroup A of G is σ -permutable in G if and only if each characteristic subgroup of A is σ -permutable in G .*

Corollary 1.9 (see [1, Theorem 1.2.17]). *Let A be a nilpotent subgroup of G . Then the following statements are equivalent:*

- (i) *A is S -permutable in G .*
- (ii) *Each Sylow subgroup of A is S -permutable in G .*
- (iii) *Each characteristic subgroup of A is S -permutable in G .*

2. Proofs of Theorems A and Propositions 1.1 and 1.8

Lemma 2.1 (see [3, A, Lemma 1.6]). *Let A , B and H be subgroups of G . If $AH = HA$ and $BH = HB$, then $\langle A, B \rangle H = H\langle A, B \rangle$.*

A subgroup A of G is called σ -subnormal in G [10] if there is a subgroup chain $A = A_0 \leq A_1 \leq \cdots \leq A_t = G$ such that either $A_{i-1} \trianglelefteq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \dots, t$.

The importance of this concept is related to the following result.

Lemma 2.2 (see [10, Theorem B]). *Every σ -permutable subgroup A of G is σ -subnormal in G and A/A_G is σ -nilpotent.*

PROOF OF THEOREM A. In fact, in view of Lemmas 2.1 and 2.2, it is enough to show that if A and B are σ -subnormal subgroups of G such that for a Hall σ_i -subgroup H of G we have $AH = HA$ and $BH = HB$, then $(A \cap B)H = H(A \cap B)$. Assume that this is false and let G be a counterexample of minimal order. Then G is not a σ_i -group, since otherwise we have $H = G$ and so $G = (A \cap B)H = H(A \cap B)$.

Let $E = AH \cap BH$. Then $A \cap E$ and $B \cap E$ are σ -subnormal subgroups of E by [10, Lemma 2.6(1)]. Moreover, $AH \cap E = H(A \cap E) = (A \cap E)H$. Similarly, $(B \cap E)H = H(B \cap E)$. Hence the hypothesis holds for $(A \cap E, B \cap E, H, E)$. Assume that $E < G$. Then the choice of G implies that $A \cap B = (A \cap E) \cap (B \cap E)$ is permutable with H . Hence $E = G$, so $G = AH = BH$. Thus $|G : A|$ and $|G : B|$ are σ_i -numbers. Hence we have $O^{\sigma_i}(A) = O^{\sigma_i}(G) = O^{\sigma_i}(B)$ by [10, Lemma 2.6(8)]. Therefore, since G is not a σ_i -group, it follows that $V = A_G \cap B_G \neq 1$. Moreover, A/V and B/V are σ -subnormal subgroups of G/V by [10, Lemma 2.6(4)]. Also, we have $(A/V)(HV/V) = AH/V = HA/V = (HV/V)(A/V)$ and $(B/V)(HV/V) = (HV/V)(B/V)$, where HV/V is a Hall σ_i -subgroup of G/V . Hence the choice of G implies that

$$\begin{aligned} (A \cap B/V)(HV/V) &= ((A/V) \cap (B/V))(HV/V) \\ &= (HV/V)((A/V) \cap (B/V)) = (HV/V)(A \cap B/V). \end{aligned}$$

But then $(A \cap B)H = (A \cap B)HV = HV(A \cap B) = H(A \cap B)$. This contradiction completes the proof of the result. \square

Proposition 2.3. *Let A be a σ -nilpotent σ -subnormal subgroup of G , and B a characteristic subgroup of A . Let H be a Hall σ_i -subgroup of G . If $AH = HA$, then $BH = HB$.*

PROOF. Assume that this proposition is false, and let G be a counterexample with $|G| + |B| + |A|$ minimal.

By hypothesis, $A = A_1 \times \cdots \times A_t$, where $\{A_1, \dots, A_t\}$ is a complete Hall σ -set of A . Hence $B = (A_1 \cap B) \times \cdots \times (A_t \cap B)$, where $\{A_1 \cap B, \dots, A_t \cap B\}$ is a complete Hall σ -set of B . We can assume without loss of generality that A_k is a σ_k -subgroup of A for all $k = 1, \dots, t$.

It is clear that $A_i \cap B$ is characteristic in A for all $i = 1, \dots, t$. Therefore, if $A_i \cap B < B$, then $(A_i \cap B)H = H(A_i \cap B)$ by the choice of G and so for some j , $j = 1$ say, we have $A_1 \cap B = B$, since otherwise we have

$$BH = ((A_1 \cap B) \times \cdots \times (A_t \cap B))H = H((A_1 \cap B) \times \cdots \times (A_t \cap B)) = HB.$$

Thus $B \leq A_1$. It is clear that A_1 is a σ -subnormal subgroup of G , so in the case when $i = 1$, we have $B \leq A_1 \leq H$ by [10, Lemma 2.6(7)]. But then $BH = H = HB$, a contradiction. Thus $i > 1$.

Now we show that $A_1H = HA_1$. First note that A_i is σ -subnormal in G , so $A_i \leq H$ by [10, Lemma 2.6(7)]. Therefore $A = A_1 \times V \times A_i$, where $V = A_2 \cdots A_{i-1}A_{i+1} \cdots A_t$, and so

$$AH = HA = (A_1 \times V \times A_i)H = (A_1 \times V)H = H(A_1 \times V),$$

where $A_1 \times V$ is a σ -subnormal σ'_i -subgroup of G . Then $A_1 \times V$ is σ -subnormal in $(A_1 \times V)H$ by [10, Lemma 2.6(1)]. Hence $H \leq N_G(A_1 \times V)$ by [10, Lemma 2.6(8)]. Since A_1 is a characteristic subgroup of $A_1 \times V$, we have $H \leq N_G(A_1)$, and so $A_1H = HA_1$. But B is a characteristic subgroup of A_1 , since B is characteristic in A by hypothesis and $A = A_1 \times \cdots \times A_t$. Therefore $H \leq N_G(B)$, and so $BH = HB$, a contradiction. The proposition is proved. \square

Corollary 2.4. *Let A be a σ -nilpotent subgroup of a σ -full group G . Then the following statements are equivalent:*

- (i) *A is σ -permutable in G .*
- (ii) *Each Hall σ_i -subgroup of A is σ -permutable in G for all i .*
- (iii) *Each characteristic subgroup of A is σ -permutable in G .*

PROOF. By hypothesis, $A = A_1 \times \cdots \times A_t$, where $\{A_1, \dots, A_t\}$ is a complete Hall σ -set of A . Then A_i is characteristic in A for all $i = 1, \dots, t$. Therefore (ii), (iii) \Rightarrow (i).

(i) \Rightarrow (ii), (iii) This follows from Proposition 2.3.

The corollary is proved. \square

PROOF OF PROPOSITION 1.8. This directly follows from Corollary 2.4. \square

Now we are ready to prove Proposition 1.1.

PROOF OF PROPOSITION 1.1. Assume that this proposition is false, and let G be a counterexample with $|G| + |A|$ minimal. Then for some i and some Hall σ_i -subgroup H of G , we have $AH \neq HA$ but $A_1H = HA_1$ for every σ -permutable subgroup A_1 of G with $A_1 < A$. By hypothesis, G possesses a complete Hall σ -set $\mathcal{H} = \{H_1, \dots, H_t\}$ such that $AL^x = L^x A$ for all $L \in \mathcal{H}$ and all $x \in G$. We can assume without loss of generality that H_k is a σ_k -group for all $k = 1, \dots, t$. Let $V = H_i$.

First we show that $A_G = 1$. Indeed, assume that $R = A_G \neq 1$. Then $\mathcal{H}_0 = \{H_1R/R, \dots, H_tR/R\}$ is a complete Hall σ -set of G/R such that

$$AL^x/R = (A/R)(LR/R)^{xR} = (LR/R)^{xR}(A/R) = L^x A/R$$

for all $LR/R \in \mathcal{H}_0$ and all $xR \in G/R$. On the other hand, HR/R is a Hall σ_i -subgroup of G/R . Hence the choice of G implies that

$$AH/R = (A/R)(HR/R) = (HR/R)(A/R) = HA/R,$$

and so $AH = HA$, a contradiction. Therefore $A_G = 1$, hence $A = A_1 \times \dots \times A_t$, where $\{A_1, \dots, A_t\}$ is a complete Hall σ -set of A by Lemma 2.2. Moreover, Lemma 2.2 implies also that A is σ -subnormal in G .

First assume that $A = A_1$ is a σ_j -group. If $j = i$, then $A \cap H = A$ by [10, Lemma 2.6(7)], and so $AH = H = HA$. Hence $j \neq i$. By hypothesis, $AV^x = V^x A$ for each $x \in G$. Then $V^x \leq N_G(A)$ for all $x \in G$ by [10, Lemma 3.1]. Hence $V^G \leq N_G(A)$. But then $H \leq V^G \leq N_G(A)$, which implies that $AH = HA$. This contradiction shows that $A \neq A_1$.

The subgroups A_1, \dots, A_t are characteristic in A , so $A_iL^x = L^x A_i$ for all $L \in \mathcal{H}$ and all $x \in G$ by Proposition 1.8. Therefore, the minimality of $|G| + |A|$ implies that $A_iH = HA_i$ for all $i = 1, \dots, t$, so $AH = HA$. This contradiction completes the proof of the result. \square

3. Proof of Theorem B

Now we use Proposition 1.1 to prove the following fact.

Lemma 3.1. *Let $R \leq V$ be subgroups of a σ -full group G , where R is normal in G . If V/R is σ -permutable in G/R , then V is σ -permutable in G .*

PROOF. Let $i \in I$ and H be a Hall σ_i -subgroup of G . Then HR/R is a Hall σ_i -subgroup of G/R , and so

$$VH/R = (V/R)(HR/R) = (HR/R)(V/R) = HV/R$$

by hypothesis and Proposition 1.1, hence $VH = HV$. The lemma is proved. \square

Lemma 3.2 (see Lemma 5.2 in [6]). *Let \mathcal{L} be a modular sublattice of the lattice $\mathcal{L}(G)$, and $U, V, N \in \mathcal{L}$ with $N \trianglelefteq \langle U, V \rangle$. If U permutes both with $V \cap UN$ and VN , then U permutes with V .*

Proposition 3.3. *Let G be σ -full and $\mathcal{L} = \mathcal{L}_{\sigma_i \text{per}}(G)$. Then: (i) \mathcal{L} is a sublattice of $\mathcal{L}_{\sigma \text{per}}(G)$ and (ii) if \mathcal{L} is distributive, then $AB = BA$ for all $A, B \in \mathcal{L}$.*

PROOF. (i) Let $A, B \in \mathcal{L}$. By hypothesis, for some Hall σ_i -subgroup H of G and for each $x \in G$, we have $H^x = AH^x = H^x A$, so $A \leq H_G \leq O_{\sigma_i}(G)$. Similarly, $B \leq O_{\sigma_i}(G)$. Thus $\langle A, B \rangle$ is a σ_i -subgroup of G and this subgroup is σ -permutable in G by Lemma 2.1. Finally, $A \cap B$ is also a σ_i -subgroup of G and this subgroup is σ -permutable in G by Theorem A. Thus we have (i).

(ii) Suppose that this assertion is false, and let G be a counterexample with $|G| + |A| + |B|$ minimal. Thus $AB \neq BA$ but $A_1 B_1 = B_1 A_1$ for all $A_1, B_1 \in \mathcal{L}$ such that $A_1 \leq A$, $B_1 \leq B$ and either $A_1 \neq A$ or $B_1 \neq B$. Let $V = \langle A, B \rangle O^{\sigma_i}(G)$ and $R = \langle A, B \rangle \cap O^{\sigma_i}(G)$. Then V is σ -subnormal in G .

(1) *The group V is σ -full and $\mathcal{L}_{\sigma_i \text{per}}(V)$ is a sublattice of \mathcal{L} .*

First note that each Hall σ_j -subgroup of G is contained in V for all $j \neq i$, since $O^{\sigma_i}(G)$ is the subgroup of G generated by all its σ'_i -elements. On the other hand, $H \cap V$ is a Hall σ_i -subgroup of V for each Hall σ_i -subgroup H of G by [10, Lemma 2.6(7)], so V is σ -full.

Now, let $H \in \mathcal{L}_{\sigma_i \text{per}}(V)$. Then $H \leq O_{\sigma_i}(V) \leq O_{\sigma_i}(G)$ by [10, Lemma 2.6(11)]. Therefore H permutes with each Hall σ_i -subgroup of G . On the other hand, for every $j \neq i$ and for every Hall σ_j -subgroup W of G , we have $HW = WH$ since $W \leq V$. Hence $H \in \mathcal{L}_{\sigma \text{per}}(G)$, which implies (1).

(2) *$V = G$, so $\langle A, B \rangle \trianglelefteq G$.*

Claim (1) implies that the hypothesis holds for $\mathcal{L}_{\sigma_i \text{per}}(V)$, and so in the case when $V \neq G$, the choice of G implies that $AB = BA$. Thus $G = \langle A, B \rangle O^{\sigma_i}(G)$. Therefore, since $O^{\sigma_i}(G) \leq N_G(\langle A, B \rangle)$ by [10, Lemma 3.1], $\langle A, B \rangle$ is normal in G .

(3) $R = 1$.

Assume that $R = \langle A, B \rangle \cap O^{\sigma_i}(G) \neq 1$. First we show that $BRA = \langle A, B \rangle R$. Indeed, let H/R be a σ_i -subgroup of G/R . Then H is a σ_i -group since $\langle A, B \rangle \leq O_{\sigma_i}(G)$. Moreover, Lemma 3.1 and [10, Lemma 2.8(2)] imply that H/R is σ -permutable in G/R if and only if H is σ -permutable in G . Therefore the lattice $\mathcal{L}_{\sigma_i \text{ per}}(G/R)$ is isomorphic to the interval $[G/R]$ in the distributive lattice \mathcal{L} . Therefore, by the minimality of G , $(AR/R)(BR/R) = (BR/R)(AR/R)$, and so $BRA = \langle A, B \rangle R$.

Now we show that $BRA = BR$. Assume that this is false. Then $A \cap BR < A$. But Theorem A implies that $A \cap BR$ is σ -permutable in G , so the minimality of $|G| + |A| + |B|$ implies that B permutes with $A \cap BR$. Also, B permutes with RA since $B(RA) = \langle A, B \rangle R$, so $AB = BA$ by Lemma 3.2, Part (i) and Theorem A. This contradiction shows that $A \leq BR$, so $BRA = BR$. But $R \leq O^{\sigma_i}(G) \leq N_G(B)$ by [10, Lemma 3.1], hence B is normal in BR , and since $A \leq BR$, it follows that $AB = BA$. This contradiction shows that we have (3).

Final contradiction. Claims (2) and (3) imply that $G = \langle A, B \rangle O^{\sigma_i}(G) = \langle A, B \rangle \times O^{\sigma_i}(G)$, so every subgroup H of $\langle A, B \rangle$ is $O^{\sigma_i}(G)$ -invariant since $\langle A, B \rangle \leq O_{\sigma_i}(G)$. It follows that every subgroup of $\langle A, B \rangle$ is σ -permutable in G . Hence $\mathcal{L}(\langle A, B \rangle)$ is a sublattice of the distributive lattice \mathcal{L} . Thus $\langle A, B \rangle$ is cyclic by the Ore theorem [8, Theorem 1.2.3], so $AB = BA$, a contradiction. The proposition is proved. \square

Corollary 3.4. *If G is σ -full and the lattice $\mathcal{L} = \mathcal{L}_{\sigma \text{ per}}(G)$ is distributive, then every two members A and B of \mathcal{L} are permutable.*

PROOF. Suppose that this corollary is false, and let G be a counterexample with $|G| + |A| + |B|$ minimal.

Let R be a minimal normal subgroup of G . Then the lattice $\mathcal{L}_{\sigma \text{ per}}(G/R)$ is isomorphic to the interval $[G/R]$ in the distributive lattice \mathcal{L} by Lemma 3.1 and [10, Lemma 2.8(2)]. Therefore [10, Lemma 2.8(2)] and the minimality of G imply that $(AR/R)(BR/R) = (BR/R)(AR/R)$. It follows that $RAB = \langle A, B \rangle R$ is a subgroup of G , so $A_G = 1 = B_G$. Hence, because of Lemma 2.2, A and B are σ -nilpotent. The minimality of $|G| + |A| + |B|$ implies that for some i we have $A, B \leq O_{\sigma_i}(G)$, and so $A, B \in \mathcal{L}_{\sigma_i \text{ per}}(G)$. But $\mathcal{L}_{\sigma_i \text{ per}}(G)$ is a sublattice of the distributive lattice $\mathcal{L}_{\sigma \text{ per}}(G)$ by Proposition 3.3(i). Therefore, $AB = BA$ by Proposition 3.3(ii), a contradiction. The corollary is proved. \square

Lemma 3.5 (see [4, p. 59]). *A modular lattice \mathcal{L} is distributive if and only if \mathcal{L} has no distinct elements a, b and c such that $a \vee b = a \vee c = b \vee c$ and $a \wedge b = a \wedge c = b \wedge c$.*

Lemma 3.6 (see [8, Theorem 1.6.2]). *Let $G = A \times B$, $f : A \rightarrow B$ be an isomorphism and $C = \{aa^f \mid a \in A\}$. Then $G = AC = BC$ and $A \cap C = 1 = B \cap C$.*

PROOF OF THEOREM B. Let $D = G^{\mathfrak{N}_\sigma}$. (i) \Rightarrow (ii) First note that every two members of \mathcal{L} are permutable by Corollary 3.4. Moreover, since the lattice $\mathcal{L}_n(G)$ is a sublattice of the lattice \mathcal{L} , it is distributive. Now note that since $G/D = G/G^{\mathfrak{N}_\sigma}$ is σ -nilpotent, every subgroup E of G satisfying $D \leq E \leq G$ is σ -permutable in G by Lemma 3.1. Hence $\mathcal{L}(G/D) = \mathcal{L}_{\sigma\text{per}}(G/D)$. In view of Lemma 3.1 and [10, Lemma 2.8(2)], the lattice $\mathcal{L}_{\sigma\text{per}}(G/D)$ is isomorphic to the interval $[G/D]$ in lattice \mathcal{L} , so $\mathcal{L}_{\sigma\text{per}}(G/D)$ is distributive. Hence G/D is cyclic by the Ore theorem [8, Theorem 1.2.3]. It is clear also that D is a meet-distributive element of \mathcal{L} . Thus the lattice \mathcal{L} satisfies the $W\sigma D$ -condition.

We show that in every factor group $\bar{G} = G/R$, any two $O^{\sigma_i}(\bar{G})$ -isomorphic sections \bar{H}/\bar{K} and \bar{L}/\bar{K} , where $\bar{K}, \bar{H}, \bar{L} \in \mathcal{L}_{\sigma_i\text{per}}(\bar{G})$, coincide. In view of Lemma 3.1 and [10, Lemma 2.8(2)], it is enough to consider the case when $\bar{G} = G$ and $\bar{K} = K, \bar{H} = H, \bar{L} = L \in \mathcal{L}_{\sigma_i\text{per}}(G)$.

Suppose that $H \neq L$. Then $H \neq K$. Let $K < H_0 \leq H$, where H_0 covers K in \mathcal{L} , and let $L_0/K = (H_0/K)^f$, where $f : H/K \rightarrow L/K$ is an $O^{\sigma_i}(G)$ -isomorphism. For $g \in O^{\sigma_i}(G)$ and $l_0K = (hK)^f \in L_0/K$, where $h \in H_0$, we have

$$(l_0K)^g = ((hK)^f)^g = ((hK)^g)^f = (h^gK)^f = (h_0K)^f,$$

where $h_0 \in H_0$, since H_0 is $O^{\sigma_i}(G)$ -invariant by [10, Lemma 3.1]. Hence $(l_0K)^g \in L_0/K$. It follows that L_0 is $O^{\sigma_i}(G)$ -invariant, and so L_0 covers K in \mathcal{L} , since the inverse map $f^{-1} : L/K \rightarrow H/K$ is an $O^{\sigma_i}(G)$ -isomorphism too.

First assume that $H_0 \neq L_0$, and let $E_0/K = \{hK(hK)^f \mid hK \in H_0/K\}$. Then $(H_0/K)(L_0/K) = (H_0/K) \times (L_0/K)$. Indeed, if $H_0^x \neq H_0$ for some $x \in L_0$, then (i) and the fact that H_0 and L_0 cover K in \mathcal{L} would imply that $\{K; H_0; H_0^x; L_0; H_0L_0\}$ would be a diamond in the distributive lattice \mathcal{L} , contradicting Lemma 3.5. Hence, by Lemma 3.6, E_0/K is a subgroup of $(H_0/K) \times (L_0/K)$, and we have

$$(H_0/K) \times (L_0/K) = (H_0/K) \times (E_0/K) = (L_0/K) \times (E_0/K).$$

Note that if $g \in O^{\sigma_i}(G)$ and $hK(hK)^f \in E_0/K$, then

$$(hK(hK)^f)^g = (hK)^g((hK)^f)^g = (h^gK)(h^gK)^f \in E_0/K,$$

since $f_{H_0/K}$ is an $O^{\sigma_i}(G)$ -isomorphism from H_0/K onto $L_0/K = (H_0/K)^f$. Hence E_0/K is $O^{\sigma_i}(G)$ -invariant, so $O^{\sigma_i}(G) \leq N_G(E_0)$. Therefore, H_0, L_0 and E_0

are distinct elements of \mathcal{L} such that $H_0 \cap L_0 = H_0 \cap E_0 = L_0 \cap E_0 = K$ and $H_0L_0 = H_0E_0 = L_0E_0$, which is impossible by Lemma 3.5, since H_0L_0 is a σ -permutable subgroup of G . Therefore $H_0 = L_0$. Now f induces an $O^{\sigma_i}(G)$ -isomorphism $f' : H/H_0 \rightarrow L/L_0$, and an obvious induction yields that $H = L$. Hence the implication (i) \Rightarrow (ii) holds.

(ii) \Rightarrow (iii) This implication is evident.

(iii) \Rightarrow (i) Suppose that this is false, and let G be a counterexample of minimal order.

First note that if $A, B, C \in \mathcal{L}_{\sigma \text{ per}}(G)$ and $A \leq C$, then

$$C \cap \langle A, B \rangle = C \cap AB = A(C \cap B) = \langle A, C \cap B \rangle$$

by hypothesis, so the lattice $\mathcal{L}_{\sigma \text{ per}}(G)$ is modular. Hence, by Lemma 3.5, there are distinct σ -permutable subgroups A, B and C of G such that for some σ -permutable subgroups E and T of G , we have $E = A \cap B = A \cap C = B \cap C$ and $T = AB = AC = BC$.

(1) *The lattice $\mathcal{L}_{\sigma \text{ per}}(G/R)$ is distributive for each non-identity normal subgroup R of G .*

In view of the choice of G , it is enough to show that the hypothesis holds for $\bar{G} = G/R$.

Let $\bar{K}, \bar{H} \in \mathcal{L}_{\sigma \text{ per}}(\bar{G})$. Then $K, H \in \mathcal{L}$ by Lemma 3.1, and so $KH = HK$ by hypothesis, which implies that $(K/R)(H/R) = (H/R)(K/R)$. It is clear also that the lattice $\mathcal{L}_n(\bar{G})$ is isomorphic to some sublattice of the lattice $\mathcal{L}_n(G)$, so $\mathcal{L}_n(\bar{G})$ is distributive.

In view of [2, Proposition 2.2.8] and [10, Corollary 2.4 and Lemma 2.5], we have $\bar{G}^{\mathfrak{N}_\sigma} = G^{\mathfrak{N}_\sigma}R/R = DR/R$. Thus $\bar{G}/\bar{G}^{\mathfrak{N}_\sigma} = (G/R)/(DR/R) \simeq G/DR \simeq (G/D)/(DR/D)$ is cyclic, since G/D is cyclic by hypothesis.

By hypothesis we have also that $D \cap \langle K, H \rangle = D \cap KH = \langle D \cap K, D \cap H \rangle = (D \cap K)(D \cap H)$, since $D \cap K$ and $D \cap H$ are σ -permutable in G by Theorem A, so

$$\begin{aligned} \bar{G}^{\mathfrak{N}_\sigma} \cap \langle \bar{K}, \bar{H} \rangle &= (DR \cap KH)/R = R(D \cap KH)/R = ((D \cap K)R/R)((D \cap H)R/R) \\ &= ((DR/R) \cap (K/R))((DR/R) \cap (H/R)) = \langle \bar{G}^{\mathfrak{N}_\sigma} \cap \bar{K}, \bar{G}^{\mathfrak{N}_\sigma} \cap \bar{H} \rangle. \end{aligned}$$

Hence $\bar{G}^{\mathfrak{N}_\sigma}$ is a meet-distributive element of $\mathcal{L}_{\sigma \text{ per}}(\bar{G})$. Thus the lattice $\mathcal{L}_{\sigma \text{ per}}(\bar{G})$ satisfies the $W\sigma D$ -condition.

Finally, let \bar{N} be any normal subgroup of \bar{G} . Let $\hat{G} = \bar{G}/\bar{N}$, and let $\hat{H}/\hat{K} = (\bar{H}/\bar{N})/(\bar{K}/\bar{N})$ and $\hat{L}/\hat{K} = (\bar{L}/\bar{N})/(\bar{K}/\bar{N})$ be $O^{\sigma_i}(\hat{G})$ -isomorphic sections, where $\hat{K}, \hat{H}, \hat{L} \in \mathcal{L}_{\sigma_i \text{ per}}(\hat{G})$ and the subgroups \hat{H} and \hat{L} cover \hat{K} in $\mathcal{L}_{\sigma \text{ per}}(\hat{G})$. Then we have $(H/N)/(K/N)$ and $(L/N)/(K/N)$ are $O^{\sigma_i}(G/N)$ -isomorphic sections,

where $K/N, H/N, L/N \in \mathcal{L}_{\sigma_i \text{ per}}(G/N)$ and the subgroups H/N and L/N cover K/N in $\mathcal{L}_{\sigma \text{ per}}(G/N)$. But then $H/N = L/N$ by hypothesis, which implies that $\widehat{H}/\widehat{K} = \widehat{L}/\widehat{K}$. Therefore the hypothesis holds for G/R , so we have (1).

(2) $E_G = 1$.

In view of Lemma 3.1, this follows from Claim (1), Lemma 3.5 and the choice of G .

(3) $A_G B_G \cap A_G C_G \cap B_G C_G = 1$.

Since $A \cap B = E$, we have $B_G \cap A_G \leq E_G = 1$ by Claim (2). Similarly, $B_G \cap C_G = 1$ and $A_G \cap C_G = 1$. Therefore,

$$\begin{aligned} & (A_G B_G \cap A_G C_G) \cap B_G C_G \\ &= A_G (B_G \cap A_G C_G) \cap B_G C_G = A_G (B_G \cap A_G) (B_G \cap C_G) \cap B_G C_G \\ &= A_G \cap B_G C_G = (A_G \cap B_G) (A_G \cap C_G) = 1 \end{aligned}$$

by hypothesis.

(4) *The subgroup T is σ -nilpotent.*

Note that

$$T/A_G B_G = AB/A_G B_G = (AA_G B_G/A_G B_G)(BA_G B_G/A_G B_G),$$

where

$$AA_G B_G/A_G B_G \simeq A/A \cap A_G B_G = A/A_G (A \cap B_G) \simeq (A/A_G)/(A_G (A \cap B_G)/A_G)$$

and

$$BA_G B_G/A_G B_G \simeq (B/B_G)/(B_G (B \cap A_G)/B_G)$$

are σ -nilpotent by Lemma 2.2. We know that the subgroups $AA_G B_G/A_G B_G$ and $BA_G B_G/A_G B_G$ are σ -subnormal in $G/A_G B_G$ by Lemma 2.2. Hence $T/A_G B_G$ is σ -nilpotent by [10, Lemma 2.6(11)]. Similarly, $T/A_G C_G$ and $T/C_G B_G$ are σ -nilpotent. Hence from Claim (3) it follows that $T \simeq T/(A_G B_G \cap A_G C_G \cap B_G C_G)$ is σ -nilpotent by Corollary 2.4 and [10, Lemma 2.5].

(5) *For some i , there are distinct σ_i -subgroups $A_i, B_i, C_i \in \mathcal{L}$ such that $H_i = A_i B_i = A_i C_i = B_i C_i$ and $K_i = A_i \cap B_i = A_i \cap C_i = B_i \cap C_i$ are σ -permutable subgroups of G .*

Let $\sigma_i \in \sigma(T)$, that is, $\sigma_i \cap \pi(T) \neq \emptyset$. Then, by Claim (4), $H_i = O_{\sigma_i}(T)$ is the Hall σ_i -subgroup of T and $A_i = O_{\sigma_i}(A)$, $B_i = O_{\sigma_i}(B)$ and $C_i = O_{\sigma_i}(C)$ are the Hall σ_i -subgroups of A , B and C , respectively. Hence $H_i = A_i B_i = A_i C_i = B_i C_i$. Moreover, A_i , B_i and C_i are σ -permutable in G by Proposition 1.8. It is clear also that $K_i = A_i \cap B_i = A_i \cap C_i = B_i \cap C_i = O_{\sigma_i}(E)$.

Suppose that $A_i = B_i$. Then $H_i = A_i B_i = A_i = B_i = K_i \leq C_i \leq H_i$. Hence $A_i = B_i = C_i$. Therefore, since $A \neq B \neq C$ and $A \neq C$, there is $\sigma_i \in \sigma(T)$ such that $A_i \neq B_i \neq C_i$ and $A_i \neq C_i$. Finally, H_i and K_i are evidently σ -permutable subgroups of G , so we have (5).

(6) *There are distinct σ_i -subgroups $A_0, B_0, C_0 \in \mathcal{L}$ such that $H_0 = A_0 B_0 = A_0 C_0 = B_0 C_0$ and $K_0 = A_0 \cap B_0 = A_0 \cap C_0 = B_0 \cap C_0$ are σ -permutable subgroups of G and A_0, B_0, C_0 are normal subgroups of $O^{\sigma_i}(G)$.*

Let $A_0 = A_i \cap D$, $B_0 = B_i \cap D$ and $C_0 = C_i \cap D$. Then A_0 , B_0 and C_0 are σ -permutable σ_i -subgroups of G by Claim (5) and Theorem A. Moreover, Claim (5) implies that

$$K_0 = A_0 \cap B_0 = A_i \cap B_i \cap D = A_i \cap C_i \cap D = A_0 \cap C_0 = B_i \cap C_i \cap D = B_0 \cap C_0.$$

Since D is a meet-distributive element of \mathcal{L} by hypothesis,

$$H_0 = D \cap A_i B_i = (D \cap A_i)(D \cap B_i) = A_0 B_0 = A_0 C_0 = D \cap A_i C_i = D \cap B_i C_i = B_0 C_0.$$

Now we show that A_0, B_0, C_0 are distinct elements of \mathcal{L} . First note that

$$|H_i : K_i| = |A_i : K_i||B_i : K_i| = |A_i : K_i||C_i : K_i| = |B_i : K_i||C_i : K_i|,$$

so $|A_i : K_i| = |B_i : K_i| = |C_i : K_i|$. Hence $|A_i| = |B_i| = |C_i|$. Suppose that $A_0 = B_0$. Then

$$D \cap H_i = D \cap A_i B_i = (D \cap A_i)(D \cap B_i) = A_0 B_0 = A_0 = B_0 = D \cap K_i.$$

Hence $K_i D \cap H_i = K_i (D \cap H_i) = K_i$ is normal in H_i and $D H_i / D K_i \simeq H_i / (H_i \cap K_i D) = H_i / K_i (H_i \cap D) = H_i / K_i$ is cyclic, since G/D is cyclic by hypothesis. On the other hand, $H_i / K_i = (A_i / K_i)(B_i / K_i)$, where $|A_i / K_i| = |B_i / K_i|$, so $A_i / K_i = B_i / K_i = 1$, which implies that $A_i = B_i$. This contradiction shows that $A_0 \neq B_0$. Similarly, $A_0 \neq C_0$ and $B_0 \neq C_0$. Finally, A_0, B_0, C_0 are normal subgroups of $O^{\sigma_i}(G)$ by [10, Lemma 3.1]. Finally, Claim (5) and Theorem A imply that K_0 and H_0 are σ -permutable in G .

(7) A_0 / K_0 and B_0 / K_0 are $O^{\sigma_i}(G)$ -isomorphic.

From Claim (6) we get that

$$H_0 / K_0 = (A_0 / K_0) \times (B_0 / K_0) = (A_0 / K_0) \times (C_0 / K_0) = (B_0 / K_0) \times (C_0 / K_0).$$

Therefore,

$$A_0/K_0 \simeq ((A_0/K_0) \times (C_0/K_0))/(C_0/K_0) = (H_0/K_0)/(C_0/K_0)$$

and

$$B_0/K_0 \simeq ((B_0/K_0) \times (C_0/K_0))/(C_0/K_0) = (H_0/K_0)/(C_0/K_0)$$

are $O^{\sigma_i}(G)$ -isomorphisms by [10, Lemma 3.1]. Hence we have (7).

Final contradiction. Let $f : A_0/K_0 \rightarrow B_0/K_0$ be an $O^{\sigma_i}(G)$ -isomorphism. Let $K_0 < X \leq A_0$, where X covers K_0 in \mathcal{L} . Then X/K_0 is a chief factor of $O^{\sigma_i}(G)$ by [10, Lemma 3.1], so $L/K_0 = f(X/K_0)$ is also a chief factor of $O^{\sigma_i}(G)$. Hence L covers K_0 in \mathcal{L} . Now f induces an $O^{\sigma_i}(G)$ -isomorphism from X/K_0 onto L/K_0 , and so $L = X$ by hypothesis. Hence $K_0 < A_0 \cap B_0$, contrary to (6). The implication is proved.

The theorem is proved. \square

References

- [1] A. BALLESTER-BOLINCHES, R. ESTEBAN-ROMERO and M. ASAAD, Products of Finite Groups, *Walter de Gruyter, Berlin*, 2010.
- [2] A. BALLESTER-BOLINCHES and L. M. EZQUERRO, Classes of Finite groups, *Springer, Dordrecht*, 2006.
- [3] K. DOERK and T. HAWKES, Finite Soluble Groups, *Walter de Gruyter, Berlin*, 1992.
- [4] G. GRÄTZER, General Lattice Theory, *Birkhäuser Verlag, Basel – Stuttgart*, 1978.
- [5] O. H. KEGEL, Sylow-Gruppen und Subnormalteiler endlicher Gruppen, *Math. Z.* **78** (1962), 205–221.
- [6] T. KIMBER, Modularity in the lattice of Σ -permutable subgroups, *Arch. Math. (Basel)* **83** (2004), 193–203.
- [7] G. PAZDERSKI, On groups for which the lattice of normal subgroups is distributive, *Beiträge Algebra Geom.* **24** (1987), 185–200.
- [8] R. SCHMIDT, Subgroup Lattices of Groups, *Walter de Gruyter, Berlin*, 1994.
- [9] A. N. SKIBA, On some results in the theory of finite partially soluble groups, *Commun. Math. Stat.* **4** (2016), 281–309.
- [10] A. N. SKIBA, On σ -subnormal and σ -permutable subgroups of finite groups, *J. Algebra* **436** (2015), 1–16.
- [11] A. N. SKIBA, Some characterizations of finite σ -soluble $P\sigma T$ -groups, *J. Algebra* **495** (2018), 114–129.
- [12] A. N. SKIBA, On finite groups for which the lattice of S-permutable subgroups is distributive, *Arch. Math. (Basel)* **109** (2017), 9–17.

BIN HU
SCHOOL OF MATHEMATICS AND STATISTICS
JIANGSU NORMAL UNIVERSITY
XUZHOU, 221116
P. R. CHINA

E-mail: hubin118@126.com

JIANHONG HUANG
SCHOOL OF MATHEMATICS AND STATISTICS
JIANGSU NORMAL UNIVERSITY
XUZHOU, 221116
P. R. CHINA

E-mail: jhh320@126.com

ALEXANDER N. SKIBA
DEPARTMENT OF MATHEMATICS AND
TECHNOLOGIES OF PROGRAMMING
FRANCISK SKORINA GOMEL STATE UNIVERSITY
GOMEL, 246019
BELARUS

E-mail: alexander.skiba49@gmail.com

(Received October 13, 2018)