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Funk functions and constructions of dually flat Finsler metrics

By YING LI (Beijing) and XIAOHUAN MO (Beijing)

Abstract. Dually flat Finsler metrics arise from a-flat information structures on
Riemann—Finsler manifolds. Inspired by the theory of Funk functions and Hamel func-
tions due to Li—Shen, we give a new approach to produce dually flat Finsler metrics
in this paper. Moreover, we manufacture new dually flat spherically symmetric Finsler
metrics by using the standard Euclidean norm on R™.

1. Introduction

A Finsler metric F' on an open subset U C R™ is dually flat if it satisfies the
‘dually flat equations’

(Fz)wiyjyi = 2(F2)Ij. (1.1)
As an example, the Funk metric
V=P + (2 y)? | (2,y)
0= 1.2
1= o =[P (2)

is dually flat on the unit ball B® C R™. This Finsler metric is produced from
the Euclidean metric ®(z,y) = |y| and the radial field V, := z by navigation
problem, and therefore it has the form © = a + 3, where « is the Klein metric
and 3 is the exact form 8 = —2d(In(1 — |z|?)). Dually flat Finsler metrics arise
from information geometry, and the notion of dually flat metrics in Riemann—
Finsler geometry was introduced by AMARI-NAGAOKA and Z. SHEN [1], [12].
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Recently, the study of dually flat Finsler metrics has attracted a lot of atten-
tion [2], [6]-[8], [10], [14]. CHENG—SHEN—ZHOU and YU characterized dually flat
Finsler metrics of Randers type [2], [14]. Liu—Mo constructed explicitly all du-
ally flat Randers metrics by using the bijection between Randers metrics and their
navigation representation [10]. Huang—Mo manufactured explicitly new examples
of dually flat Finsler metrics by using the fundamental property of dually flat
equation. They showed the following:

Theorem 1.1. Let f be a function defined by

f(t,s) =g(t) + h(t)s + g'(t)s* + %h’(t)s3 + Z(—l)j_lmh(j)(t)SQj“

g2 54
+0b +
(c+5)3  2(c+s)Y’
where b, ¢ are constants, g is a differentiable function, h is a polynomial function

of degree N, where N < m, and h'Y) denotes the j-order derivative of h. Then
the spherically symmetric Finsler metric

F(z,y) =yl f(”;|2 <a|1’/y>> (1.3)

is dually flat on B™(u), where i is the radius of the ball.

The class (1.3) of Finsler metrics contains the Funk metric on B”, and any
member of this class satisfies

F(Az, Ay) = F(x,y) (1.4)

for all A € O(n). A Finsler metric F is said to be spherically symmetric (orthog-
onally invariant in an alternative terminology in [8]), if it satisfies (1.4) for all
A € O(n), or equivalently, if the orthogonal group O(n) acts as isometries of F.

Spherically symmetric Finsler metrics form a rich class of Finsler metrics.
Many classical Finsler metrics with nice curvature properties are spherically sym-
metric, such as the Bryant metrics with one parameter, the metric introduced
by Berwald in 1929, the generalized fourth root metric given by Li—Shen and the
CHERN—SHEN’s metric [3].

Very recently, a significant progress has been made in studying spherically
symmetric Finsler metrics. The classification theorem of projectively flat spheri-
cally symmetric metrics of constant flag curvature has been completed [11], [15].
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Recall that a Finsler metric F' on an open subset U C R" is said to be
projectively flat if all of its geodesics are straight lines in U, or equivalently, if F' is
a Hamel function. HUANG-L1U-MO produced a lot of new dually flat spherically
symmetric Finsler metrics in terms of the bijection between Hamel functions and
solutions of dually flat equations [6]. HUANG—MO constructed explicitly two new
families of dually flat Finsler metrics with orthogonal invariance in the spirit of
Pogorelov’s idea [8].

A natural problem is to determine all dually flat spherically symmetric Finsler
metrics on B"(u) := {v € R™ | |v|] < p}. This problem turns out to be very
difficult. The first step might be to construct as many examples as possible.

Inspired by the theory of Funk functions and Hamel functions due to Li—Shen,
we give a new approach to produce new dually flat Finsler metrics on B™ in this
paper. First, we show that any Minkowski norm ¢ on R™ produces infinitely many
solutions of the dually flat equations (see Proposition 3.2 below). Furthermore,
when ¢(y) := |y| is the standard Euclidean norm, we prove that the solutions of
the corresponding dually flat equations are spherically symmetric. More precisely,
we show the following:

Theorem 1.2. For k € {0,1,...}, the Finsler metrics

F(xz,y) := \/(@2)$i1“_xik i xte £ k(O2) 5 e ah gt

are dually flat on B™ (here © is the Funk metric on the unit ball B™). Moreover,
F' is spherically symmetric.

We will prove Theorem 1.2 in Section 4. As an application, we give explicit
expressions of the dually flat Finsler metrics with orthogonal invariance for k €
{0,1,2,3} by using some interesting properties (see Proposition 5.1, 5.2, 5.3 and
Lemma 2.1 below). For recent results on spherically symmetric Finsler metrics,
we refer the reader to [5]-[8], [11], [15].

2. Preliminaries

A Minkowski norm on a vector space V is a nonnegative function F : V —
[0, 4+00) with the following properties:

(i) F is positively homogeneous of degree one, i.e., for any y € V and any A > 0,
F(Ay) = AF(y);
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(ii) F is C* on V\{0} and for any tangent vector y € V\{0}, the symmetric
bilinear form g, : V' x V — R given by

1 o*
gy(u7v) = 5888t [F (y + Su+tv)] |5:t:0

is positive definite.

Let (,) denote the standard inner product on R"™, defined by (u,v) :=
i uv’. Then |y| := /(y,y) is the standard Euclidean norm on R™.

Let M be a differentiable manifold, and TM = |J,.,; ToM the tangent
bundle of M, where T, M is the tangent space at x € M. A function F on T M
is called a Finsler metric on M if it has the following properties:

(a) Fis C* on TM, :=TM\{0};
(b) Fy(y) := F(z, y) is a Minkowski norm on T, M for any = € M.

The pair (M, F) is called a Finsler manifold or a Finsler space.

Let U be an open subset in R™. A scalar function © on U x R" is called
a Funk function [9] if
O(z, Ay) = AO(z, y), (2.1)

for all A > 0, and it satisfies
Oyr = OO . (2.2)

As an example, consider a Minkowski norm ¢ : E — R on a vector space E.
We obtain a Funk metric (or Funk function) © on the strongly convex domain
Q= {v € E|p(v) < 1} with the navigation data ®(z,y) = ¢(y) and V, := x

3], [9]-
A scalar function © on U xR™ is called a Hamel function if it satisfies (2.1) and

O, — G)ykxjyj =0. (2.3)

Clearly, any Funk function is a Hamel function and the Hamel functions form
a linear space [9)].

Lemma 2.1. Let |, | and (, ) be the standard Euclidean norm and inner
product on R™, respectively. Then (|z|*|y|* — (z,y)?),27 = 0.

PROOF. By a straightforward computation, one obtains

(Iz*lyl* = (@, 9)%)ys = 2(|2*y" — (z,y)2). (2.4)

Contracting (2.4) with 27 gives

(zPly? = (@, 9)%)ys2? = 2(j*(z,y) — (z,9)|z[*) = 0. U
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3. Solutions of dually flat equations

In this section, we are going to produce infinitely many solutions of dually
flat equations by using a Minkowski norm on R".

Lemma 3.1. Let U C R" be a strongly convex domain determined by
a Minkowski norm ¢ on R™. Let © denote the Funk metric on U defined by

O(z,y) = oy + O(z,y)x). (3.1)

Then n
(Gn)yilyi2,..yi"*2 = 5(62)3:11 iz, xin—2 (32)
forn € {3,4,...}.

PROOF. By (1.38) in [3], we get (2.2). It follows that (63),; = 30?0, =
300,: = 3(0?),:. Hence (3.2) holds when n = 3. Suppose that the Funk metric ©
satisfies (3.2). Then we have

(" =(n+1)(0"0yu) s i =+ 1)(O" 1 Ouu1) iy _yina

n—+ 1( "o v _n+ 1
zilyiz . yin—1 =

yi1 .__yin72y7:n71

( n)yiz My'in—l 21

n
n+1ln n+1
- n 5( 2>xi2...xin—1xi1: 2 (92)36"1...9&”717

where we have made use of (2.2) and (3.2). Thus Lemma 3.1 follows by mathe-
matical induction. (]

Proposition 3.2. Let © be the Funk metric on a strongly convex domain.
Then

Fo= \/(@2)111__1%3;1'1 i R(O2) L i ik (3.3)
satisfies the dually flat equation (1.1).

PRrROOF. By LI-SHEN’s Example 3.1 in [9],

1 . .
P = m(@’f“)yil,_yik i gt (3.4)
is a Hamel function. It follows that P satisfies
Pmk — Pykmj yj = O (35)

Theorem 2.3 in [6] tells us that
Py (3.6)
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is a solution of (1.1). From (3.4), one obtains

(k+1)Ppi = (I); + (1), (3.7)
where
@;:= (@k—‘rl)yil“.yikw]‘xil Lzt = (@k-"—l)xjyil“‘yik zh . gt
= (k+1)(0"0,)yun ™ .. a* = (k+1)(0"10,,) i e .. 2%
_ %(@k“)wlmwxh...xlk:%(@k“)yilmyiwxh _a*, (38)

having made use of (2.2). In (3.7),

(ID); = = (O ) iy yin (2™ ™)
:(@]H'l) ( itgple gl gl gheaglghien gk g gl xikfléi.k)
i ; ;
= (@’H'l)yjyl2 ST .+(@k+1)yil'”yil71yjyil+1 i g xh, gt
+ . (@kJrl)yil‘__y'ik—lyjl'il Ce l‘ik_l
k(e’“l)yilmyik_lijil L (3.9)

Plugging (3.8) and (3.9) into (3.7) yields

1 k+2 7 7 k k+1
:7]@—1—2(6 )yllylkijlxk+7k+1(® )

i -
il yik—1yi T Lot

P,

Note that both [©%2] .,
degree 2. Hence

i, and [©F ] i,_, are positively homogeneous of

Y yilu,y

1

nyy m(®k+2)yi1~~yikyj ij“ e :L‘“" “l‘m(@k—‘rl)yqzlmyik_lyjiju . xlk—l
2 i i 2k ; ;
- m(®k+2)yi1~--yikx Pzt m(@k+l)yi1...yik_1$ LooLghet
2 k42 ; ; % k+1 i i
- k+2 2 (@2) zikxl'.'xk+m7(®2)mi1m$ik—1x1 k-1
= (@2)w7’1x1k xil cee xik + k(@Q)xil ,xik—lxil B AL

Plugging this into (3.6) yields (3.3), and hence (3.3) is a solution of (1.1). O

Corollary 3.3. Let © = o+ 8 be the Funk metric expressed in (1.2). Then
the function F given in (3.3) satisfies the dually flat equation (1.1).
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PROOF. By choosing ¢(y) = |y| in Lemma 3.1, we obtain that © satis-
fies (1.2). Then, in fact, © is the Funk metric on the unit ball B"”. Hence

F:= \/(62)111_1% it £ k(O2) 5, e x L pteer
satisfies (1.1). O

4. Dually flat spherically symmetric Finsler metrics

In this section, we are going to manufacture dually flat spherically symmetric
Finsler metrics via the standard Euclidean norm in R™.

Lemma 4.1. Fork € {0,1,2,...},
(@z)xilmxik L xt (4.1)

is a function of |x|, |y|? and (z,y), where |, | and (, ) are the standard Euclidean
norm and inner product on R", respectively, and © is the Funk metric on the
unit ball B™.

PROOF. By using (3.2), we get (©2),: i, =
it suffices to show that (©F+2) ;,
By an explicit expression for an arbitrary partial derivative of a product of func-
tions [4], [13], we see that (©%2),:, i 2™ ... 2% is a homogeneous polynomial

(of degree k +2) of ©, Oyix’, Opiysa'al, ..., O oa™ ..., Tt follows that

=5 (0%F2) i i Hence,

i .. 2% is a function of |z|, |y|* and (x,y).

we only need to prove that for k € {0,1,...}
Oy yin i gt (4.2)

y
is a function of |z|, |y|?, (z,y). When k = 0, © is clearly a function of |z|, |y|?
and (z,y) from (1.2). Suppose that @yilmyik_lm“ coateer = (|2 |yl?, (2, ).
Then we have

(@)yilmyik JL‘il

(©yin _yin—1)yin gt =, _,
=¢(|x\ \y| (T, ) o™

_ (31/) Olz] | 09 Oy 0¢ 3<x,‘y>>xik
3\w|6y“€ 3\yl2 oytk — O(w,y) Oy

ik 81/1 ik
Z( a|y|2 e a<x,y>)$
o

= 2(e.9) oz (el ol (. ) + a5 el o o),

and the assertion follows by mathematical induction for k € {0,1,---}. ]

i T .x““—l)yik T
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PROOF OF THEOREM 1.2. The statement is an immediate consequence of
Corollary 3.3 and Lemma 4.1. a

5. Some explicit constructions

In this section, we are going to give some explicit expressions of dually flat
spherically symmetric Finsler metrics in Theorem 1.2.
Consider the Funk metric © defined in (1.2). We express it in the form

(z,y)
0= 5.1
a+ T a2’ (5.1)
where \/
(1= [z)lyl* + (=, y)*
= . 5.2
Differentiating (5.2) with respect to y*, we obtain
L[y (x, y)a*
=— . 5.3
e (i >
Contracting (5.3) with z* gives
1 (zy)
k )
o’ = ———2" (5.4)
Y a (1 —|z?)?
Thus we obtain
z,y)pat 1 (z,y) |z
@ k = k < Y = — !
A R (T DA e P
and hence o

V= 2Pyl + (2. y)?
This, together with (2.2) and (1.2), yields

0%+ (0%) 527 = 0% +200,,27 = 0% +20%0,,27 =20%(1 + ©,,27) — 62

g 20 .
[m TR }
_ T 2 2<$,y> @2
- {” o ¢<1—|z|2>|y|2+<x,y>2}1—|w|2' (56)

Taking k = 1 in Theorem 1.2 and using (5.6), we have the following:
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Proposition 5.1. Let f be a function defined by
2s }(\/1—2754—52—&—5)2
VI—2t+ 82 (1-2t

Then the spherically symmetric Finsler metric given by

Fe.) = oy £( 1 222

flt,s) = [1 T2t +

is dually flat on B"™.

Now we consider the case k = 2 in Theorem 1.2. Plugging (5.2) into (5.5)
yields

© k.%'k ©

vt = T (5.7)

Differentiating (5.7) with respect to y!, we get

«

1 ) 1
eykyzxk = (@ykxk)yl = 1—x|2< > L = m(a@yl — @ayl). (5.8)
Y

By (5.4), (5.7) and (5.8), we obtain

1
k. ! !
@ykylﬁf X :m(a(‘)ylfﬁ — Gaylfl;)
1 e (z,y) } (I
T e o jzp)?) ~a2(i-p) &)
where (I) := —a + 1_?x|2 — a((?ﬁf‘%)z. Tt follows that

o1~ 22D = (1~ [2)© — a*(1 ~ |af?)? ~ Oz, 1)
= atfof) (o {525 ) —a(1-fof 2~ (o {525 ) o)

1—|zf?

_ 2 2 2 o2 (7,9)° _ 2.2 o (x,9)°
=« (1—‘.’E| )_a (1_|‘T| ) _1—|J)|2_a |£L'| (1_|$‘ )_1—|$‘2
2 2 (z,9)? _ (z,y)? 2112 2
Plugging this into (5.9) yields
20,12 _ 2
@ykyzmkdfl = M (5.10)

a?(1 - |z[?)?
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By (5.6) and (5.7), we have

_ . S
B! =20%0 07 =202 | ———— — 1. 11
(©%) iz 00,z €] Lz(l — ) ] (5.11)
Taking n = 4 in (3.2), we get (02),i, = 2(0%),1,5 = 2(3020,:0,; + ©30,:,,).
It follows that

(@2)£iwj$il'j = 292[3(®yi$i)2 + (")@yz‘yj.’lfi‘r‘j}. (5.12)
This, together with (5.7) and (5.10), yields

(@2)xixj$il‘j + 2(@2)xi$i = 2@2[3(®yi$i>2 + @@yiyj.%‘ia?j] + 4@2@yi.’1/‘i

1} +6®2[ o

2y [* — (=, y)*
a(l—|z|?) '

B-fapp - O

2
4@2{ 1} + 203

a(l-[«?)
Taking k = 2 in Theorem 1.2 and using (5.13), we obtain the following:
Proposition 5.2. Let f be a function defined by

3

P [6)) 2 P

where

v
Ve V1—2t— 52,  Bi— (5.14)

T 1—2t

Then the spherically symmetric Finsler metric given by

w5 5

is dually flat on B™.

Now we discuss the case & = 3 in Theorem 1.2. From (5.4), (5.10) and
Lemma 2.1, we get

)

N l2ly]? — (z, )] &
yryl .

a?(1— [zf?)?

Pl (1Y .

(1—JzP)?  \a?

T gy ok
w2t = (Opiyx'a’) wr —[
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Taking n = 5 in (3.2), we obtain

2
(92)90%1:6"' = g (@5)y‘nyk

=202 |:12@yi @yj @yk + 46®yi @yjyk (i—=j—ok—oi)+ @2@yiyjyk:| ,

where i — j — k — i denotes cyclic permutation. It follows that

(@z)xixjxkxixjxk
=202 [12(@ )3 4120(0,i2") (0,127 %) + 020 5 :L':L‘Jxk}
y* y' yiyk yiylyk
. , , 30%(z, y)
_ 2 AN ) ) k ’ k_.l

Applying (5.16) together with (5.12) and (5.7), we find that

(0% gigight'ad z® + 3(0%) igiata?

30%(z, y) o

=202%(12(0,:2") + 12 soeplah) — —— I (g kgl
@{ (Oyiz")” +120(0,iz")(0 r 2’ ") a2(1—|x|2)2(®yy )]

+60%[3(0,:i2")* + OO, 2" 27

o2 C 3 S 2 ly|* — (2, y)°
=20 {12|:04(]_—|CE|2)_1:| +12@|:a(1_ |1,|2) _1:| a3(]_— ‘x|2)3

_30°y) |x|2|y2—<x,y>2}

a?(1—[2[*)? (1 — [af?)?

2 0 17 Sl = (=)
+ 60 {3[a( ) 1] e Lad LI LT (5.17)

1 —fzf? a?(l —[z[?)?

Taking k = 3 in Theorem 1.2 and using (5.17), we have the following:

Proposition 5.3. Let f be a function defined by

¢ 3 ® 2t — 52 3s50%(2t — s?)
f — 2 = = _
(t,s) =29 [12( 1> + 12@(\1/ 1) 3 5 ]

) 2 g g2
3(= -1 )

+ 6P




504 Ying Li and Xiaohuan Mo

where U and ® are given in (5.14). Then the spherically symmetric Finsler metric

(2 57)
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is dually flat on B™.
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