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Bounds for the solutions of S-unit equations
and decomposable form equations II.

By KALMAN GYORY (Debrecen)

To the memory of Professor Alan Baker

Abstract. In this paper we improve upon in terms of S the best known effective
upper bounds for the solutions of S-unit equations and decomposable form equations.

1. Introduction

The S-unit equations
ar+Py=1 inzyeOf (L.a)

(and their equivalent homogeneous versions) play a very important role in Dio-
phantine number theory (for results and references, see, e.g., the books and sur-
vey papers [16], [29], [9], [20], [30], [7], [8]). Here, «, 8 are non-zero elements of
a number field K, S is a finite set of places on K containing the infinite places,
and Og, 0% denote the ring of S-integers and the group of S-units in K. The
first explicit upper bounds for the heights of the solutions of equations (1.a) (or
their homogeneous versions) were proved in our papers [11], [13]-[14] by means
of Baker’s theory of logarithmic forms. We applied these results systematically
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to get effective finiteness theorems in quantitative form among others to discrim-
inant equations, power integral bases, arithmetic graphs, irreducible polynomials
and decomposable form equations of the shape

F(x1,...,Tm) =0 inxy,...,2T, € Og, (2.a)

where 0 € Og\{0}, and F'(X1, ..., X,,) is a decomposable form in m > 2 variables
with coefficients in Og, whose linear factors over K have some connectedness
properties; for such applications, see, e.g., [11]-[12], [15]-[18].

Later, several improvements and further applications have been established.
The most important improvements concerning (1.a) and (2.a) were obtained by
BUGEAUD and GYORY [5], BUGEAUD [4], GYORY and YU [24], and quite recently,
for (1.a), by LE FOURN [26]. Before [26] the best known bounds for the heights
of the solutions of (1.a) and (2.a) were due to Gyéry and Yu [24]; see Theorems
A and B below for equation (1.a), and Section 3 for equation (2.a). Further,
using our Proposition 5 below, Theorem A was generalized with EVERTSE [7] to
equations of the form

ar+Py=1 inz,yel, (1.b)

where I' denotes an arbitrary finitely generated multiplicative subgroup of K* of
positive rank. The proofs of Theorems A, B and Proposition 5 are based among
others on Baker’s theory. The generalization concerning equation (1.b) also has
several important applications, e.g. in our joint books [7] and [8] with EVERTSE.

In the upper bounds in Theorems A and B, the parameters depending on S
are s, the cardinality of .S, ¢, the number of prime ideals in S, Ps the largest norm
of these prime ideals, and Rg the S-regulator of K. Very recently, Le Fourn [26]
has improved Theorem A, replacing Ps in Theorem A by P¢, the third largest
norm of the prime ideals in S. He proved his Theorem C below by combining
the proof of Theorem A with his variant, Proposition 4 of Runge’s method. This
improvement is of particular importance when P is small compared with Pg or S
contains at most two prime ideals when, by definition, P& = 1.

In our paper, we prove a similar improvement of Theorem B, combining our
Proposition 5 with Le Fourn’s Proposition 4. We obtain in Theorem 1 and, as
a consequence, in Theorem 3 the best upper bounds to date in terms of S for
the solutions of equations (1.a) and (2.a). Further, in Theorem 2, we generalize
Theorem C of Le Fourn to equation (1.b). Finally, as a special case of our The-
orem 3, we present the best bound to date for the solutions of Thue equations
over Og. Our results have further consequences. Some of them will be published
in a separate paper.
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2. Bounds for the solutions of S-unit equations

As above, let K be an algebraic number field and S a finite set of places on K
containing the set S, of infinite places. Denote by Og the ring of S-integers, and
by O% the group of S-units in K. Let o, 8 be non-zero elements of K, and consider
the S-unit equation

ar+py=1 inz,ye O. (L.a)

For § = S, Og and OF are just the ring of integers O and the unit group Oy
of K, and (1.a) is called a unit equation.

To derive bounds for the solutions of (1.a), we shall need some further nota-
tions. Let d denote the degree of K, s the cardinality of S, Rg the S-regulator
of K (see Section 4), p1,...,p; the prime ideals of O corresponding to the finite
places in S, and let

p maxi<i<t N(p;), ift>1,
S p—
1, if t =0.

We have s = r 4+t 4 1, where r denotes the unit rank of K. For § = S, i.e. for
t =0, Rg is just Rk, the regulator of K.

For any algebraic number ~, we denote by h(y) the absolute logarithmic
height of v (cf. Section 4). By the height we shall always mean the absolute
logarithmic height. In (1.a), let

H = max(h(a), h(B),1).

We use the notation log” @ = max(loga, 1) for a > 0.

Improving several earlier explicit bounds on the solutions of (1.a), Gy6éry
and Yu [24] proved the following two theorems with slightly smaller values for
c1(d, s),co(d,r) and cq(d, r,t).

Theorem A (Gy6ry and Yu [24, Theorem 1]). All solutions x,y of equation
(1.a) satisfy

max(h(z),h(y)) < c1(d, s)Ps <1 + 5 > RsH, (2.1)

where ¢, (d, s) = (16ds)?(>+3).
We note that for S = S, the bound in (2.1) can be replaced by
co(d,7)Ri(log™ Ry )H
with co(d,r) = (4d)* 9,
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The next theorem gives a better bound for the solutions in terms of S. Denote
by hx the class number of K, and put

R = max(hK, ngRK)7
where c3 =0, 1/d or 29er!ry/r — 1log d, according as r =0, 1 or > 2.

Theorem B (Gyéry and Yu [24, Theorem 2]; GYORy [21, Theorem Al).
Let t > 0. All solutions x,y of equations (1.a) satisfy
P,
max(h(z), h(y)) < ca(d, r,t)R*™® —°_RgH, (2.2)
log Pg
where c4(d, r,t) = 1637 T41H12g5r+i+20,

S

In terms of S, s?¢ is the dominating factor in the bound in (2.1) whenever
t > log Ps. The appearance of s2° is due to the use of Lemma 2 of the present
paper. Observe that in (2.2) the bound does not contain s* or ¢*. Further, in the
latter bound there is 1/ log Pg instead of (1 + log" Rg/log Ps) from (2.1). These
improvements in (2.2) are important for certain applications, e.g. in Gy6ry and
Yu [24], GYORY, PINK and PINTER [23] and Gy6ry [21]. In the latter paper
a version of the abc conjecture over number fields is proved up to a logarithmic
function.

The main tool in the proofs of (2.1) and (2.2) is Baker’s theory of logarith-
mic forms, or more precisely, some deep results of MATVEEV [27] and YU [32]
concerning linear forms in logarithms in the complex and p-adic cases.

Quite recently, Le Fourn [26] has proved the following improvement of The-
orem A. Let

, the third largest value of N(p;),i=1,...,1t, if t > 3,
PS =
1, ift <2

Theorem C (Le Fourn [26, Theorem 1.4]). Every solution x,y of equation
(1.a) satisfies

log* R
max(h(z), h(y)) < 2c1(d, )P4 (14 —2-22 ) RgH, (2.3)
log™ Pg
where ¢;(d, s) denotes the constant occurring in Theorem A.

Clearly, for P{ < Pg/2, (2.3) is an improvement of (2.1). This improvement
is of particular importance if Pg is small compared with Pg, for example if 1 <
t < 2 and so P§ = 1. However, the bound in (2.3) still contains the factor s%*.
The proof of Theorem C combines the proof of Theorem A with a new variant of
Runge’s method due to Le Fourn [26].

Our first result is the following.
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Theorem 1. Let t > 0. Every solution x,y of equation (1.a) satisfies

P{ log™ log Pg
log™ P} log™ P{

where cs(d, T, 5,t) = s°(16e)37H4+7gAr+2t47,

max(h(z), h(y)) < cs(d,r, s, t)RIT > RsH, (2.4)

In terms of S, this gives the best upper bound to date for the solutions of
equation (1.a). It improves upon in terms of S both Theorem B and Theorem C.

We now compare in more detail Theorem 1 with Theorem B and Theorem C.
The factor Ps/log Ps in (2.2) is improved in (2.4) to

P log™ log P
S (1428 0875 (2.5)
log™ Pg log™ Pg

which improvement is particularly significant when P is small compared with Pg.
If e.g. P{ < logPg resp. P = 1, the factor in (2.5) is at most 2log Pg/log Pg
resp. 2log” log Pg. Otherwise, if P{ > log Pg, then the factor in (2.5) does not
exceed 2P¢/log P;. Observe that the dependence on ¢ of c4(d,,t) is slightly
better than that of ¢5(d,r, s,t). This is due to the fact that in Gyéry and Yu [24]
the estimates of Matveev [27] and Yu [32] for linear forms in logarithms are applied
separately, and not through the later obtained Proposition 5 involving both the
complex and the p-adic cases.

In Theorem C the factor s2° still occurs, in contrast with Theorem 1. Further,
the factor P&(1 + log™ Rg/log" P§) in (2.3) is improved in Theorem 1 to (2.5).
Indeed, in (2.4) there is an extra factor 1/log™ P§ and, by (5.11), log™ log Py is
smaller than log™ Rs + log 5.

Let now I' be a finitely generated multiplicative subgroup of K* of positive
rank, and consider the generalization

ar+pPy=1 inz,yel (1.b)

of equation (1.a), where «, 8 are non-zero elements of K. Let S denote the
smallest set of places of K such that S contains all infinite places, and I' C OF,
where OF% is the group of S-units in K. In Evertse and Gyéry [7] we proved
in an effective form that equation (1.b) has only finitely many solutions. More
precisely, we showed that there exists an algorithm which, from effectively given
K, a, 8 and a system of generators for I'/Tiors and T'tops, computes all solutions
x,y. We recall that K is said to be effectively given if the minimal polynomial
over Z of a primitive element, say ~y, of K over Q is given. Further, an element §
of K is said to be given/effectively determinable if

d=po+py+--- +pd—17d_1)/q
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with rational integers po, ..., pi—1, ¢ with ged(po, . .. ,pa—1,¢) = 1 that are given/
can be effectively computed (see, e.g., Section 1.10 in Evertse and Gyéry [7]).

We shall need the following further parameters. Let again H = max(h(«),
h(B),1), let {&1,...,&n} be a system of generators for I'/Tirs (n0t necessarily
a basis which is important in certain applications), let

0 :=h(&1) - h(&m),

s =15], p1,...,p; the prime ideals in S, and let Ps and P§ be as above.

In Theorem 4.1.3 of Evertse and Gy6ry [7] we derived an explicit upper bound
for the heights of the solutions of (1.b), which depends on d, s, Ps,m, 6 and H.
The proof is based on our Proposition 5.

Combining Proposition 5 with Proposition 4 due to Le Fourn [26], we prove
the following improvement of Theorem 4.1.3 of Evertse and Gydéry [7].

Theorem 2. Every solution z,y of equation (1.b) satisfies

/

P
7SP’9 max(log(cgsPS),log™ 0)H (2.6)
s

max(h(x), h(y)) < 1606510g*

where
cs(d,m) = 2(m + 1) log* (dm)(log* d)*(16ed)>™*5.

In Evertse and Gyéry [7] this was proved in a weaker form, with Pg in place
of P§.

Theorem 2 can be regarded as a generalization of a slightly weaker version
of Theorem C. Indeed, in the special case I' = OF, Theorem 2 gives Theorem C,
in ¢1(d, s) with an absolute constant larger than 16, choosing in O% a system of
generators {e1,...,65_1} as in Lemma 2. Then the corresponding 6 is at most
c10Rg with the constant c1g occurring in Lemma 2.

The proofs of the results presented or mentioned above involve Baker’s theory.
We note that there are other effective methods which provide explicit bounds for
the solutions of equation (1.a). Bombieri developed such a method in Diophantine
approximation; sce BOMBIERI [1], BOMBIERI and COHEN [2]-[3] and Bugeaud [4].
Further, Murty and Pasten, and independently von Kéanel, Matschke, Siksek,
Bennett and others elaborated another such effective method, the so-called mod-
ular method; see, e.g., MURTY and PASTEN [28] and von KANEL [25]. However,
apart from some special situations, the bounds in Theorems A, B and even more
in Theorems C and 1, 2 are better in terms of S.



Bounds for S-unit and decomposable form equations 513
3. Bounds for the solutions of decomposable form equations

Keeping the notation of the preceding section, consider the decomposable
form equation

F(x)=90 inx=(x1,...,2m) € OF with ¢(x) # 0 for £ € L, (2.a)

where 0 € Og \ {0}, F € Og[X1,...,Xn] is a decomposable form of degree n
(i.e. F factorizes into linear forms over K), and L is a finite set of non-zero linear
forms from K[Xi,...,X,,]. Extending the ground field K if necessary, we may
assume that in (2.a) F factorizes into linear forms over K. These linear factors
are uniquely determined over K up to proportional factors from K. Fix such
a factorization, and denote by Ly a maximal subset of pairwise linearly indepen-
dent linear factors of F. To obtain effective finiteness results on equation (2.a),
we make some assumptions on Ly.

We assume that £y has at least three elements. We denote by G(Ly) the
graph with vertex set £y in which the edges are the unordered pairs {¢, ¢'}, where
0,0 are distinct elements of £y with the property that there exists a third linear
form ¢ in Ly that is a K-linear combination of ¢,¢'. If G(Ly) is connected, F is
called triangularly connected.

When G(Ly) is not connected, let Ly,, ..., Lo, denote the vertex sets of the
connected components of G(Ly). For k > 1, let H(Lo,,...,Lo,) be the graph
having vertex set {Lo,, ..., Lo, }, in which the pair {Lo,, Lo, } is an edge if there
exists a non-zero linear form ¢;; which can be expressed simultaneously as a K-
linear combination of the forms in Lo, and Lo,. Here ¢;; can be chosen so that the
total number of non-zero terms in both linear combinations is minimal. We choose
for each edge {Lo,, EOJ} such an ¢;;, and we denote by £ the union of these /;;.
Obviously, G, H and (ii) below depend only on the system of linear factors of F,
but not on the choice of L.

Under the assumptions that

(i) the set Lo has rank m,
(ii) either k=1 or k > 1 and the graph H(Lo,, ..., Lo,) is connected,

equation (2.a) can be reduced to a system of S-unit equations in two unknowns,
and using effective results concerning equation (1.a), one can give effective upper
bounds for the heights of the solutions of (2.a). Gyéry and Yu [24] used their
Theorem B above to give in terms of S the best known upper bound for the
solutions of (2.a)

c7(Ps/log" Ps)(log” Qs)Rs, (3.1)
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provided that (i) and (ii) hold. Here s denotes again the cardinality of S, Rg is
the S-regulator of K, Ps the maximal norm and )g the product of the norms of
the prime ideals p1,...,p; in S'ift >0, Ps = Qs =1ift =0, i.e. S =S4, and
¢7 is an explicitly given number which depends on d,r, hy, Rx,m,n, h(d) and H,
an upper bound for the heights of the coefficients of F'.

Let again Pg denote the third largest value of N(p;), ¢ = 1,...,¢, if t > 3,
and let P{ = 1if ¢ < 2. Theorem 1 enables us to improve upon the bound of
Gydry and Yu [24] in the following form.

Theorem 3. Let F' € Og[Xy,...,X,,] be a decomposable form of degree n
that factorizes into linear forms over K and satisfies the conditions (i) and (ii).
Suppose that t > 0. Then for every solution x = (z1,...,%n) of (2.a) with
Ux)#0fort e Lifk>1,

P log* log Ps
M) < cg—2= (1
max h(xi) < c§ log™ P} ( log™ P{

1<i<m
holds, where cg is an effectively computable positive number which depends only
on d7 T, h’Ka RK7m7n7 h(6> aHd H

) (logQs)Rs (3.2)

As was seen above, the factor in (2.5) is a considerable improvement of
2Pgs/log Ps. Hence the bound in (3.2) is much better in terms of S than the
bound (3.1) of Gyéry and Yu [24].

It is clear that binary forms having at least three pairwise non-proportional
linear factors are triangularly connected. Further, as is known (see, e.g., [22],
[15], [19]), discriminant forms and index forms are also triangularly connected,
and a large class of norm forms in m variables satisfies the conditions (i), (ii) with
k> 1and £ = {X,,}. Therefore, our Theorem 3 improves upon the bounds in
[22], [15], [19] concerning the S-integer solutions of norm form, discriminant form
and index form equations.

We present a consequence for the Thue equation

F(z,y)=0 inax,ye€ Og, (2.b)

where F' € Og[X,Y] is a binary form of degree n > 3 which factorizes into linear
factors over K and at least three of these factors are pairwise non-proportional.
Further, let § € Og\ {0}, and H an upper bound for the heights of the coefficients
of F. Then Theorem 3 with m = 2, k = 1 gives immediately the following.

Corollary 4. Let t > 0. Under the above assumptions and notation, all
solutions z,y of equation (2.b) satisfy

. Pl log* log P.
max(h(x), h(y)) < ¢ log*SP' (1 + w> (log Qs)Rs, (3.3)
s s
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where c¢qg is an effectively computable positive number depending only on d,r, hi,
Ry ,n,h(5) and H.

In terms of S, this gives the best upper bound to date for the solutions
of (2.b). Corollary 4 improves several earlier explicit results, including Corollary 3
of Gyéry and Yu [24].

4. Auxiliary results

Keeping the notation of the preceding sections, let again K denote an alge-
braic number field with the parameters d, Rk, hx and r specified above. Denote
by Mg the set of places on K. For every v € M we associate an absolute value
| . | normalized in the usual way: if v is infinite and corresponds to o : K — C,
then we put, for a € K, |a|, = |o(a)| or |ca|? according as o(K) is contained in
R or not; if v is a finite place corresponding to the prime ideal p in K, then we
put |al, = N(p)~>% (@) for a € K\ {0}, where N(p) = |Ok/p| is the absolute
norm of p, and ordy () is the exponent of p in the prime ideal factorization of («).
We put |0], = 0 and ord,(0) = co. Further, we denote by d, the local degree
of K at v, i.e. dy, = [K, : Qy,], where v is the place on Q lying below v.

The absolute logarithmic height h(«) of a € K is defined as

h(a) = é S logmax(1, |al,).
vEMK

It depends only on «, and not on the choice of the number field K containing a.
For properties of this height, see, e.g., Evertse and Gy6ry [7].

Let S be a finite subset of Mg containing the set S, of infinite places, let
Og be the ring of S-integers and O% the group of S-units in K. The group O
is of rank s — 1 where s = |S|. Let {e1,...,e5-1} denote a fundamental system
of S-units in K, and let v1,...,vs_1 be a subset of S. Then Rg, the S-regulator
of K, is the absolute value of the determinant of the matrix (log [ei|v; )i, j=1,...,s—1-
It is a positive number which is independent of the choice of e1,...,6,_1 and
v1,...,Vs—1. As was mentioned above, for S = S, Rg is just the regulator of K.

Again, denote by p1,...,p; the prime ideals in K which correspond to the
finite places in S.

Lemma 1. Ift > 0, then

t t
R [[log N(p:) < Rs < Richg [ Jlog N (py).
i=1 =1
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PROOF. This is Lemma 3 in Bugeaud and Gydry [5]. O
Lemma 2. There exists in K a fundamental system {e1,...,e5_1} of S-units
such that )
o

H h(e;) < ci0Rs,

i=1
where c19 = ((s — 1)1)2 /2572451
PROOF. See Lemma 1 in Bugeaud and Gydry [5]. O

For o € K\ {0}, the fractional ideal («) can be written uniquely as a product
of two ideals ay, a, where a; is composed of py,...,p; and as is relatively prime
to p1,...,p:. Then the S-norm of « is defined as Ng(a) = N(az). In other
words, Ns(a) = [],cg lals. Notice that the S-norm is multiplicative. Further,
log Ng(a) < dh(a).

We put again

Qs =N(py---pg) if t >0, Qs=1ift=0.

Lemma 3. For every o € Og \ {0} and for every integer n > 1, there exists
e € O% such that

1 h
h(g"a) < E log Ns(a) +n (C3RK + 7[{ log QS) R

where, as above c3 = 0, 1 or 29er!ry/r — 1log™ d, according asr =0, 1 or r > 2.
PROOF. See Lemma 3 in Gyéry and Yu [24]. O

For v € K\ {0} and v € Mg, define h,(v) := log™ (1/|v],). To deal with
equation (1.a), we consider h, (P) for !

1
PeA:= {ozx,ﬁy,},
ox

where 2,y is a solution of (1.a). Denote by S’ the subset of S, deprived S of its
two prime ideals with largest norm. For ¢t < 2, let S8’ = S.

The following result is due to Le Fourn [26]. It plays an important role in
the application of his method to S-unit equations.

LADDED IN PROOF. Recently, Le Fourn modified A, changing By/az for 1/az, and added
a factor 2 to the bound in his Theorem C above. We present Theorem C and use Proposition 4
with these modifications.
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Proposition 4. Let z,y € OFf be a solution of equation (1.a). Then for
somev €S and Pe A
d

ihv(P) > é(max(h(x),h(y)) —3H)

holds.

PROOF. See Lemma 4.1 and, with slightly different notations, the corre-
sponding arguments of Section 4 in Le Fourn [26]. O

For v € Mg, we put N(v) := 2 if v is an infinite place, and N(v) := N(p) if
v = p is a finite place, i.e. a prime ideal of Ok.

Baker’s theory of logarithmic forms will be used in our proofs through the
following.

Proposition 5. Let I' be a finitely generated multiplicative subgroup of K*
of positive rank, with system of generators {&1,...,&m} for T /T os. Let a € K*,
and put
H := max(h(a), 1), 0:=h(&) - h(&m)-

Further, let v € Mg. Then for every £ € I' with af # 1, we have

N(v) « ( NWh(E)
mevi s ()

where c11 = 2\(m + 1) log* (dm)(log* d)?(16ed)*™ 5 with A =12 if m =1, A =1
ifm>2.

10g|1 — Ot§|v > c11

PROOF. This is Theorem 4.2.1 in Evertse and Gy6ry [7]. Its proof is a com-
bination of results of Matveev [27] and Yu [32] concerning logarithmic forms with
some results, due to Evertse and Gyéry [7], from the geometry of numbers. O

5. Proofs of the theorems

We keep the notation of the preceding sections.

PrOOF OF THEOREM 1. We combine Propositions 4 and 5, and use Lemma
1, 2, 3 as well as several ideas from GYORyY [13] and Gy6ry and Yu [24].
Let x,y be a solution of the equation

ar+py=1 ifz,ye Of, (1.a)
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where a, € K \ {0}. Put
H :=max(h(z), h(y)).

For ¢t > 3, let S’ denote the subset of S, depriving S of its two prime ideals with
largest norm, and for ¢ < 2 let S’ = S.,. Then, by Proposition 4,
oy Py> L —3m) (5.1)
] '
follows for some v € §” and some P € A = {az, By,1/azr}. We may assume that
‘H > 3H, since otherwise we are done. Thus we have h, (P) > 0.
First suppose that P = ax. Then (5.1) implies that 0 < h,(P) = —log |az|,,
whence |azx|, < 1. We infer from (1.a) that |5y, < 4 or |By|, = 1 according as v
is infinite or finite. Hence

1= (By)" o =11 = Bylo - 11+ (By) + -+ (By)"* o < caa[l = Bylo,  (5.2)

where c19 = 4"% or ¢19 = 1, according as v is infinite or not. Then it follows from
(L.a) and (5.2) that

hy(P) = —log |az|, = —log |1 — Byl, < —log |1 — (ﬁy)hklv +logera.  (5.3)

By means of Proposition 5, we shall now give an upper bound for the right
hand side of (5.3). Since y € OF, there are integers uq,...,u; such that the
principal ideal (y) can be written in the form (y) = p}* - - - p;*. Applying Lemma 3
with S = S, it follows that there are integers m; in K such that (m;) = p;”‘ and

2
h(m;) < ERlogN(pi), i=1,...,t (5.4)
Further, by Lemma 2 there exists in K a fundamental system {e1, ..., &} of units
such that .
[ 1)) < e1sRi (5.5)
j=1

with ¢13 = d". We have
yhE = Cedr gl (5.6)

with a root of unity ¢ and with appropriate integers a1, ..., a,.
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First consider the case when v is infinite. Denote by I' the multiplicative
subgroup of K* generated by e1,...,&.,71,..., 7 and the roots of unity in K.
Then {e1,...,&p,71,..., 7} is a system of generators for T'/Tors. Put

0 :=h(e1) - h(en)h(m) - - h(m).

We can now apply Proposition 5. We suppose that (8y)"% # 1, since otherwise

h(y) = h(B) < H and, from (1l.a), h(z) < 5 would follow which proves (2.4).
We have y"* € T'. Let H := max(h(3"%),1). Then by Proposition 5 we have

N .z N(v)h(y"x)

—log |1 — hx ————~fHlog" | ——="—+ 5.7

og 1= (9)"* |, < crupytsoftion” (MUY s

where 14 = 252(16ed)3" )46 N(v) =2, H < hyc - H, and h(y"*) < hxH. Now,

if H > 2sh% H, it follows from (5.1), (5.3) and (5.7) that

. 2
H < ci150H log* ( h{fH) ,
H

where ¢15 = @014. This implies that
H < c16R*0(log* 0)H, (5.8)
using hx < R. Here ¢15 = 2¢15 log(2¢15).
In view of (5.4) and (5.5), we get
¢
0 < c17R" [ log N(pi). (5.9)
i=1
where c¢17 = 2¢d"~*. This gives
log* 8 < c13(log™ R) log™ log Ps, (5.10)

where ¢15 = 3ds and Ps denotes the maximum of the norms N(p;), i =1,... .
Using the fact that 1/Rx < 5 (cf. FRIEDMAN [10]), we deduce from Lemma 1 that

t
[T 1og N(pi) < 5Rs. (5.11)
=1
Finally, we have
P log* log Ps
log*log Ps < —2— (1 . 5.12
o8 og P < o (14K (5.12)
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Now (5.8), (5.9), (5.10), (5.11) and (5.12) give

H < ClgRt+4

P! log* log P

5 (1 Ogogs> R,

log™ Pg log™ Pg

where ¢19 = 3¢16 - ¢17 - ¢15. After some computations we obtain (2.4).

Next consider the case when v is finite. To derive better bound for H,
we make the following modification in the above arguments. Suppose that v corre-
sponds to the prime ideal p;=p. Now we have | 3y|, =1, whence ord, ("= y"=)=0.
Putting

Bli= g,y =y m,

B'y" = Byl holds. But, by (5.6), ordy(y') = 0, hence ord, () = 0. This yields
hiord,(8) + utord,(m) =0,

which gives |u;| < hg|ord,(8)|. Further,

d
lord, (8)| < mh(ﬁ)

(see, e.g., YU [31, p. 124]). Thus, together with (5.4) and hx <R, this implies that

h(B') < hh(B) + |ug|h(m) < R*H =: H'. (5.13)

Let TV denote the multiplicative subgroup of K* generated by e1,...,¢&,,

T,...,m—1 and the roots of unity in K. In view of (5.6), we have 3/ € I".
Put now

0 = he1) - h(e)h(m) -+ i),

Using again Proposition 5, we infer that

~ log |1~ (By)* | = — log [1— 'y/| < cs0— ) equog*(W), (5.14)

N(
log N (v)

where cog = 25%(16ed)>("+)+3. Here we have
h(y') = h(y"< /mit) < R*(H + H).

Hence it follows that
H+H

Hl

N(UI){}f(y/) S R2N<’U)
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Now, as in the infinite case, we deduce from (5.1), (5.3) and (5.14) that

H+ H < 2scoq

N(v)
g

100" (2N () (H + H)
o N(U)HHlog ( ),

H/

whence
H < e (log” R) )/ 5 0g* (N (0)0), (5.15)
log N (v)
where co1 = 2sc90 log(4scap).
We now estimate from above the parameters occurring in (5.15). It follows
from (5.4), (5.5) and (5.11) that

0 < c17R'"Rs/log N(p). (5.16)
Similarly to (5.10), we have
log™ 0" < 2¢15(log™ R) log™ log Ps (5.17)

with the above ¢15. Using (5.13), (5.16), (5.17), N(p) = N(v), N(v) < P and
N(v)/(log N(v))? < P§/(log P%)?, we infer from (5.15) that

P log* log P

H < ngRt+4 2 (1 70g o8 7S

log™ P}

RsH
log P, ) S

where coo = 3co1 - €17 - ¢15. Now as in the infinite case, we get (2.4) after some
computations.

It remains the case when in (5.1) P = By or 1/ax. In the first case, (2.4)
immediately follows by symmetry. In the second case, observe that 2’ = 1/z,
y' = y/x is a solution of the S-unit equation

dd+ 8y =1 inax,y €O,

where o = 1/a, /' = —f/a and o'z’ = 1/ax. Then the above arguments apply
to this equation with P = o/a’ and give the same upper bound (2.4) for the
heights of 2,y with 2H instead of H. Finally, the upper bound in (2.4) follows
for max(h(z), h(y)) with an extra factor 2. O

PrROOF OF THEOREM 2. We follow the main steps of the proof of Theorem 1
in simplified form, adapting them to equation (1.b). The case m = 1 being trivial,
we assume that m > 2.
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Let z,y be a solution of equation (1.b). Then z,y satisfy (1.a) where now
S is the smallest subset of places of K which contains S, so that I' C O%. As
above, let ¢ denote the number of finite places in S, and let H := max(h(z), h(y)).

For t > 3, let again S’ denote the subset of S depriving S of its two prime
ideals with largest norm, and for t < 2 let S’ = So. Then, by Proposition 4,
(5.1) follows for some v € S’ and some P € A = {azx, By, 1/ax}. We may assume
again that H > 3H, when h,(P) > 0.

First consider the case P = ax. Then

hU(P) = _log |Om;|v = _lOg |1 - ﬁylv (537)

Applying Proposition 5, we obtain

N(v)

log N (v) (54)

—log |1 — Byl, < c11

oo (X100

H

with ¢17 occurring in Proposition 5. We recall that N(v) = 2 if v is infinite, and
N(v) = N(p) if v is finite, where p is the prime ideal corresponding to v. We have
in both cases N(v) < 2P§ and N(v)/log N(v) < 2P§/log2P(. Now it follows
from (5.1), (5.3), (5.4’) and h(y) < H that

2P/ 2PLH
2¢118——=2—0H log* S0
H < cllslog(?Pé) og ( i )

Finally, this gives

P/
H < Eicuslogsl_jé91rnax(log(c113Pk’9)7 log* 0)H,

which proves (2.6). For P = 8y or 1/ax, we can argue in the same way as in the
proof of Theorem 1, and (2.6) follows again. 0

PRrROOF OF THEOREM 3 (Sketch). We follow the proofs of Theorem 1 of
GYORY [19] and Theorem 9.6.3 of Evertse and Gy&ry [7]. The latter theorem
is a less explicit version of Theorem 2 of Gy6ry and Yu [24]. We shall detail only
those steps from Gyéry [19] or Evertse and Gy0ry [7] whose arguments differ from
the earlier ones and depend on the application of our Theorem 1.

We shall denote by ca3, Ca4, . . ., c37 effectively computable positive numbers
which depend at most on d,r, hx, Rk, m,n,h(d) and H. These numbers can be
made explicit by using the explicit form of Theorem 2.
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As is pointed out in Gyéry [19] and Evertse and Gyéry [7], equation (2.a)
can be written in the form

l(x)- - lp(x) =9 inxeOF with £(x) #0for £ € L (5.18)

where, up to a proportional factor, ¢1,...,#, is a factorization of F' into linear
forms in Xq,...,X,, with coefficients in Ok, the heights of the coefficients of
lq, ..., ¢, donot exceed ca3, and the new 6 € Og\{0} has height h(§) < ca4log Q.

Let now x = (21,...,Zm) € OF be asolution of equation (5.18) with £(x) # 0
for £ € L if k > 1, and write

Then ¢; is a divisor of ¢ in Og, and log Ng(d;) < log Ng(d) < ca5h(0) < co6
follows. By Lemma 3, there is an ¢; € O% such that

h(51/€1) < 62710gQ5', 1=1,...,n. (520)

Let £y be a maximal subset of pairwise linearly independent linear forms
in the set of new linear forms ¢1,...,¢,. Then the new Ly and its associated
graph G(Lo) also satisfy assumptions (i) and (ii) of the theorem. Let Lo, ..., Lo,
denote the vertex sets of the connected components of G(Ly). First we assume
that k& = 1. If {¢;,¢;} is an edge of G(Ly), then A\;¢; + A\;j¢; + Al = 0 for some
¢ € Ly and some non-zero A;, Aj, A in K with heights not exceeding cog. Together
with (5.20), this leads to an S-unit equation

Tiei +1je;+T1e =0 ineg;e5,e € O, (5.21)

where 74, 7;, 7 are non-zero elements of K with heights < co9log@s. We apply
now Theorem 1 to equation (5.21), and we infer that

P! (1 log* log Ps

max(h(e1/2). h(e3/9)) < cho gy (14 gt pr

) (logQs)Rs =: A,

and so, by (5.20)
max(h(d;/€)), h(d;/¢)) < ca1A. (5.22)

If now {¢;,¢,} is an edge in G(Ly), then we deduce in the same way that there is
an ¢’ € Og such that

max(h(d;/e"), h(84/€")) < cs1A.
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Together with (5.22), this implies h(e’/e) < 2¢31A4, whence h(d,/¢) < 3ca1A.
Using the assumption that G(Ly) is connected and repeating the above procedure
with the shortest path connecting two vertices, we infer that h(d;/e) < cz2A for
each ¢ with ¢; € £y. But then it follows from (5.18) that h(d/e") < cs3A. Hence
h(e) < e34A, and so h(d;) < c35A for i = 1,...,n. Regarding (5.19) as a system
of linear equations in x = (1, ..., ;) and using assumption (i), we deduce that

h(z;) <cggA fori=1,...,n. (5.23)

Next condsider the case k > 1 when, by assumption (ii), the graph H(Lo,, . . .,
Lo,) is connected. Then, repeating the arguments of Gy6ry [19] or Evertse and
Gyéry [7], we can infer as in the case k = 1 that (5.23) holds with a c37 in place
of e for i = 1,...,n, whence (3.2) follows. |
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