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Yet another generalization of Sylvester’s theorem
and its application

By SHANTA LAISHRAM (New Delhi), SUDHIR SINGH NGAIRANGBAM (Canchipur)
and RANJIT SINGH MAIBAM (Canchipur)

Abstract. In this paper, we consider Sylvester’s theorem on the largest prime
divisor of a product of consecutive terms of an arithmetic progression, and prove an-
other generalization of this theorem. As an application of this generalization, we provide
an explicit method to find perfect powers in a product of terms of binary recurrence
sequences and associated Lucas sequences whose indices come from consecutive terms
of an arithmetic progression. In particular, we prove explicit results for Fibonacci,
Jacobsthal, Mersenne and associated Lucas sequences.

1. Introduction

Let k be a positive integer. A well-known theorem of SYLVESTER [33] states
that a product of k consecutive terms, each exceeding k, is divisible by a prime
> k. In other words, for positive integers n, k with n > k,

P(n(n+1)---(n+k—1)) >k, (1)
where P(m) denotes the greatest prime factor of a positive integer m with the

convention P(1) = 1. The assumption n > k is necessary, since the assertion is
not valid at n = 1 for any k. Let n,d, k be positive integers. We assume from
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now onward that ged(n,d) = 1 whenever n,d, k is given. For d > 1, SHOREY and
TwDEMAN [31] extended the result of Sylvester by showing that

Pn(n+d)---(n+ (k—1)d) >k for k>3 wunless (n,d, k) =(2,7,3). (2)

Observe that k > 3 is necessary, since n = 1, d = 2" — 1, » > 1 give infinitely
many counterexamples when & = 2. Since a prime > k can divide at most one
term of n+id, 0 < i < k, we obtain from (1) and (2) that for positive n, d, k with
n>kifd=1and k > 3 if d > 1, there is a term n + id with 0 < 7 < k which is
divisible by a prime > k except when (n,d, k) = (2,7,3). We consider a related
question:

Question. Given positive integers n, d, k, does there exist an 7 with 0 <i < k
such that n + id is odd and P(n + id) > k?

In [6], BRAVO, DAS, GUZMAN and LAISHRAM answered this question for
d > 1 and k > 6 by proving the following result.

Theorem A. Letn >1,d > 1 and k > 6 with ged(n,d) = 1. Then there is
at least one i, 0 < i < k with P(n +1id) > k and n + id odd.

We supplement this result and completely answer the above question, by
proving

Theorem 1. Let n,d, k be positive integers with ged(n,d) = 1 and n > k if
d = 1. Then there is an integer i, 0 < i < k with n + id odd and P(n + id) > k
unless

k=1:n even,;

k=2:n=1,d=2%—1for a > 0;
1
k=3:n=1, d:§(3“—1)f0ra>0,
n even, n+d = 3% for a > 0;

1
k=4:n=1, d:§(3a—1)fora>0;

1 1
k=5:n= 5(3‘”1 — 5%, d= 5(51’ —3%) with 3% < 5* < 3% 4 odd,
3 1

n= 5(5*’ =307, d= (3" - 5°) with 3%~ < 5% < 3%, g odd.

We can see easily that these exceptions are necessary. We prove Theorem 1 in
Section 3. As an application of Theorem 1, we prove some results on the product
of terms of a binary recurrence sequence being a perfect power.



Yet another generalization of Sylvester’s theorem 3

Given r,s € Z with ged(r,s) = 1, the binary recurrence sequences U, =
U,(r,s) and V,, = V,,(r, s) given by

Uo = O, U1 = 1, Un+2 = T’Un+1 + SUn7 Vn Z 0
and
Vo=2, Vi=r, Vapo=1Var1+sV,, Vn>0

are called Lucas sequences of the first kind and Lucas sequences of the second
kind, respectively. U, and V,, are given by explicit Binet formulas:

_an_ﬁn

UTL_ 9 Vn: " n?
a—0 ot + 58

2

where o« and g are the roots of the characteristic equation x* — rx — s = 0 of the

binary recurrence sequence. Some of the well-known Lucas sequences are:
e U,(1,1): Fibonacci numbers F,; V,,(1,1): Lucas numbers L,.
e U,(2,1): Pell numbers; V,,(2,1): companion Pell numbers or Pell-Lucas
numbers.
e U,(1,2): Jacobsthal numbers J,; V,,(1,2): Jacobsthal-Lucas numbers J,,.
e U,(3,—2): Mersenne numbers M, = 2" — 1; V,(3,—2): Mersenne-Lucas
numbers §, = 2™ + 1, which include the Fermat numbers.
Given (r, s) with ged(r, s) = 1, the binary recurrence sequences U, (r, s) and
V,(r,s) are said to be non-degenerate if 72 + 4s # 0. From now on, we only
consider non-degenerate binary recurrence sequences. Let S be a sequence of

positive integers. Let k£ > 1 be an integer and P(k) be a function depending on k
and the sequence S. We consider equations

UnUny =+ Upy, = byz (3)
and
an Vn2 Tt Vnk = byé (4)

in positive integer variables, k > 1, n; € S, 1 <i < k,b,y, £ > 1 with n1 < ng <
-+ < mg, and b is an (" power free positive integer with P(b) < P(k).

For a given b, it follows from results proved independently by PETHO [25] and
SHOREY and STEWART [30] that either one of equations (3) and (4) with k =1 or
k = 2 implies that n, d, y and m are bounded by an effectively computable number
depending only on the sequence and b. In fact, the preceding assertion with b
composed only of primes from a given finite set follows from the result of Petho.
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In [9], BuGEAUD, Luca, MIGNOTTE and SIKSEK considered equation (3) with b
composed of fixed set of primes and k < ¢ with ¢ prime. In [22], LuCA and SHOREY
considered (3) and (4) with S = {n+1id : i > 0}, (n,d) = 1 and P(k) < 2k to
show that max{n,d, k,b,y,¢} is bounded by an effectively computable number
depending only on r, s and k. We refer to [9], [22] and [23] for more results in this
direction.

On the lines of their ideas, we prove the following result (Theorem 2) as
an application of Theorem 1.

Let p be a prime such that p | U, (respectively V,,), but p { (r?+4s)Uy -+ U, 1
(respectively (72 4+ 4s)Vy -+ V,_1). Then p is said to be a primitive prime divisor
of Uy, (respectively V,,). It is easy to see that primitive divisors of V;, are precisely
those primitive prime divisors of Us,. It is known that primitive divisors always
exist except for a finite number of n which are explicitly known (see [5]). In fact,
primitive prime divisors always exist for U,, when n > 30 and for V;, when n > 15.
Only odd prime powers @) > 3 for which Ug does not have a primitive prime
divisor for some sequence U, are 5,7,13 and the complete list of such sequences
are given in the following table:

Q (r,s) Ug

5 | (1,1), (1,-2), (2,-11), (1,-3), (1,-4), (12,-55), (12,-377) | Us=5 or Us=+1

7 (1,-2), (1,-5) Ur=T7or Uy=1

13 (1,—2) U13:45:32 XD
Table 1

Only odd prime powers () for which Vy does not have a primitive prime
divisor for some sequence V,, are 5 and 9 and the complete list of such sequences
are given in the following table:

Q (1,5, V)
51(2,-3;2),(5,—T,; 752),(5,718;722 - 5)
9 (1,-2); -5)

Table 2

We note here that Vog has primitive divisors for each odd prime power ) > 3. Let
./\/é = {(r,s) : Ug(r, s) has no primitive prime divisor}
and

Né = {(r,s) : Vo(r, s) has no primitive prime divisor}.
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Then N} =0 for Q > 5, Q € {5,7,13} and Ngg =0 for @ >5, Q¢ {5,9}. Let

UPPY :=UYP°% (1, 8) := {(m, £) : Uy, =yt for some y; > 1},
VPPOW = PPV (1 ) :={(m, £) : Vi, =11y4 for some yp > 1 and 71 with p|r; = p|r}.

It follows from a result of SHOREY and STEWART [30] that both UP°" and VPov
are finite and effectively computable depending only on r,s. As an application
of Theorem 1, we prove the following result which gives finiteness of solutions of
(3) and (4). In fact, our method gives a way for explicitly finding the solutions
of (3) and (4) when UP°" and VP°" are given explicitly.

Theorem 2. Suppose there is an integer i, 0 < i < k with a prime @) > 5,
Q| ni, Qfnj for1 <j <k, j#i Assume that

2Q —1>P(k) and p# +l(mod 2Q) if p|n,.

(i) Suppose Ug(r,s) ¢ N§ if Q € {5,7,13}. Then equation (3) implies (Q*, () €
urew for each 1 < i < ordg(n;). In particular, if (Q,£) ¢ UP°™, then
equation (3) has no solution.

(ii) Suppose Vg(r,s) & Né if Q = 5. Further let n; be an odd integer. Then
equation (4) implies (Q',£) € VP°¥ for each 1 < i < ordg(n;). In particular,
if (@, £) ¢ VP then equation (4) has no solution.

We prove Theorem 2 in Section 4.

We now take n;, = n+ (i —1)d for 1 < ¢ < k for (n,d) = 1. In [22],
Equation (3) with b = 1 was explicitly solved when U,, = F,, and U,, = ”::11.
In [6] and [13, Theorem 6.1], equations (3) and (4) were explicitly solved for Pell

and Pell-Lucas sequences with P(k) = f(k,d) given by

2k, ifd>lord=1, n>k,
f(k,d) = . (5)
k, ifd=1and n<k.

Also equations of the form (3) and (4) for Balancing and Lucas Balancing num-
bers were considered in [13]. In this paper, we explicitly solve equations (3)
and (4) with P(k) = f(k,d) given by (5) for the Fibonacci sequence F),, Lucas
sequence L,,, Jacobsthal sequence J,,, Jacobsthal-Lucas sequence J,, Mersenne
numbers M,, and Mersenne—Lucas numbers §,, = 2" + 1. Let U,, = F,, or J,, or
M,,and V,, = L, or J, or §,. We prove
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Theorem 3. Let n,d, k,y,{ be positive integers with ged(n,d) =1, y > 1,
¢ > 1, b is " power free and P(b) < f(k,d) given by (5).
(a) The equation

UnUn+d te U7z+(k—1)d = byf

(i) has the only solution Fg = Fy Fg = 23, F1o = F1 Fio = 122 when U,, = F,,,
the Fibonacci sequence;
(ii) has no solution when U,, = J,,, the Jacobsthal sequence;
(iii) has no solution when U,, = M, the Mersenne numbers.
(b) The equation

VnVn+d T Vn+(k71)d = byé

(i) has the only solution Lz = LyL3 = 2% when V,, = L,,, the Lucas se-
quence;

(ii) has no solution when V,, = J,, the Jacobsthal-Lucas sequence;

(iii) has the only solution §3 = F133 = 3° when V,, = §,, the Mersenne—
Lucas sequences.

We prove Theorem 3 in Section 5. The preliminaries and lemmas for the
proof of the above theorems are given in Section 2.

2. Notations and preliminaries

For any integer n > 1, we denote w(n) the number of distinct prime divisors
of n and we put w(1) = 0. For a non-zero integer n and a prime p, we write v,(n)
for the highest power of p dividing n.
The binary recurrence sequence U, (r,s) and V,,(r,s) are given by explicit
a” — 3"
Binet formulas U, (r, s) = ot pn and V,,(r,s) =a™ + ™ ¥Yn >0, where o and
o —

B

[ are roots of the characteristic equation x* — rz — s = 0 which name such that
a>fifa,p €R, and Im(a) > 0, Im(5) < 0if «, 5 are complex. We list here «, 5
and the first few elements of the binary recurrence sequence we are considering.

2
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Sequence o B8 First few terms
Fibonacci sequence, F), %(1 +/5) %( —+/5) 0,1,1,2,3,5,8,13,...
Lucas sequence, L, 1(1+V56) | 1(1—+5) | 2,1,34,7,11,18,29,...
Jacobsthal sequence, J,, 2 -1 0,1,1,3,5,11,21,43,. ..
Jacobsthal-Lucas sequence, J, 2 -1 2,1,5,7,17,31,65,127,. ..
Mersenne sequence, M, 2 1 0,1,3,7,15,31,63,127,. ..
Mersenne-Lucas sequence, §y, 2 1 2,3,5,9,17,33,65,129.. ..

Table 3

We now list some well-known properties for the binary recurrence sequences
which will be used frequently.

Lemma 2.1. For the sequences (Uy)22, and (V,,)5%,, we have
(1) Uzn = UpVi;
(ii) ged(Um,Un) = Ugcd(m,n);
(i) ged(Up, Upmn/U,) divides m;
(iv) for n > 3, a primitive prime divisor p of U,, is congruent to +1 modulo n;
)

(v) n > 2, a primitive prime divisor p of V,, is congruent to +1 modulo 2n.
As a consequence of Lemma 2.1, we have

Corollary 2.2. Let q be an odd prime and k > 0 be any integer. Let p be
an odd prime.

(i) Let (r,s) ¢ Nj. Then for p | Uy, we have p = +1 modulo 2q. In particular,

p>2q—1.

(ii) Let ¢ € {5,7} and (r,s) € N}. Then if p | Uy with k > 1, we have either
p=q or p = =+1 modulo 2¢%. In particular, p=q or p > 2¢> — 1.

(iii) Let ¢ =13 and (r,s) = (1,—2). Then if p | Uysx with k > 1, we have either
p € {3,5} or p= 41 modulo 2 - 132.

(iv) Let (r,s) ¢ ij- for 1 <i < k. Then for p | Vx and p { r, we have p = +1
modulo 2q. In particular, p > 2q— 1 if p{r.

(v) Let ¢ = 5 and (r,s) € N2. Then if p | Vsx with k > 1, we have either
p € {2,5} or p= 41 modulo 2 - 52. In particular, p € {2,5} or p > 101.

(vi) Let ¢ > 3. For p | Vogr and p 1 2rs(r? + 2s), we have p = £1 modulo 4q.
In particular, p > 4q — 1 if p{ 2rs(r? + 2s).
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PROOF. By Lemma 2.1 (ii), ged(Ugs, Upn) = Uy = 1if ¢ n, and ged(Ugs, Uy )
= Up for every 1 < b < k. Hence p | Uy implies either p is a primitive prime
divisor of Uy or a primitive prime divisor of Uy for some 1 < b < k if (r,s) ¢ N
Hence for (r,s) ¢ N, we have p = +1 modulo ¢* for some 1 < i < k implying
p = £1 modulo 2¢*, since p + 1 is even. Thus for (r,s) ¢ N, we have p = +1
modulo 2¢* implying p = 41 modulo 2¢q. This proves the assertion (i). The
assertions (ii) and (iii) follow by using Table 1.

For positive integers m and n, let ¢ = ged(m,n). Then we observe from
Lemma 2.1 (i) and (ii) that

U2 ged(m,n) _ %

=V,
Uq Uy !

ng(Vm, Vn) | ng <U27n U2'IL>

U, ' U,

Thus if p|V,x is not a primitive prime divisor of Vi x, then p|V} or p|V,: for some
1<i<k.

Let (r,s) ¢ ./\/q% for 1 <4 < k. Then each of V,; has a primitive prime divisor.
Let p | Vge. Then either p is a primitive prime divisor of Vix or p|Vy =7 or p is
a primitive prime divisor of Vi for some 1 < i < k. Hence the assertion (iv)
follows from Lemma 2.1 (v). The assertion (v) follows by using Table 2.

For the assertion (vi), we observe that if p|V,,x is not a primitive prime
divisor of Vagr, then p|Vy or p|Va or p|Vgi or p|Va,i for some 1 < i < k. From the
equality Va,, = V.2 + 2(—s)" and Vs Ve if i < k, we obtain that if p|V5,x and
p|Vyi for some 1 < i < k, then p|2s. Thus every prime divisor of V,,» is either

a primitive prime divisor of Vs, for some 1 <i <k or p|Vi =17 or p|Vo = r? + 2s
or p|2s. Hence the assertion (vi) follows from Lemma 2.1 (v). O

In the next lemma, we derive some algebraic properties for the sequences.

Lemma 2.3. Let m | n and - is odd. If a prime p | gcd (Vm, “//—"), then
Pl

PRroOOF. Recall that U,, and V,, are given by U,, = a
where o and /3 are the roots of the characteristic equation 2 — rz — s = 0 of the

sequence. Let p|V,,. Then o™ = —p™ (mod p). If n = mk with k odd, we have

Vn 7(am)k+(5m)k7 myk—1 m\k—2 m m\k—1
E_W_(a Y= (@MY - (BT

= ko™ Y = kg™ (mod p)

Consequently, p? | k2(af)™* =1 which implies that p | k, as desired. O
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The following result is an easy consequence of Lemma 2.3.
Corollary 2.4. Suppose that m | n and 2 is odd. If P(}*) < p for any odd
prime p dividing V,,, then ged (Vm, \‘,/—”) =1.

The following result is on the Nagell-Ljunggren equation, see [2].

Lemma 2.5. The solutions of the Nagell-Ljunggren equation

™ =1 .
= y? in integers |x| > 1, |y| > 1, n>2, ¢ >2
T —
other than
35 -1 741 183 — 1 (—19)3 — 1
=11°, —— =20%, =7 and ~——— =7
3-1 © 71 181 R (ST

satisfy that
e ¢ >3 isodd;
e the least prime divisor p of n satisfies p > 5;

e |z| > 10* and z has a prime divisor p = 1(mod q).
Next we consider a Diophantine equation.

Lemma 2.6. The equation 2" + 1 = 3%y’ in positive integers y > 1, £ > 1
and o > 0 has the only solution given by 23 + 1 = 32.

PrOOF. It follows from [1, Corollary 1.4] that there is no solution for the
given equation when n is even. Thus n is odd, and we have 2" + 1 = 3%y by
taking modulo 3. Suppose a = 1. Then

f_ 241 (=21
241  (—2)—1"

which has no solution by Lemma 2.5. Thus o > 2. Then 2™ + 1 = 0 modulo 9,
implying 3|n. Write n = 3°ny with 34 ny. Then 3||(2" + 1) and

2" 4+ 1
T2m 4

, . 2m41l (=2m -1,
38 = 1 1 = = -
) | ) mplying 2 I 1 (_2) 1 Y1

ged (2”1 +1

for some y;. By Lemma 2.5, this gives n; = y; = 1 or n = 3°. Then 23" +1 = 3%y*.
There is no solution with e = 1 asy > 1. Thus e > 2, implying 19](23° +1)|(2"+1).
However, 192 1 (23° +1), and hence there are no other solution of the equation. [
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We now state some results on the almost perfect powers in recurrence
sequences.

Lemma 2.7. Let n,y,¢,u,v be positive integers with ¢ > 1. Then
) Fo=y'=n=1,26,12.
) Fp=2"yf = F3=2-1¢, Fg =23, [p =232,
) F=3%f= F; =31, Fjp =32 x 24,
) F, =2u3%y¢ = Flp = 3% x 2%
) Lp=y‘*= L, =1¢, L3 =22
) L, =2%"= L3 =2% Lg=2x 3%
) Ly =3%"= Ly =3-1°%
) L, =2%3"y" = Lg =2 x 32.

(ix) Jp=y' = Jy = Jp = 1%
) Jp =3%t = J3 =3 1¢
)
)
)
)
)
)

(xi) 3o =9" =31 = 1%

(xii) J, = 3%y’ = no solution.
(xiii) M, =vy" = M; = 1°.
(xiv) M, = 3%y’ = My =3-1°.

PRrROOF. The results (i) and (v) are due to [8]. The results (ii), (iii), (vi) are
in [7], (vii) is contained in [10], and (iv) follows from [9, Theorem 4].

For the assertion (viii), we first observe that 2||n, since 3|L,, and also 3|n,
since 2|L,,. We have a solution at n = 6. Suppose n = 2 - 3* for some z > 1.
Then Lig|L,. Since 107||L1s and using Lemma 2.3, we obtain that v497(Ly) =
v107(L1s) = 1, implying the equation has no solution. Thus P(n) = @ > 3. Write
n = 2Q°ng, where Q) f ng and P(n2) < Q. By Corollary 2.2 (vi) and r = s = 1,
we have that p|Loge implies p € {2,3} or p > 4Q — 1 > P(ngy). This, together

with 2u3vy* = L,, = Loge nge and Lemma 2.3, implies Lage = 2113v1y¢ for some

u1,v1,y1 > 1. Since 312Q°, we have 2 { Lage, and hence Lage = 3"1yt. By (vii),
this is not possible, and hence the assertion (viii) is valid.

For the remaining assertions, we need to consider the equation 2" +1 = 3%y*
for some integers n, c, y, £. By Lemma 2.6, we note that the only solution of this
equation is 23 + 1 = 32. Hence the assertions follow. ([

Now we state a result due to LAISHRAM and SHOREY [20, Lemma 4].
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Lemma 2.8. Let § € {1,—1}. The solutions of
(i) 2% —3¥5% =9,
(ii) 3* —2¥5* =g,
(iii) 5* —2Y3* =4
in integers x > 0, y > 0, z > 0 are given by

(4,1,1,1), for (i),
(,9,2,0) = § (4,4,1,1),(2,1,1,-1), for (ii),
(2,3,1,1),(1,1,1, 1), for (iii),
respectively.
The following result is contained in [21, Theorem 3].

Lemma 2.9. Let k£ > 2 and n odd with n > 2k. Then

k-1
P <H(n + 2@')) > 3.5k
i=0
unless (n,k) € {(5,2),(7,2),(25,2),(243,2),(9,4), (13,5), (17,6), (15,7), (21, 8),
(19,9)}.

We also need the following result on intervals containing primes, see
[6, Lemma 2.8].

Lemma 2.10. Let z > 10 be an integer. Then the interval (2x/3, x| contains
a prime.

3. Proof of Theorem 1

For positive integers n,d, k, recall that A = A(n,d, k) = n(n+d)---(n +
(k—1)d).

Let k = 2. Here A = n(n+d). If nis even, then n+d is odd and P(n+d) > 2.
If nisodd and n > 1, then P(n) > 2. If n = 1, then P(1+d) > 2 unlessd = 2" —1
for some integer r > 1.

For k=3, A=n(n+d)(n+2d). f n =1 and d is even, then 1 +d, 1+ 2d
are odd integers. So at least one of them will have a prime factor greater than 3.
If d is odd, then 1+ 2d is odd and P(1 + 2d) > 3 for d # 1(3" — 1) for some
integer » > 1. If n > 1 is odd, then n 4 2d is also odd. So either P(n) > 3
or P(n+2d) > 3. If n is even, then n + d is odd. Hence P(n + d) > k unless
d = 3" —n for some r > 1.
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For k =4, A =n(n+d)(n+2d)(n+ 3d). If n is even, then n+d and n + 3d
are distinct odd numbers > 1, and so at least one of them will have a prime factor
greater than 4. If n > 1 is odd, then n and n 4 2d are distinct odd integers, and
hence one of them will have a prime factor greater than 4. If n = 1 and d is an
odd integer, then P(1 + 2d) > 4 except when 1 + 2d is a power of 3, i.e., when
d= (3" —1) for some r > 1.

For k=5, A =n(n+d)(n+2d)(n+3d)(n+4d). Let d be even. Then n+d,
n+2d, n+ 3d, n+ 4d all are distinct odd integers and since 3 can divide at most
two terms and 5 can divide at most 1 term, there will be at least term which have
a prime divisor > 5. Thus we take d odd. Let n be odd. Then n,n + 2d,n + 4d
are distinct odd integers and 3 and 5 can divide at most one term each among
them. Hence one of the term will have a prime divisor > 5 except when n = 1
and

14+2d=3" and 1+4d=5"=5"-2.3"=-1

or1+2d=5" and 1+4d=3*=3*—2.5"=—1.

By Lemma 2.8, we get the solution 5 — 2 -3 = 1 in the first case, which gives
d = 1, and the solution 32 —2-5 = —1 in the latter case, which gives d = 2, which
is not possible since d is odd. Thus (n,d) = (1,1) is one of the exceptional case.

Let n be even. Then n + d and n + 3d are odd terms and both have prime
divisors < 5 only when

n+d=3% and n+3d=5" or n+d=5" and n+3d=3"

The first case gives n = $(3%*1 —5%), d = 1(5* — 3%) with a odd as n is even, and
the latter case gives n = (5 —3971), d = 1(3® — 5°) with a odd as n is even.

Let £ > 6. For d > 1, we have the assertion from Theorem A. Hence we now
consider d = 1. For n + k < 11, we check that the assertion of Theorem 1 is
true. Hence we suppose that n + k > 12. Let n < 2k. Then %(n +k-1)>n
if n <2k—1,and [2(n+k—1)] =nif n € {2k —1,2k}. By Lemma 2.10 and
n+k > 12, the interval (%(n +k—1),n+k — 1] contains a prime which is of the
form n + ¢ for some some i, 0 < ¢ < k. Then n + ¢ is odd and further n +1¢ > k,
since n > k, implying the assertion of the Theorem.

Thus n > 2k. Then the odd terms of among {n,n+d,...,n+ (k—1)d} are
given by

kE—1
n,n+2,...,n+2{2} if n is odd,

k=21 . .
n+1l,n+3,....,n+14+2 5 if n is even,
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and hence there are at least 14 [%52] = [£] consecutive odd terms. Since k > 6,
(] > 3. Let S = {(5,2), (7,2), (25,2), (243,2), (9,4), (13,5), (17,6), (15,7), (21,8),
(19,9)}. For (n,[%5t] 4+ 1) € S if n is odd, and (n + 1,[£]) € S if n is even,
we check that here is an odd term n + ¢ for which P(n + i) > k. Thus we
now suppose that (n,[%51] + 1) ¢ S if n is odd and (n + 1,[£]) ¢ S if n is
even. Then by Lemma 2.9, the greatest prime factor of these consecutive odd
terms is at least 3.5[%] > 3.5(%;1) > k, and hence there is an odd term n + i

for which P(n +14) > k. O

4. Proof of Theorem 2

(i) Write n; = Q° with Q {¢t. For any b with 1 < b < e, put @, = Q°,
and rewrite equation (3) as

Up,
Uqu - 11U, =0y".
Qv i
By Corollary 2.2 (i), we see that p|Ug, = p = +1 modulo 2@Q), and hence p { Qt
by our assumption. Further, p > 2Q —1 > P(k) > P(b). We now show that Ug,
is coprime to the other factors on the left-hand side of the above equation.
If p | (UQb, %), then p gb = Q°’t. This with p  Qt for p|Ug, implies
b
Un,
ged (UQb, U—Qb) =1.
Also ged(Ug,, Un;) = Ugea(@y,n;) = Ur = 1 for j # i by our assumption.

Hence Ug, = yf for some |y. Thus Q, € U for each 1 < b < e. In particular,
if Q¢ ¢ U*, then equation (3) does not have solution.

(ii) Let n; be an odd integer. We write n; = Q°t with Q {t. For any b with
1 <b<e, put Q, = Q° and we rewrite equation (4) as

: HVn]. = by’.

b i

VQb V

Vi

Q
Let p | Vg,, p1r. From Corollary 2.2 (ii), we have p = +1 modulo 2Q). In par-
ticular, pf Qt and p > 2Q — 1 > P(k) > P(b). We show that the common prime
divisors of Vi, and the other factors on the left-hand side of the above equation
are prime divisors of 7.

We have from ged(Vg,,Va,) | Vi = r. Also from ged (VQM%) n and
b

Qo
p 1 Qt for p t r that ged (VQb, %) = 1/, where p|r’ implies p|r. Hence we get
b
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Vo, = mpys for some integer yply and Hp | Hp. Thus Q° = Q, € V* for
plre plr
each 1 < b < e. In particular, if Q¢ ¢ V*, then equation (4) does not have

solution. O

5. Proof of Theorem 3

For the sequences we consider in Theorem 3, observe that ./\fq1 = qu = () for
primes and powers of primes > 5 except for the Fibonacci sequence (F},) where
F’5 has no primitive prime divisor. By Corollary 2.2 (ii), we have that p|Fse with
e > 2 implies either p = 5 or p = +1(mod 50), which gives p > 101.

(a) From Lemma 2.7, we can assume that k > 2. Let k = 2. Then equation (3)
becomes U, U, 14 = by’ with P(b) < 3. Since (U,,Un+q) = 1, we have U,, = by}
and U, 14 = bays for some by, by with P(b1by) < 3. By Lemma 2.7 (i)-(iv) and
using (n,n +d) = 1, we get n = 1, and further n + d € {2,3,4,6,12}, {3}, {2}
according as U, = F,, J, or M,, respectively. We check for solutions given by
these values.

We now take kK > 3. Let d = 1 and n < k. First we take all pairs (n, k)
with n + k < 11, and check for the solutions of (3), and we find that there are
no solutions. Thus we take n + %k > 11. Then n+ k —1 > 10. Let Q = P(n(n +
1)---(n+k—1)). Sincen+k—1> w > n, we obtain from Lemma 2.10
thatQ:n+io>wz ?orQZ?. Further, 2Q—1>%—12k,
since n > 1 and k > 3. All the assumptions of Theorem 2 are satisfied, since
Q tn+1i for i # ip, and hence by Theorem 2 and Lemma 2.7, we find that there
are no solutions.

Therefore, we take either d = 1, n > k or d > 1. We check that there are
no solutions when (n,d, k) = (2,7, 3), and hence assume that (n,d, k) # (2,7,3).
Let @ = P(n(n+d)---(n+(k—1)d)). By (1) and (2), we have Q > k, and hence
Q@ > 5. Since a prime > k divide at most one term of n(n +d)--- (n+ (k — 1)d),
the assumptions of Theorem 2 are satisfied, and hence there are no solutions
for (3), except possibly when U,, = F,, and Q = 5. So we consider U,, = F,
and assume that @ = 5. Then k& < 4. Observe from (n + id,n + jd)|((i — j)
that ged(Fyid, Fryja)|Fi—j) < F3 = 2. Since < 5, at least one of the terms is
divisible by m with m € {9, 10,15, 16,24}. Choose m € {9, 10, 15,16, 24} smallest
such that m|(n+id) for some 0 < ¢ < k. Let p be a primitive prime divisor of Fy,.
Observe that all primitive divisors > 7 and divide to first power in F,, for m €
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{9,10,15,16,24}. Then from ged (Fm, I;:) [t and ged(Foyid, Frtja)|Flimj) < 2,
we find that

k—1
Vp (H F”"‘id) =vp(Fn) = 1,
i=0

and hence there is no solution for (3). O

(b) By Lemma 2.7, we may assume that k > 2. Let k = 2. Then equation (4)
becomes

Vi Vnya = by® with P(b) < 3.

Since (Vy, Via)|Vi = 7, we have V,, = biy{ and V., q = by for some by, bo
with P(b1b2) < 3. By Lemma 2.7 (v)—(viii), (xi), (xii), (xv), (xvi) and using
(n,n+d) =1, we get n =1, and further n+d € {3,6} if V,, = L,,, and n+d = 3
if V,, = §,, giving the solutions L1Ls = 2%, LiLg = 2- 3% and §:183 = 3°.

We now take kK > 3. Let d = 1 and n < k. First we take all pairs (n, k)
with n + k < 11 and check for the solutions of (4), and we find that there are no
solutions. Thus we take n +k > 11. Then n +k —1 > 10. Let Q@ = P(n(n +
1)---(n+k—1)). Sincen+k—1> M > n, we obtain from Lemma 2.10
thatQ=n+io>w2?orQZ7. Further,ZQ—l>W—12k,
since n > 1 and k > 3. All the assumptions of Theorem 2 are satisfied, since
Qtn+ifori#iyand also n+ iy = Q is odd. Hence by Theorem 2 (ii) and
Lemma 2.7, we find that there are no solutions.

Therefore, we take either d = 1, n > k or d > 1. We check that there are
no solutions when (n,d, k) = (2,7, 3), and hence assume that (n,d, k) # (2,7, 3).
The assertion for k > 6 follows from Theorem 2 (ii) and Theorem 1. Thus we
now take k € {3,4,5}. Further by Theorem 2 (ii) and Theorem 1, we may
restrict those pairs (n,d, k) listed as exceptions in Theorem 1. Let k € {3,4}.
There is a term n + iod = 3% for some iy € {1,2}. We may assume that a > 2
as otherwise n + igd = 3, and we check that for such n and d, there are no
solutions. From ged(Vy,yia, Ve )|Vi = 1, we have Vza = r1byy! for some 71, b1,y
with P(by) < f(k,d),y1|y and p|r; implies p|r. Let p be a primitive root of Vjy.
We find that p > 7 > P(rb1) and v,(Vs) = 1. On the other hand, we observe

from Lemma 2.3 that p { ¥22

-, since p > 7. Hence vp(Vaa) = 1,(Vy) = 1, implying
Vaa = r1b1y{ has solution. Thus the original equation has no solution.

Let kK = 5. There is a term n + iod = 5° for some iy € {1,3}. From
ged(Vigia, Vap) Vi = 1, we have Vi = b1y} for some r1,by,y1 with P(by) <
10,y1]y and p|r; implies p|r. Let p be a primitive root of V5. We find that
p > 11 > P(r1b1) and v,(V5) = 1. On the other hand, we observe from Lemma 2.3
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that p ¢ “/35", since p > 5. Hence v,(Vap) = v,(V5) = 1, implying Vi = r1b1y} has
solution. Thus the assertion of Theorem 3(b) follows. O
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