
Publ. Math. Debrecen

95/1-2 (2019), 1–17

DOI: 10.5486/PMD.2019.8217

Yet another generalization of Sylvester’s theorem
and its application

By SHANTA LAISHRAM (New Delhi), SUDHIR SINGH NGAIRANGBAM (Canchipur)

and RANJIT SINGH MAIBAM (Canchipur)

Abstract. In this paper, we consider Sylvester’s theorem on the largest prime

divisor of a product of consecutive terms of an arithmetic progression, and prove an-

other generalization of this theorem. As an application of this generalization, we provide

an explicit method to find perfect powers in a product of terms of binary recurrence

sequences and associated Lucas sequences whose indices come from consecutive terms

of an arithmetic progression. In particular, we prove explicit results for Fibonacci,

Jacobsthal, Mersenne and associated Lucas sequences.

1. Introduction

Let k be a positive integer. A well-known theorem of Sylvester [33] states

that a product of k consecutive terms, each exceeding k, is divisible by a prime

> k. In other words, for positive integers n, k with n > k,

P (n(n+ 1) · · · (n+ k − 1)) > k, (1)

where P (m) denotes the greatest prime factor of a positive integer m with the

convention P (1) = 1. The assumption n > k is necessary, since the assertion is

not valid at n = 1 for any k. Let n, d, k be positive integers. We assume from
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now onward that gcd(n, d) = 1 whenever n, d, k is given. For d > 1, Shorey and

Tijdeman [31] extended the result of Sylvester by showing that

P (n(n+ d) · · · (n+ (k − 1)d) > k for k ≥ 3 unless (n, d, k) = (2, 7, 3). (2)

Observe that k ≥ 3 is necessary, since n = 1, d = 2r − 1, r ≥ 1 give infinitely

many counterexamples when k = 2. Since a prime > k can divide at most one

term of n+ id, 0 ≤ i < k, we obtain from (1) and (2) that for positive n, d, k with

n > k if d = 1 and k ≥ 3 if d > 1, there is a term n+ id with 0 ≤ i < k which is

divisible by a prime > k except when (n, d, k) = (2, 7, 3). We consider a related

question:

Question. Given positive integers n, d, k, does there exist an i with 0 ≤ i < k

such that n+ id is odd and P (n+ id) > k?

In [6], Bravo, Das, Guzman and Laishram answered this question for

d > 1 and k ≥ 6 by proving the following result.

Theorem A. Let n ≥ 1, d > 1 and k ≥ 6 with gcd(n, d) = 1. Then there is

at least one i, 0 ≤ i < k with P (n+ id) > k and n+ id odd.

We supplement this result and completely answer the above question, by

proving

Theorem 1. Let n, d, k be positive integers with gcd(n, d) = 1 and n > k if

d = 1. Then there is an integer i, 0 ≤ i < k with n + id odd and P (n + id) > k

unless

k = 1 : n even;

k = 2 : n = 1, d = 2a − 1 for a ≥ 0;

k = 3 : n = 1, d =
1

2
(3a − 1) for a > 0,

n even, n+ d = 3a for a > 0;

k = 4 : n = 1, d =
1

2
(3a − 1) for a > 0;

k = 5 : n =
1

2
(3a+1 − 5b), d =

1

2
(5b − 3a) with 3a < 5b < 3a+1, a odd,

n =
3

2
(5b − 3a−1), d =

1

2
(3a − 5b) with 3a−1 < 5b < 3a, a odd.

We can see easily that these exceptions are necessary. We prove Theorem 1 in

Section 3. As an application of Theorem 1, we prove some results on the product

of terms of a binary recurrence sequence being a perfect power.
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Given r, s ∈ Z with gcd(r, s) = 1, the binary recurrence sequences Un =

Un(r, s) and Vn = Vn(r, s) given by

U0 = 0, U1 = 1, Un+2 = rUn+1 + sUn, ∀n ≥ 0

and

V0 = 2, V1 = r, Vn+2 = rVn+1 + sVn, ∀n ≥ 0

are called Lucas sequences of the first kind and Lucas sequences of the second

kind, respectively. Un and Vn are given by explicit Binet formulas:

Un =
αn − βn

α− β
, Vn = αn + βn,

where α and β are the roots of the characteristic equation x2 − rx− s = 0 of the

binary recurrence sequence. Some of the well-known Lucas sequences are:

• Un(1, 1): Fibonacci numbers Fn; Vn(1, 1): Lucas numbers Ln.

• Un(2, 1): Pell numbers; Vn(2, 1): companion Pell numbers or Pell–Lucas

numbers.

• Un(1, 2): Jacobsthal numbers Jn; Vn(1, 2): Jacobsthal–Lucas numbers Jn.

• Un(3,−2): Mersenne numbers Mn = 2n − 1; Vn(3,−2): Mersenne–Lucas

numbers Fn = 2n + 1, which include the Fermat numbers.

Given (r, s) with gcd(r, s) = 1, the binary recurrence sequences Un(r, s) and

Vn(r, s) are said to be non-degenerate if r2 + 4s 6= 0. From now on, we only

consider non-degenerate binary recurrence sequences. Let S be a sequence of

positive integers. Let k ≥ 1 be an integer and P(k) be a function depending on k

and the sequence S. We consider equations

Un1
Un2
· · ·Unk

= by` (3)

and

Vn1Vn2 · · ·Vnk
= by` (4)

in positive integer variables, k ≥ 1, ni ∈ S, 1 ≤ i ≤ k, b, y, ` > 1 with n1 < n2 <

· · · < nk, and b is an `th power free positive integer with P (b) ≤ P(k).

For a given b, it follows from results proved independently by Pethő [25] and

Shorey and Stewart [30] that either one of equations (3) and (4) with k = 1 or

k = 2 implies that n, d, y and m are bounded by an effectively computable number

depending only on the sequence and b. In fact, the preceding assertion with b

composed only of primes from a given finite set follows from the result of Pethő.
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In [9], Bugeaud, Luca, Mignotte and Siksek considered equation (3) with b

composed of fixed set of primes and k < ` with ` prime. In [22], Luca and Shorey

considered (3) and (4) with S = {n + id : i ≥ 0}, (n, d) = 1 and P(k) ≤ 2k to

show that max{n, d, k, b, y, `} is bounded by an effectively computable number

depending only on r, s and k. We refer to [9], [22] and [23] for more results in this

direction.

On the lines of their ideas, we prove the following result (Theorem 2) as

an application of Theorem 1.

Let p be a prime such that p | Un(respectively Vn), but p - (r2+4s)U1 · · ·Un−1
(respectively (r2 + 4s)V1 · · ·Vn−1). Then p is said to be a primitive prime divisor

of Un(respectively Vn). It is easy to see that primitive divisors of Vn are precisely

those primitive prime divisors of U2n. It is known that primitive divisors always

exist except for a finite number of n which are explicitly known (see [5]). In fact,

primitive prime divisors always exist for Un when n > 30 and for Vn when n > 15.

Only odd prime powers Q > 3 for which UQ does not have a primitive prime

divisor for some sequence Un are 5, 7, 13 and the complete list of such sequences

are given in the following table:

Q (r, s) UQ
5 (1,1), (1,-2), (2,-11), (1,-3), (1,-4), (12,-55), (12,-377) U5 =5 or U5 =±1

7 (1,-2), (1,-5) U7 =7 or U7 =1

13 (1,-2) U13 =45=32 × 5

Table 1

Only odd prime powers Q for which VQ does not have a primitive prime

divisor for some sequence Vn are 5 and 9 and the complete list of such sequences

are given in the following table:

Q (r, s;VQ)

5 (2,−3; 2), (5,−7;−52), (5,−18;−22 · 5)

9 (1,-2); -5)

Table 2

We note here that V2Q has primitive divisors for each odd prime power Q > 3. Let

N 1
Q = {(r, s) : UQ(r, s) has no primitive prime divisor}

and

N 2
Q = {(r, s) : VQ(r, s) has no primitive prime divisor}.
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Then N 1
Q = ∅ for Q ≥ 5, Q 6∈ {5, 7, 13} and N 2

Q = ∅ for Q ≥ 5, Q 6∈ {5, 9}. Let

Upow :=Upow(r, s) := {(m, `) : Um = y`1 for some y1 > 1},

Vpow :=Vpow(r, s) :={(m, `) : Vm=r1y
`
2 for some y2 > 1 and r1 with p|r1 ⇒ p|r}.

It follows from a result of Shorey and Stewart [30] that both Upow and Vpow
are finite and effectively computable depending only on r, s. As an application

of Theorem 1, we prove the following result which gives finiteness of solutions of

(3) and (4). In fact, our method gives a way for explicitly finding the solutions

of (3) and (4) when Upow and Vpow are given explicitly.

Theorem 2. Suppose there is an integer i, 0 ≤ i < k with a prime Q ≥ 5,

Q | ni, Q - nj for 1 ≤ j ≤ k, j 6= i. Assume that

2Q− 1 > P(k) and p 6≡ ±1(mod 2Q) if p|ni.

(i) Suppose UQ(r, s) 6∈ N 1
Q if Q ∈ {5, 7, 13}. Then equation (3) implies (Qi, `) ∈

Upow for each 1 ≤ i ≤ ordQ(ni). In particular, if (Q, `) /∈ Upow, then

equation (3) has no solution.

(ii) Suppose VQ(r, s) 6∈ N 2
Q if Q = 5. Further let ni be an odd integer. Then

equation (4) implies (Qi, `) ∈ Vpow for each 1 ≤ i ≤ ordQ(ni). In particular,

if (Q, `) /∈ Vpow, then equation (4) has no solution.

We prove Theorem 2 in Section 4.

We now take ni = n + (i − 1)d for 1 ≤ i ≤ k for (n, d) = 1. In [22],

Equation (3) with b = 1 was explicitly solved when Un = Fn and Un = xn−1
x−1 .

In [6] and [13, Theorem 6.1], equations (3) and (4) were explicitly solved for Pell

and Pell–Lucas sequences with P(k) = f(k, d) given by

f(k, d) =

{
2k, if d > 1 or d = 1, n > k,

k, if d = 1 and n ≤ k.
(5)

Also equations of the form (3) and (4) for Balancing and Lucas Balancing num-

bers were considered in [13]. In this paper, we explicitly solve equations (3)

and (4) with P(k) = f(k, d) given by (5) for the Fibonacci sequence Fn, Lucas

sequence Ln, Jacobsthal sequence Jn, Jacobsthal–Lucas sequence Jn, Mersenne

numbers Mn and Mersenne–Lucas numbers Fn = 2n + 1. Let Un = Fn or Jn or

Mn, and Vn = Ln or Jn or Fn. We prove
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Theorem 3. Let n, d, k, y, ` be positive integers with gcd(n, d) = 1, y > 1,

` > 1, b is `th power free and P (b) ≤ f(k, d) given by (5).

(a) The equation

UnUn+d · · ·Un+(k−1)d = by`

(i) has the only solution F6 = F1F6 = 23, F12 = F1F12 = 122 when Un=Fn,

the Fibonacci sequence;

(ii) has no solution when Un = Jn, the Jacobsthal sequence;

(iii) has no solution when Un = Mn, the Mersenne numbers.

(b) The equation

VnVn+d · · ·Vn+(k−1)d = by`

(i) has the only solution L3 = L1L3 = 22 when Vn = Ln, the Lucas se-

quence;

(ii) has no solution when Vn = Jn, the Jacobsthal–Lucas sequence;

(iii) has the only solution F3 = F1F3 = 32 when Vn = Fn, the Mersenne–

Lucas sequences.

We prove Theorem 3 in Section 5. The preliminaries and lemmas for the

proof of the above theorems are given in Section 2.

2. Notations and preliminaries

For any integer n > 1, we denote ω(n) the number of distinct prime divisors

of n and we put ω(1) = 0. For a non-zero integer n and a prime p, we write νp(n)

for the highest power of p dividing n.

The binary recurrence sequence Un(r, s) and Vn(r, s) are given by explicit

Binet formulas Un(r, s) =
αn − βn

α− β
and Vn(r, s) = αn + βn ∀n≥ 0, where α and

β are roots of the characteristic equation x2 − rx− s = 0 which name such that

α > β if α, β ∈ R, and Im(α) > 0, Im(β) < 0 if α, β are complex. We list here α, β

and the first few elements of the binary recurrence sequence we are considering.
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Sequence α β First few terms

Fibonacci sequence, Fn
1
2 (1 +

√
5) 1

2 (1−
√

5) 0,1,1,2,3,5,8,13,. . .

Lucas sequence, Ln
1
2 (1 +

√
5) 1

2 (1−
√

5) 2,1,3,4,7,11,18,29,. . .

Jacobsthal sequence, Jn 2 -1 0,1,1,3,5,11,21,43,. . .

Jacobsthal–Lucas sequence, Jn 2 -1 2,1,5,7,17,31,65,127,. . .

Mersenne sequence, Mn 2 1 0,1,3,7,15,31,63,127,. . .

Mersenne–Lucas sequence, Fn 2 1 2,3,5,9,17,33,65,129,. . .

Table 3

We now list some well-known properties for the binary recurrence sequences

which will be used frequently.

Lemma 2.1. For the sequences (Un)∞n=0 and (Vn)∞n=0, we have

(i) U2n = UnVn;

(ii) gcd(Um, Un) = Ugcd(m,n);

(iii) gcd(Un, Umn/Un) divides m;

(iv) for n ≥ 3, a primitive prime divisor p of Un is congruent to ±1 modulo n;

(v) n ≥ 2, a primitive prime divisor p of Vn is congruent to ±1 modulo 2n.

As a consequence of Lemma 2.1, we have

Corollary 2.2. Let q be an odd prime and k > 0 be any integer. Let p be

an odd prime.

(i) Let (r, s) /∈ N 1
q . Then for p | Uqk , we have p ≡ ±1 modulo 2q. In particular,

p ≥ 2q − 1.

(ii) Let q ∈ {5, 7} and (r, s) ∈ N 1
q . Then if p | Uqk with k > 1, we have either

p = q or p ≡ ±1 modulo 2q2. In particular, p = q or p ≥ 2q2 − 1.

(iii) Let q = 13 and (r, s) = (1,−2). Then if p | U13k with k > 1, we have either

p ∈ {3, 5} or p ≡ ±1 modulo 2 · 132.

(iv) Let (r, s) /∈ N 2
qi for 1 ≤ i ≤ k. Then for p | Vqk and p - r, we have p ≡ ±1

modulo 2q. In particular, p ≥ 2q − 1 if p - r.
(v) Let q = 5 and (r, s) ∈ N 2

5 . Then if p | V5k with k > 1, we have either

p ∈ {2, 5} or p ≡ ±1 modulo 2 · 52. In particular, p ∈ {2, 5} or p ≥ 101.

(vi) Let q > 3. For p | V2qk and p - 2rs(r2 + 2s), we have p ≡ ±1 modulo 4q.

In particular, p ≥ 4q − 1 if p - 2rs(r2 + 2s).
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Proof. By Lemma 2.1 (ii), gcd(Uqk , Un) = U1 = 1 if q - n, and gcd(Uqk , Uqb)

= Uqb for every 1 ≤ b < k. Hence p | Uqk implies either p is a primitive prime

divisor of Uqk or a primitive prime divisor of Uqb for some 1 ≤ b < k if (r, s) /∈ N 1
q .

Hence for (r, s) /∈ N 1
q , we have p ≡ ±1 modulo qi for some 1 ≤ i ≤ k implying

p ≡ ±1 modulo 2qi, since p ± 1 is even. Thus for (r, s) /∈ N 1
q , we have p ≡ ±1

modulo 2qi implying p ≡ ±1 modulo 2q. This proves the assertion (i). The

assertions (ii) and (iii) follow by using Table 1.

For positive integers m and n, let g = gcd(m,n). Then we observe from

Lemma 2.1 (i) and (ii) that

gcd(Vm, Vn) | gcd

(
U2m

Ug
,
U2n

Ug

)
=
U2 gcd(m,n)

Ug
=
U2g

Ug
= Vg.

Thus if p|Vqk is not a primitive prime divisor of Vqk , then p|V1 or p|Vqi for some

1 ≤ i < k.

Let (r, s) /∈ N 2
qi for 1 ≤ i ≤ k. Then each of Vqi has a primitive prime divisor.

Let p | Vqk . Then either p is a primitive prime divisor of Vqk or p|V1 = r or p is

a primitive prime divisor of Vqi for some 1 ≤ i < k. Hence the assertion (iv)

follows from Lemma 2.1 (v). The assertion (v) follows by using Table 2.

For the assertion (vi), we observe that if p|V2qk is not a primitive prime

divisor of V2qk , then p|V1 or p|V2 or p|Vqi or p|V2qi for some 1 ≤ i < k. From the

equality V2n = V 2
n + 2(−s)n and Vqi |Vqk if i ≤ k, we obtain that if p|V2qk and

p|Vqi for some 1 ≤ i ≤ k, then p|2s. Thus every prime divisor of V2qk is either

a primitive prime divisor of V2qi for some 1 ≤ i ≤ k or p|V1 = r or p|V2 = r2 + 2s

or p|2s. Hence the assertion (vi) follows from Lemma 2.1 (v). �

In the next lemma, we derive some algebraic properties for the sequences.

Lemma 2.3. Let m | n and n
m is odd. If a prime p | gcd

(
Vm,

Vn

Vm

)
, then

p | nm .

Proof. Recall that Un and Vn are given by Un =
αn − βn

α− β
and Vn = αn+βn,

where α and β are the roots of the characteristic equation x2 − rx− s = 0 of the

sequence. Let p|Vm. Then αm ≡ −βm (mod p). If n = mk with k odd, we have

Vn
Vm

=
(αm)k + (βm)k

αm + βm
= (αm)k−1 − (αm)k−2(βm) + · · · (βm)k−1

≡ kαm(k−1) ≡ kβm(k−1)(mod p)

Consequently, p2 | k2(αβ)m(k−1), which implies that p | k, as desired. �
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The following result is an easy consequence of Lemma 2.3.

Corollary 2.4. Suppose that m | n and n
m is odd. If P ( nm ) < p for any odd

prime p dividing Vm, then gcd
(
Vm,

Vn

Vm

)
= 1.

The following result is on the Nagell–Ljunggren equation, see [2].

Lemma 2.5. The solutions of the Nagell–Ljunggren equation

xn − 1

x− 1
= yq in integers |x| > 1, |y| > 1, n > 2, q ≥ 2

other than

35 − 1

3− 1
= 112,

74 − 1

7− 1
= 202,

183 − 1

18− 1
= 73 and

(−19)3 − 1

(−19)− 1
= 73

satisfy that

• q ≥ 3 is odd;

• the least prime divisor p of n satisfies p ≥ 5;

• |x| ≥ 104 and x has a prime divisor p ≡ 1(mod q).

Next we consider a Diophantine equation.

Lemma 2.6. The equation 2n ± 1 = 3αy` in positive integers y > 1, ` > 1

and α ≥ 0 has the only solution given by 23 + 1 = 32.

Proof. It follows from [1, Corollary 1.4] that there is no solution for the

given equation when n is even. Thus n is odd, and we have 2n + 1 = 3αy` by

taking modulo 3. Suppose α = 1. Then

y` =
2n + 1

2 + 1
=

(−2)n − 1

(−2)− 1
,

which has no solution by Lemma 2.5. Thus α ≥ 2. Then 2n + 1 ≡ 0 modulo 9,

implying 3|n. Write n = 3en1 with 3 - n1. Then 3||(2n1 + 1) and

gcd

(
2n1 + 1,

2n + 1

2n1 + 1

)
|3e = 1, implying

2n1 + 1

2 + 1
=

(−2)n1 − 1

(−2)− 1
= y`1

for some y1. By Lemma 2.5, this gives n1 = y1 = 1 or n = 3e. Then 23
e

+1 = 3αy`.

There is no solution with e = 1 as y > 1. Thus e ≥ 2, implying 19|(232+1)|(2n+1).

However, 192 - (23
e

+1), and hence there are no other solution of the equation. �
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We now state some results on the almost perfect powers in recurrence

sequences.

Lemma 2.7. Let n, y, `, u, v be positive integers with ` > 1. Then

(i) Fn = y` ⇒ n = 1, 2, 6, 12.

(ii) Fn = 2uy` ⇒ F3 = 2 · 1`, F6 = 23, F12 = 24 · 32.

(iii) Fn = 3uy` ⇒ F4 = 3 · 1`, F12 = 32 × 24.

(iv) Fn = 2u3vy` ⇒ F12 = 32 × 24.

(v) Ln = y` ⇒ L1 = 1`, L3 = 22.

(vi) Ln = 2uy` ⇒ L3 = 22, L6 = 2× 32.

(vii) Ln = 3uy` ⇒ L2 = 3 · 1`.
(viii) Ln = 2u3vy` ⇒ L6 = 2× 32.

(ix) Jn = y` ⇒ J1 = J2 = 1`.

(x) Jn = 3uy` ⇒ J3 = 3 · 1`.
(xi) Jn = y` ⇒ J1 = 1`.

(xii) Jn = 3uy` ⇒ no solution.

(xiii) Mn = y` ⇒M1 = 1`.

(xiv) Mn = 3uy` ⇒M2 = 3 · 1`.
(xv) Fn = 2n + 1 = y` ⇒ F3 = 32.

(xvi) Fn = 2n + 1 = 3uy` ⇒ F1 = 3 · 1`, F3 = 32 · 1`.

Proof. The results (i) and (v) are due to [8]. The results (ii), (iii), (vi) are

in [7], (vii) is contained in [10], and (iv) follows from [9, Theorem 4].

For the assertion (viii), we first observe that 2||n, since 3|Ln, and also 3|n,

since 2|Ln. We have a solution at n = 6. Suppose n = 2 · 3z for some z > 1.

Then L18|Ln. Since 107||L18 and using Lemma 2.3, we obtain that ν107(Ln) =

ν107(L18) = 1, implying the equation has no solution. Thus P (n) = Q > 3. Write

n = 2Qen2, where Q - n2 and P (n2) < Q. By Corollary 2.2 (vi) and r = s = 1,

we have that p|L2Qe implies p ∈ {2, 3} or p ≥ 4Q − 1 > P (n2). This, together

with 2u3vy` = Ln = L2Qe
Ln

L2Qe
and Lemma 2.3, implies L2Qe = 2u13v1y`1 for some

u1, v1, y1 > 1. Since 3 - 2Qe, we have 2 - L2Qe , and hence L2Qe = 3v1y`1. By (vii),

this is not possible, and hence the assertion (viii) is valid.

For the remaining assertions, we need to consider the equation 2n±1 = 3αy`

for some integers n, α, y, `. By Lemma 2.6, we note that the only solution of this

equation is 23 + 1 = 32. Hence the assertions follow. �

Now we state a result due to Laishram and Shorey [20, Lemma 4].
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Lemma 2.8. Let δ ∈ {1,−1}. The solutions of

(i) 2x − 3y5z = δ,

(ii) 3x − 2y5z = δ,

(iii) 5x − 2y3z = δ

in integers x > 0, y > 0, z > 0 are given by

(x, y, z, δ) =


(4, 1, 1, 1), for (i),

(4, 4, 1, 1), (2, 1, 1,−1), for (ii),

(2, 3, 1, 1), (1, 1, 1,−1), for (iii),

respectively.

The following result is contained in [21, Theorem 3].

Lemma 2.9. Let k ≥ 2 and n odd with n > 2k. Then

P

(
k−1∏
i=0

(n+ 2i)

)
> 3.5k

unless (n, k) ∈ {(5, 2), (7, 2), (25, 2), (243, 2), (9, 4), (13, 5), (17, 6), (15, 7), (21, 8),

(19, 9)}.

We also need the following result on intervals containing primes, see

[6, Lemma 2.8].

Lemma 2.10. Let x > 10 be an integer. Then the interval (2x/3, x] contains

a prime.

3. Proof of Theorem 1

For positive integers n, d, k, recall that ∆ = ∆(n, d, k) = n(n + d) · · · (n +

(k − 1)d).

Let k = 2. Here ∆ = n(n+d). If n is even, then n+d is odd and P (n+d) > 2.

If n is odd and n > 1, then P (n) > 2. If n = 1, then P (1+d) > 2 unless d = 2r−1

for some integer r ≥ 1.

For k = 3, ∆ = n(n+ d)(n+ 2d). If n = 1 and d is even, then 1 + d, 1 + 2d

are odd integers. So at least one of them will have a prime factor greater than 3.

If d is odd, then 1 + 2d is odd and P (1 + 2d) > 3 for d 6= 1
2 (3r − 1) for some

integer r ≥ 1. If n > 1 is odd, then n + 2d is also odd. So either P (n) > 3

or P (n + 2d) > 3. If n is even, then n + d is odd. Hence P (n + d) > k unless

d = 3r − n for some r ≥ 1.



12 S. Laishram, S. S. Ngairangbam and R. S. Maibam

For k = 4, ∆ = n(n+ d)(n+ 2d)(n+ 3d). If n is even, then n+ d and n+ 3d

are distinct odd numbers > 1, and so at least one of them will have a prime factor

greater than 4. If n > 1 is odd, then n and n+ 2d are distinct odd integers, and

hence one of them will have a prime factor greater than 4. If n = 1 and d is an

odd integer, then P (1 + 2d) > 4 except when 1 + 2d is a power of 3, i.e., when

d = 1
2 (3r − 1) for some r ≥ 1.

For k = 5, ∆ = n(n+d)(n+ 2d)(n+ 3d)(n+ 4d). Let d be even. Then n+d,

n+ 2d, n+ 3d, n+ 4d all are distinct odd integers and since 3 can divide at most

two terms and 5 can divide at most 1 term, there will be at least term which have

a prime divisor > 5. Thus we take d odd. Let n be odd. Then n, n + 2d, n + 4d

are distinct odd integers and 3 and 5 can divide at most one term each among

them. Hence one of the term will have a prime divisor > 5 except when n = 1

and

1 + 2d = 3a and 1 + 4d = 5b ⇒ 5b − 2 · 3a = −1

or 1 + 2d = 5b and 1 + 4d = 3a ⇒ 3a − 2 · 5b = −1.

By Lemma 2.8, we get the solution 51 − 2 · 3 = 1 in the first case, which gives

d = 1, and the solution 32−2 ·5 = −1 in the latter case, which gives d = 2, which

is not possible since d is odd. Thus (n, d) = (1, 1) is one of the exceptional case.

Let n be even. Then n + d and n + 3d are odd terms and both have prime

divisors ≤ 5 only when

n+ d = 3a and n+ 3d = 5b or n+ d = 5b and n+ 3d = 3a.

The first case gives n = 1
2 (3a+1− 5b), d = 1

2 (5b− 3a) with a odd as n is even, and

the latter case gives n = 3
2 (5b − 3a−1), d = 1

2 (3a − 5b) with a odd as n is even.

Let k ≥ 6. For d > 1, we have the assertion from Theorem A. Hence we now

consider d = 1. For n + k ≤ 11, we check that the assertion of Theorem 1 is

true. Hence we suppose that n + k ≥ 12. Let n ≤ 2k. Then 2
3 (n + k − 1) ≥ n

if n < 2k − 1, and
⌈
2
3 (n + k − 1)

⌉
= n if n ∈ {2k − 1, 2k}. By Lemma 2.10 and

n+ k ≥ 12, the interval ( 2
3 (n+ k− 1), n+ k− 1] contains a prime which is of the

form n+ i for some some i, 0 ≤ i < k. Then n+ i is odd and further n+ i > k,

since n > k, implying the assertion of the Theorem.

Thus n > 2k. Then the odd terms of among {n, n+ d, . . . , n+ (k − 1)d} are

given by

n, n+ 2, . . . , n+ 2

[
k − 1

2

]
if n is odd,

n+ 1, n+ 3, . . . , n+ 1 + 2

[
k − 2

2

]
if n is even,
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and hence there are at least 1 + [k−22 ] = [k2 ] consecutive odd terms. Since k ≥ 6,

[k2 ] ≥ 3. Let S = {(5, 2), (7, 2), (25, 2), (243, 2), (9, 4), (13, 5), (17, 6), (15, 7), (21, 8),

(19, 9)}. For (n, [k−12 ] + 1) ∈ S if n is odd, and (n + 1, [k2 ]) ∈ S if n is even,

we check that here is an odd term n + i for which P (n + i) > k. Thus we

now suppose that (n, [k−12 ] + 1) /∈ S if n is odd and (n + 1, [k2 ]) /∈ S if n is

even. Then by Lemma 2.9, the greatest prime factor of these consecutive odd

terms is at least 3.5[k2 ] ≥ 3.5(k−12 ) > k, and hence there is an odd term n + i

for which P (n+ i) > k. �

4. Proof of Theorem 2

(i) Write ni = Qet with Q - t. For any b with 1 ≤ b ≤ e, put Qb = Qb,

and rewrite equation (3) as

UQb

Uni

UQb

∏
j 6=i

Unj
= by`.

By Corollary 2.2 (i), we see that p|UQb
⇒ p ≡ ±1 modulo 2Q, and hence p - Qt

by our assumption. Further, p ≥ 2Q− 1 > P(k) ≥ P (b). We now show that UQb

is coprime to the other factors on the left-hand side of the above equation.

If p |
(
UQb

,
Uni

UQb

)
, then p| ni

Qb
= Qe−bt. This with p - Qt for p|UQb

implies

gcd
(
UQb

,
Uni

UQb

)
= 1.

Also gcd(UQb
, Unj ) = Ugcd(Qb,nj) = U1 = 1 for j 6= i by our assumption.

Hence UQb
= y`b for some yb|y. Thus Qb ∈ U` for each 1 ≤ b ≤ e. In particular,

if Qe /∈ U`, then equation (3) does not have solution.

(ii) Let ni be an odd integer. We write ni = Qet with Q - t. For any b with

1 ≤ b ≤ e, put Qb = Qb, and we rewrite equation (4) as

VQb

Vni

VQb

∏
j 6=i

Vnj
= by`.

Let p | VQb
, p - r. From Corollary 2.2 (ii), we have p ≡ ±1 modulo 2Q. In par-

ticular, p - Qt and p ≥ 2Q− 1 > P(k) ≥ P (b). We show that the common prime

divisors of VQb
and the other factors on the left-hand side of the above equation

are prime divisors of r.

We have from gcd(VQb
, Vnj

) | V1 = r. Also from gcd
(
VQb

,
Vni

VQb

)
| ni

Qb
and

p - Qt for p - r that gcd
(
VQb

,
Vni

VQb

)
= r′, where p|r′ implies p|r. Hence we get
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VQb
= rby

`
b for some integer yb|y and

∏
p|rb

p |
∏
p|r

p. Thus Qb = Qb ∈ V` for

each 1 ≤ b ≤ e. In particular, if Qe /∈ V`, then equation (4) does not have

solution. �

5. Proof of Theorem 3

For the sequences we consider in Theorem 3, observe that N 1
q = N 2

q = ∅ for

primes and powers of primes ≥ 5 except for the Fibonacci sequence (Fn) where

F5 has no primitive prime divisor. By Corollary 2.2 (ii), we have that p|F5e with

e ≥ 2 implies either p = 5 or p ≡ ±1(mod 50), which gives p ≥ 101.

(a) From Lemma 2.7, we can assume that k ≥ 2. Let k = 2. Then equation (3)

becomes UnUn+d = by` with P (b) ≤ 3. Since (Un, Un+d) = 1, we have Un = b1y
`
1

and Un+d = b2y
`
2 for some b1, b2 with P (b1b2) ≤ 3. By Lemma 2.7 (i)–(iv) and

using (n, n + d) = 1, we get n = 1, and further n + d ∈ {2, 3, 4, 6, 12}, {3}, {2}
according as Un = Fn, Jn or Mn, respectively. We check for solutions given by

these values.

We now take k ≥ 3. Let d = 1 and n ≤ k. First we take all pairs (n, k)

with n + k ≤ 11, and check for the solutions of (3), and we find that there are

no solutions. Thus we take n+ k > 11. Then n+ k − 1 > 10. Let Q = P (n(n+

1) · · · (n+ k − 1)). Since n+ k − 1 > 2(n+k−1)
3 ≥ n, we obtain from Lemma 2.10

that Q = n+ i0 >
2(n+k−1)

3 ≥ 20
3 or Q ≥ 7. Further, 2Q− 1 > 4(n+k−1)

3 − 1 ≥ k,

since n ≥ 1 and k ≥ 3. All the assumptions of Theorem 2 are satisfied, since

Q - n+ i for i 6= i0, and hence by Theorem 2 and Lemma 2.7, we find that there

are no solutions.

Therefore, we take either d = 1, n > k or d > 1. We check that there are

no solutions when (n, d, k) = (2, 7, 3), and hence assume that (n, d, k) 6= (2, 7, 3).

Let Q = P (n(n+d) · · · (n+ (k−1)d)). By (1) and (2), we have Q > k, and hence

Q ≥ 5. Since a prime > k divide at most one term of n(n+ d) · · · (n+ (k − 1)d),

the assumptions of Theorem 2 are satisfied, and hence there are no solutions

for (3), except possibly when Un = Fn and Q = 5. So we consider Un = Fn
and assume that Q = 5. Then k ≤ 4. Observe from (n + id, n + jd)|((i − j)
that gcd(Fn+id, Fn+jd)|F(i−j) ≤ F3 = 2. Since Q ≤ 5, at least one of the terms is

divisible by m with m ∈ {9, 10, 15, 16, 24}. Choose m ∈ {9, 10, 15, 16, 24} smallest

such that m|(n+ id) for some 0 ≤ i < k. Let p be a primitive prime divisor of Fm.

Observe that all primitive divisors > 7 and divide to first power in Fm for m ∈
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{9, 10, 15, 16, 24}. Then from gcd
(
Fm,

Fmt

Fm

)
|t and gcd(Fn+id, Fn+jd)|F(i−j) ≤ 2,

we find that

νp

(
k−1∏
i=0

Fn+id

)
= νp(Fm) = 1,

and hence there is no solution for (3). �

(b) By Lemma 2.7, we may assume that k ≥ 2. Let k = 2. Then equation (4)

becomes

VnVn+d = by` with P (b) ≤ 3.

Since (Vn, Vn+d)|V1 = r, we have Vn = b1y
`
1 and Vn+d = b2y

`
2 for some b1, b2

with P (b1b2) ≤ 3. By Lemma 2.7 (v)–(viii), (xi), (xii), (xv), (xvi) and using

(n, n+ d) = 1, we get n = 1, and further n+ d ∈ {3, 6} if Vn = Ln, and n+ d = 3

if Vn = Fn, giving the solutions L1L3 = 22, L1L6 = 2 · 32 and F1F3 = 33.

We now take k ≥ 3. Let d = 1 and n ≤ k. First we take all pairs (n, k)

with n+ k ≤ 11 and check for the solutions of (4), and we find that there are no

solutions. Thus we take n + k > 11. Then n + k − 1 > 10. Let Q = P (n(n +

1) · · · (n+ k − 1)). Since n+ k − 1 > 2(n+k−1)
3 ≥ n, we obtain from Lemma 2.10

that Q = n+ i0 >
2(n+k−1)

3 ≥ 20
3 or Q ≥ 7. Further, 2Q− 1 > 4(n+k−1)

3 − 1 ≥ k,

since n ≥ 1 and k ≥ 3. All the assumptions of Theorem 2 are satisfied, since

Q - n + i for i 6= i0 and also n + i0 = Q is odd. Hence by Theorem 2 (ii) and

Lemma 2.7, we find that there are no solutions.

Therefore, we take either d = 1, n > k or d > 1. We check that there are

no solutions when (n, d, k) = (2, 7, 3), and hence assume that (n, d, k) 6= (2, 7, 3).

The assertion for k ≥ 6 follows from Theorem 2 (ii) and Theorem 1. Thus we

now take k ∈ {3, 4, 5}. Further by Theorem 2 (ii) and Theorem 1, we may

restrict those pairs (n, d, k) listed as exceptions in Theorem 1. Let k ∈ {3, 4}.
There is a term n + i0d = 3a for some i0 ∈ {1, 2}. We may assume that a ≥ 2

as otherwise n + i0d = 3, and we check that for such n and d, there are no

solutions. From gcd(Vn+id, V3a)|V1 = 1, we have V3a = r1b1y
`
1 for some r1, b1, y1

with P (b1) ≤ f(k, d), y1|y and p|r1 implies p|r. Let p be a primitive root of V9.

We find that p > 7 ≥ P (r1b1) and νp(V9) = 1. On the other hand, we observe

from Lemma 2.3 that p - V3a

V9
, since p > 7. Hence νp(V3a) = νp(V9) = 1, implying

V3a = r1b1y
`
1 has solution. Thus the original equation has no solution.

Let k = 5. There is a term n + i0d = 5b for some i0 ∈ {1, 3}. From

gcd(Vn+id, V5b)|V1 = 1, we have V5b = r1b1y
`
1 for some r1, b1, y1 with P (b1) ≤

10, y1|y and p|r1 implies p|r. Let p be a primitive root of V5. We find that

p ≥ 11 > P (r1b1) and νp(V5) = 1. On the other hand, we observe from Lemma 2.3
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that p - V5b

V5
, since p > 5. Hence νp(V5b) = νp(V5) = 1, implying V5b = r1b1y

`
1 has

solution. Thus the assertion of Theorem 3(b) follows. �
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