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A study on the exponential Diophantine equation

a® 4 (a + b)Y = b*

By TAKAFUMI MIYAZAKI (Kiryu) and NOBUHIRO TERAI (Oita)

Dedicated to Professor Masaaki Amou on the occasion of his 60th birthday

Abstract. For any given pair (a,b) of relatively prime integers greater than 1,
we study the Diophantine equation in the title. First, we propose a conjecture to describe
the positive integer solutions x,y, z of the equation. Second, we confirm our conjecture
for certain pairs (a, b).

1. Introduction

For a fixed triple (a,b,¢) of pair-wise relatively prime integers with
min{a, b, c} > 1, let us study the following equation:

a® +b¥ =¢* (1.1)

in positive integers =,y and z. In the literature, there are a number of works on
equation (1.1). Most of them concern the problem of determining the solutions of
equation (1.1) for various given triples (a, b, ¢). Especially, the triples (a, b, ¢) sat-
isfying a? + b7 = ¢" for some positive integers p, ¢, 7 have been actively considered
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by many authors. In almost all of their works, it has been shown that equa-
tion (1.1) has no solution other than the trivial one, that is, (z,y,2) = (p,q,7)-
A famous conjecture of JESMANOWICZ [13] in this direction, which concerns the
case (p,q,7r) = (2,2,2), states that equation (1.1) has no nontrivial solution for
any primitive Pythagorean triple (a,b,c) with a? + b?> = ¢?. This problem is
generalized by the second author to the triples (a, b, ¢) satisfying a? + b? = ¢" for
some integers p, ¢, with min{p, ¢,r} > 1 (see [27, Conjecture]). These problems
are still unsolved in spite of many contributions. For example, see some recent
papers [10]-[11], [17]-[19], [24], [28], and the references therein.

On the other hand, the first author considered a variant to the mentioned
direction. In [15], he studied equation ¢® +b¥ = a® for the primitive Pythagorean
triples (a, b,c) such that a? + b? = ¢? with b even, and raised a conjecture to
describe its solutions (see [15, Conjecture 1.2]). Moreover, in [16], he proposed
a similar problem for the triples (a, b, ¢) satisfying a? + b% = ¢" for some integers
p,q,r with min{p,q,7} > 1 (see [16, Conjecture 3]). Note that these can be
regarded as relevant analogues to the mentioned conjectures of Jesmanowicz and
the second author.

In this paper, let us consider a similar problem corresponding to the case
(p,q,7) = (1,1,1). Our problem is stated as follows.

Conjecture 1. Let a and b be fixed relatively prime integers with
min{a, b} > 1. Consider the equation

a® + (a+ b)Y =b* (1.2)

in positive integers x,y and z. Then equation (1.2) has no solution, unless b =
a+1, (a,b) = (27 — 1,2) with j > 2, or (a,b) € {(3,7),(5,2),(279,5)}. The
solutions in these exceptional cases are given by

(2,1,2) ifb=a+1 witha> 2,

(1,2,3),(2,1,2) if (a,b) = (2,3),

(1,1,7+1) if (a,b) = (27 — 1,2) with j > 2,
(z,9,2) = < (1,1,3),(1,3,7),(3,1,5) if (a,b) = (3,2),

(5,2,3) if (a,b) = (3,7),

(2,1,5) if (a,b) = (5,2),

(2,1,7) if (a,b) = (279,5)

A simple program of MAGMA [5] verifies that this is true in the range
max{a, b} < 10000 and max{z,y} < 20. Our results verify that Conjecture 1
is true in some special cases.
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Theorem 1. Conjecture 1 is true for each of its exceptional cases.

Theorem 2. Conjecture 1 is true for each of the following cases:
(C1) a =2 ora is a power of 4.
(C2) b is a power of 2.
(C3) a+ b is a power of 2.

The organization of this paper is as follows. In the next section, we quote
several results related to ternary Diophantine equations to prove our theorems.
In Section 3, we deal with the exceptional cases of Conjecture 1, except for the
case where b = a + 1, which is regarded as the main part of the exceptional cases.
Sections 4 and 5 are devoted to complete the case that b = a + 1, and the first
theorem is proved, where a result of BUGEAUD [6] on estimating simultaneous
non-Archimedean valuations plays a crucial role. The second theorem is proved
in the final section.

2. Preliminaries

The following is a direct consequence of [23, Theorem 6].

Proposition 1. Let A and B be relatively prime integers with 1 < A < B.
Assume that (A, B) ¢ {(3,5), (3,13)}. Then the equation

A* + BY =27
has at most one positive integer solution (x,y, z).

The following is a direct consequence of the combination of the results in [7]
and either [14] or [26, Theorem 2.

Proposition 2. All quadruples (S,T,m,n) of positive integers satisfying
SZ42m=T" gcd(S,T)=1, n>3
are given by (S,T,m,n) = (5,3,1,3),(7,3,5,4),(11,5,2, 3).

Proposition 3 (Corollaire of [12]). All quadruples (S,T,m,n) of integers
satisfying

SZ_om=T1"  S§>0,|T|>1,gcd(S,T)=1,m>2,n>3

are given by (S,T,m,n) = (13,-7,9,3),(71,17,7,3).
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Proposition 4 ([21]). All pairs (S,n) of positive integers satisfying the
equation
S?47=2"

are given by (S,n) = (1,3),(3,4), (5,5), (11, 7), (181, 15).
Proposition 5 (Theorem 2 (c) of [4]). Let ¢ be an integer with ¢t > 4. Then
all pairs (S,n) of positive integers satisfying the equation

S22t —1=2"

are given by (S,n) = (1,t), (271 — 1,2t — 2).

Proposition 6 (Corollary 1.7 (y = 2) of [1]). Let D be a non-zero integer.
Assume that positive integers U and [ satisfy

U?+D=2, 1>1.
Then either (D;U,1) € {(—1;3,3),(7;181,15)} or

501og | D]
13log2 °

3. Exceptional cases

Here, let us deal with the exceptional cases of Conjecture 1, except for the
case where b = a + 1 with a > 2.

The cases (a,b) = (2,3) and (3, 2) are settled by [20]. Also, the cases (a,b) =
(5,2) and (a,b) = (27 — 1,2) with j > 2 are settled by Proposition 1. Thus,
it remains to deal with the case where (a,b) € {(3,7), (279,5)}. Here let us adopt
the algorithm developed by BERTOK and HAJDU [3] (see also [2]).

Let (a,b) = (3,7). Then equation (1.2) is

37 +10Y = 7%, (3.1)
Conjecture 1 states that this Diophantine equation has no positive solution other
than (z,y,2) = (5,2,3). In order to see that y < 3 in equation (3.1), it suffices

to show that the equation

3% 4+10%-10Y =7°, z,9,2>0 (3.2)
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has no solution. Suppose that equation (3.2) has some solution (z,y, z). Let us
consider equation (3.2) for several moduli. Observe that

ord37(3) = 18, ord37(10) = 37 ord37(7) =9.

Thus, if one considers equation (3.2) modulo 37, then one has congruence condi-
tions on  modulo 18, on y modulo 3 and on z modulo 9. Indeed, there remain
the following cases:

x=2 (mod 18), =0 (mod3), z=3 (mod?9),
=3 (mod 18), =2 (mod3), 2z=8 (mod)9),
=4 (mod 18), =2 (mod3), z=4 (mod?9),
x=5 (mod 18), =2 (mod3), z=3 (mod?9),
x=8 (mod 18), =2 (mod3), z=0 (mod?9),
z=9 (mod18), y=1 (mod3), z=5 (mod?9), (3.3)
=10 (mod 18), =1 (mod3), z=1 (mod?9),
x=11 (mod 18), =1 (mod3), z=0 (mod?9),
x=14 (mod 18), =1 (mod3), z=6 (mod?9),
z=15 (mod 18), =0 (mod3), z=2 (mod)9),
x =16 (mod 18), =0 (mod3), z=7 (mod?9),
x=17 (mod 18), y=0 (mod3), z=6 (mod?9).

In particular, since z > 1, taking equation (3.2) modulo 9 yields that (—2)* = 1
(mod 9), so
z=0 (mod 3). (3.4)

Furthermore, taking equation (3.2) modulo 7 and 8 yields that 3* = 3¥ (mod 7)
and 3* = (—1)* (mod 8), respectively. Thus

r—y=3 (mod 6),
r=2z=0 (mod 2). (3.6)

Congruences (3.3), (3.4), (3.5) and (3.6) together yield that
x=8 (mod18), y=2 (mod3), z=0 (mod?9).
Thus, equation (3.2) can be written as
33(31)X +10°(10%)Y = (7°)?, X,Y,Z >0.

It is observed that this equation does not hold by taking it modulo 33.
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To sum up, equation (3.2) has no solution. Therefore, y < 3 on equation (3.1).
In addition, it is easy to check that equation (3.1) with y = 1 does not hold by
taking it modulo 4 and 5. Thus, y = 2, and equation (3.1) becomes

3% +100 = 77

Based on the idea of showing y = 2, one can use the source file of SageMath in [9]
to verify that © < 6 or z < 4. This enables us to check that (z,z) = (5,3), as
desired.
Similarly, the case where (a,b) = (279,5) can be handled. In this case,
equation (1.2) is
279 + 284Y = 5%,

Conjecture 1 states that this Diophantine equation has no positive solution other
than (z,y,z) = (2,1,7). Tt is easily observed that y = 1 by taking the equation
modulo 3,5 and 8. Furthermore, using the source file in [9] for the above equation
with y = 1, one can verify that < 3, from which one concludes that (z,z) =
(2,7), as desired.

To sum up, for the completion of the proof of Theorem 1, it remains to
consider the excluded case, which is dealt with in the forthcoming sections.

4. Lemmas for Theorem 1

In this section, we prove some lemmas on equation (1.2) when b = a+ 1 with
a > 2, that is,
a®+ (2a+1)Y = (a+1)* (4.1)

in positive integers x,y and z.
Let us begin by showing the following lemma concerning the parities of the
solutions.

Lemma 4.1. Let (x,y,z) be a solution of equation (4.1).
(i) The parities of x and y do not coincide.
(ii) x =2y (mod (a + 1)).
(iii) a®~!'+2y =z (mod a). In particular, if a is even with x > 1, then z is even.
PROOF. (i) Taking equation (4.1) modulo (a + 1) implies that (—1)* +

(=1)Y = 0 (mod (a + 1)). As the modulus is greater than 2, the congruence
is actually an equality, which shows the assertion.
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(ii) Note that z > 1. Rewrite equation (4.1) as
(—1+(a+1)*=—(-1+2(a+1))Y + (a + 1)~
Taking the above equation modulo (a + 1)? enables us to find that
(1) + (-1 Ha+ Dz = (=)' + (=1)"2(a+ 1)y (mod (a+1)%).

This congruence together with (i) yields the asserted congruence.

(iii) Taking equation (4.1) modulo a? enables us to find that
a*+2ay+1=az+1 (moda?).

This congruence immediately gives the asserted congruence. O
Lemma 4.2. If x = 2y, then (x,y,2) = (2,1,2).
PROOF. Assume xz = 2y. Then
(a®) 4+ (2a 4+ 1)Y = (a + 1),
Let us rely on a direct consequence of an old version of the Primitive Divisor
Theorem due to ZSIGMONDY [29], stated as follows.

Proposition 7. Let A and B be relatively prime integers with A > B > 1.
Let {Vi}r>1 be the sequence defined as

Vi = .Ak + Bk.
Ifk > 1, then Vy, has a prime factor not dividing V1 Vs - - - Vi,_1, whenever (A, B, k)

£(2,1,3).

Apply Proposition 7 with (A, B) = (a?,2a+1) and k = y. Since V; = (a+1)?,
it follows y = 1, which yields (z, z) = (2,2). O

Lemma 4.3. If z is even, then (z,y,2) = (2,1, 2).

PrOOF. Write z = 2Z with some positive integer Z. Recall that = # y
(mod 2) from Lemma 4.1 (i).
First, suppose that x is even. Write z = 2X. Then

(2a+1)Y = ((a +1)? +a®)((a + 1)? — ™).
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Since the two factors on the right-hand side are coprime, there are odd positive
integers u, v such that

(a+1)Z +aX =u?, (a+1)% —aX =¥
with wv = 2a + 1. Then
20X =w¥ — ¥, 2(a+1)7 =u¥ V.

Since vo(u¥ £vY) = vo(u=£v) as all u, v,y are odd, one compares 2-adic valuations
of both sides of each above equation to find that

On the other hand, as 2a* = u¥ —v¥ > 2u¥~! and 2(a+1)% > u¥, one finds that

1 1
< log(a + 1) max{X, Z} + 1.
log u
These inequalities together show that

21 1 2
Mmax{X7Z}+2 <
log u

max{z, 2y} < log(a +1) 4 2.

log 2
If « # 2y, then max{z, 2y} > a+1 by Lemma 4.1 (ii), so a+1 < é log(a+1)+2,
which implies that a < 7, and max{z, 2y} < 8. However, equation (4.1) does not
hold for any (a, z,y) under consideration. Thus, x = 2y, and so (z,y, z) = (2,1, 2)
by Lemma 4.2.

Next, suppose that y is even. Write y = 2Y. Then a® = DFE, where

D=(a+1)?+2a+1)", E=(a+1)Z—-2a+1)".

Since D =2 (mod a) and D > 1, one observes that a has to be even and D/2 is
prime to a/2. Then, by the equation (a/2)*2* 1= (D/2)E with ged(D/2,a/2)=1,
it follows that £ =0 (mod (a/2)*) and 2* =0 (mod D), in particular, (a/2)* <
E < D < 2%. This contradicts the fact that a > 2 is even. O

Lemma 4.4. For each a with 2 < a < 1800, equation (4.1) has no solution
(z,y,2) with (z,y, z) # (2,1,2) satisfying

max{z,y,z} < C(a), max{z,z} < 5y,

where C(a) = 1300 if a < 100, and C(a) = 1000 if a > 100.
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PROOF. Firstly, note that one may add further restrictions on a, z, y, z from
Lemmas 4.1 and 4.3 and their consequences. Moreover, it may be assumed that
x > alog(a+1) if z > 2. Indeed, if x > z, then, since a® < (a+1)* < (a+1)*71,
it follows that a +1 < (14 1/a)*, which implies that > alog(a + 1).

The verification can be done by Magma [5] in about three hours, as follows.
Let p = p(a) be the least prime factor of 2a + 1, and v = v(a,x, z) the p-adic
valuation of (a + 1)* — a®, that is, p” || ((a + 1)* — a*). For each (a,x, z), the
function Valuation(*,p) in Magma is used to confirm that v < 10. Since y < v
by equation (4.1), it follows that y < 10. Finally, a simple program enables
us to verify that equation (4.1) has no solution (z,y, z) with (z,y,2) # (2,1,2)
satisfying y < 10 and max{z, 2z} < 5y < 50. The lemma is proved. O

5. Proof of Theorem 1

In what follows, write a + 1 = M on equation (4.1). Then M > 4 and
equation (4.1) is
(M —1)® + (2M — 1) = M. (5.1)

Lemma 5.1. Assume that M = 2 (mod 4). Then the only solution of
equation (5.1) is (x,y,2) = (2,1,2).

PROOF. Let (z,y, 2) be a solution of equation (5.1). From Lemma 4.3, it suf-
fices to show that z is even. On the contrary, suppose that z is odd. Taking
equation (5.1) modulo (2M — 1) yields that

(M —1)® = M* (mod (2M —1)).

Since z is even by Lemma 4.1 (ii), one easily sees that 2 is a quadratic residue
modulo (2M — 1). Thus, a supplement of the quadratic reciprocity law tells us
that 2M — 1 = £1 (mod 8), which is absurd to the assumption that M = 2
(mod 4). This contradiction shows that z is even. O

Lemma 5.1 and Proposition 1 together with the result in [25] enable us to
assume that M > 7, and M =0 (mod 4) if M is even.

In what follows, let (x,y, z) be a solution of equation (5.1). Suppose that z
is odd. We will observe that this leads to a contradiction.

In order to find an absolute upper bound for z, let us rely on the following
result which is a simple consequence of [6, Theorem 2;(y1,y2) = (1,1) and p = 4].
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Proposition 8. Let M be an integer with M > 1, and M = [[,¢;¢,, pi"
be the prime factorization of M. Let Xy, and X5 be two coprime integers such
that ged(X1Xo, M) = 1 with X7, Xs # £1. Assume that g is a positive integer
satisfying

>u;, v, (X§-1)>1 (i=1,2,...,w),
v(X9—1)=>2 (i=1,2) if M iseven.

Let Hy and Hs be positive numbers such that
H; > max{log|X;|,log M} (i=1,2).

Then, for any positive integers by and by with ged(by,be, M) = 1, the exponent
of the highest power of M dividing X" — X5 is at most

5369H1H2

max{log ¥’ + loglog M -+ 0.64, 41og M})?
log® M (max{log g log g M})

with bl = bl/Hg +b2/H1

In order to use this proposition, let us check that ged(x,y, M) = 1. On the
contrary, suppose that = and y have some common prime divisor p. Write z = pX
and y = pY. Note that p is odd and X # Y (mod 2) by Lemma 4.1 (i). Then

equation (5.1) is written as
R(AX + BY) = M* (5.2)

with (A4,B) = (M —1,2M — 1) and R = 4B Note that R > p. Also,

by elementary number theory (cf. [22, P1.2]), it is easy to see that R is not
divisible by p?. On the other hand, since A= B = —1 (mod M), one sees that

1
(= 1)+ (P 1=DX Y

p

p—1
R= Z AX p—1— j(BY)
7=0

LSS
[
= O

(—1)70=X+Y) = Zl— (mod M).

I
=)

J

It follows from equation (5.2) that R has no prime factor other than p. However,
this contradicts the fact that R > p and R # 0 (mod p?).
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Set (X1, Xo;b1,b2) = (1 — M,1 —2M;z,y). Then X' — X2 = £M* by
Lemma 4.1. Since one can take g := 1, H; := log M and Hy := log(2M — 1),
it follows from Proposition 8 that

. < 53.6log(2M — 1)

3 (max{log?’ + loglog M + 0.64, 4log ]\/.I'})2 (5.3)
log”™ M

with b’ = x/log(2M — 1) + y/log M. From the trivial inequalities z < lologiM

g(M—1) *
log M j %, observe that

and y < log(2M —1

2

b < .
log M ~

Suppose that
log b’ + loglog M + 0.64 > 4log M.

Since M* < %% (log M)t < 2e%-042, it follows from inequality (5.3) that

z o 53.6log(2M — 1)
(log(2z) +0.64)2 ~ log® M

< 18.66. (5.4)

This shows that z < 1365. Since M* < 2e%%4z, one has M < 7, so M = 7. Now,
by Lemma 4.1 (i,iii), = has to be 1 and y is even, which, however, contradicts the
consequence of [8].

Therefore, logb’ + loglog M + 0.64 < 4log M, and it follows from inequal-

ity (5.3) that
857.61og(2M — 1)

log M

This implies that

w <1226, y < 856, 2 < 1129 if M > 7,
max{x,y, z} < 1000 it M > 100.

Since = # 2y by Lemma 4.2, one sees from Lemma 4.1 (ii) that
M < 1712.

By Lemmas 4.1 and 4.4, it suffices to consider the case where x > 5y or z > by.
It is easy to verify that = > by if z > by.
Suppose that = > 5y. From equation (5.1) it follows that

@M -1  M*

Yo T oo




30 Takafumi Miyazaki and Nobuhiro Terai

Observe that

—1)¥ _ 1\z/5
ZlOnglog(Ml)—10g<1+(2M 1)) 2M —1)

(M —1)* (M —1)*
Dividing both sides by xlog M gives

(2M — 1)/
O<) 2/ =8 < T Ty g i1
with & = §(M) = 82D Since the right-hand side is less than 1/(222),

Legendre’s theorem on the theory of continued fraction tells us that z/z is
a convergent to the irrational number £, say p;/q; as usual. Moreover, it is
known that

1€ p]/Q]‘ > (aj+1 T 2)(1]2‘7
where a4 is the (j + 1)-st partial quotient to §. Since ¢; < z, these bounds for
|€ — z/z| together yield a sharp lower bound for a;j41, as follows:
(M —1)"log M
@M 1)
Finally, for each M, x under consideration, one can easily check that the above
inequality does not hold for any j satisfying ¢; < .

aj4+1 > 2.

To sum up, the proof of Theorem 1 is completed.

6. Proof of Theorem 2

Through the proof of Theorem 2, the following lemma is frequently used.
Lemma 6.1. Let (A,C,p,q) be a quadruple of integers satisfying
AP 421 =C% |A|>1,C>0,gcd(A,C)=1,p>1,q>2.
Assume that (A,C) & {(-7,13),(17,71)} and (A,C,p) # (=7,181,1). Then one
of the following cases holds:
(i) (A,C,p) = (2972 1,292 +1,2) and q > 4.
(ii) p=1, and
501og | A]
13log2 °

ProoF. This follows from the combination of Proposition 3 with (S, T, m, n)
= (C, A, q,p), Proposition 4 with (S,n) = (C, ¢) and Proposition 6 with (D; U, 1) =
(_A; Cv q) O

In what follows, let us separately consider five cases.
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6.1. The case a = 2. Let a = 2, and consider the equation:
27 4+ (24 b)Y =" (6.1)

Let (z,y,2) be a triple of positive integers satisfying equation (6.1). Since
b is odd, if both y, z are odd, then taking equation (6.1) modulo 8 implies that
2% +2 =0 (mod 8). However, this congruence does not hold. Therefore, y or z
is even.

First, suppose that y is even. Note that z > 2 as b* > (2+b)¥ > (2+b)? > b?.
Then, Proposition 2 with (S, T, m,n) = ((2+b)¥/2,b, x, z) tells us that (b, z,y, z) =
(3,1,2,3).

Next, suppose that z is even. Now, apply Lemma 6.1 with (A,C,p,q) =
(24b,b%/2,y, ). Observe that C' — A = b*/2 —b—2 # 2 as b > 1 is odd. It follows
y = 1. On the other hand, one takes equation (6.1) modulo (b + 1) to see that
(b + 1) divides 2%. Hence, b = 2! — 1 with an integer ¢ with 2 < ¢ < z. Taking
equation (6.1) modulo 2¢+1 yields that 2* +2¢+1 =1 (mod 2!*!), and so 2% = 2!
(mod 2!1). Thus, z = ¢. It holds from equation (6.1) that 2°T! + 1 = (2% —1)2,
from which z = 2 holds, and z = 2.

6.2. The case where a is a power of 4. Write a = 4* with a positive integer k,
and consider the equation

4R (4% 4 b)Y = b, (6.2)

Consider the case where b is congruent to 0 or 1 modulo 3. Taking equation (6.2)
modulo 3 implies that either 2 = 0 (mod 3) or 2¥ = 0 (mod 3). However, both
congruences clearly do not hold. Thus, it suffices to consider the case where
b = 2 (mod 3). Again, taking equation (6.2) modulo 3 implies that 2* = 1
(mod 3). Thus, z is even. Put Z = z/2. Apply Lemma 6.1 with (A4,C,p,q) =
(4% + 0,07y, 2kx). One obtains that either y = 1 or

(4F 46,07 ,y) = (2%*=2 —1,2%k*=2 1 1,2), kx> 1.

In the second case, it is clear that b = 22¥*=2 4 1 holds with 2kz — 2 > 1 and
Z > 1. This is a special case of Catalan’s equation. Thus, it may be concluded
that this equation does not hold.

Finally, suppose y = 1. Equation (6.2) can be written as

4% 4 b = (b7 + 28 (b7 — 2k7).

In particular, b+ 2% > % + 2k Thus, x = 1 or (2,2) = (2,1). If v = 1,
equation (6.2) is 2 - 4% + b = b?4, which, however, contradicts the fact that b > 1
is odd. If (z,Z) = (2,1), then b — 2% =1,ie.,b=a+ 1.

This completes the proof of case (C1) in Theorem 2.



32 Takafumi Miyazaki and Nobuhiro Terai

Remark 1. In case of (C1) in Theorem 2, the case where a is an odd power
of 2 (> 2) is not considered. In that case, it is hard to find that at least one of
y, z is even, even if it can be observed that x is even. Thus, our method does not
work well.

6.3. The case b = 2. Let b = 2, and consider the equation:
a® + (a+2)Y = 2% (6.3)

Taking this equation modulo (a 4 1) implies that (—=1)* + 1 = 2% (mod (a + 1)).
First, suppose that x is odd. Then a + 1 divides 2%. Hence, a is of the form
a =2/ — 1 with an integer j > 2. This is an exceptional case of Conjecture 1,
already settled in Theorem 1.
Next, suppose that x is even. Put X = /2. It is observed from equation (6.3)
that y has to be odd (as z > 1). Now, equation (6.3) is written as

(—a —2)Y + 27 = a?¥.
Lemma 6.1 with (A4,C,p,q) = (—a — 2,a™,y, 2) implies that y = 1, and

50log(a + 2)
13log 2

This, together with the trivial estimate a?X < 27, gives

25 log(a + 2)

X<
13  loga

First, consider the case where a < 16. In this case, both X,z are absolutely
bounded by their upper bounds depending only on a. It is easy to verify that
equation (6.3) does not hold for any triple (a; X, z) under consideration.
Next, consider the case where a > 17. Then, X = 1, and a? 4+ a + 2 = 27,
that is,
(2a +1)* + 7 = 2712,

Since a is odd with a > 17, Proposition 4 with (S,n) = (2a + 1,z + 2) tells us
that the above equation does not hold.

6.4. The case where b > 2 is a power of 2. Write b = 2¥ with an integer
k > 1, and consider the equation:

a® + (a +2F)Y = 2k, (6.4)
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Since a is odd, one takes equation (6.4) modulo 4 to find that al*=¥l = —1
(mod 4). Thus, it suffices to consider the case where

a=3 (mod 4),

and one may assume that
xZy (mod 2).

First, suppose that « is even and y is odd. Put X = 2/2. Now, equation (6.4)
is written as
(—a — 28 4 2k= = ¢2X,

Lemma 6.1 with (4,C,p,q) = (—a — 2*,a*X,y, kz) implies that y = 1, and

0
—1 2k).
< TBloga 8@+ %)
This, together with the trivial estimate a?% < 2F*, yields
o log(a + Qk)_
13 loga
Now, let us show
2P <a+1. (6.5)

Indeed, as a is odd, one takes equation (6.4) modulo 2% to find that a®X~1 41 is
divisible by 2%. This, together with the fact that vo(a?X~t +1) = vo(a + 1), tells
us that a+ 1 is divisible by 2%, particularly, 2 < a4+ 1. Therefore, it is concluded

that
25 log(2a +1)

13 loga

Thus, either X =1, or X = 2 with a < 108.
Suppose X = 1. Then equation (6.4) is a® + a + 2F = 2%*  that is,

X < (< 3), kz < log(2a + 1).

50
13log 2

(2a + 1)% 4 (282 — 1) = 2k=+2,

Proposition 5 with (S,n) = (2a+ 1, kz 4 2) yields that kz +2 =2k + 2, so z = 2.

Suppose that X = 2 with a < 108. Then, by (6.5) and the obtained upper
bound for kz depending only on a, it follows that £ < 30 and kz < 107. Then
Magma [5] easily enables us to check that equation (6.4) (with y = 1) does not
hold for any triple (a, k; z) under consideration.
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Next, suppose that 2 is odd and y is even. Put Y = y/2. Then equation (6.4)
is written as
(_a)o: + 2kz — (a + 2/@)2}’.

Lemma 6.1 with (4, C,p,q) = (—a, (a + 2%)Y, z, kz) implies that x = 1, and

50
log a.

k
*< 13log2 ©

This, together with the trivial estimate (a + 2¥)2Y < 2%# yields

kzlog 2 < 25
2log(a +2k) = 13’

and so Y = 1. Then equation (6.4) is a + (a + 2¥)? = 2**. Note that both k, 2
are odd. The obtained equation is rewritten as

(2a + 2871 4 1)2 — (2KF2 1) = 2k=+2,

Now, Proposition 6 with (D;U,1) = (—(25+2 +1);2a + 251 4+ 1, kz + 2) gives us

50

kz 42
2 Bl0g2

log (282 + 1),

SO
50

*< Bklog2
This implies either z = 3, or z € {5, 7} with k < 10.

First, suppose that z = 3. Taking (6.4) modulo a implies that 22% = 23k
(mod a). In view of a is odd, 2¥ =1 (mod a), and so a < 2¥ — 1. On the other
hand, as @ > 2% —1 from (6.5), we have a = 2¥ —1, i.e., b = a+1. This contradicts
Theorem 1.

2
log(2¥12 4+ 1) — - (<8).

Second, suppose that z € {5,7} with k£ < 10. Magma [5] easily enables us to
check that equation (6.4) does not hold for any triple (a, k; z) under consideration.
This completes the proof of case (C2) in Theorem 2.

6.5. The case where a + b is a power of 2. Write a + b = 2F with an integer
k > 2, and consider the equation:

a® + 2" = (2% — a)*. (6.6)

It suffices to show that there is no triple (z,y,z) of positive integers satisfying
equation (6.6).
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In what follows, suppose that (z,y, z) is a positive integer solution of equa-
tion (6.6). Since a is odd, and k > 1, taking equation (6.6) modulo 4 yields

a.’L’

(—a)®* (mod 4).

From this congruence it is observed that = or z is even according to the cases
a=3 (mod4)ora=1 (mod 4).

First, consider the case where a =3 (mod 4). Then z is even. Proposition 2
with (S, T,m,n) = (a®/?,2* — a, ky, z) gives z < 3. As z > 1, it holds that z = 2,
and so y = 1 by equation (6.6). Thus,

a® + 28 = (2% — a)2.

It is easy to see that x # 1,2. However, by Lemma 6.1 with (A,C,p,q) =
(a,2% —a,x, k), the above equation does not hold when = > 3.

Next, consider the case where a = 1 (mod 4). Then z is even. Note that
z # 2 by an observation in the previous case. Now, apply Lemma 6.1 with
(A,C,p,q) = (a, (2% — a)*/?,2,ky) to find z < 3. If z = 2, then (2¥ — a)*/? —
2ky=2 = 1 with 2/2 > 1 and ky > 4. Since the resulting equation is the Catalan’s
equation, it follows that (2% — a,z/2,ky — 2) = (3,2,3), and so (a,k,y,z) =
(19,5,1,4), where, however, equation (6.6) does not hold. Therefore, z = 1.
Then, taking equation (6.6) modulo 2* implies that a*~! = 1 (mod 2*), which,
similarly to the proof of inequality (6.5), gives rise to the inequality a — 1 > 2.
However, this contradicts the trivial estimate a < 2¥ (= a +b). This completes
the proof of case (C3) in Theorem 2.

To sum up, the proof of Theorem 2 is completed.
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