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A study on the exponential Diophantine equation
ax + (a + b)y = bz

By TAKAFUMI MIYAZAKI (Kiryu) and NOBUHIRO TERAI (Oita)

Dedicated to Professor Masaaki Amou on the occasion of his 60th birthday

Abstract. For any given pair (a, b) of relatively prime integers greater than 1,

we study the Diophantine equation in the title. First, we propose a conjecture to describe

the positive integer solutions x, y, z of the equation. Second, we confirm our conjecture

for certain pairs (a, b).

1. Introduction

For a fixed triple (a, b, c) of pair-wise relatively prime integers with

min{a, b, c} > 1, let us study the following equation:

ax + by = cz (1.1)

in positive integers x, y and z. In the literature, there are a number of works on

equation (1.1). Most of them concern the problem of determining the solutions of

equation (1.1) for various given triples (a, b, c). Especially, the triples (a, b, c) sat-

isfying ap+ bq = cr for some positive integers p, q, r have been actively considered
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by many authors. In almost all of their works, it has been shown that equa-

tion (1.1) has no solution other than the trivial one, that is, (x, y, z) = (p, q, r).

A famous conjecture of Jeśmanowicz [13] in this direction, which concerns the

case (p, q, r) = (2, 2, 2), states that equation (1.1) has no nontrivial solution for

any primitive Pythagorean triple (a, b, c) with a2 + b2 = c2. This problem is

generalized by the second author to the triples (a, b, c) satisfying ap + bq = cr for

some integers p, q, r with min{p, q, r} > 1 (see [27, Conjecture]). These problems

are still unsolved in spite of many contributions. For example, see some recent

papers [10]–[11], [17]–[19], [24], [28], and the references therein.

On the other hand, the first author considered a variant to the mentioned

direction. In [15], he studied equation cx+ by = ax for the primitive Pythagorean

triples (a, b, c) such that a2 + b2 = c2 with b even, and raised a conjecture to

describe its solutions (see [15, Conjecture 1.2]). Moreover, in [16], he proposed

a similar problem for the triples (a, b, c) satisfying ap + bq = cr for some integers

p, q, r with min{p, q, r} > 1 (see [16, Conjecture 3]). Note that these can be

regarded as relevant analogues to the mentioned conjectures of Jeśmanowicz and

the second author.

In this paper, let us consider a similar problem corresponding to the case

(p, q, r) = (1, 1, 1). Our problem is stated as follows.

Conjecture 1. Let a and b be fixed relatively prime integers with

min{a, b} > 1. Consider the equation

ax + (a+ b)y = bz (1.2)

in positive integers x, y and z. Then equation (1.2) has no solution, unless b =

a + 1, (a, b) = (2j − 1, 2) with j > 2, or (a, b) ∈ {(3, 7), (5, 2), (279, 5)}. The

solutions in these exceptional cases are given by

(x, y, z) =



(2, 1, 2) if b = a+ 1 with a > 2,

(1, 2, 3), (2, 1, 2) if (a, b) = (2, 3),

(1, 1, j + 1) if (a, b) = (2j − 1, 2) with j > 2,

(1, 1, 3), (1, 3, 7), (3, 1, 5) if (a, b) = (3, 2),

(5, 2, 3) if (a, b) = (3, 7),

(2, 1, 5) if (a, b) = (5, 2),

(2, 1, 7) if (a, b) = (279, 5).

A simple program of Magma [5] verifies that this is true in the range

max{a, b} 6 10000 and max{x, y} 6 20. Our results verify that Conjecture 1

is true in some special cases.
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Theorem 1. Conjecture 1 is true for each of its exceptional cases.

Theorem 2. Conjecture 1 is true for each of the following cases:

(C1) a = 2 or a is a power of 4.

(C2) b is a power of 2.

(C3) a+ b is a power of 2.

The organization of this paper is as follows. In the next section, we quote

several results related to ternary Diophantine equations to prove our theorems.

In Section 3, we deal with the exceptional cases of Conjecture 1, except for the

case where b = a+ 1, which is regarded as the main part of the exceptional cases.

Sections 4 and 5 are devoted to complete the case that b = a + 1, and the first

theorem is proved, where a result of Bugeaud [6] on estimating simultaneous

non-Archimedean valuations plays a crucial role. The second theorem is proved

in the final section.

2. Preliminaries

The following is a direct consequence of [23, Theorem 6].

Proposition 1. Let A and B be relatively prime integers with 1 < A < B.

Assume that (A,B) 6∈ {(3, 5), (3, 13)}. Then the equation

Ax +By = 2z

has at most one positive integer solution (x, y, z).

The following is a direct consequence of the combination of the results in [7]

and either [14] or [26, Theorem 2].

Proposition 2. All quadruples (S, T,m, n) of positive integers satisfying

S2 + 2m = Tn, gcd(S, T ) = 1, n > 3

are given by (S, T,m, n) = (5, 3, 1, 3), (7, 3, 5, 4), (11, 5, 2, 3).

Proposition 3 (Corollaire of [12]). All quadruples (S, T,m, n) of integers

satisfying

S2 − 2m = Tn, S > 0, |T | > 1, gcd(S, T ) = 1, m > 2, n > 3

are given by (S, T,m, n) = (13,−7, 9, 3), (71, 17, 7, 3).
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Proposition 4 ([21]). All pairs (S, n) of positive integers satisfying the

equation

S2 + 7 = 2n

are given by (S, n) = (1, 3), (3, 4), (5, 5), (11, 7), (181, 15).

Proposition 5 (Theorem 2 (c) of [4]). Let t be an integer with t > 4. Then

all pairs (S, n) of positive integers satisfying the equation

S2 + 2t − 1 = 2n

are given by (S, n) = (1, t), (2t−1 − 1, 2t− 2).

Proposition 6 (Corollary 1.7 (y = 2) of [1]). Let D be a non-zero integer.

Assume that positive integers U and l satisfy

U2 +D = 2l, l > 1.

Then either (D;U, l) ∈ {(−1; 3, 3), (7; 181, 15)} or

l <
50 log |D|
13 log 2

.

3. Exceptional cases

Here, let us deal with the exceptional cases of Conjecture 1, except for the

case where b = a+ 1 with a > 2.

The cases (a, b) = (2, 3) and (3, 2) are settled by [20]. Also, the cases (a, b) =

(5, 2) and (a, b) = (2j − 1, 2) with j > 2 are settled by Proposition 1. Thus,

it remains to deal with the case where (a, b) ∈ {(3, 7), (279, 5)}. Here let us adopt

the algorithm developed by Bertók and Hajdu [3] (see also [2]).

Let (a, b) = (3, 7). Then equation (1.2) is

3x + 10y = 7z. (3.1)

Conjecture 1 states that this Diophantine equation has no positive solution other

than (x, y, z) = (5, 2, 3). In order to see that y < 3 in equation (3.1), it suffices

to show that the equation

3x + 103 · 10y = 7z, x, y, z > 0 (3.2)
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has no solution. Suppose that equation (3.2) has some solution (x, y, z). Let us

consider equation (3.2) for several moduli. Observe that

ord37(3) = 18, ord37(10) = 3, ord37(7) = 9.

Thus, if one considers equation (3.2) modulo 37, then one has congruence condi-

tions on x modulo 18, on y modulo 3 and on z modulo 9. Indeed, there remain

the following cases:

x ≡ 2 (mod 18), y ≡ 0 (mod 3), z ≡ 3 (mod 9),

x ≡ 3 (mod 18), y ≡ 2 (mod 3), z ≡ 8 (mod 9),

x ≡ 4 (mod 18), y ≡ 2 (mod 3), z ≡ 4 (mod 9),

x ≡ 5 (mod 18), y ≡ 2 (mod 3), z ≡ 3 (mod 9),

x ≡ 8 (mod 18), y ≡ 2 (mod 3), z ≡ 0 (mod 9),

x ≡ 9 (mod 18), y ≡ 1 (mod 3), z ≡ 5 (mod 9),

x ≡ 10 (mod 18), y ≡ 1 (mod 3), z ≡ 1 (mod 9),

x ≡ 11 (mod 18), y ≡ 1 (mod 3), z ≡ 0 (mod 9),

x ≡ 14 (mod 18), y ≡ 1 (mod 3), z ≡ 6 (mod 9),

x ≡ 15 (mod 18), y ≡ 0 (mod 3), z ≡ 2 (mod 9),

x ≡ 16 (mod 18), y ≡ 0 (mod 3), z ≡ 7 (mod 9),

x ≡ 17 (mod 18), y ≡ 0 (mod 3), z ≡ 6 (mod 9).

(3.3)

In particular, since x > 1, taking equation (3.2) modulo 9 yields that (−2)z ≡ 1

(mod 9), so

z ≡ 0 (mod 3). (3.4)

Furthermore, taking equation (3.2) modulo 7 and 8 yields that 3x ≡ 3y (mod 7)

and 3x ≡ (−1)z (mod 8), respectively. Thus

x− y ≡ 3 (mod 6), (3.5)

x ≡ z ≡ 0 (mod 2). (3.6)

Congruences (3.3), (3.4), (3.5) and (3.6) together yield that

x ≡ 8 (mod 18), y ≡ 2 (mod 3), z ≡ 0 (mod 9).

Thus, equation (3.2) can be written as

38(318)X + 105(103)Y = (79)Z , X, Y, Z > 0.

It is observed that this equation does not hold by taking it modulo 33.
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To sum up, equation (3.2) has no solution. Therefore, y < 3 on equation (3.1).

In addition, it is easy to check that equation (3.1) with y = 1 does not hold by

taking it modulo 4 and 5. Thus, y = 2, and equation (3.1) becomes

3x + 100 = 7z.

Based on the idea of showing y = 2, one can use the source file of SageMath in [9]

to verify that x < 6 or z < 4. This enables us to check that (x, z) = (5, 3), as

desired.

Similarly, the case where (a, b) = (279, 5) can be handled. In this case,

equation (1.2) is

279x + 284y = 5z.

Conjecture 1 states that this Diophantine equation has no positive solution other

than (x, y, z) = (2, 1, 7). It is easily observed that y = 1 by taking the equation

modulo 3, 5 and 8. Furthermore, using the source file in [9] for the above equation

with y = 1, one can verify that x < 3, from which one concludes that (x, z) =

(2, 7), as desired.

To sum up, for the completion of the proof of Theorem 1, it remains to

consider the excluded case, which is dealt with in the forthcoming sections.

4. Lemmas for Theorem 1

In this section, we prove some lemmas on equation (1.2) when b = a+ 1 with

a > 2, that is,

ax + (2a+ 1)y = (a+ 1)z (4.1)

in positive integers x, y and z.

Let us begin by showing the following lemma concerning the parities of the

solutions.

Lemma 4.1. Let (x, y, z) be a solution of equation (4.1).

(i) The parities of x and y do not coincide.

(ii) x ≡ 2y (mod (a+ 1)).

(iii) ax−1 + 2y ≡ z (mod a). In particular, if a is even with x > 1, then z is even.

Proof. (i) Taking equation (4.1) modulo (a + 1) implies that (−1)x +

(−1)y ≡ 0 (mod (a + 1)). As the modulus is greater than 2, the congruence

is actually an equality, which shows the assertion.
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(ii) Note that z > 1. Rewrite equation (4.1) as

(−1 + (a+ 1))x = −(−1 + 2(a+ 1))y + (a+ 1)z.

Taking the above equation modulo (a+ 1)2 enables us to find that

(−1)x + (−1)x−1(a+ 1)x ≡ (−1)y+1 + (−1)y2(a+ 1)y (mod (a+ 1)2).

This congruence together with (i) yields the asserted congruence.

(iii) Taking equation (4.1) modulo a2 enables us to find that

ax + 2ay + 1 ≡ az + 1 (mod a2).

This congruence immediately gives the asserted congruence. �

Lemma 4.2. If x = 2y, then (x, y, z) = (2, 1, 2).

Proof. Assume x = 2y. Then

(a2)y + (2a+ 1)y = (a+ 1)z.

Let us rely on a direct consequence of an old version of the Primitive Divisor

Theorem due to Zsigmondy [29], stated as follows.

Proposition 7. Let A and B be relatively prime integers with A > B > 1.

Let {Vk}k>1 be the sequence defined as

Vk = Ak + Bk.

If k > 1, then Vk has a prime factor not dividing V1V2 · · · Vk−1, whenever (A,B, k)

6= (2, 1, 3).

Apply Proposition 7 with (A,B) = (a2, 2a+1) and k = y. Since V1 = (a+1)2,

it follows y = 1, which yields (x, z) = (2, 2). �

Lemma 4.3. If z is even, then (x, y, z) = (2, 1, 2).

Proof. Write z = 2Z with some positive integer Z. Recall that x 6≡ y

(mod 2) from Lemma 4.1 (i).

First, suppose that x is even. Write x = 2X. Then

(2a+ 1)y = ((a+ 1)Z + aX)((a+ 1)Z − aX).
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Since the two factors on the right-hand side are coprime, there are odd positive

integers u, v such that

(a+ 1)Z + aX = uy, (a+ 1)Z − aX = vy

with uv = 2a+ 1. Then

2aX = uy − vy, 2(a+ 1)Z = uy + vy.

Since ν2(uy±vy) = ν2(u±v) as all u, v, y are odd, one compares 2-adic valuations

of both sides of each above equation to find that

max{X,Z} 6 log u

log 2
.

On the other hand, as 2aX = uy− vy > 2uy−1 and 2(a+ 1)Z > uy, one finds that

y 6
log(a+ 1)

log u
max{X,Z}+ 1.

These inequalities together show that

max{x, 2y} 6 2 log(a+ 1)

log u
max{X,Z}+ 2 6

2

log 2
log(a+ 1) + 2.

If x 6= 2y, then max{x, 2y} > a+1 by Lemma 4.1 (ii), so a+1 6 2
log 2 log(a+1)+2,

which implies that a 6 7, and max{x, 2y} 6 8. However, equation (4.1) does not

hold for any (a, x, y) under consideration. Thus, x = 2y, and so (x, y, z) = (2, 1, 2)

by Lemma 4.2.

Next, suppose that y is even. Write y = 2Y . Then ax = DE, where

D = (a+ 1)Z + (2a+ 1)Y , E = (a+ 1)Z − (2a+ 1)Y .

Since D ≡ 2 (mod a) and D > 1, one observes that a has to be even and D/2 is

prime to a/2. Then, by the equation (a/2)x2x−1=(D/2)E with gcd(D/2, a/2)=1,

it follows that E ≡ 0 (mod (a/2)x) and 2x ≡ 0 (mod D), in particular, (a/2)x 6
E < D 6 2x. This contradicts the fact that a > 2 is even. �

Lemma 4.4. For each a with 2 < a < 1800, equation (4.1) has no solution

(x, y, z) with (x, y, z) 6= (2, 1, 2) satisfying

max{x, y, z} < C(a), max{x, z} < 5y,

where C(a) = 1300 if a < 100, and C(a) = 1000 if a > 100.
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Proof. Firstly, note that one may add further restrictions on a, x, y, z from

Lemmas 4.1 and 4.3 and their consequences. Moreover, it may be assumed that

x > a log(a+ 1) if x > z. Indeed, if x > z, then, since ax < (a+ 1)z 6 (a+ 1)x−1,

it follows that a+ 1 6 (1 + 1/a)x, which implies that x > a log(a+ 1).

The verification can be done by Magma [5] in about three hours, as follows.

Let p = p(a) be the least prime factor of 2a + 1, and ν = ν(a, x, z) the p-adic

valuation of (a + 1)z − ax, that is, pν ‖ ((a + 1)z − ax). For each (a, x, z), the

function Valuation(*,p) in Magma is used to confirm that ν 6 10. Since y 6 ν
by equation (4.1), it follows that y 6 10. Finally, a simple program enables

us to verify that equation (4.1) has no solution (x, y, z) with (x, y, z) 6= (2, 1, 2)

satisfying y 6 10 and max{x, z} < 5y 6 50. The lemma is proved. �

5. Proof of Theorem 1

In what follows, write a + 1 = M on equation (4.1). Then M > 4 and

equation (4.1) is

(M − 1)x + (2M − 1)y = Mz. (5.1)

Lemma 5.1. Assume that M ≡ 2 (mod 4). Then the only solution of

equation (5.1) is (x, y, z) = (2, 1, 2).

Proof. Let (x, y, z) be a solution of equation (5.1). From Lemma 4.3, it suf-

fices to show that z is even. On the contrary, suppose that z is odd. Taking

equation (5.1) modulo (2M − 1) yields that

(M − 1)x ≡Mz (mod (2M − 1)).

Since x is even by Lemma 4.1 (ii), one easily sees that 2 is a quadratic residue

modulo (2M − 1). Thus, a supplement of the quadratic reciprocity law tells us

that 2M − 1 ≡ ±1 (mod 8), which is absurd to the assumption that M ≡ 2

(mod 4). This contradiction shows that z is even. �

Lemma 5.1 and Proposition 1 together with the result in [25] enable us to

assume that M > 7, and M ≡ 0 (mod 4) if M is even.

In what follows, let (x, y, z) be a solution of equation (5.1). Suppose that z

is odd. We will observe that this leads to a contradiction.

In order to find an absolute upper bound for z, let us rely on the following

result which is a simple consequence of [6, Theorem 2;(y1, y2) = (1, 1) and µ = 4].
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Proposition 8. Let M be an integer with M > 1, and M =
∏

16i6w p
ui
i

be the prime factorization of M . Let X1 and X2 be two coprime integers such

that gcd(X1X2,M) = 1 with X1, X2 6= ±1. Assume that g is a positive integer

satisfying

νpi(X
g
1 − 1) > ui, νpi(X

g
2 − 1) > 1 (i = 1, 2, . . . , w),

ν2(Xg
i − 1) > 2 (i = 1, 2) if M is even.

Let H1 and H2 be positive numbers such that

Hi > max{log |Xi|, logM} (i = 1, 2).

Then, for any positive integers b1 and b1 with gcd(b1, b2,M) = 1, the exponent

of the highest power of M dividing Xb1
1 −X

b2
2 is at most

53.6gH1H2

log4M

(
max{log b′ + log logM + 0.64, 4 logM}

)2
with b′ = b1/H2 + b2/H1.

In order to use this proposition, let us check that gcd(x, y,M) = 1. On the

contrary, suppose that x and y have some common prime divisor p. Write x = pX

and y = pY . Note that p is odd and X 6≡ Y (mod 2) by Lemma 4.1 (i). Then

equation (5.1) is written as

R(AX +BY ) = Mz (5.2)

with (A,B) = (M − 1, 2M − 1) and R = ApX+BpY

AX+BY . Note that R > p. Also,

by elementary number theory (cf. [22, P1.2]), it is easy to see that R is not

divisible by p2. On the other hand, since A ≡ B ≡ −1 (mod M), one sees that

R =

p−1∑
j=0

(−1)j(AX)p−1−j(BY )j ≡
p−1∑
j=0

(−1)j+(p−1−j)X+jY

≡
p−1∑
j=0

(−1)j(1−X+Y ) ≡
p−1∑
j=0

1 ≡ p (mod M).

It follows from equation (5.2) that R has no prime factor other than p. However,

this contradicts the fact that R > p and R 6≡ 0 (mod p2).
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Set (X1, X2; b1, b2) = (1 −M, 1 − 2M ;x, y). Then Xb1
1 − X

b2
2 = ±Mz by

Lemma 4.1. Since one can take g := 1, H1 := logM and H2 := log(2M − 1),

it follows from Proposition 8 that

z 6
53.6 log(2M − 1)

log3M

(
max{log b′ + log logM + 0.64, 4 logM}

)2
(5.3)

with b′ = x/ log(2M − 1) + y/ logM . From the trivial inequalities x < logM
log(M−1) z

and y < logM
log(2M−1) z, observe that

b′ <
2

logM
z.

Suppose that

log b′ + log logM + 0.64 > 4 logM.

Since M4 < e0.64(logM)b′ 6 2e0.64z, it follows from inequality (5.3) that

z

(log(2z) + 0.64)2
6

53.6 log(2M − 1)

log3M
< 18.66. (5.4)

This shows that z < 1365. Since M4 < 2e0.64z, one has M 6 7, so M = 7. Now,

by Lemma 4.1 (i, iii), x has to be 1 and y is even, which, however, contradicts the

consequence of [8].

Therefore, log b′ + log logM + 0.64 6 4 logM , and it follows from inequal-

ity (5.3) that

z 6
857.6 log(2M − 1)

logM
.

This implies that{
x 6 1226, y 6 856, z 6 1129 if M > 7,

max{x, y, z} < 1000 if M > 100.

Since x 6= 2y by Lemma 4.2, one sees from Lemma 4.1 (ii) that

M 6 1712.

By Lemmas 4.1 and 4.4, it suffices to consider the case where x > 5y or z > 5y.

It is easy to verify that x > 5y if z > 5y.

Suppose that x > 5y. From equation (5.1) it follows that

1 +
(2M − 1)y

(M − 1)x
=

Mz

(M − 1)x
.
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Observe that

z logM − x log(M − 1) = log

(
1 +

(2M − 1)y

(M − 1)x

)
<

(2M − 1)x/5

(M − 1)x
.

Dividing both sides by x logM gives

(0 <) z/x− ξ < (2M − 1)x/5

x(M − 1)x logM

with ξ = ξ(M) = log(M−1)
logM . Since the right-hand side is less than 1/(2x2),

Legendre’s theorem on the theory of continued fraction tells us that z/x is

a convergent to the irrational number ξ, say pj/qj as usual. Moreover, it is

known that

|ξ − pj/qj | >
1

(aj+1 + 2)q2j
,

where aj+1 is the (j + 1)-st partial quotient to ξ. Since qj 6 x, these bounds for

|ξ − z/x| together yield a sharp lower bound for aj+1, as follows:

aj+1 >
(M − 1)x logM

x(2M − 1)x/5
− 2.

Finally, for each M,x under consideration, one can easily check that the above

inequality does not hold for any j satisfying qj 6 x.

To sum up, the proof of Theorem 1 is completed.

6. Proof of Theorem 2

Through the proof of Theorem 2, the following lemma is frequently used.

Lemma 6.1. Let (A,C, p, q) be a quadruple of integers satisfying

Ap + 2q = C2, |A| > 1, C > 0, gcd(A,C) = 1, p > 1, q > 2.

Assume that (A,C) 6∈ {(−7, 13), (17, 71)} and (A,C, p) 6= (−7, 181, 1). Then one

of the following cases holds:

(i) (A,C, p) = (2q−2 − 1, 2q−2 + 1, 2) and q > 4.

(ii) p = 1, and

q <
50 log |A|
13 log 2

.

Proof. This follows from the combination of Proposition 3 with (S, T,m, n)

= (C,A, q, p), Proposition 4 with (S, n) = (C, q) and Proposition 6 with (D;U, l) =

(−A;C, q). �

In what follows, let us separately consider five cases.
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6.1. The case a = 2. Let a = 2, and consider the equation:

2x + (2 + b)y = bz. (6.1)

Let (x, y, z) be a triple of positive integers satisfying equation (6.1). Since

b is odd, if both y, z are odd, then taking equation (6.1) modulo 8 implies that

2x + 2 ≡ 0 (mod 8). However, this congruence does not hold. Therefore, y or z

is even.

First, suppose that y is even. Note that z > 2 as bz > (2+b)y > (2+b)2 > b2.

Then, Proposition 2 with (S, T,m, n) = ((2+b)y/2, b, x, z) tells us that (b, x, y, z) =

(3, 1, 2, 3).

Next, suppose that z is even. Now, apply Lemma 6.1 with (A,C, p, q) =

(2+b, bz/2, y, x). Observe that C−A = bz/2−b−2 6= 2 as b > 1 is odd. It follows

y = 1. On the other hand, one takes equation (6.1) modulo (b + 1) to see that

(b + 1) divides 2x. Hence, b = 2t − 1 with an integer t with 2 6 t 6 x. Taking

equation (6.1) modulo 2t+1 yields that 2x+2t+1 ≡ 1 (mod 2t+1), and so 2x ≡ 2t

(mod 2t+1). Thus, x = t. It holds from equation (6.1) that 2x+1 + 1 = (2x − 1)z,

from which z = 2 holds, and x = 2.

6.2. The case where a is a power of 4. Write a = 4k with a positive integer k,

and consider the equation

4kx + (4k + b)y = bz. (6.2)

Consider the case where b is congruent to 0 or 1 modulo 3. Taking equation (6.2)

modulo 3 implies that either 2 ≡ 0 (mod 3) or 2y ≡ 0 (mod 3). However, both

congruences clearly do not hold. Thus, it suffices to consider the case where

b ≡ 2 (mod 3). Again, taking equation (6.2) modulo 3 implies that 2z ≡ 1

(mod 3). Thus, z is even. Put Z = z/2. Apply Lemma 6.1 with (A,C, p, q) =

(4k + b, bZ , y, 2kx). One obtains that either y = 1 or

(4k + b, bZ , y) = (22kx−2 − 1, 22kx−2 + 1, 2), kx > 1.

In the second case, it is clear that bZ = 22kx−2 + 1 holds with 2kx − 2 > 1 and

Z > 1. This is a special case of Catalan’s equation. Thus, it may be concluded

that this equation does not hold.

Finally, suppose y = 1. Equation (6.2) can be written as

4k + b = (bZ + 2kx)(bZ − 2kx).

In particular, b + 22k > bZ + 2kx. Thus, x = 1 or (x, Z) = (2, 1). If x = 1,

equation (6.2) is 2 · 4k + b = b2Z , which, however, contradicts the fact that b > 1

is odd. If (x, Z) = (2, 1), then b− 22k = 1, i.e., b = a+ 1.

This completes the proof of case (C1) in Theorem 2.
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Remark 1. In case of (C1) in Theorem 2, the case where a is an odd power

of 2 (> 2) is not considered. In that case, it is hard to find that at least one of

y, z is even, even if it can be observed that x is even. Thus, our method does not

work well.

6.3. The case b = 2. Let b = 2, and consider the equation:

ax + (a+ 2)y = 2z. (6.3)

Taking this equation modulo (a+ 1) implies that (−1)x + 1 ≡ 2z (mod (a+ 1)).

First, suppose that x is odd. Then a+ 1 divides 2z. Hence, a is of the form

a = 2j − 1 with an integer j > 2. This is an exceptional case of Conjecture 1,

already settled in Theorem 1.

Next, suppose that x is even. PutX = x/2. It is observed from equation (6.3)

that y has to be odd (as z > 1). Now, equation (6.3) is written as

(−a− 2)y + 2z = a2X .

Lemma 6.1 with (A,C, p, q) = (−a− 2, aX , y, z) implies that y = 1, and

z <
50 log(a+ 2)

13 log 2
.

This, together with the trivial estimate a2X < 2z, gives

X <
25

13

log(a+ 2)

log a
.

First, consider the case where a 6 16. In this case, both X, z are absolutely

bounded by their upper bounds depending only on a. It is easy to verify that

equation (6.3) does not hold for any triple (a;X, z) under consideration.

Next, consider the case where a > 17. Then, X = 1, and a2 + a + 2 = 2z,

that is,

(2a+ 1)2 + 7 = 2z+2.

Since a is odd with a > 17, Proposition 4 with (S, n) = (2a + 1, z + 2) tells us

that the above equation does not hold.

6.4. The case where b > 2 is a power of 2. Write b = 2k with an integer

k > 1, and consider the equation:

ax + (a+ 2k)y = 2kz. (6.4)
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Since a is odd, one takes equation (6.4) modulo 4 to find that a|x−y| ≡ −1

(mod 4). Thus, it suffices to consider the case where

a ≡ 3 (mod 4),

and one may assume that

x 6≡ y (mod 2).

First, suppose that x is even and y is odd. Put X = x/2. Now, equation (6.4)

is written as

(−a− 2k)y + 2kz = a2X .

Lemma 6.1 with (A,C, p, q) = (−a− 2k, aX , y, kz) implies that y = 1, and

kz <
50

13 log 2
log(a+ 2k).

This, together with the trivial estimate a2X < 2kz, yields

X <
25

13

log(a+ 2k)

log a
.

Now, let us show

2k 6 a+ 1. (6.5)

Indeed, as a is odd, one takes equation (6.4) modulo 2k to find that a2X−1 + 1 is

divisible by 2k. This, together with the fact that ν2(a2X−1 + 1) = ν2(a+ 1), tells

us that a+1 is divisible by 2k, particularly, 2k 6 a+1. Therefore, it is concluded

that

X <
25

13

log(2a+ 1)

log a
(< 3), kz <

50

13 log 2
log(2a+ 1).

Thus, either X = 1, or X = 2 with a < 108.

Suppose X = 1. Then equation (6.4) is a2 + a+ 2k = 2kz, that is,

(2a+ 1)2 + (2k+2 − 1) = 2kz+2.

Proposition 5 with (S, n) = (2a+ 1, kz+ 2) yields that kz+ 2 = 2k+ 2, so z = 2.

Suppose that X = 2 with a < 108. Then, by (6.5) and the obtained upper

bound for kz depending only on a, it follows that k < 30 and kz < 107. Then

Magma [5] easily enables us to check that equation (6.4) (with y = 1) does not

hold for any triple (a, k; z) under consideration.
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Next, suppose that x is odd and y is even. Put Y = y/2. Then equation (6.4)

is written as

(−a)x + 2kz = (a+ 2k)2Y .

Lemma 6.1 with (A,C, p, q) = (−a, (a+ 2k)Y , x, kz) implies that x = 1, and

kz <
50

13 log 2
log a.

This, together with the trivial estimate (a+ 2k)2Y < 2kz, yields

Y <
kz log 2

2 log(a+ 2k)
<

25

13
,

and so Y = 1. Then equation (6.4) is a + (a + 2k)2 = 2kz. Note that both k, z

are odd. The obtained equation is rewritten as

(2a+ 2k+1 + 1)2 − (2k+2 + 1) = 2kz+2.

Now, Proposition 6 with (D;U, l) = (−(2k+2 + 1); 2a+ 2k+1 + 1, kz + 2) gives us

kz + 2 <
50

13 log 2
log(2k+2 + 1),

so

z <
50

13k log 2
log(2k+2 + 1)− 2

k
(< 8).

This implies either z = 3, or z ∈ {5, 7} with k < 10.

First, suppose that z = 3. Taking (6.4) modulo a implies that 22k ≡ 23k

(mod a). In view of a is odd, 2k ≡ 1 (mod a), and so a 6 2k − 1. On the other

hand, as a > 2k−1 from (6.5), we have a = 2k−1, i.e., b = a+1. This contradicts

Theorem 1.

Second, suppose that z ∈ {5, 7} with k < 10. Magma [5] easily enables us to

check that equation (6.4) does not hold for any triple (a, k; z) under consideration.

This completes the proof of case (C2) in Theorem 2.

6.5. The case where a+ b is a power of 2. Write a+ b = 2k with an integer

k > 2, and consider the equation:

ax + 2ky = (2k − a)z. (6.6)

It suffices to show that there is no triple (x, y, z) of positive integers satisfying

equation (6.6).
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In what follows, suppose that (x, y, z) is a positive integer solution of equa-

tion (6.6). Since a is odd, and k > 1, taking equation (6.6) modulo 4 yields

ax ≡ (−a)z (mod 4).

From this congruence it is observed that x or z is even according to the cases

a ≡ 3 (mod 4) or a ≡ 1 (mod 4).

First, consider the case where a ≡ 3 (mod 4). Then x is even. Proposition 2

with (S, T,m, n) = (ax/2, 2k − a, ky, z) gives z < 3. As z > 1, it holds that z = 2,

and so y = 1 by equation (6.6). Thus,

ax + 2k = (2k − a)2.

It is easy to see that x 6= 1, 2. However, by Lemma 6.1 with (A,C, p, q) =

(a, 2k − a, x, k), the above equation does not hold when x > 3.

Next, consider the case where a ≡ 1 (mod 4). Then z is even. Note that

z 6= 2 by an observation in the previous case. Now, apply Lemma 6.1 with

(A,C, p, q) = (a, (2k − a)z/2, x, ky) to find x < 3. If x = 2, then (2k − a)z/2 −
2ky−2 = 1 with z/2 > 1 and ky > 4. Since the resulting equation is the Catalan’s

equation, it follows that (2k − a, z/2, ky − 2) = (3, 2, 3), and so (a, k, y, z) =

(19, 5, 1, 4), where, however, equation (6.6) does not hold. Therefore, x = 1.

Then, taking equation (6.6) modulo 2k implies that az−1 ≡ 1 (mod 2k), which,

similarly to the proof of inequality (6.5), gives rise to the inequality a − 1 > 2k.

However, this contradicts the trivial estimate a < 2k (= a + b). This completes

the proof of case (C3) in Theorem 2.

To sum up, the proof of Theorem 2 is completed.
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