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Multivariate stochastic integrals with respect to independently
scattered random measures on δ-rings

By DUSTIN KREMER (Siegen) and HANS-PETER SCHEFFLER (Siegen)

Abstract. In this paper we construct general vector-valued infinitely-divisible

independently scattered random measures with values in Rm and their corresponding

stochastic integrals. Moreover, given such a random measure, the class of all integrable

matrix-valued deterministic functions is characterized in terms of certain characteristics

of the random measure. In addition, a general construction principle is presented.

1. Introduction

Various stochastic processes and random fields are built by integrating

a family of deterministic functions with respect to an infinitely-divisible random

measure (e.g. a noise). One of the first and most prominent examples is the

fractional Brownian motion. This was extended to the so-called fractional sta-

ble motion by replacing the Gaussian random measure by a symmetric α-stable

(SαS) random measure, see [20] for details.

Based on SαS random measures, a vast class of stochastic processes and

random fields has been constructed. See, e.g., [1], [2], [6], [20] and [21] to name

a few. All these processes and fields are univariate and have SαS marginal dis-

tributions by construction. The general theory of arbitrary infinitely-divisible

independently scattered random measures (ISRMs) and the class of integrable

functions was carried out in [17].
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Surprisingly enough, and except the Gaussian case, much less is known in

the multivariate case. On the one hand, there is merely an ad hoc construction

of a multivariate SαS random measure in [14]. On the other hand, the works

in [7] (see Chapter III.6) and [15] certainly treat the multivariate case, however,

they extend the results in [17] just in parts. The purpose of this paper is to

carefully develop an honest theory of general infinitely-divisible ISRMs on δ-rings

and their corresponding integrals for matrix-valued deterministic functions. Our

approach follows along the lines of [17]. However, since we construct vector-valued

measures, some univariate methods using monotonocity no longer apply.

In a subsequent paper [12], our methods will be used to construct an Rm-

valued ISRM with operator-stable marginals.

The paper is organized as follows. We start with some notation and use-

ful preliminaries about infinitely-divisible distributions and δ-rings in Section 2.

We then characterize all infinitely-divisible Rm-valued random measures in Sec-

tion 3, already suggesting a complex-valued point of view and proposing a useful

construction principle in Theorem 3.4. Finally, in Section 4, the integrators pro-

vided by Section 3 are used to define the corresponding stochastic integral for

matrix-valued functions. Here we will characterize the class of integrable func-

tions (w.r.t. to a given random measure) and clarify the intimate relation between

the real-valued and complex-valued perspective as announced before.

2. Preliminaries

Let L(Km) denote the set of all linear operators on Km, represented as m×m
matrices with entries from K, where K is either R or C. Furthermore, let ‖·‖ be

the Euclidian norm on Rm with inner product 〈·, ·〉, while the identity operator on

Rm is denoted by Im. Then it is well-known (as the Lévy–Khintchine Formula,

see [16, Theorem 3.1.11]) that ϕ = exp(ψ) with ψ : Rm → C is the Fourier

transform (or characteristic function) of an infinitely-divisible (i.d.) distribution

on Rm, if and only if ψ can be represented as

ψ(t) = i〈γ, t〉 − 1

2
〈Qt, t〉+

∫
Rm

(
ei〈t,x〉 − 1− i〈t, x〉

1 + ‖x‖2

)
φ(dx), t ∈ Rm

for a shift γ ∈ Rm, some normal component Q ∈ L(Rm) which is symmetric and

positive semi-definite and a Lévy measure φ, i.e., φ is a measure on Rm with

φ({0}) = 0 and
∫
Rm min{1, ‖x‖2}φ(dx) <∞. For the distribution µ with µ̂ = ϕ,

we write µ ∼ [γ,Q, φ], as γ,Q and φ are uniquely determined by µ. ψ is the only
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continuous function with ψ(0) = 0 and µ̂ = exp(ψ), subsequently referred to as

the log-characteristic function of µ.

Lemma 2.1. Let (µn) be a sequence of i.d. distributions on Rm. Then µn ∼
[γn, Qn, φn] converges weakly to the point measure in zero ε0 if and only if γn → 0,

Qn → 0 and ∫
Rm

min{1, ‖x‖2}φn(dx)→ 0 (n→∞). (2.1)

Proof. By [16, Theorem 3.1.16], it obviously remains to check that (2.1) is

equivalent to φn(A) → 0 for all Borel sets A which are bounded away from zero

together with

lim
ε→0

lim
n→∞

∫
{x:0<‖x‖<ε}

〈t, x〉2 φn(dx) = 0 for all t ∈ Rm.

Therefore, by distinguishing the sign of each component, we can decompose Rm

into sets Mj (j = 1, . . . , 2m) such that ‖x‖2 ≤ ‖x‖21 = 〈tj , x〉2 for all x ∈Mj and

suitable tj ∈ {−1, 1}m, where ‖·‖1 is the 1-norm on Rm. �

Throughout this paper, let S be any non-empty set. Then a family of sets

S ⊂ P(S) := {A : A ⊂ S} is called a δ-ring (on S) if it is a ring (i.e., closed under

union and difference together with ∅ ∈ S) such that there is a sequence (Sn) ⊂ S
with ∪∞n=1Sn = S, and which is also additionally closed under countably many

intersections. Using the properties of a ring, the sequence (Sn) can assumed to

be increasing as well as disjoint, depending on the respective occurrence. Note

that any δ-ring S with S ∈ S is a σ-algebra. The next result is also elementary,

but helpful, where σ(S) denotes the σ-algebra on S that is generated by S.

Lemma 2.2. Let S be a δ-ring on S. Then A ∩M ∈ S for all A ∈ S and

M ∈ σ(S).

Proof. Observe that S ⊂ D := {M ∈ σ(S) | ∀A ∈ S : A∩M ∈ S}. Then we

just have to check that D is already a σ-algebra on S. Since A∩M c = A\(A\M),

it follows that M c ∈ D, whenever M ∈ D is true. Analogously, for A ∈ S arbitrary

and any sequence (Mn) ⊂ D, we see that A∩(∪∞n=1Mn)c = ∩∞n=1A\(A∩Mn) ∈ S
holds true. Hence D is closed under countably many unions. �

We now want to consider vector-valued set functions with domain S. For our

purpose it is sufficient to assume that V is a Banach space (with norm ‖·‖V ). Then
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we call T : S → V additive if T (∅) = 0 and T (A1∪· · ·∪Ak) = T (A1)+ · · ·+T (Ak)

for any k ∈ N and disjoint sets A1, . . . , Ak ∈ S. Furthermore, if

T (∪∞n=1An) =

∞∑
n=1

T (An) w.r.t. ‖·‖V

holds for any disjoint sequence (An) ⊂ S with ∪∞n=1An ∈ S, then T is called σ-

additive. Finally σ-additive set functions on σ-algebras are called vector measures.

As we claim T (A) ∈ V for every A ∈ S, one can use standard arguments (see [10,

Theorem 1.36], for example) to show that an additive set function T : S → V is

σ-additive if and only if

V - lim
n→∞

T (An) = 0 for all (An) ⊂ S with An ↓ ∅. (2.2)

In this context, we distinguish the previous definition from the term pre-measure,

i.e., those σ-additive set functions on S that take values in [0,∞]. Yet, given any

set function T : S → V , the total variation |T | (of T ) connects these concepts,

i.e., for any A ∈ S, we define

|T |(A) :=sup


n∑
j=1

‖T (Aj)‖V |n∈N and A1, . . . , An ∈ S disjoint with Aj⊂A

 .

Theorem 2.3. Let T : S → V be a σ-additive set function. Then |T | is

a pre-measure. Additionally, if V is finite-dimensional, then |T | is [0,∞)-valued,

i.e., a finite pre-measure.

Proof. As in [4, III 1, Lemma 6], we get that |T | is additive, although

S is just a (δ-)ring. Using this and the arguments in the proof of [4, III 4,

Lemma 7], it follows that |T | is even σ-additive. Finally, if V = Rn (without

loss of generality), we can assume that n = 1 by equivalence of norms and by

considering the component functions of T which inherit the σ-additivity. Now,

due to (2.2) and the closure of S under countably many intersections, we can

argue as in [13, XI, Theorem 8] to obtain the assertion. �

Remark 2.4. In view of the quoted proofs, we observe that if T : S → [0,∞) is

σ-subadditive, then its total variation |T | is at least still a pre-measure (in general

with values in [0,∞]).

Unfortunately, it is impossible to formulate the Hahn–Jordan decomposition

on δ-rings. But for the case V = R, we can at least consider the positive variation
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T+ : S → [0,∞) and the negative variation T− : S → [0,∞) of the σ-additive

set function T , defined by T±(A) := 1
2 (|T |(A) ± T (A)), respectively. Then it

is clear that T+ and T− are finite pre-measures with T = T+ − T− as well as

|T | = T++T−. Although it was formulated for σ-algebras in [4, III 1, Theorem 8],

we see that the following representations hold for every A ∈ S:

T+(A) = sup{T (B) : B ∈ S with B ⊂ A} (2.3)

and

T−(A) = − inf{T (B) : B ∈ S with B ⊂ A}. (2.4)

3. Infinitely-divisible random measures

In this section we define and analyze ISRMs with values in Km defined on

δ-rings. Hence if we denote by L0(Ω,Km) the set of all Km-valued random vec-

tors defined on any abstract probability space (Ω,A,P), a mapping M : S →
L0(Ω,Km) is shortly called an independently scattered random measure (on S
with values in Km), if the following conditions hold:

(RM1) For every finite choice A1, . . . , Ak of disjoint sets in S, the random vectors

M(A1), . . . ,M(Ak) are stochastically independent.

(RM2) For every sequence (An) ⊂ S of disjoint sets with ∪∞n=1An ∈ S, we have

M(∪∞n=1An) =

∞∑
n=1

M(An) almost surely (a.s.).

By introducing the mapping Ξ(m)(z) := (Re z, Im z) ∈ R2m for z ∈ Cm, condition

(RM1) here means independence of Ξ(M(A1)), . . . ,Ξ(M(Ak)). Furthermore, and

with an analogous extension for K = C, we call such an ISRM infinitely-divisible,

if this true for (the distribution of) every random vector M(A), A ∈ S. In this

case, we get the following characterization, where we first consider K = R:

Theorem 3.1. Let M be an i.d. ISRM on S with values in Rm, where

M(A) ∼ [γA, QA, φA] for every A ∈ S. Then we have:

(a) The mapping S 3 A 7→ γA ∈ Rm is σ-additive.

(b) The mapping S 3 A 7→ QA ∈ L(Rm) is σ-additive.

(c) The mapping S 3 A 7→ φA(B) is a finite pre-measure for every fixed Borel

set B which is bounded away from zero.
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Conversely, for every family of triplets ([γA, QA, φA])A∈S that satisfies (a)–(c)

there exists an i.d. ISRM M (on some suitable probability space) with M(A) ∼
[γA, QA, φA] for every A ∈ S. Furthermore, the finite-dimensional distributions

of M are uniquely determined by the latter property.

Proof. Assume first that M is an infinitely-divisible ISRM. Since M(∅) = 0

a.s., the additivity of the mappings in (a)–(c) can be easily deduced from the

Lévy–Khintchine Formula and its uniqueness statement by using (RM1) and

(RM2) for only finitely many sets. Then it is even clear that φA1∪···∪Ak
equals

the measure φA1
+ · · ·+φAk

. Now let (Bn) ⊂ S be a sequence with (Bn) ↓ ∅ and

define C1 = ∅, Cn = Bn−1 \Bn (for n ≥ 2) to observe that

M(B1) = M(∪∞k=1Cn) = lim
k→∞

(M(B1)−M(Bk)),

which leads to M(Bk)→ 0 a.s. Then (a) and (b) follow by Theorem 2.1 together

with (2.2). Similarly, using [16, Theorem 3.1.16], we obtain (c).

Concerning the second part, denote by Θ(A, ·) the log-characteristic function

of the i.d. distribution on Rm with triplet [γA, QA, φA] for A ∈ S. Moreover, for

any n ∈ N and A1, . . . , An ∈ S, we define

ψA1,...,An(t) :=
∑

J⊂{1,...,n}

Θ
(
Z(n)
J ,

∑
j∈J

tj

)
,

where t = (t1, . . . , tn) ∈ Rn·m and

Z(n)
J := ZJ(A1, . . . , An) :=

∅, if J = ∅[⋂
j∈J Aj \

⋃
l∈Jc Al

]
, if J 6= ∅

∈ S.

Then, with [8, Lemma 3.5.9], for example, it easy to see that exp(ψA1,...,An(·)) is

not only continuous, but also positive semi-definite in the sense of Bochner’s the-

orem, as this is true for the functions exp(Θ(A, ·)) already. Then by the theorem

itself, we obtain the existence of a distribution µA1,...,An on Rn·m whose Fourier

transform is given by exp(ψA1,...,An(·)), in particular, we have µA ∼ [γA, QA, φA]

for all A ∈ S. Then on the one hand, we can check that

ZJ(A1, . . . , An+1) ∪ ZJ∪{n+1}(A1, . . . , An+1) = ZJ(A1, . . . , An)

for A1, . . . , An+1 ∈ S and every J ∈ P({1, . . . , n})\∅, where the union is disjoint.

On the other hand, (c) implies for all B1, B2 ∈ S disjoint and t ∈ Rm that
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Θ(B1 ∪B2, t) = Θ(B1, t) + Θ(B2, t). Hence, for t1, . . . , tn ∈ Rm arbitrary, we get

with tn+1 := 0 that

ψA1,...,An+1
(t1, . . . , tn, 0) =

∑
J⊂{1,...,n+1}

Θ(Z(n+1)
J ,

∑
j∈J

tj)

=
∑

J⊂{1,...,n}

Θ(Z(n+1)
J ,

∑
j∈J

tj) + Θ(Z(n+1)
J∪{n+1},

∑
j∈J

tj)



=
∑

J⊂{1,...,n},
J 6=∅

Θ(Z(n+1)
J ,

∑
j∈J

tj) + Θ(Z(n+1)
J∪{n+1},

∑
j∈J

tj)


= ψA1,...,An

(t1, . . . , tn).

Overall, this mostly proves that the considered system is projective and by Kol-

mogorov’s consistency theorem, there exists a probability space (Ω,A,P) and

a family M = {M(A) : A ∈ S} of random vectors with marginal distributions

L((M(A1), . . . ,M(An))) = µA1,...,An . For A1, . . . , An ∈ S disjoint, we have that

Z(n)
J = Aj if J = {j}, and Z(n)

J = ∅ else, which yields that (RM1) is fulfilled. For

(RM2) we first fix A1, A2 ∈ S arbitrary and write

L̂(M(A1 ∪A2)−M(A1)−M(A2))(t) = µ̂A1∪A2,A1,A2
(t,−t,−t), t ∈ Rm

to see that M is finitely additive, as the right-hand side equals 1 by construction.

Thus for a sequence like given in (RM2), it suffices to show that

M(∪∞j=1Aj)−M(∪kj=1Aj) = M(∪∞j=k+1Aj)
P−−−−−→

(k→∞)
0

by a straightforward multivariate extension of the the three-series-theorem (see

[3, Theorem 9.7.1]) and by what we have shown before. If we let Bk := ∪∞j=k+1Aj
with Bk ↓ ∅, it follows by (a) and (b) that γBk

→ 0 as well as that QBk
→ 0.

Provided that

lim
k→∞

∫
Rm

min{1, ‖x‖2}φBk
(dx) = 0, (3.1)

the assertion would follow via Theorem 2.1. Fix ε > 0 and choose δ > 0 sufficiently

small such that∫
{x:‖x‖<δ}

min{1, ‖x‖2}φBk
(dx) ≤

∫
{x:‖x‖<δ}

min{1, ‖x‖2}φB1
(dx) < ε, k ∈ N
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in face of φk+1 ≤ φk (see above), such that (3.1) follows by (c) again. Finally, for

uniqueness we fix A1, A2 ∈ S and observe that 〈t1,M(A1)〉+ 〈t2,M(A2)〉 equals

〈t1,M(A1 \A2)〉+ 〈t1 + t2,M(A1 ∩A2)〉+ 〈t2,M(A2 \A1)〉,

where the three last-mentioned random variables are independent due to (RM1).

Now the statement can be deduced easily. �

Let us remark that the previous theorem as well as the following ones are

similar to the corresponding, but univariate results in [17].

Theorem 3.2. Let M be an i.d. ISRM as before, then there exists a σ-finite

measure λM on σ(S), called control measure of M , which is uniquely deter-

mined by

λM (A) = |γ|A + tr(QA) +

∫
Rm

min{1, ‖x‖2}φA(dx), A ∈ S, (3.2)

where |γ|A := |γ|(A). Furthermore, for any sequence (An) ⊂ S, we have:

(i) λM (An)→ 0 implies M(An)→ 0 in probability.

(ii) If M(A′n) → 0 in probability for every sequence (A′n) ⊂ S with A′n ⊂ An,

then it follows that λM (An)→ 0.

Proof. We have to show that (3.2) defines a finite pre-measure on S, then

λM would be its unique extension on σ(S): non-negativity is obvious. Moreover,

|γ| is finite by Theorem 2.3 and Theorem 3.1 (a). The mapping A 7→ tr(QA)

preserves the σ-additivity in Theorem 3.1 (b) by continuity of the trace-mapping

tr(·). Finally, we could already show that A 7→ φA is additive, thus, as before,

it remains to show that ∫
Rm

min{1, ‖x‖2}φBn
(dx)→ 0 (3.3)

for any sequence (Bn) ⊂ S with Bn ↓ ∅. Actually, the previous proof even

revealed that M(Bn)→ 0 a.s., such that (3.3) follows by (2.1).

Now, if λM (An) → 0 for a sequence as above, the same holds for each of

the corresponding expressions in (3.2), which allows us to use Theorem 2.1 again.

Because of ‖γAn
‖ ≤ |γ|An

and since tr(QAn
) → 0 implies QAn

→ 0, we get

M(An) → 0 in probability. Conversely, the proof of λM (An) → 0 reduces to the

verification of |γ|An
→ 0 after using similar arguments as before and especially the
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assumption that M(An) → 0 in probability. Consider the component functions

γ(1), . . . , γ(m) and fix some ε > 0 and j ∈ {1, . . . ,m}, where Theorem 3.1 (a) and

the combination of (2.3)–(2.4) guarantee the existence of sequences (An,i)n ⊂ S
with An,i ⊂ An for i = 1, 2 with

|γ(j)|An ≤ γ
(j)
An,1
− γ(j)

An,2
+ ε, n ∈ N.

Now one can use the given assumption together with Theorem 2.1 again to see

that γ
(j)
An,i
→ 0 for i = 1, 2, which yields |γ(j)|An

→ 0 and therefore the assertion

of (ii), see the proof of Theorem 2.3. �

Next, we want to extend [17, Lemma 2.3], which yields a construction prin-

ciple for ISRMs in Theorem 3.4 (b) below: Given measurable spaces (Ω1,A1)

and (Ω2,A2), a mapping κ : Ω1 × A2 → [0,∞] is called a simultaneous σ-finite

transition function from Ω1 to Ω2, if the following conditions hold:

(i) ω1 7→ κ(ω1, A2) is A1-B([0,∞])-measurable for every A2 ∈ A2.

(ii) A2 7→ κ(ω1, A2) is a measure on (Ω2,A2) for every ω1 ∈ Ω1. Moreover, there

exist sequences (A2,n) ⊂ A2 and (rn) ⊂ [0,∞) such that

∞⋃
n=1

A2,n = Ω2 and ∀ n ∈ N ∀ ω1 ∈ Ω1 : κ(ω1, A2,n) ≤ rn. (3.4)

Furthermore, if κ(ω1, ·) is a probability measure for every ω1 ∈ Ω, we say that κ

is Markovian.

Proposition 3.3. Let (Ω1,A1, ν) be a σ-finite measure space, and κ a si-

multaneous σ-finite transition function from Ω1 to Ω2. Then there exists a unique

σ-finite measure ν�κ on the product space (Ω1×Ω2,A1⊗A2) with the property

(ν � κ)(A1 ×A2) =

∫
A1

κ(ω1, A2) ν(dω1) for all A1 ∈ A1, A2 ∈ A2.

Moreover, we have∫
Ω1×Ω2

f(x) (ν � κ)(dx) =

∫
Ω1

∫
Ω2

f(ω1, ω2)κ(ω1, dω2) ν(dω1) (3.5)

for every measurable f : Ω1 × Ω2 → R that is non-negative or integrable w.r.t.

µ� κ.
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Proof. Choose (A1,n) ⊂ A1 disjoint with ∪∞n=1A1,n = Ω1 and ν(A1,n) <∞
for all n ∈ N. Let ν(n)(·) := ν(· ∩A1,n). Similarly, κ(n)(ω1, ·) := κ(ω1, · ∩A2,n) is

a finite transition function with (A2,n) from (3.4) for every ω1 ∈ Ω1 and n ∈ N. As

the assertion is well-known for ν and κ being finite (see 14.23 and 14.29 in [10]),

one easily checks that it is enough to define

(ν � κ)(C) :=

∫
Ω1

∫
Ω2

1C(ω1, ω2)κ(ω1, dω2) ν(dω1), C ∈ A1 ⊗A2.

More precisely, we can consider Cn := A1,π1(n)×A2,π2(n) with a suitable mapping

π = (π1, π2) : N→ N2 which is one-to-one. Then (ν�κ)(·∩Cn) is finite under the

given assumption on κ, and moreover equals ν(π1(n))�κ(π2(n)) for every n ∈ N. �

Theorem 3.4. Let S be a δ-ring as above and consider the σ-algebra σ(S).

(i) For every i.d. ISRM M on S with values in Rm, there exists a simultaneous

σ-finite transition function ρM from S to Rm with (λM�ρM )(A×B) = φA(B)

for every A ∈ S and B ∈ B(Rm), where φA is the Lévy measure of M(A).

Here ρM is uniquely determined λM -almost everywhere (a.e.) and can be

chosen such that∫
Rm

min{1, ‖x‖2} ρM (s, dx) ≤ 1 for every s ∈ S. (3.6)

(ii) Conversely, let λ be a measure on S which is finite on S, and ρ a transition

function from S to Rm fulfilling (3.6), i.e., being simultaneous σ-finite. Then

there exists an ISRM M with λ = λM and ρ = ρM (in the previous sense).

Proof. Let (Sn) ⊂ S be a disjoint sequence that exhausts S. Then, as

in the proof of Theorem 3.2, we see that Q∗0(A,B) :=
∫
B

min{1, ‖x‖2}φA(dx)

is a finite pre-measure on S for any fixed Borel set B ⊂ Rm, and we denote

its unique extension towards a σ-finite measure on σ(S) by Q0(·, B). Hence for

A ∈ σ(S) and (Bk) ⊂ B(Rm) disjoint, we observe by Theorem 2.2 that

Q0

(
A,

∞⋃
k=1

Bk

)
=

∞∑
n=1

∞∑
k=1

Q∗0(A ∩ Sn, Bk)=

∞∑
k=1

∞∑
n=1

Q∗0(A ∩ Sn, Bk)=

∞∑
k=1

Q0(A,Bk).

Consequently, the assumptions of [17, Proposition 2.4] are fulfilled, and by a slight

refinement (in particular (Rm,B(Rm)) and (R,B(R)) are isomorphic as measur-

able spaces), we get the existence of a Markovian transition function κ from S to

Rm such that Q0(A,B) = (λ0 � κ)(A × B) for every A ∈ σ(S) and B ∈ B(Rm),
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where λ0(·) := Q0(·,Rm) ≤ λM (·). Let τ0 be a λM -derivative of λ0 with τ0(s) ≤ 1

for every s ∈ S, and set

ρM (s, dx) := τ0(s) ·min{1, ‖x‖2}−1 · 1Rm\{0}(x)κ(s, dx), s ∈ S.

This shows (3.6). Moreover, the following calculation, which is valid for every

A ∈ S, B ∈ B(Rm) and which benefits from the simplicity of the integrand, yields∫
A

ρM (s,B)λM (ds) =

∫
A

∫
B\{0}

(min{1, ‖x‖2})−1 κ(s, dx)λ0(ds)

=

∫
A×(B\{0})

(min{1, ‖x‖2})−1 (λ0 � κ)(ds, dx)

=

∫
B\{0}

(min{1, ‖x‖2})−1Q∗0(A, dx) = φA(B).

The uniqueness of ρM follows by the Radon–Nikodým theorem after countably

many unions of null sets by considering the generator {M1×· · ·×Mm : Mj ∈M}
of B(Rm) with

M := {{0} ∪ (−∞, q1] ∪ [q2,∞) : q1 ∈ Q<0, q2 ∈ Q>0}.

Conversely, the assumption in (ii) ensures that φA(B) :=
∫
A
ρ(s,B)λ(ds) with

∫
Rm

min{1, ‖x‖2}φA(dx) =

∫
A

∫
Rm

min{1, ‖x‖2} ρ(s, dx)λ(ds) ≤ λ(A)

is a Lévy measure on Rm for every A ∈ S, whereas the total variation of

S 3 A 7→ γA :=

λ(A)−
∫
Rm

min{1, ‖x‖2}φA(dx)

 e1

is given by the non-negative expression in brackets for every A ∈ S (notice (3.6)

again). Here ej generally denotes the j-th unit vector. Now we can obviously use

Theorem 3.1 for the triplets [γA, 0, φA] to obtain the assertion. �

Proposition 3.5. Let M be an Rm-valued and i.d. ISRM on S, where

M(A) ∼ [γA, QA, φA] for every A ∈ S.
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(i) There are σ(S)-measurable mappings αM : S → Rm and βM : S → L(Rm)

such that the following integrals exist (component-wise) with∫
A

αM (s)λM (ds) = γA,

∫
A

βM (s)λM (ds) = QA, (3.7)

for every A ∈ S. αM and βM are uniquely determined λM -a.e. by (3.7).

(ii) βM (s) is symmetric and positive semi-definite λM -a.e.

(iii) The mapping

Rm 3 t 7→
∫
A

KM (t, s)λM (ds) (3.8)

is the log-characteristic function of M(A) for every A ∈ S, where the func-

tion KM : Rm × S → C is defined by

KM (t, s)=i〈αM (s), t〉−1

2
〈βM (s)t, t〉+

∫
Rm

(
ei〈t,x〉−1− i〈t, x〉

1 + ‖x‖2

)
ρM (s, dx). (3.9)

Proof. (i) We start with a general observation: Consider T : S → R
σ-additive, then |T | can be uniquely extended to a σ-finite measure |̂T |, where we

assume that |̂T | � λM . Hence the same holds for the extensions T̂+ of T+ and

T̂− of T− such that the Radon–Nikodým theorem provides measurable, [0,∞]-

valued mappings f± with T̂±(A) =
∫
A
f±(s)λM (ds) for A ∈ σ(S). Consider

(Sn) ⊂ S disjoint with ∪∞n=1Sn = S. Then f+1Sn
and f−1Sn

are finite λM -

a.e. Hence there are λM -null sets N+ and N− such that f+1N+ and f+1N+ are

finite, preserving the integral relation above instead of f±, respectively. Then

f := f+1N+ − f+1N+ is λM -integrable over every set A ∈ S with value T (A).

Thus the mappings αM and βM can be obtained by using the previous method

for each of its components, where |Q| ≤ λM (on S) and therefore |̂Q| � λM ,

which can be shown similarly as in the proof of Theorem 3.2.

(ii) In view of Theorem 2.2, we observe that A 7→ 〈QA∩Sn
x, x〉 is a finite

measure on σ(S), while the Cauchy–Schwarz inequality yields that this measure

is also absolutely continuous w.r.t λM . At the same time, we know by (i) that

〈βM (·)x, x〉1Sn(·) is a corresponding λM -derivative which has to be non-negative

λM -a.e. due to the Radon–Nikodým theorem. Therefore, we have 〈βM (·)x, x〉 ≥ 0

except a λM -null set and for all x ∈ Qm, which finally means that βM (·) is

positive semi-definite λM -a.e. by continuity of the inner product. The symmetry

follows if we consider the components Qi,j of Q. In particular, we see that A 7→
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(Qi,jA∩Sn
−Qj,iA∩Sn

) equals the zero measure on σ(S) for every n ∈ N as QA∩Sn is

symmetric.

(iii) The λM -integrability of KM (t, ·) and (3.8) are almost obvious (see (i)

and remember that M(A) ∼ [γA, QA, φA]). Using Theorem 3.4 and (3.5), it is

easy to see that the following integral∫
A

∫
Rm

h(t, x) ρM (s, dx)λM (ds)

=

∫
S×Rm

h(t, x)1A(s) (λM � ρM )(ds, dx) =

∫
Rm

h(t, x)φA(dx),

where the last step is similar as before and h(t, x) denotes the integrand used in

the definition of KM . �

Remark 3.6. In view of (3.8) and the uniqueness of the Lévy–Khintchine

Formula, we write M ∼ (λM ,KM ). And in the case of αM = βM = 0, we may

even write M ∼ (λM , ρM ), respectively. Observe that the latter case applies to

Theorem 3.4 (ii) as long as (3.6) holds with equality.

Example 3.7. (a) Consider a σ-finite measure space (S,Σ, ν) and assume that

µ ∼ [γ′, Q′, φ′] is an i.d. distribution on Rm with log-characteristic function ψ

and not being the point measure at zero. Then Sν := {A ∈ Σ : ν(A) < ∞}
is a δ-ring with σ(Sν) = Σ, which can be verified easily with the aid of (Sn).

Hence, according to Theorem 3.1, there exists an i.d. ISRM M with M(A) ∼
[ν(A) · γ′, ν(A) · Q′, ν(A) · φ′] for every A ∈ Sν , and we say that M is generated

by ν and µ. Moreover, with

Cµ := ‖γ′‖+ tr(Q′) +

∫
Rm

min{1, ‖x‖2}φ′(dx) ∈ (0,∞)

we get that λM (·) = Cµ · ν(·), while ρM (·) = C−1
µ · φ′(·) and KM (·) = C−1

µ · ψ(·)
are both constant in s ∈ S. Therefore, it is convenient to write M ∼ (ν, µ)

and one can check by the construction in Theorem 3.1 that M(A1) and M(A2)

are independent if and only if ν(A1 ∩ A2) = 0. Furthermore, independence of

M(A1), . . . ,M(An) is equivalent to pairwise independence.

(b) In [5] an R-valued ISRMMα is constructed such that the log-characteristic

function of Mα(A) is given by

R 3 t 7→ −
∫
A

|t|α(s) ds (3.10)
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for every Borel set A ⊂ R with finite Lebesgue measure. Here α : R → [a, b] is

a measurable function with 0 < a ≤ b < 2, and M is called an α(s)-multistable

random measure. On the one hand, Theorem 3.1 says that Mα is uniquely de-

termined by (3.10), on the other hand, M can be recovered by our approach

and (3.8): Denote by ρα(s, ·) for every s ∈ R the Borel measure with Lebesgue

density x 7→ θ(s) |x|−α(s)−1, where θ(s) := α(s)
4 (2 − α(s)) ∈ [c1, c2] for all s ∈ R

and suitable 0 < c1 ≤ c2 < ∞ by the assumption on α(s), i.e., (3.6) is ful-

filled with equality. Similarly and as in [20], there exists a measurable function

η : R→ [c3, c4] ⊂ (0,∞) such that

η(s)

∫
R

(
eitx − 1− itx

1 + x2

)
|x|−α(s)−1 dx = −|t|α(s)

for every s, t ∈ R. Finally, let λα(·) be the Borel measure with Lebesgue den-

sity s 7→ (θ(s)η(s))−1 and apply Theorem 3.4, which means Mα ∼ (λα, ρα) by

Theorem 3.6.

Remark 3.8. If we identify B(Cm) and B(R2m) by means of Ξ, we can observe

that the relation between i.d. random measures with values in Cm and R2m,

respectively, is one-to-one. Generally, for any Cm-valued ISRM M , we say that

Ξ(M) is its real associated ISRM.

Of course, we can (and will do) interpret every Rm-valued i.d. ISRM M

as such a one with values in Cm, having no imaginary parts, which leads to

Ξ(t) := (t, 0) for every t ∈ Rm. Hence, in this case, we understand Ξ as a mapping

with domain Rm. Furthermore, we then see that Ξ(M)(A) ∼ [γ̃A, Q̃A, φ̃A] with

γ̃A = (γA, 0), Q̃A =

(
QA 0

0 0

)
and φ̃A = Ξ(φA), A ∈ S.

Similarly, this works for the objects in Theorem 3.5 and one immediately checks

that λΞ(M) = λM . At the same time, it can be computed that ρΞ(M)(s,A) =

ρM (s,Ξ−1(A)) for any A ∈ B(R2m), together with KM (s, t1) = KΞ(M)(s, t) for

all s ∈ S and t = (t1, t2) ∈ R2m.

4. Integrals with respect to ISRMs

Let M be a Km-valued ISRM on a δ-ring S, where we assume that M is i.d.

Then a matrix-valued mapping f : S → L(Km) is called S-simple if f can be

represented by f =
∑n
j=1Rj1Aj with R1, . . . , Rn ∈ L(Km) and A1, . . . , An ∈ S
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disjoint. In this case, we define the stochastic integral of f1A w.r.t M by

IM (f 1A) := I(f 1A) :=

∫
A

f dM :=

∫
A

f(s)M(ds) :=

n∑
j=1

RjM(A ∩Aj). (4.1)

Note that, in view of Theorem 2.2, the mentioned truncation is valid for every

A ∈ σ(S) and that the stochastic integral is well-defined a.s. by (RM2). Write

IM (f) and so on for A = S.

Definition 4.1. Let f : S → L(Km) be σ(S)-B(L(Km))-measurable.

(a) f is called M -integrable if there exists a sequence (fn) of S-simple functions

such that the following conditions hold:

(I1) fn → f pointwise λM/λΞ(M)-a.e. for K = R/C.

(I2) The sequence I(fn1A) converges in probability for every A ∈ σ(S) and

we refer to this limit as IM (f1A) or any synonymous notation from

(4.1), respectively.

(b) Consider K = C. If we relax (I2) in such a way that we merely want either

the sequences Re I(fn1A) or the sequences Im I(fn1A) to converge for every

A ∈ σ(S), then f is called partially M -integrable (in the real/imaginary

sense).

Finally, we define

I(p)(M) := {f : (S, σ(S))→ (L(Km),B(L(Km))) | f is (partially) M -integrable}.

Remark 4.2. (i) The previous definition coincides with (4.1) for simple f ,

whereas the notation in (I2) will be justified by Theorem 4.4 (a).

(ii) If the imaginary parts of f and M vanish, we get back the case K = R.

(iii) The two types of partial integrability differ only in the consideration of f

and −if . Hence we restrict to partial integrability in the real sense and

write Re IM (f1A) for the corresponding limit in (b), even if IM (f1A) may

not exist in accordance to (a). However, we have I(M) ⊂ I(p)(M), generally

with non-equality.

Now we state some useful properties, starting with the linearity which illumi-

nates the notation (stochastic) integral. Throughout and for accuracy, we should

identify random vectors that are identical a.s. Also notice that ∗ denotes the

adjoint operator in the Hermitian sense.
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Proposition 4.3. Let M be as before. Then we have:

(a) I(M) is a K-vector space and the mapping I(M) 3 f 7→ IM (f) is linear a.s.

(b) f ∈ I(M) implies that for every Q ∈ L(Km) the function Q · f , defined by

(Q · f)(s) = Qf(s), also belongs to I(M) with IM (Q · f) = QIM (f) a.s.

Both statements hold accordingly for Ip(M) with K = R.

Proof. The linearity in (a) is obvious for simple functions when considering

a common partition A1, . . . , An ∈ S. For general f, g ∈ I(M) (with S-simple

approximating sequences (fn) and (gn)) this property can be extended, since

hn := αfn + α2gn approximates h := α1f + α2g properly for any α1, α2 ∈ K.

Merely note in the case of K = C that, for any A ∈ σ(S), we can write

Re IM (hn1A) = x1 Re(fn1A)− y1 Im(fn1A) + x2 Re(gn1A)− y2 Im(gn1A),

if αi = xi + iyi; similarly for the imaginary parts. In particular we get h ∈ I(M)

by additivity of the stochastic limit which implies that I(M) is a vector space.

Part (b) and the additional statement for Ip(M) can be proven quite similarly. �

For the time being we consider the case K = R. Recall from (3.2) and (3.9)

the definition of λM and KM , respectively.

Theorem 4.4. Let M be as before.

(a) If f ∈ I(M), then IM (f1A) is i.d. for any A ∈ σ(S) and its log-characteristic

function is given by

Rm 3 t 7→
∫
A

KM (f(s)∗t, s)λM (ds). (4.2)

Particularly the integral in (4.2) exists and IM (f1A) is well-defined a.s.

(b) If f1, . . . , fn ∈ I(M), then we have for any t1, . . . , tn ∈ Rm:

E
(

ei
∑n

j=1〈I(fj),tj〉
)

= exp

∫
S

KM

 n∑
j=1

fj(s)
∗tj , s

λM (ds)

 .

(c) For f,f1, f2, · · · ∈ I(M) we have that IM (fn) → IM (f) in probability is

equivalent to∫
Rm

KM ((fn(s)− f(s))∗t, s)λM (ds)→ 0, t ∈ Rm.
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(d) Let f1, f2 ∈ I(M) such that ‖f1(s)‖·‖f2(s)‖ = 0 holds λM -a.e. Then IM (f1)

and IM (f2) are independent.

Proof. For simple f , one checks that IM (f1A) is i.d. (see [16, Proposition

3.1.21]) for every A ∈ σ(S), while KM (0, ·) = 0 and (3.8) yield that its character-

istic function is given by (4.2). Note that t 7→ KM (t, s) is the log-characteristic

function of the distribution with triplet [αM (s), βM (s), ρM (s)], i.e., is continuous

for every s ∈ S. On the one hand, this merely shows that the integral function in

(4.2) is really the log-characteristic function of IM (f). On the other hand, it allows

us to perform a simple multivariate extension of [17, Proposition 2.6], which states

that (4.2) and the previous implication concerning the log-characteristic function

also hold for general f ∈ I(M), namely the limit in (I2). This limit preserves the

infinite divisibility, and since the right-hand side in (4.2) does not depend on the

choice of approximating functions (fn), we see that IM (f1A) is uniquely deter-

mined a.s. after consideration of (fn − f ′n), provided that (f ′n) also approximates

f properly. This immediately yields (a). The proof of (b) will be covered by the

one in Theorem 4.12 (b), while part (c) is a direct conclusion of (a), the linear-

ity and [16, Lemma 3.1.10]. Finally, for (d) we show that ‖f1(s)‖ · ‖f2(s)‖ = 0

expect a potential λM -null set implies the independence of IM (f1) and IM (f2).

Define Ai := {s : fi(s) 6= 0} (i = 1, 2) and observe that M(A) = 0 a.s. for every

A ⊂ (A1 ∩A2) by assumption and the use of Theorem 3.2 (ii). Now if (fn,i) is an

approximating sequence of simple functions for fi, we see that this also applies to

fn,i1Ai and that IM (fn,i1Ai) = IM (fn,i1Ai\(A1∩A2)) a.s. In view of (RM1), this

gives the assertion. �

In the following, we are going to characterize the class I(M) for a given

ISRM M in terms of its control measure λM and the related function KM . Also

recall the definition of αM , βM and ρM in Theorem 3.4, as well as in Theorem 3.5.

Then we define UM : L(Rm)× S → Rm by

(R, s) 7→ RαM (s) +

∫
Rm

(
Rx

1 + ‖Rx‖2
− Rx

1 + ‖x‖2

)
,ρM (s, dx)

as well as VM : L(Rm)× S → R+ by

(R, s) 7→
∫
Rm

min{1, ‖Rx‖2} ρM (s, dx).

Recall that these functions are multivariate extensions of those in [17] and a simple

calculation shows that∥∥∥∥ Rx

1 + ‖Rx‖2
− Rx

1 + ‖x‖2

∥∥∥∥ ≤ max{2, ‖R‖+ ‖R‖3} min{1, ‖x‖2} (4.3)
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holds for all R ∈ L(Rm) and x ∈ Rm. Similarly and with the help of the Cauchy–

Schwarz inequality, we see that∣∣∣∣ 〈t, y〉1 + ‖y‖2
− sin〈t, y〉

∣∣∣∣ ≤ (1 + ‖t‖+ ‖t‖2) min{1, ‖y‖2}, t, y ∈ Rm. (4.4)

Observe that, in view of (4.3), UM exists. At this point, we generally note

that (deterministic) integrals w.r.t. vector-valued or matrix-valued integrals are

meant component-wise (compare Theorem 3.5). The following proposition is the

first step in the promised characterization of I(M) and also provides the Lévy–

Khintchine triplet of the i.d. random vector IM (f). But in contrast to the uni-

variate case considered in [17], in our situation the arguments are more involved.

Proposition 4.5. Consider f ∈ I(M). Then the following integrals exist:

γf :=

∫
S

UM (f(s), s)λM (ds), Qf :=

∫
S

f(s)βm(s)f(s)∗ λM (ds),

and

φf (A) := (λM � ρM )({(s, x) ∈ S × Rm : f(s)x ∈ A \ {0}}), A ∈ B(Rm)

defines a Lévy measure. Moreover, we have IM (f) ∼ [γf , Qf , φf ].

Proof. The given assumption and Theorem 4.4 (a) ensure the existence of∫
S

KM (f(s)∗t, s)λM (ds) (4.5)

for every t ∈ Rm as well as the continuity of

Rm 3 t 7→
∫
S

ReKM (f(s)∗t, s)λM (ds). (4.6)

Let us emphasize that both statements will suffice to perform the present proof.

First, Theorem 3.5 (b) permits the following decomposition for every t ∈ Rm, and

the use of (3.5) combined with the definition of φf yields
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∫
S

ReKM (f(s)∗t, s)λM (ds)

=−
∫
S

1

2
〈βM (s)f(s)∗t, f(s)∗t〉λM (ds)−

∫
S

∫
Rm

(1−cos〈f(s)∗t, x〉)ρM (s, dx)λM (ds)

=−
∫
S

1

2
〈f(s)βM (s)f(s)∗t, t〉λM (ds)−

∫
Rm

(1−cos〈t, x〉)φf (dx).

Now let C(s) := f(s)βM (s)f(s)∗ with C(s) = (Ci,j(s))i,j=1,...,m, and first con-

sider t = ei to check the λM -integrability of the diagonal components Ci,i. Repeat

this argument for t = ei + ej for the λM -integrability of Ci,j +Cj,i, which finally

gives the existence of Qf due to the symmetry in Theorem 3.5 (b). Here we

should also note that Qf is symmetric and positive semi-definite since βM is (at

least λM -a.e.). In particular, we know that

∫
Rm

(1−cos〈t, x〉)φf (dx)=−1

2
〈Qf t, t〉−

∫
S

ReK(f(s)∗t, s)λM (ds), t ∈ Rm. (4.7)

Hence the left-hand side is continuous in t according to (4.6), i.e., φf is a Lévy

measure if we include φf ({0}) = 0 and perform similar steps as done in the proof

of [18, Theorem 3.3.10]. Then we can argue as above that this implies the λM -

integrability of VM (f(·), ·). For the existence of γf , it finally suffices to show

that 〈t, UM (f(·), ·)〉 is λM -integrable for every t ∈ Rm. Observe that we have the

decomposition

〈t, U(f(s), s)〉 = ImKM (f(s)∗t, s) +

∫
Rm

(
〈t, f(s)x〉

1 + ‖f(s)x‖2
− sin〈t, f(s)x〉

)
ρM (s, dx)

for every s ∈ S, t ∈ Rm in view of (4.3) and (4.4). Furthermore, (4.4) implies that

∫
S

|〈t, U(f(s), s)〉|λM (ds) ≤
∫
S

|K(f(s)∗t, s)|λM (ds) + C(t)

∫
S

V (f(s), s)λM (ds)

with C(t) := 1 + ‖t‖+ ‖t‖2. In view of what we have shown before, this gives the

existence of γf . Now it is easy to see that IM (f) ∼ [γf , Qf , φf ]. �
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Lemma 4.6. Let f : S → L(Rm) be measurable. Then the inequality

‖U(f(s)1A(s), s)‖ ≤ ‖U(f(s), s)‖1A(s) + 2V (f(s), s)

holds for every A ∈ σ(S) and s ∈ S.

Proof. With a little abuse of notation apply (4.3) to R̃ := 1A(s)Im and

x̃ := f(s)x. Then some simple calculations provide the desired conclusion. �

The previous Lemma can be regarded as a multivariate alternative for

[17, Lemma 2.8], whereas the following one uses some ideas from the proof of

[18, Theorem 3.2.2].

Lemma 4.7. For f ∈ I(M), let (fn)n∈N be a corresponding sequence of

simple functions. Then for any ε1, ε2 > 0, there exists an ζ = ζ(ε1, ε2) such that

∀n ≥ ζ ∀A ∈ σ(S) P(‖I(f1A)− I(fn1A)‖ ≥ ε1) ≤ ε2.

Proof. Let gn := f − fn. Then by linearity, Theorem 4.5 and Theorem 2.1,

we have that

γgn(A) :=

∫
A

U(gn(s), s)λM (ds)→ 0, A ∈ σ(S). (4.8)

This convergence is even uniform in A. To prove this, we define the measure

λ∗M (E) :=

∞∑
l=1

2−l
λM (E ∩ Sl)
1 + λM (Sl)

, E ∈ σ(S),

where (Sl) ⊂ S is a disjoint exhaustion of S again. Then A 7→ γgn(A) defines

a vector measure with γgn � λM � λ∗M , i.e., the components γ
(k)
gn are signed

measures with γ
(k)
gn � λ∗M for every n ∈ N and k = 1, . . . ,m. Thus we can apply

the Hahn–Saks–Vitali Theorem (see [19, Proposition C.3]): For every ε > 0, there

are δ1, . . . , δm > 0 fulfilling the implications

∀A ∈ σ(S)

(
λ∗M (A) ≤ δk =⇒ sup

n∈N
|γ(k)
gn (A)| ≤ ε

)
for k = 1, . . . ,m. Hence there exists a C > 0 such that the following assertion

holds likewise with δ := min{δ1, . . . , δm}:

∀A ∈ σ(S)

(
λ∗M (A) ≤ δ =⇒ sup

n∈N
‖γgn(A)‖ ≤ C ε

)
. (4.9)
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Using dominated convergence, we have that UM (·, s) is continuous for each s ∈ S
and therefore that UM (gn(s), s)→ 0 λM -a.e. Proceeding with Egorov’s Theorem

(note that λ∗M is finite), there exists a measurable set D′ such that the previous

convergence is uniformly on D′ with λ∗M (S \D′) ≤ δ/2. Finally, we use (Sl) and

Theorem 2.2 to verify that the same is true on an appropriate set D belonging

to S with λ∗M (S\D) ≤ δ. Especially, we have λM (D) <∞ as well as the following

estimation for every A ∈ σ(S) and n ∈ N due to (4.9):

‖γgn(A)‖ ≤ C ε+ sup
s∈A∩D

‖U(gn(s), s)‖ · λM (A ∩D)

≤ C ε+ sup
s∈D
‖U(gn(s), s)‖ · λM (D),

which obviously means that (4.8) holds uniformly. Moreover, for Rm-valued ran-

dom vectors X and Y , we can define d(X,Y ) :=
∫

min{1, ‖X − Y ‖} dP and know

that d is a metric whose induced convergence is equivalent to that in probabil-

ity (when identifying random vectors which are equal a.s., see the proof of [10,

Theorem 6.7]). We now show for Xn(A) := IM (gn1A)− γgn(A) that

cn := sup
A∈σ(S)

d(Xn(A), 0) ∈ [0, 2], n ∈ N

converges to zero. For this purpose, we choose An ∈ σ(S) such that cn ≤
d(Xn(An), 0) + 1/n. At the same time, we have

IM (gn) = Xn(An) + IM (gn1Ac
n
) + γgn(An) =: Xn(An) + Yn → 0

in probability (see above). This also implies Xn(An) → 0 by Theorem 2.1 and

monotonicity. For instance, and provided that Xn(An) ∼ [0, Qn, φn] as well as

Yn ∼ [γ̃n, Q̃n, φ̃n], we obtain

0 ≤ 〈Qnt, t〉 ≤ 〈Qnt, t〉+ 〈Q̃nt, t〉 = 〈(Qn + Q̃n)t, t〉 → 0, t ∈ Rm,

since Qn + Q̃n equals the Gaussian component of IM (gn) by independence of

Xn(An) and Yn (see Theorem 4.4 (d) and Proposition 3.1.21 in [16]). Hence

cn → 0. Furthermore, we see that d(IM (gn1A), 0) ≤ d(Xn(A), 0) + ‖γgn(A)‖
holds for every A ∈ σ(S), and n ∈ N due to the fact that [0,∞) 3 x 7→ min{1, x}
is subadditive. By what we have seen before, this shows that d(IM (gn1A), 0)

converges to 0 uniformly in A ∈ σ(S). Finally, let 0 < ε1 ≤ 1 arbitrary (ε1 > 1

obvious), then we obtain the assertion by reading this convergence together with

P(‖I(f1A)− I(fn1A)‖ ≥ ε1) = P(‖I(gn1A)‖ ≥ ε1) ≤ ε−1
1 sup

A∈σ(S)

d(I(gn1A), 0),

where we used that P(‖X‖ ≥ ε1) ≤ d(X, 0)/ε1 (for any random vector X). �
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Theorem 4.8. Let f : S → L(Rm) be σ(S)-B(L(Rm))-measurable. Then

the following statements are equivalent:

(I) f ∈ I(M).

(II) The integrals γf as well as Qf exist and φf is a Lévy measure.

(III) The integral in (4.5) exists for every t ∈ Rm and the mapping in (4.7) is

continuous.

Proof. In view of what we pointed out before, especially in the proof of

Theorem 4.5, it obviously suffices to show that (II) implies (I). Throughout the

proof, let (S′n) ⊂ S be an increasing sequence whose union is S and write f(s) =

(f i,j(s))i,j=1,...,m for every s ∈ S.

First step: We define Sn := S′n ∩ {s : |f i,j(s)| < n for all 1 ≤ i, j ≤ m } ∈ S with

Sn ↑ S, and thereafter the sequence (fn) of S-simple functions (see Theorem 2.2)

via

f i,jn (s) := 1Sn
(s) ·


l
n , if l

n ≤ f
i,j(s) < l+1

n for l = 0, . . . , n2 − 1,

− l
n , if − l+1

n < f i,j(s) ≤ − l
n for l = 0, . . . , n2 − 1,

0, if |f i,j(s)| ≥ n.

Hence we see that fn → f pointwise with |f i,jn (s)| ≤ |f i,j(s)| for every s ∈ S,

whereas |f i,jn (s) − f i,j(s)| ≤ 1/n merely holds for s ∈ Sn. Moreover, there exist

C1, C2 > 0 such that ‖fn(s)‖ ≤ C1‖f(s)‖ for all s ∈ S, and ‖fn(s)− f(s)‖ is

bounded by C2/n as long as s ∈ Sn. Particularly, we obtain for all j ≥ n and

s ∈ S:

‖fn(s)− fj(s)‖ ≤ C1 ‖f(s)‖1Sj\Sn
(s) + 2C2 1Sn

(s). (4.10)

Second step: Next, we show that g(k) := f1Sk
∈ I(M) for k ∈ N arbitrary

by means of the S-simple sequence (g
(k)
n )n which is defined via g

(k)
n := fn1Sk

.

Obviously, we have g
(k)
n → g(k) pointwise, and with C := 2C1 one confirms that

‖g(k)
n (s)− g(k)

j (s)‖ ≤ C 1Sk
(s) (4.11)

is true for all j ≥ n ≥ k and s ∈ S due to (4.10). In view of Theorem 4.1, it suffices

to show that (IM (g
(k)
n 1A))n converges in probability. For this purpose, we now

fix an arbitrary sequence n1 < j1 < n2 < · · · of increasing natural numbers and

prove that the convergences∫
S

UM

(
(g(k)
nl

(s)− g(k)
jl

(s))1A(s), s
)
λM (ds)→ 0, (4.12)
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A

(g(k)
nl

(s)− g(k)
jl

(s))βM (s) (g(k)
nl

(s)− g(k)
jl

(s))∗ λM (ds)→ 0, (4.13)

∫
S

VM

(
(g(k)
nl

(s)− g(k)
jl

(s))1A(s), s
)
λM (ds)→ 0 (4.14)

hold for l → ∞, respectively. By continuity of UM (·, s) and VM (·, s), it is first

clear that the integrands in (4.12)–(4.14) converge to zero for every s ∈ S. Then

the assertion follows by dominated convergence in each case: For (4.13), use

(4.11) and observe that ‖βM (s)‖1A∩Sk
(s) is λM -integrable. On the other hand,

we see that the integrand in (4.14) is dominated by VM (C1A∩Sk
(s)Im, s) (here

and below at least for l sufficiently large), whereas (3.5) and Theorem 3.4 provide

the following steps that have been performed similarly before:∫
S

VM (C1A∩Sk
(s)Im, s)λM (ds)

≤ (1 + C2)

∫
S×Rm

min{1, ‖x‖2}1A∩Sk
(s) (λM � ρM )(ds, dx)

= (1 + C2)

∫
Rm

min{1, ‖x‖2}φA∩Sk
(dx) <∞.

Using (4.3), we can argue likewise that the integrand in (4.12) is dominated by

s 7→

C‖αm(s)‖+ C ′
∫
Rm

min{1, ‖x‖2} ρM (s, dx)

1A∩Sk
(s)

with C ′ := max{2, C + C3}, and that the mapping we mentioned recently is

λM -integrable. Finally, suppose that (IM (g
(k)
n 1A))n would not converge in prob-

ability, then it would not be Cauchy either (in view and in the sense of [10,

Corollary 6.15]). Hence we obtain a sequence n1 < j1 < n2 < · · · as above such

that IM (g
(k)
nl 1A)− IM (g

(k)
jl
1A) = IM ((g

(k)
nl − g

(k)
nl )1A) neither converges in prob-

ability to zero nor in distribution. By Theorem 4.5, and in view of Theorem 2.1

together with (4.12)–(4.14), this gives the contradiction.

Third step: For A ∈ σ(S) arbitrary, we further conclude that there is an increas-

ing sequence (jAl ) of natural numbers which fulfils the following implication for

every l ∈ N:

k1, k2 ≥ jAl =⇒ P
(
‖I(g(k1)1A)− I(g(k2)1A)‖ ≥ 1/l

)
≤ 1/l. (4.15)
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Similarly to the previous step, this is again equivalent to the following assertions:∫
S

UM

(
(g(lk)(s)− g(nk)(s))1A(s), s

)
λM (ds)→ 0, (4.16)

∫
A

(
g(lk)(s)− g(nk)(s)

)
βM (s)

(
g(lk)(s)− g(nk)(s)

)∗
λM (ds)→ 0, (4.17)

∫
S

VM

(
(g(lk)(s)− g(nk)(s))1A(s), s

)
λM (ds)→ 0 (4.18)

for k → ∞, respectively, and with any fixed sequence n1 < l1 < n2 < · · · as

before. In virtue of (Slk \Snk
) ⊂ (S \Sk) ↓ ∅, we only have to find λM -integrable

functions again which dominate the previous integrands. Concerning (4.17) and

(4.18), this is obvious, as we assume the existence of Qf and the λM -integrability

of VM (f(·), ·). For (4.16) we use Theorem 4.6, and then again, the assumption on

VM (f(·), ·) as well as the one on UM (f(·), ·).

Fourth step: Inductively, Theorem 4.7 provides a sequence (ζk) of increasing nat-

ural numbers such that

∀A ∈ σ(S) ∀k ∈ N P
(
‖I(g(k)1A)− I(g

(k)
ζk
1A)‖ ≥ 1/k

)
≤ 1/k. (4.19)

Then we replace the sequence (fk) from the first step by fk := g
(k)
ζk

and realize that

fk → f pointwise again. Let A ∈ σ(S) as well as ε1, ε2 > 0 be arbitrary. Then the

following calculation yields that (IM (fk1A)) is a Cauchy sequence w.r.t. conver-

gence in probability. In fact, we choose a K0 ∈ N such that K−1
0 ≤ min{ε1, ε2}/3

and set K := max{K0, j
A
K0
}. Then for any k1, k2 ≥ K, we get using (4.15) and

(4.19) that

P (‖I(fk11A)− I(fk21A)‖ ≥ ε1)

≤ P
(
‖I(g

(k1)
ζk1

1A)−I(g(k1)1A)‖≥K−1
0

)
+P

(
‖I(g(k1)1A)−I(g(k2)1A)‖≥K−1

0

)
+ P

(
‖I(g(k2)1A)− I(g

(k2)
ζk2

1A)‖ ≥ K−1
0

)
≤ P

(
‖I(g

(k1)
ζk1

1A)−I(g(k1)1A)‖≥k−1
1

)
+P

(
‖I(g(k1)1A)−I(g(k2)1A)‖≥K−1

0

)
+ P

(
‖I(g(k2)1A)− I(g

(k2)
ζk2

1A)‖ ≥ k−1
2

)
≤ k−1

1 +K−1
0 + k−1

2 ≤ ε2,

and the proof is complete. �
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With fj = 1AjIm and the following result, which extends the conclusion

in [9], we see that the infinite divisibility of an ISRM implicitly extends to its

finite dimensional distributions.

Corollary 4.9. For f1, . . . , fn ∈ I(M), the random vector (IM (f1), . . . ,

IM (fn)) has an i.d. distribution.

Proof. Denote the characteristic function of (IM (f1), . . . , IM (fn)) by ϕ and

fix some arbitrary l ∈ N. Then it suffices to show that the function ϕ1/l, which we

should not understand in any logarithmic sense (see Theorem 4.4 (b) instead), also

describes a characteristic function on Rn·m. Thus if M(A) ∼ [γA, QA, φA], we see

that M ′ with M ′(A) ∼ [l−1γA, l
−1QA, l

−1φA] (for every A ∈ S) is also a valid

ISRM according to Theorem 3.1. Then Theorem 4.8 leads to I(M) = I(M ′) such

that (IM ′(f1), . . . , IM ′(fn)) has the characteristic function ϕ1/l. �

Remark 4.10. Sometimes it might be more natural to consider vector-valued

integrands f0 : S → Rm and hence to obtain one-dimensional stochastic integrals.

Actually, this would require to modify (4.1) and to use inner products of the form

〈Rj ,M(A ∩Aj)〉 accordingly.

Our approach includes this idea, if we use f : S → L(Rm), where the first

row of f(s) equals f0(s)T for any s ∈ S and all other rows are zero. Finally,

a projection on the first coordinate of I(f) gives the desired result.

For the rest of this paper, we briefly want to study the close relation between

K = R and K = C, which can be clarified by introducing the (partially) associated

mapping of f , namely f̃ , f̃p : S → L(R2m) by

f̃(s) :=

(
Re f(s) − Im f(s)

Im f(s) Re f(s)

)
and f̃p(s) :=

(
Re f(s) − Im f(s)

0 0

)
,

where f : S → L(Cm) is arbitrary. More precisely and with regard to Theo-

rem 3.8, we get the following observation in which we assume M to be a Cm-valued

i.d. ISRM.

Proposition 4.11. For f : S → L(Cm) we have that f is M -integrable if

and only if f̃ is Ξ(M)-integrable, and in this case Ξ(IM (f1A)) = IΞ(M)(f̃1A)

a.s. for every A ∈ σ(S). Similarly, f is partially M -integrable if and only if f̃p
is Ξ(M)-integrable, and in this case Ξ(Re IM (f1A)) = IΞ(M)(f̃p1A) a.s. for every

A ∈ σ(S).

Proof. This follows by a simple calculation using (4.1) and passing through

the limit. �
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On the one hand, this immediately allows us to apply Theorem 4.8 and

Theorem 4.9 accordingly. On the other hand, it shows that the complex-valued

perspective mostly simplifies the description of several problems that actually

have a real origin. We derive the following.

Corollary 4.12. Let M be as before, particularly Cm-valued.

(a) If f ∈ I(M), then IM (f1A) is well-defined and i.d. for every A ∈ σ(S),

whereas the log-characteristic function of Ξ(IM (f1A)) is given by

R2m 3 t 7→
∫
A

KΞ(M)(f̃(s)∗t, s)λΞ(M)(ds) =

∫
A

KΞ(M)(Ξ(f(s)∗z), s)λΞ(M)(ds)

with z := Ξ−1(t) ∈ Cm.

(b) If f1, . . . , fn ∈ I(M), then we have for any t1, . . . , tn ∈ R2m,

E
(

ei
∑n

j=1〈Ξ(I(fj)),tj〉
)

= exp

∫
S

KΞ(M)

 n∑
j=1

f̃j(s)
∗tj , s

λΞ(M)(ds)

 .

(c) For f,f1, f2, · · · ∈ I(M), we have that IM (fn) → IM (f) in probability is

equivalent to∫
Rm

KΞ(M)((f̃n(s)− f̃(s))∗t, s)λΞ(M)(ds)→ 0, t ∈ R2m.

(d) Let f1, f2 ∈ I(M) such that ‖f̃1(s)‖ · ‖f̃2(s)‖ = 0 holds λΞ(M)-a.e. Then

IM (f1) and IM (f2) are independent.

Proof. In view of Theorem 4.11, part (a) follows by Theorem 4.4 and the

claimed equality can be checked immediately. And since, by linearity, IM (fn)→
IM (f) is equivalent to Ξ(IM (fn − f)) → 0 in probability, this gives (c) again.

Moreover, Theorem 4.11 says that the assertion in (d) is equivalent to the indepen-

dence of IΞ(M)(f̃1) and IΞ(M)(f̃2) such that the proof reduces to the case K = R.

Finally, we write tj = (tj,1, tj,2) as well as tj,i = Qj,ie with e = (1, .., 1) ∈ Rm and

Qj,i ∈ L(Rm) suitable. Then for Rj := 1
2 (Rj,1 + Rj,2), Qj := 1

2 (Rj,1 − Rj,2) and

Vj := Rj − iQj ∈ L(Cm), we observe, similar to [20, Proposition 6.2.1], that
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n∑
j=1

〈Ξ(IM (fj)), tj〉 =

n∑
j=1

〈R∗j,1(Re IM (fj)) +R∗j,2(Im IM (fj)), e〉

=

n∑
j=1

〈R∗j (Re IM (fj))−Q∗j (Im IM (fj)) +Q∗j (Re IM (fj)) +R∗j (Im IM (fj)), e〉

=

n∑
j=1

〈ReV ∗j IM (fj) + ImV ∗j IM (fj), e〉 =

〈
Ξ

IM
 n∑
j=1

V ∗j · fj

,(e
e

)〉

by both parts of Theorem 4.3. Verify the identity n∑
j=1

V ∗j fj(s)

∗ (e+ ie) =

n∑
j=1

fj(s)
∗(tj,1 + itj,2) =

n∑
j=1

f̃j(s)
∗tj , s ∈ S

to see that (b) follows by (a). �

Remark 4.13. We also observe that Ξ(f(s)∗t1) equals f̃p(s)
∗t for every t =

(t1, t2) ∈ R2m. Then the properties for the partial case (see Theorem 4.1)

can be formulated and proved similarly, which is therefore left to the reader.

We merely note that the following key relation holds for any f1, . . . , fn ∈ Ip(M)

and t1, . . . , tn ∈ Rm:

E
(

ei
∑n

j=1〈Re I(fj),tj〉
)

= exp

∫
S

KΞ(M)

Ξ

 n∑
j=1

fj(s)
∗tj

 , s

λΞ(M)(ds)

 .
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