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Multivariate stochastic integrals with respect to independently
scattered random measures on J-rings

By DUSTIN KREMER (Siegen) and HANS-PETER SCHEFFLER (Siegen)

Abstract. In this paper we construct general vector-valued infinitely-divisible
independently scattered random measures with values in R™ and their corresponding
stochastic integrals. Moreover, given such a random measure, the class of all integrable
matrix-valued deterministic functions is characterized in terms of certain characteristics
of the random measure. In addition, a general construction principle is presented.

1. Introduction

Various stochastic processes and random fields are built by integrating
a family of deterministic functions with respect to an infinitely-divisible random
measure (e.g. a noise). One of the first and most prominent examples is the
fractional Brownian motion. This was extended to the so-called fractional sta-
ble motion by replacing the Gaussian random measure by a symmetric a-stable
(SaS) random measure, see [20] for details.

Based on SaS random measures, a vast class of stochastic processes and
random fields has been constructed. See, e.g., [1], [2], [6], [20] and [21] to name
a few. All these processes and fields are univariate and have Sa.S marginal dis-
tributions by construction. The general theory of arbitrary infinitely-divisible
independently scattered random measures (ISRMs) and the class of integrable
functions was carried out in [17].
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Surprisingly enough, and except the Gaussian case, much less is known in
the multivariate case. On the one hand, there is merely an ad hoc construction
of a multivariate SaS random measure in [14]. On the other hand, the works
in [7] (see Chapter IIL1.6) and [15] certainly treat the multivariate case, however,
they extend the results in [17] just in parts. The purpose of this paper is to
carefully develop an honest theory of general infinitely-divisible ISRMs on J-rings
and their corresponding integrals for matrix-valued deterministic functions. Our
approach follows along the lines of [17]. However, since we construct vector-valued
measures, some univariate methods using monotonocity no longer apply.

In a subsequent paper [12], our methods will be used to construct an R™-
valued ISRM with operator-stable marginals.

The paper is organized as follows. We start with some notation and use-
ful preliminaries about infinitely-divisible distributions and é-rings in Section 2.
We then characterize all infinitely-divisible R™-valued random measures in Sec-
tion 3, already suggesting a complex-valued point of view and proposing a useful
construction principle in Theorem 3.4. Finally, in Section 4, the integrators pro-
vided by Section 3 are used to define the corresponding stochastic integral for
matrix-valued functions. Here we will characterize the class of integrable func-
tions (w.r.t. to a given random measure) and clarify the intimate relation between
the real-valued and complex-valued perspective as announced before.

2. Preliminaries

Let L(K™) denote the set of all linear operators on K™, represented as m xm
matrices with entries from K, where K is either R or C. Furthermore, let ||| be
the Euclidian norm on R™ with inner product (-, -), while the identity operator on
R™ is denoted by I,. Then it is well-known (as the Lévy—Khintchine Formula,
see [16, Theorem 3.1.11]) that ¢ = exp(¢p) with ¢ : R™ — C is the Fourier
transform (or characteristic function) of an infinitely-divisible (i.d.) distribution
on R™, if and only if ¥ can be represented as

i(t, x)

ity X ite) _ 1 _
0O =itnt) = glann) + [ (e -1 D

R™

) o(dx), teR™

for a shift v € R™, some normal component @ € L(R™) which is symmetric and
positive semi-definite and a Lévy measure ¢, i.e., ¢ is a measure on R with
#({0}) = 0 and [g,, min{1, [|z[|*} ¢(dz) < co. For the distribution p with 7 = ¢,
we write p ~ [y, @, @], as v, Q and ¢ are uniquely determined by p. v is the only
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continuous function with ¢ (0) = 0 and 1 = exp(¢)), subsequently referred to as
the log-characteristic function of p.

Lemma 2.1. Let (i) be a sequence of i.d. distributions on R™. Then p,, ~
[Vn, @n, &n] converges weakly to the point measure in zero € if and only if v, — 0,
@Qn — 0 and

/ min{1, 2|2} én(dz) — 0 (1 — 00). (2.1)
an

PrOOF. By [16, Theorem 3.1.16], it obviously remains to check that (2.1) is
equivalent to ¢,,(A) — 0 for all Borel sets A which are bounded away from zero
together with

lim lim / (t,x)? pp(dr) =0 for all t € R™.

e—+0 n—oo
{z:0<]||z||<e}

Therefore, by distinguishing the sign of each component, we can decompose R™
into sets M; (j = 1,...,2m) such that ||z||*> < ||z||3 = (¢;,z)? for all z € M; and
suitable t; € {—1,1}", where ||-||; is the 1-norm on R™. O

Throughout this paper, let S be any non-empty set. Then a family of sets
SCP(S):={A:AcC S}iscalled a d-ring (on S) if it is a ring (i.e., closed under
union and difference together with ) € S) such that there is a sequence (S,) C S
with U2, S, = 5, and which is also additionally closed under countably many
intersections. Using the properties of a ring, the sequence (S,,) can assumed to
be increasing as well as disjoint, depending on the respective occurrence. Note
that any d-ring S with S € S is a o-algebra. The next result is also elementary,
but helpful, where o(S) denotes the o-algebra on S that is generated by S.

Lemma 2.2. Let § be a d-ring on S. Then ANM € S for all A € S and
M e o(S).

PROOF. Observe that S C D :={M € o(S)|VAe S: ANM € S}. Then we
just have to check that D is already a o-algebra on S. Since ANM® = A\ (A\ M),
it follows that M¢ € D, whenever M € D is true. Analogously, for A € § arbitrary
and any sequence (M,,) C D, we see that AN (U, M,)¢ =N, A\ (ANM,) €S
holds true. Hence D is closed under countably many unions. O

We now want to consider vector-valued set functions with domain S. For our
purpose it is sufficient to assume that V' is a Banach space (with norm ||-||y). Then
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wecall T : S — V additive if T(}) =0 and T(A1U---UAg) =T(A1)+---+T(Ag)
for any k£ € N and disjoint sets A1, ..., Ay € S. Furthermore, if

T (5L An) =Y T(An) wrt. ||lv
n=1

holds for any disjoint sequence (A,) C § with U322, A, € S, then T is called o-
additive. Finally o-additive set functions on o-algebras are called vector measures.
As we claim T(A) € V for every A € S, one can use standard arguments (see [10,
Theorem 1.36], for example) to show that an additive set function T': § — V is
o-additive if and only if

V- lim T(A,) =0 forall (4,)C S with A, | 0. (2.2)
n—oo
In this context, we distinguish the previous definition from the term pre-measure,
i.e., those o-additive set functions on S that take values in [0, oc]. Yet, given any
set function T : & — V, the total variation |T| (of T') connects these concepts,
ie., for any A € S, we define

IT|(A):=sup ¢ > | T(A;)|lv [n€N and Ay, ..., A, € S disjoint with A;C A

J=1

Theorem 2.3. Let T : S — V be a o-additive set function. Then |T| is
a pre-measure. Additionally, if V is finite-dimensional, then |T| is [0, 00)-valued,
i.e., a finite pre-measure.

PROOF. As in [4, IIT 1, Lemma 6], we get that |T| is additive, although
S is just a (6-)ring. Using this and the arguments in the proof of [4, IIT 4,
Lemma 7], it follows that |T'| is even o-additive. Finally, if V = R™ (without
loss of generality), we can assume that n = 1 by equivalence of norms and by
considering the component functions of 7" which inherit the o-additivity. Now,
due to (2.2) and the closure of S under countably many intersections, we can
argue as in [13, XI, Theorem 8] to obtain the assertion. O

Remark 2.4. In view of the quoted proofs, we observe that if T : § — [0, 00) is
o-subadditive, then its total variation |T| is at least still a pre-measure (in general
with values in [0, o0]).

Unfortunately, it is impossible to formulate the Hahn—Jordan decomposition
on J-rings. But for the case V' = R, we can at least consider the positive variation
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Tt :8 — [0,00) and the negative variation T~ : S — [0,00) of the o-additive
set function T, defined by T=(A) := 1(|T|(A) £ T(A)), respectively. Then it
is clear that T and T~ are finite pre-measures with 7' = T — T~ as well as
|T| = T*+T. Although it was formulated for o-algebras in [4, IIT 1, Theorem 8],
we see that the following representations hold for every A € S:

Tt(A) =sup{T(B) : B € S with B C A} (2.3)
and

T=(A) = —inf{T(B) : B € S with B C A}. (2.4)

3. Infinitely-divisible random measures

In this section we define and analyze ISRMs with values in K™ defined on
S-rings. Hence if we denote by L°(Q, K™) the set of all K™-valued random vec-
tors defined on any abstract probability space (€2,.A,P), a mapping M : § —
LO(Q,K™) is shortly called an independently scattered random measure (on S
with values in K™), if the following conditions hold:

(RM;) For every finite choice Ay, ..., Ay of disjoint sets in S, the random vectors
M(Ay),..., M(Ay) are stochastically independent.

(RMz) For every sequence (A,) C S of disjoint sets with U2 A,, € S, we have
MU A, = Z M(A,) almost surely (a.s.).
n=1

By introducing the mapping Z(,,)(z) := (Rez,Im 2) € R?™ for z € C™, condition
(RM;) here means independence of E(M(A4)),...,E(M(Ag)). Furthermore, and
with an analogous extension for K = C, we call such an ISRM infinitely-divisible,
if this true for (the distribution of) every random vector M(A),A € S. In this
case, we get the following characterization, where we first consider K = R:

Theorem 3.1. Let M be an i.d. ISRM on S with values in R™, where
M(A) ~ [ya,Qa,¢a] for every A € S. Then we have:
(a) The mapping S 3 A — v4 € R™ is o-additive.
(b)
(c)

The mapping S 3 A— Q4 € L(R™) is o-additive.

The mapping S 3 A — ¢a(B) is a finite pre-measure for every fixed Borel
set B which is bounded away from zero.
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Conversely, for every family of triplets ([ya,Qa,®a])acs that satisfies (a)—(c)
there exists an i.d. ISRM M (on some suitable probability space) with M(A) ~
[va,Qa, @] for every A € S. Furthermore, the finite-dimensional distributions
of M are uniquely determined by the latter property.

PROOF. Assume first that M is an infinitely-divisible ISRM. Since M (#) = 0
a.s., the additivity of the mappings in (a)—(c) can be easily deduced from the
Lévy-Khintchine Formula and its uniqueness statement by using (RM;) and
(RMz) for only finitely many sets. Then it is even clear that ¢4,u...ua, equals
the measure ¢4, +---+ ¢a,. Now let (B,) C S be a sequence with (B,,) J @ and
define C; =0, C,, = B,,_1 \ B, (for n > 2) to observe that

M(By) = MU, Cy) = Jim (M(By) — M(By),
which leads to M (By) — 0 a.s. Then (a) and (b) follow by Theorem 2.1 together
with (2.2). Similarly, using [16, Theorem 3.1.16], we obtain (c).

Concerning the second part, denote by ©(A4, -) the log-characteristic function
of the i.d. distribution on R™ with triplet [y4, @4, $4] for A € S. Moreover, for
any n € Nand Aq,..., A, € S, we define

Yaa,b)= Y O (ZS"),ZjEth) :

Jc{1,...,n}

where t = (t1,...,t,) € R™™ and

0 if J=10

(n) ,
Z. = ZJ(A1;~~~7An) = :
] |:ij] A] \ U[ejc Al:| 5 lf J 3& @

S

Then, with [8, Lemma 3.5.9], for example, it easy to see that exp(v4,,... 4, (-)) is
not only continuous, but also positive semi-definite in the sense of Bochner’s the-
orem, as this is true for the functions exp(©(4,-)) already. Then by the theorem
itself, we obtain the existence of a distribution p4,,.... 4, on R™™ whose Fourier
transform is given by exp(v4,,....a, (-)), in particular, we have pa ~ [ya,Qa, ¢4]

n

for all A € S. Then on the one hand, we can check that
ZJ(Al, . aAn—i-l) U ZJU{n+1}(A17 o ,An+1) = ZJ(Al, R ,An)

for Ay,...,Any1 € S and every J € P({1,...,n})\ 0, where the union is disjoint.
On the other hand, (c¢) implies for all By, By € S disjoint and ¢t € R™ that
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O(By U Ba,t) = ©(By,t) + O(Ba,t). Hence, for ty,...,t, € R™ arbitrary, we get
with tn_;,_l := 0 that

Vaptis (bt 0= > 027 N )

Jc{1,....,n+1} jeJ

n+1 n+1
= Y et 3 ) +eEiii > )

Jc{1,...n} jeJ jed

= > |eEi 3 el > )

JcA{1,...,n}, jeJ jeJ
J#D

= a4, (1, ).

Overall, this mostly proves that the considered system is projective and by Kol-
mogorov’s consistency theorem, there exists a probability space (€,.4,P) and
a family M = {M(A) : A € 8} of random vectors with marginal distributions
L((M(Ar),...,M(A,))) = pta,,...a,- For Ay,... A, € S disjoint, we have that
2z — A;if J = {5}, and 2" = § else, which yields that (RM;) is fulfilled. For
(RM3) we first fix Ay, A2 € S arbitrary and write

L(M(A1 U Az) = M(Ar) = M(A2))(8) = fia,uas A, (6, —t,—t), tER™
to see that M is finitely additive, as the right-hand side equals 1 by construction.
Thus for a sequence like given in (RMs), it suffices to show that

%) jo%s) P
M(UZ,45) — M(U§:1Aj) = M(U5Z414;) m 0
by a straightforward multivariate extension of the the three-series-theorem (see
[3, Theorem 9.7.1]) and by what we have shown before. If we let By, := U2, 1 A;
with By | 0, it follows by (a) and (b) that v, — 0 as well as that Qp, — 0.
Provided that

klim /min{l7 lz||?} ¢, (dx) = 0, (3.1)
—00
]R'r”.

the assertion would follow via Theorem 2.1. Fix € > 0 and choose § > 0 sufficiently
small such that

min{L, [|z[|*} ¢, (dz) < / min{1, [|z[|*} ¢, (dz) <e, k€N
{wllel<s} {asllel<s}
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in face of ¢r1 < @i (see above), such that (3.1) follows by (c) again. Finally, for
uniqueness we fix A1, Ay € S and observe that (t1, M(A;)) + (ta, M(A2)) equals

(t1, M(A1\ Ag)) + (t1 + t2, M(A1 N A2)) + (t2, M (A2 \ A1)),

where the three last-mentioned random variables are independent due to (RMj).
Now the statement can be deduced easily. ([

Let us remark that the previous theorem as well as the following ones are
similar to the corresponding, but univariate results in [17].

Theorem 3.2. Let M be an i.d. ISRM as before, then there exists a o-finite
measure \y; on o(S), called control measure of M, which is uniquely deter-
mined by

Anr(A) = [yla + t(Qa) + /min{l,HxHQ}ngA(dx), AcS,  (32)
J

where |y|a = |y|(A). Furthermore, for any sequence (A,) C S, we have:
(i) A (An) — 0 implies M(A,) — 0 in probability.
(ii) If M(A.) — 0 in probability for every sequence (Al) C S with A!, C A,,
then it follows that A\pr(Ay) — 0.

PROOF. We have to show that (3.2) defines a finite pre-measure on S, then
Aar would be its unique extension on o(S): non-negativity is obvious. Moreover,
|v| is finite by Theorem 2.3 and Theorem 3.1 (a). The mapping A — tr(Q4)
preserves the og-additivity in Theorem 3.1 (b) by continuity of the trace-mapping
tr(-). Finally, we could already show that A — ¢4 is additive, thus, as before,
it remains to show that

/min{l, |z ||?} ¢, (dz) — 0 (3.3)
B

for any sequence (B,) C S with B, | 0. Actually, the previous proof even
revealed that M(B,) — 0 a.s., such that (3.3) follows by (2.1).

Now, if A\ps(A,) — 0 for a sequence as above, the same holds for each of
the corresponding expressions in (3.2), which allows us to use Theorem 2.1 again.
Because of ||va, | < |v]a, and since tr(Qa,) — 0 implies Q4, — 0, we get
M(A,,) — 0 in probability. Conversely, the proof of Ays(A,) — 0 reduces to the
verification of || 4, — 0 after using similar arguments as before and especially the
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assumption that M (A,) — 0 in probability. Consider the component functions
7M. 4™ and fix some € > 0 and j € {1,...,m}, where Theorem 3.1 (a) and
the combination of (2.3)—(2.4) guarantee the existence of sequences (A ;) C S
with A, ; C A, for i = 1,2 with
WD a, <49 =27, +e, neN

Now one can use the given assumption together with Theorem 2.1 again to see
that 71(4]3_1, — 0 for i = 1,2, which yields |y)| 4, — 0 and therefore the assertion
of (ii), see the proof of Theorem 2.3. O

Next, we want to extend [17, Lemma 2.3], which yields a construction prin-
ciple for ISRMs in Theorem 3.4 (b) below: Given measurable spaces (€21,.4;)
and (Q2,A2), a mapping & : Q1 x Az — [0,00] is called a simultaneous o-finite
transition function from €y to o, if the following conditions hold:

(i) w1 = k(wi, Az) is A;-B([0, 0o])-measurable for every Az € As.
(ii) A2 — k(w1, A2) is a measure on ({2, As) for every wy € 1. Moreover, there
exist sequences (Az,) C Az and (r,) C [0,00) such that

U Az =9 and VneNVw €Q:r(w,A2n) <rp. (3.4)

n=1

Furthermore, if x(w1, ) is a probability measure for every wy € 2, we say that x
is Markovian.

Proposition 3.3. Let (Q1,.41,v) be a o-finite measure space, and K a si-
multaneous o-finite transition function from €2y to 5. Then there exists a unique
o-finite measure v ® k on the product space (21 X 2, A1 ® A2) with the property

(vOK)(A] X Ay) = /m(wl,Ag) v(dwy) for all A1 € Ay, As € As.
Ay
Moreover, we have
/ f(z) (v O k)(dx) = //f(wl,wg) (w1, dws) v(dwy) (3.5)
leﬂg (21 Q2

for every measurable f : 1 x Q9 — R that is non-negative or integrable w.r.t.
no K.
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PRrROOF. Choose (4;,,) C A; disjoint with U324 , = Q; and v(4;,) < o
for all n € N. Let v (-) := v(-N Ay ). Similarly, 5" (w1, ) := k(w, N Az,,) is
a finite transition function with (As ) from (3.4) for every w; € ; andn € N. As
the assertion is well-known for v and  being finite (see 14.23 and 14.29 in [10]),
one easily checks that it is enough to define

(v O kr)(C) = //]lc(wl,wg) K(wy, dws) v(dwr), C € A1 ® As.

Q1 Q2

More precisely, we can consider Cy, := Ay x, (n) X A2 r,(n) With a suitable mapping
7 = (m1,m2) : N = N? which is one-to-one. Then (v®x)(-NC,,) is finite under the
given assumption on x, and moreover equals v(™ (") ©x(™2(") for everyn € N. O

Theorem 3.4. Let S be a 0-ring as above and consider the o-algebra o(S).

(i) For every i.d. ISRM M on S with values in R™, there exists a simultaneous
o-finite transition function ps from S to R™ with (Ay@par)(AXB) = ¢ a(B)
for every A € S and B € B(R™), where ¢4 is the Lévy measure of M(A).
Here pys is uniquely determined \jps-almost everywhere (a.e.) and can be
chosen such that

/min{l, lz]|?} par(s,dx) <1 for every s € S. (3.6)

RmM

(ii) Conversely, let A be a measure on S which is finite on S, and p a transition
function from S to R™ fulfilling (3.6), i.e., being simultaneous o-finite. Then
there exists an ISRM M with A = Ap; and p = pp (in the previous sense).

PROOF. Let (S,) C S be a disjoint sequence that exhausts S. Then, as
in the proof of Theorem 3.2, we see that Qj(A, B) := [ min{l, ||z[|*} ¢a(dx)
is a finite pre-measure on S for any fixed Borel set B C R™, and we denote
its unique extension towards a o-finite measure on o(S) by Qo(-, B). Hence for
A € o(S) and (By) C B(R™) disjoint, we observe by Theorem 2.2 that

Qo <A, U Bk> =) > QH(ANS,, Br)=> > Qi(AN Sy, Bi)=> Qo(A, By).

k=1 n=1k=1 k=1n=1 k=1

Consequently, the assumptions of [17, Proposition 2.4] are fulfilled, and by a slight
refinement (in particular (R™, B(R™)) and (R, B(R)) are isomorphic as measur-
able spaces), we get the existence of a Markovian transition function x from S to
R™ such that Qo(A, B) = (Ao ® k)(A x B) for every A € ¢(S) and B € B(R™),
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where \g(+) := Qo (-, R™) < Aps(+). Let 79 be a Aps-derivative of Ay with m(s) < 1
for every s € S, and set

o (s, dr) == ro(s) - minL, |22}~ - gy o) (2)r(s, da), 5 € 5.

This shows (3.6). Moreover, the following calculation, which is valid for every
A € 8, B € B(R™) and which benefits from the simplicity of the integrand, yields

/ par(s, B) A (ds) = / / (ming1, [2]2}) " (s, dz) Ao(ds)

A A B\{0}

= [ i1 el O @ s, de)
Ax(B\{0})

= [ (in{1le]P)) ! Q34 dr) = 6a(B).
B\{0}

The uniqueness of pys follows by the Radon—Nikodym theorem after countably
many unions of null sets by considering the generator { M7 x - - - x M, : M; € M}
of B(R™) with

M = {{0} U (—00,q1] U [g2,00) : 1 € Qc0,q2 € Q>0}.

Conversely, the assumption in (i) ensures that ¢4(B) := [, p(s, B) A(ds) with

/ min{1, [l2]?} da(dz) = / / min{1, 22} p(s, dz) Mds) < A(4)

A Rm

is a Lévy measure on R™ for every A € S, whereas the total variation of
S3A—=vya:=|NA) — /min{l7 2|12} pa(dz) | e1
]Rm

is given by the non-negative expression in brackets for every A € S (notice (3.6)
again). Here e; generally denotes the j-th unit vector. Now we can obviously use
Theorem 3.1 for the triplets [y4,0, 4] to obtain the assertion. O

Proposition 3.5. Let M be an R™-valued and i.d. ISRM on S, where
M(A) ~ [va,Qa, pa) for every A € S.
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(i) There are o(S)-measurable mappings ar : S — R™ and Sy : S — L(R™)
such that the following integrals exist (component-wise) with

/ ot (5) Aur (ds) = 7, / Bar(5) An (ds) = Qua, (3.7)
A

A

for every A € S. ap and Sy are uniquely determined Apr-a.e. by (3.7).
(ii) Bar(s) is symmetric and positive semi-definite Aps-a.e.

(iii) The mapping
R™ >t +— /KM(t, 8) )\M(ds) (38)

is the log-characteristic function of M (A) for every A € S, where the func-
tion Ky : R™ x S — C is defined by

i(t, x)

1+||90||2> pum (s, dz). (3.9)

Rar(s ) =ilans(9).0)=5 (a0 -1~

PRrROOF. (i) We start with a general observation: Consider T : S - R
o-additive, then |T'| can be uniquely extended to a o-finite measure |T |, where we
assume that \T | < M. Hence the same holds for the extensions T+ of T* and

— of T~ such that the Radon— leodym theorem provides measurable, [0, co]-
valued mappings f* with TjE = [, f5(s) Au(ds) for A € o(S). Consider
(Sn) C S disjoint with U;’f:lSn = S. Then ft1lg, and f~1g, are finite A\ps-
a.e. Hence there are A\j;-null sets Nt and N~ such that fT1y+ and fH1+ are
finite, preserving the integral relation above instead of f*, respectively. Then
f = fTly+ — fT1+ is Ap-integrable over every set A € S with value T(A).
Thus the mappings ajp; and §j; can be obtained by using the previous method
for each of its components, where |Q| < Ay (on &) and therefore @\\ < Ay
which can be shown similarly as in the proof of Theorem 3.2.

(ii) In view of Theorem 2.2, we observe that A — (Qans, ,z) is a finite
measure on o(S), while the Cauchy—Schwarz inequality yields that this measure
is also absolutely continuous w.r.t A\jp;. At the same time, we know by (i) that
(Brm (), x)lg, (+) is a corresponding Ajps-derivative which has to be non-negative
Ap-a.e. due to the Radon—Nikodym theorem. Therefore, we have (Sys(-)z, ) > 0
except a Ap-null set and for all z € Q™, which finally means that Sp/(-) is
positive semi-definite Ajs-a.e. by continuity of the inner product. The symmetry
follows if we consider the components Q%7 of Q. In particular, we see that 4 —
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Q% s, QL s, ) equals the zero measure on o(S) for every n € N as Qans,, is
symmetric.

(iii) The Aps-integrability of Kps(t,-) and (3.8) are almost obvious (see (i)
and remember that M(A) ~ [ya,Qa4,d4]). Using Theorem 3.4 and (3.5), it is
easy to see that the following integral

[ [ e pasts. ) st
A

Rm

- / Bt 2)14(5) (At © par) (ds, dar) = / h(t,7) 6 (da),

SxRm Rm™

where the last step is similar as before and h(t, z) denotes the integrand used in
the definition of K. O

Remark 3.6. In view of (3.8) and the uniqueness of the Lévy-Khintchine
Formula, we write M ~ (Ayr, Kpr). And in the case of aps = Sy = 0, we may
even write M ~ (Apr, par), respectively. Observe that the latter case applies to
Theorem 3.4 (ii) as long as (3.6) holds with equality.

Ezample 3.7. (a) Consider a o-finite measure space (.9, ¥, v) and assume that
w~[y,Q,¢] is an i.d. distribution on R™ with log-characteristic function
and not being the point measure at zero. Then S, := {A € ¥ : v(4) < oo}
is a d-ring with ¢(S,) = X, which can be verified easily with the aid of (S,).
Hence, according to Theorem 3.1, there exists an i.d. ISRM M with M(A) ~
[V(A) -+, v(A) - Q' v(A) - ¢'] for every A € S,, and we say that M is generated
by v and p. Moreover, with

Co= I/l + (@) + [ min{L, |al*} ¢'(dz) < (0.50)

we get that Aps(-) = Gy, - v(-), while ppr(-) = Ct - ¢/(-) and Kp(-) = C;7t - ap(+)
are both constant in s € S. Therefore, it is convenient to write M ~ (v, u)
and one can check by the construction in Theorem 3.1 that M(A;) and M(As)
are independent if and only if ¥(A; N Ay) = 0. Furthermore, independence of
M(Ay),..., M(A,,) is equivalent to pairwise independence.

(b) In [5] an R-valued ISRM M, is constructed such that the log-characteristic
function of M, (A) is given by

RS>t —/|t|°“<s) ds (3.10)
A
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for every Borel set A C R with finite Lebesgue measure. Here o : R — [a,b] is
a measurable function with 0 < a < b < 2, and M is called an «(s)-multistable
random measure. On the one hand, Theorem 3.1 says that M, is uniquely de-
termined by (3.10), on the other hand, M can be recovered by our approach
and (3.8): Denote by p4(s,-) for every s € R the Borel measure with Lebesgue
density  +— 0(s) |z|~*(*)~1, where 6(s) := #(2 —a(s)) € [c1,¢2] for all s € R
and suitable 0 < ¢ < ¢2 < oo by the assumption on «f(s), i.e., (3.6) is ful-
filled with equality. Similarly and as in [20], there exists a measurable function
n:R — [c3,cq] C (0,00) such that

77(3)/ (elt.’r 11— - :_x 2) |w|—a(s)—1 de — _|t|a(s)
x

R

for every s,t € R. Finally, let A\4(-) be the Borel measure with Lebesgue den-
sity s — (8(s)n(s))~! and apply Theorem 3.4, which means M, ~ (A4, pa) by
Theorem 3.6.

Remark 3.8. If we identify B(C™) and B(R*™) by means of =, we can observe
that the relation between i.d. random measures with values in C™ and R?™,
respectively, is one-to-one. Generally, for any C™-valued ISRM M, we say that
E(M) is its real associated ISRM.

Of course, we can (and will do) interpret every R™-valued i.d. ISRM M
as such a one with values in C™, having no imaginary parts, which leads to

E(t) := (¢,0) for every t € R™. Hence, in this case, we understand = as a mapping
with domain R™. Furthermore, we then see that Z(M)(A) ~ [J4,Qa4, 4] with

- ~ 0 ~ —

YA = (71470)’ QA = <C%A 0) and ¢A = :‘((Z)A)a AecS.
Similarly, this works for the objects in Theorem 3.5 and one immediately checks
that Az(ps) = Ay At the same time, it can be computed that pzn)(s, A) =
pu(s,271(A)) for any A € B(R*™), together with Ky(s,t1) = Kz (s, t) for
all s € S and t = (t1,t5) € R*™.

4. Integrals with respect to ISRMs

Let M be a K™-valued ISRM on a d-ring S, where we assume that M is i.d.
Then a matrix-valued mapping f : S — L(K™) is called S-simple if f can be
represented by f = Z;'L=1 Rj14, with Ry,...,R, € L(K™) and A4,...,4, €S
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disjoint. In this case, we define the stochastic integral of f1 4 w.r.t M by

I (fla):=I(f14) ::/fdM ::/f(s)M(ds) =Y R;M(ANA;). (4.1)
A A

j=1

Note that, in view of Theorem 2.2, the mentioned truncation is valid for every
A € o(S) and that the stochastic integral is well-defined a.s. by (RMj). Write
In(f) and so on for A = S.

Definition 4.1. Let f: S — L(K™) be o(S)-B(L(K™))-measurable.
(a) f is called M-integrable if there exists a sequence (f,,) of S-simple functions
such that the following conditions hold:
(I1) fn — f pointwise Apr/Az(an-a.e. for K=R/C.
(I2) The sequence I(f,14) converges in probability for every A € o(S) and
we refer to this limit as Ip/(f14) or any synonymous notation from
(4.1), respectively.
(b) Consider K = C. If we relax (I3) in such a way that we merely want either
the sequences Re I(f, 1 4) or the sequences Im I(f,1 4) to converge for every
A € o(S), then f is called partially M-integrable (in the real/imaginary
sense).

Finally, we define
Ty (M) :={f:(S,0(S)) = (L(K™), B(L(K™))) | f is (partially) M-integrable}.

Remark 4.2. (i) The previous definition coincides with (4.1) for simple f,
whereas the notation in (I3) will be justified by Theorem 4.4 (a).

(ii) If the imaginary parts of f and M vanish, we get back the case K = R.

(iii) The two types of partial integrability differ only in the consideration of f
and —if. Hence we restrict to partial integrability in the real sense and
write ReIps(f1.4) for the corresponding limit in (b), even if Ins(f14) may
not exist in accordance to (a). However, we have Z(M) C Z(,) (M), generally
with non-equality.

Now we state some useful properties, starting with the linearity which illumi-
nates the notation (stochastic) integral. Throughout and for accuracy, we should
identify random vectors that are identical a.s. Also notice that * denotes the
adjoint operator in the Hermitian sense.
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Proposition 4.3. Let M be as before. Then we have:
(a) Z(M) is a K-vector space and the mapping Z(M) > f > In(f) is linear a.s.
(b) f € Z(M) implies that for every Q € L(K™) the function @ - f, defined by
(@ f)(s) =Qf(s), also belongs to Z(M) with Ip(Q - f) = QIn(f) a.s.
Both statements hold accordingly for Z,,(M) with K = R.

PROOF. The linearity in (a) is obvious for simple functions when considering
a common partition A;,..., A4, € S. For general f,g € Z(M) (with S-simple
approximating sequences (f,) and (g,)) this property can be extended, since
hy = afn, + asg, approximates h := a3 f + agg properly for any ag,as € K.
Merely note in the case of K = C that, for any A € o(S), we can write

Re IM(hn]]-A) =1 Re(fn]]-A) — N Im(fn]lA) + 2o Re(gn]]-A) — Y2 Im(gn:U-A)v

if a; = x; + iy;; similarly for the imaginary parts. In particular we get h € Z(M)
by additivity of the stochastic limit which implies that Z(M) is a vector space.
Part (b) and the additional statement for Z,,(M) can be proven quite similarly. O

For the time being we consider the case K = R. Recall from (3.2) and (3.9)
the definition of A\y; and K, respectively.

Theorem 4.4. Let M be as before.
(a) If f € Z(M), then Ip(f14) isid. for any A € o(S) and its log-characteristic
function is given by

R™>¢— /KM(f(S)*t, s) A (ds). (4.2)
A

Particularly the integral in (4.2) exists and Ip;(f1,4) is well-defined a.s.
(b) If f1,..., fn € Z(M), then we have for any ti,...,t, € R™:

B (o3 00000) —exp | [ Kar | 3 5506070505 | Aaelas)
S J=1
(c) For f fi1, f2,--- € Z(M) we have that In(fn) — Inm(f) in probability is

equivalent to

/KM((fn(s) —f(s)"t8) A(ds) — 0, teR™.
R’VYL
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(d) Let f1, fo € Z(M) such that || f1(s)|- || f2(s)|| = 0 holds Aps-a.e. Then Ip;(f1)
and Ip;(f2) are independent.

PRrROOF. For simple f, one checks that Ip;(f14) is i.d. (see [16, Proposition
3.1.21]) for every A € o(S), while K3;(0,-) = 0 and (3.8) yield that its character-
istic function is given by (4.2). Note that ¢ — K (¢
function of the distribution with triplet [aas(s), Bar(s), par(8)], i-e., is continuous
for every s € S. On the one hand, this merely shows that the integral function in

,$) is the log-characteristic

(4.2) is really the log-characteristic function of Ins(f). On the other hand, it allows
us to perform a simple multivariate extension of [17, Proposition 2.6], which states
that (4.2) and the previous implication concerning the log-characteristic function
also hold for general f € Z(M), namely the limit in (I3). This limit preserves the
infinite divisibility, and since the right-hand side in (4.2) does not depend on the
choice of approximating functions (f,,), we see that Ip;(f14) is uniquely deter-
mined a.s. after consideration of (f,, — f/,), provided that (f) also approximates
f properly. This immediately yields (a). The proof of (b) will be covered by the
one in Theorem 4.12 (b), while part (c) is a direct conclusion of (a), the linear-
ity and [16, Lemma 3.1.10]. Finally, for (d) we show that || fi(s)| - |f2(s)|| = 0
expect a potential A\j;-null set implies the independence of Ip/(f1) and Ins(f2).
Define A; := {s: fi(s) # 0} (¢ = 1,2) and observe that M(A) = 0 a.s. for every
A C (A1 N As) by assumption and the use of Theorem 3.2 (ii). Now if (f, ;) is an
approximating sequence of simple functions for f;, we see that this also applies to
Jnilla, and that Ins(fnilla,) = In(frilan(a,na,)) a.s. In view of (RMy), this
gives the assertion. O

In the following, we are going to characterize the class Z(M) for a given
ISRM M in terms of its control measure \); and the related function K. Also
recall the definition of apy, 537 and pps in Theorem 3.4, as well as in Theorem 3.5.
Then we define Uy : L(R™) x S — R™ by

Rx Rz
(R.s) = Rani(s) + | (1 e~ TS W) ai(s, de)

R™

as well as Vi : L(R™) x S — R, by
(Ros)rs [ minfL,[Ral*} pas (s, o).
RWL

Recall that these functions are multivariate extensions of those in [17] and a simple
calculation shows that
‘ Rz Rz

TR T | S e IR IR mingL ) (43)
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holds for all R € L(R™) and « € R™. Similarly and with the help of the Cauchy—
Schwarz inequality, we see that

ty) . . .
1<+||y||2‘sm<t’y> < (U It + 1) mindL, ]2}, ty eR™. (44)

Observe that, in view of (4.3), Uy exists. At this point, we generally note
that (deterministic) integrals w.r.t. vector-valued or matrix-valued integrals are
meant component-wise (compare Theorem 3.5). The following proposition is the
first step in the promised characterization of Z(M) and also provides the Lévy—
Khintchine triplet of the i.d. random vector Ip;(f). But in contrast to the uni-
variate case considered in [17], in our situation the arguments are more involved.

Proposition 4.5. Consider f € Z(M). Then the following integrals exist:
o= [On) s Muilds). Q= [ F6)8(5) 1) Aur(as),
s s

and
o5(A) = (Am © pm)({(s,2) € S xR™: f(s)z € A\ {0}}), AeBR™)

defines a Lévy measure. Moreover, we have Ini(f) ~ [vs, Qf, ¢y]-

PROOF. The given assumption and Theorem 4.4 (a) ensure the existence of
/KM(f(s)*t,s) A (ds) (4.5)
S
for every t € R™ as well as the continuity of

R™ 5 ¢ / Re Kr (£(s)*t, 5) Aur (d3). (4.6)
S

Let us emphasize that both statements will suffice to perform the present proof.
First, Theorem 3.5 (b) permits the following decomposition for every t € R™, and
the use of (3.5) combined with the definition of ¢ yields
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/ Re Kt (£(s)"t, 5) Anr (d3)
S

—— [ Su £t 56 DA (ds) = [ [ (1cos(r(6) ta)pas s, d) M)

5 S Rm™
== [ SUEBMI) 0 Mrlas) — [ (1=coslt )y ).
5 Rm

Now let C(s) := f(s)Bum(s)f(s)* with C(s) = (C*(s))i j=1,..m, and first con-
sider t = e; to check the \js-integrability of the diagonal components C*?. Repeat
this argument for ¢ = e; + e; for the Aps-integrability of C*7 + C7*, which finally
gives the existence of Q¢ due to the symmetry in Theorem 3.5 (b). Here we
should also note that Q¢ is symmetric and positive semi-definite since 8y is (at
least Aps-a.e.). In particular, we know that

/(1fcos(t,x))gbf(dx):f%<th,t>f/ReK(f(s)*t,s))\M(ds), teR™. (4.7)

R™ S

Hence the left-hand side is continuous in ¢ according to (4.6), i.e., ¢5 is a Lévy
measure if we include ¢7({0}) = 0 and perform similar steps as done in the proof
of [18, Theorem 3.3.10]. Then we can argue as above that this implies the Aps-
integrability of Vas(f(-),-). For the existence of 7y, it finally suffices to show
that (¢, Un(f(+),)) is Ap-integrable for every ¢ € R™. Observe that we have the
decomposition

00768 =Kt + [ (L sinte (6100 pas (s,

Rm

for every s € S;t € R™ in view of (4.3) and (4.4). Furthermore, (4.4) implies that
[0 9 ar(ds) < [ Kt Ailds) + ) [VF6).5) Aaelds)
S S S

with C(¢) := 1+ [|t|| + ||t]|*. In view of what we have shown before, this gives the
existence of ;. Now it is easy to see that Ins(f) ~ [y, Qy, @] O
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Lemma 4.6. Let f: S — L(R™) be measurable. Then the inequality

1U(f(s)La(s), o)l < U(f(s),5)[Lals) +2V(f(s),s)
holds for every A € o(S) and s € S.

PROOF. With a little abuse of notation apply (4.3) to R := 14(s)I,, and
Z := f(s)x. Then some simple calculations provide the desired conclusion. O

The previous Lemma can be regarded as a multivariate alternative for
[17, Lemma 2.8], whereas the following one uses some ideas from the proof of
[18, Theorem 3.2.2].

Lemma 4.7. For f € Z(M), let (fn)nen be a corresponding sequence of
simple functions. Then for any 1,9 > 0, there exists an ( = ((¢1,€2) such that

Vn>(VAE(S)  B(I(fLa)— I(fula)] > 1) < 2.

ProOF. Let g, := f— f. Then by linearity, Theorem 4.5 and Theorem 2.1,
we have that

Vg (A) = /U(gn(s), s)Am(ds) =0, Ae€oa(S). (4.8)
A

This convergence is even uniform in A. To prove this, we define the measure

o0

N . 7l)\M(EﬁSl) o
u(E) -*;2 714_/\]\/1(5[)’ Eeo(S),

where (S;) C S is a disjoint exhaustion of S again. Then A — ~,, (A) defines
(k)

n

a vector measure with v, < Ay < A}y, ie., the components 7,

measures with 75’:) K Ay for every n € Nand k =1,...,m. Thus we can apply
the Hahn—Saks—Vitali Theorem (see [19, Proposition C.3]): For every € > 0, there

are 01, ...,0., > 0 fulfilling the implications

are signed

VA € o(S) (A;;J(A) < o) = sup [y (4)] < 6)
neN

for K = 1,...,m. Hence there exists a C' > 0 such that the following assertion
holds likewise with § := min{dy,...,dpn}:

VA € o(S) ()\}‘V[(A) <0 = iléll\)l 17g. (A)]| < Cs) . (4.9)
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Using dominated convergence, we have that Up(+, s) is continuous for each s € S
and therefore that Ups(g,(s),s) — 0 Ap-a.e. Proceeding with Egorov’s Theorem
(note that A%, is finite), there exists a measurable set D’ such that the previous
convergence is uniformly on D" with \5,(S\ D) < §/2. Finally, we use (S;) and
Theorem 2.2 to verify that the same is true on an appropriate set D belonging
to S with A3, (S\ D) < 4. Especially, we have Ay (D) < oo as well as the following
estimation for every A € ¢(S) and n € N due to (4.9):
179, (A <Ce+ sup [[U(gn(s),s)] - Anr(AN D)
s€ AND

= Ce+sup 1U(gn(s), )l - Anr (D),
se

which obviously means that (4.8) holds uniformly. Moreover, for R™-valued ran-
dom vectors X and Y, we can define d(X,Y) := [min{1, || X — Y|} dP and know
that d is a metric whose induced convergence is equivalent to that in probabil-
ity (when identifying random vectors which are equal a.s., see the proof of [10,
Theorem 6.7]). We now show for X,,(A) := Ipn(gnla) — vy, (4) that
cn = sup d(X,(A),0)€0,2], neN
Aco(S)

converges to zero. For this purpose, we choose A, € o(S) such that ¢, <
d(Xn(A4,),0) + 1/n. At the same time, we have

Ini(gn) = Xn(An) + IM(gnILA;) + Y9, (An) = Xpn(An) + Y, =0

in probability (see above). This also implies X,,(A4,) — 0 by Theorem 2.1 and
monotonicity. For instance, and provided that X, (A,) ~ [0,Qy, ¢,] as well as
Y, ~ [:Yna Qna (bn]a we obtain

0 < (Qnt ) < (Qut.t) + (Qut,t) = ((Qn + Qu)t,t) = 0, teR™,

since Q,, + Q, equals the Gaussian component of Iy;(g,) by independence of
Xn(Ay) and Y, (see Theorem 4.4 (d) and Proposition 3.1.21 in [16]). Hence
¢n — 0. Furthermore, we see that d(Ip(9,14),0) < d(X,(A),0) + ||vg, (Al
holds for every A € ¢(S), and n € N due to the fact that [0,00) 5 x — min{l, z}
is subadditive. By what we have seen before, this shows that d(In;(g,14),0)
converges to 0 uniformly in A € ¢(S). Finally, let 0 < g7 < 1 arbitrary (g1 > 1

obvious), then we obtain the assertion by reading this convergence together with

PI(f1a) = I(fula)ll = €1) = P([I(gnla)]| Z &1) < EIIAZUI(DS) d(I(gn14),0),

where we used that P(|| X || > 1) < d(X,0)/e; (for any random vector X). O
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Theorem 4.8. Let f : S — L(R™) be o(S)-B(L(R™))-measurable. Then
the following statements are equivalent:
@) feZ(M).
(IT) The integrals vy as well as Q5 exist and ¢y is a Lévy measure.
(III) The integral in (4.5) exists for every t € R™ and the mapping in (4.7) is
continuous.

PROOF. In view of what we pointed out before, especially in the proof of
Theorem 4.5, it obviously suffices to show that (II) implies (I). Throughout the
proof, let (S],) C S be an increasing sequence whose union is S and write f(s) =
(f59(8))i j=1,...m for every s € S.

First step: We define S, := S/, N {s: [f"(s)| <mnforall 1 <i,j <m } €S with
Sp 1S, and thereafter the sequence (f,,) of S-simple functions (see Theorem 2.2)
via

Lo ifl<fii(s) <l for 1=0,...,n% — 1,

n’

fii(s):=1g,(s)-{ =L, if —H'Tl < fhi(s) < forl=0,...,n2 -1,

_ 1
n’ n

0, if |49 (s)| > n.

Hence we see that f, — f pointwise with |fi7(s)| < |f%I(s)| for every s € S,
whereas |f7(s) — f4(s)] < 1/n merely holds for s € S,,. Moreover, there exist
C1,Co > 0 such that || fn(s)|| < Ci||f(s)|| for all s € S, and ||fn(s) — f(s)]] is
bounded by Cs/n as long as s € S,,. Particularly, we obtain for all j > n and
ses:

[fn(s) = fi(s)| < Collf ()l s)\s,(5) +2C2 1s, (s). (4.10)

Second step: Next, we show that ¢(*) := fls, € Z(M) for k € N arbitrary

by means of the S-simple sequence (g,(f))n which is defined via g,(Lk) = fals,.

Obviously, we have 97(11@) — ¢™®) pointwise, and with C' := 2C) one confirms that

195 (s) — g{(s)II < C L5, (s) (4.11)

is true for all j > n > k and s € S due to (4.10). In view of Theorem 4.1, it suffices
to show that (I M(gELk)Il A))n converges in probability. For this purpose, we now
fix an arbitrary sequence n; < j; < ng < --- of increasing natural numbers and
prove that the convergences

[ (00 = 06D a(o)8) Marlds) 50, (412)
S
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/ (9 (s) — g (5)) Bar (s) (9 (5) — g$ (5))* Aar(ds) — 0, (4.13)
A
/ Var g;’? — g (s ))11,4(5),5) Aar(ds) = 0 (4.14)

hold for I — oo, respectively. By continuity of Ups(-,s) and Vis(+, s), it is first
clear that the integrands in (4.12)—(4.14) converge to zero for every s € S. Then
the assertion follows by dominated convergence in each case: For (4.13), use
(4.11) and observe that ||Bar(s)||Lans, (s) is Aar-integrable. On the other hand,
we see that the integrand in (4.14) is dominated by Vi (C1lans, ($)Im,s) (here
and below at least for [ sufficiently large), whereas (3.5) and Theorem 3.4 provide
the following steps that have been performed similarly before:

/ Vat(ClLans, () Iy $) At (ds)

<(1+0C?%) / min{L, |2]*} Lans, (s) (Aar © par)(ds, dz)
SxRm™

— (1402 /min{1,||x||2}¢Amsk(dx) < o0

Rm

Using (4.3), we can argue likewise that the integrand in (4.12) is dominated by
s | Cllam(s)|l+C” / min{1, [[2]*} par (s, da) | Lans, (s)

with C’ := max{2,C + C3}, and that the mapping we mentioned recently is
Aa-integrable. Finally, suppose that (1 M(gy(lk)]l A))n would not converge in prob-
ability, then it would not be Cauchy either (in view and in the sense of [10,
Corollary 6.15]). Hence we obtain a sequence n; < j; < ng < --- as above such
that IM(g,(”)ILA) - IM(g](»f)]lA) = IM((g,(L’f) - g,(l]f))]lA) neither converges in prob-
ability to zero nor in distribution. By Theorem 4.5, and in view of Theorem 2.1
together with (4.12)—(4.14), this gives the contradiction.

Third step: For A € o(S) arbitrary, we further conclude that there is an increas-
ing sequence (ji*) of natural numbers which fulfils the following implication for
every [ € N:

Bioke 2 it = P (116" 1) = (g™ 14)| = 1/1) <11 (4.15)
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Similarly to the previous step, this is again equivalent to the following assertions:

[ ((696) = 9™ ()1a(s).5) Aads) >0, (410

S

[ (66) =99 8a0() (5 = "(5)) Aaslds) >0, (247
A

/VM (™) (5) = g (5)1a(5),5) Aua(ds) 0 (4.18)
S

for £ — oo, respectively, and with any fixed sequence n; < l; < no < --- as
before. In virtue of (S;, \ Sn,) C (S\ Sk) 4 0, we only have to find Ap/-integrable
functions again which dominate the previous integrands. Concerning (4.17) and
(4.18), this is obvious, as we assume the existence of @)y and the Ap;-integrability
of Var(f(+), ). For (4.16) we use Theorem 4.6, and then again, the assumption on
Var(f(),+) as well as the one on Up(f(+), ).

Fourth step: Inductively, Theorem 4.7 provides a sequence ((x) of increasing nat-
ural numbers such that

VAco(S) VkeN P (||I(g(k)]lA) — (g 1) = 1//<:) <1/k. (4.19)

Then we replace the sequence (f) from the first step by fi := gé]:) and realize that
frx — f pointwise again. Let A € o(S) as well as 1,9 > 0 be arbitrary. Then the
following calculation yields that (Ins(fx14)) is a Cauchy sequence w.r.t. conver-
gence in probability. In fact, we choose a Ky € N such that K < min{ey,e2}/3
and set K := max{ijf}O}. Then for any ki, ke > K, we get using (4.15) and
(4.19) that

PO (fe,La) = I(froLa)ll = €1)

<P (1108 10) = 1™ 1) 2 K5 1)+ (1109 1a) = 1(g* 1) 2 K5 )
+P(I1("10) ~ 1652 1)) 2 K
<P (1165 10) = 1g" 1) |2 k) +P (116" 10) ~1(g ™) 14) |2 K5 )
+P (19" 1) = (g8 1) | > k)

<k K Ry <e,

and the proof is complete. ([l
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With f; = 14,1, and the following result, which extends the conclusion
in [9], we see that the infinite divisibility of an ISRM implicitly extends to its
finite dimensional distributions.

Corollary 4.9. For fi,...,fn, € I(M), the random vector (In;(f1),...,
In(fn)) has an i.d. distribution.

PRrROOF. Denote the characteristic function of (Ip/(f1),...,Im(fn)) by ¢ and
fix some arbitrary I € N. Then it suffices to show that the function '/!, which we
should not understand in any logarithmic sense (see Theorem 4.4 (b) instead), also
describes a characteristic function on R™™. Thus if M (A) ~ [y4,Qa, ®4], we see
that M’ with M'(A) ~ [[71y4,171Qa, 17 ¢ 4] (for every A € S) is also a valid
ISRM according to Theorem 3.1. Then Theorem 4.8 leads to Z(M) = Z(M') such
that (Ins(f1),-- -, Iar (fn)) has the characteristic function /. O

Remark 4.10. Sometimes it might be more natural to consider vector-valued
integrands fo : S — R™ and hence to obtain one-dimensional stochastic integrals.
Actually, this would require to modify (4.1) and to use inner products of the form
(Rj, M(AN Aj)) accordingly.

Our approach includes this idea, if we use f : S — L(R™), where the first
row of f(s) equals fo(s)? for any s € S and all other rows are zero. Finally,
a projection on the first coordinate of I(f) gives the desired result.

For the rest of this paper, we briefly want to study the close relation between
K = R and K = C, which can be clarified by introducing the (partially) associated
mapping of f, namely f, f, : S — L(R*™) by

s« [Ref(s) —Imf(s) ~ __[Ref(s) —Imf(s)
J(s) = <Imf(s) Ref(s)) and fp(s)"( 0 0 )

where f : S — L(C™) is arbitrary. More precisely and with regard to Theo-
rem 3.8, we get the following observation in which we assume M to be a C™-valued
i.d. ISRM.

Proposition 4.11. For f : S — L(C™) we have that f is M-integrable if
and only if f is 2(M)-integrable, and in this case Z(Ip(f14)) = IE(M)(fﬂA)
a.s. for every A € o(8S). Similarly, f is partially M-integrable if and only if fp
is 2(M)-integrable, and in this case Z(Re Ins(f14)) = IE(M)(fp]lA) a.s. for every
Aeco(S).

ProoF. This follows by a simple calculation using (4.1) and passing through
the limit. 0
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On the one hand, this immediately allows us to apply Theorem 4.8 and
Theorem 4.9 accordingly. On the other hand, it shows that the complex-valued
perspective mostly simplifies the description of several problems that actually
have a real origin. We derive the following.

Corollary 4.12. Let M be as before, particularly C™-valued.

(a) If f € Z(M), then Ipn(f14) is well-defined and i.d. for every A € o(S),
whereas the log-characteristic function of Z(Ip(f14)) is given by

R2™ 5 ¢ s / K= ((5)*4, 8) A=) (ds) / K=y (E(f(5)°2), 5) Az(ar) (ds)

with z := Z71(t) € C™.
(b) If f1,..., fn € Z(M), then we have for any t,...,t, € R*™

I J J —
E(e <((f))t) exp /K~(M z;fj tj,s | Az(ar)(ds)
J

(c) For f f1, f2, - € Z(M), we have that In(fn) — Im(f) in probability is
equivalent to

[ Kz (o) = F6)t9) s (ds) >0, te 2

(d) Let f1,f» € Z(M) such that ||fi(s)| - || f2(s)|| = 0 holds Az(ay-a.e. Then
M (f1) and Ip(f2) are independent.

PRrOOF. In view of Theorem 4.11, part (a) follows by Theorem 4.4 and the
claimed equality can be checked immediately. And since, by linearity, Ias(fn) —
In(f) is equivalent to E(In(fn, — f)) — 0 in probability, this gives (c) again.
Moreover, Theorem 4.11 says that the assertion in (d) is equivalent to the indepen-
dence of IE(M)(fl) and IE(M)(fg) such that the proof reduces to the case K = R.
Finally, we write t; = (¢j1,%;2) as well as t; , = Q; ;e with e = ( ., 1) € R™ and
Qj,i € L(R™) suitable. Then for R; := 3(R;1 + R;2),Q;j == 3(R;1 — R;2) and
V; = R; —iQ; € L(C™), we observe, similar to [20, Proposition 6.2.1], that
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n

(Ea () ty) = D (R (ReLni(f3)) + B; o (Im Inr(£))s€)

1 =1

Z (R;(ReInm(fy)) — Q5 (Im In(f5)) + QF (Re Ine(f5)) + R (Im Ine (f5)). €)

Z<RGV;*IM(fJ) —I—Ivaj*I]V[(fj),(:’) = <E Iy Z‘/J* . fj , <Z>>
j=1 j=1

by both parts of Theorem 4.3. Verify the identity

*

ZVJ*fJ(s) (e +1ie) ij (tj1+1itj2) = ij(s)*tj7 ses
Jj=1 j=1

to see that (b) follows by (a). O

Remark 4.13. We also observe that Z(f(s)*t1) equals f,(s)*t for every t =
(t1,t2) € R?*™. Then the properties for the partial case (see Theorem 4.1)
can be formulated and proved similarly, which is therefore left to the reader.
We merely note that the following key relation holds for any fi,..., fn € Z,(M)
and t1,...,t, € R™:

(1]

]E (ei ?:1<RCI(f_7)7tj>) — eXp /KE(M) ij(s)*t] ,S )\E(M)(ds)
3 J=1
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