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Solubility of additive sextic forms over
ramified quadratic extensions of Q2

By MICHAEL P. KNAPP (Baltimore)

Abstract. In this article, we study the equation a1x
6
1 +a2x

6
2 + · · ·+asx

6
s = 0 over

the six ramified quadratic extensions of the p-adic field Q2. For all of these extensions,

we show that if s ≥ 9, then this equation has a nontrivial solution regardless of the

values of the coefficients. For four of the extensions, we show that 9 is the smallest

number of variables that guarantees that the equation will have a nontrivial solution.

1. Introduction

In this article, we are interested in nontrivial p-adic zeros of additive forms,

and specifically interested in nontrivial p-adic solutions of equations of the form

a1x
d
1 + a2x

d
2 + · · ·+ asx

d
s = 0, (1)

where the coefficients lie in a p-adic field. While studying a conjecture commonly

attributed to Artin (see [1, Introduction]), Davenport and Lewis [4] proved

that (1) has nontrivial solutions in each of the fields Qp provided only that s ≥
d2 + 1, and gave examples to show that if d + 1 = p for some prime p, then

there are additive forms in d2 variables which do not have nontrivial p-adic zeros.

However, if d + 1 is composite, then a smaller number of variables suffices (see

[6, Theorem 5.2.1]). To express this compactly, write Γ∗(d,K) to represent the

smallest number of variables which guarantees that (1), with coefficients in the

field K, has nontrivial solutions in K regardless of the coefficients. Then the work
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of Davenport and Lewis shows that Γ∗(d,Qp) ≤ d2 + 1 for all degrees d and

primes p, with equality when d = p− 1.

These values of Γ∗(d,Qp) immediately led Davenport and Lewis to the fol-

lowing result [4]. Suppose that the coefficients of (1) are (ordinary) integers, and

define Γ∗(d) to be the smallest number of variables which guarantees that (1) has

a nontrivial solution in every p-adic field Qp. Then Γ∗(d) ≤ d2 + 1, with equality

whenever d+1 is prime. Since [4] was published, several authors (see, for example,

[2]–[3], [6], [9]–[10]) have studied the exact values of Γ∗(d) for various degrees d.

Currently, the exact value of Γ∗(d) is known for all d ≤ 32.

Recently, the author, inspired by results of Bovey [3], proved the following

exact formula [8] for the values of Γ∗(d,Q2).

Theorem. Write d = 2τd0, where d0 is an odd integer, and define the

number γ by

γ = γ(d) =

{
1 if τ = 0;

τ + 2 if τ > 0.

Further, write d = γq + r, where q and r are integers with 0 ≤ r ≤ γ − 1. Then

we have

Γ∗(d,Q2) =

{
5 if d = 2;

(2γ − 1) q + 2r otherwise.

In this article, we take the first steps in an attempt to extend the above

theorem to algebraic extensions of Q2. In particular, we study the values of

Γ∗(6,K), where K is one of the six ramified quadratic extensions of Q2. We prove

the following theorem.

Theorem 1. We have

Γ∗(6,Q2(
√

2)) = 9, Γ∗(6,Q2(
√
−2)) = 9,

Γ∗(6,Q2(
√

10)) = 9, Γ∗(6,Q2(
√
−10)) = 9,

7 ≤ Γ∗(6,Q2(
√
−1)) ≤ 9, 7 ≤ Γ∗(6,Q2(

√
−5)) ≤ 9.

Note that for our final two fields, Q2(
√
−1) and Q2(

√
−5), we are able to

prove that 9 variables suffice to guarantee solubility, but cannot prove that this

is the minimum such value. In fact, our studies suggest that the actual values of

Γ∗(6,K) are smaller for these fields.

Conjecture 2. We have

Γ∗(6,Q2(
√
−1)) = Γ∗(6,Q2(

√
−5)) = 7.
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As we will see below, we are able to find specific forms in 6 variables which

have no nontrivial zeros in these fields. However, we have been unable to find

forms in 7 variables without nontrivial zeros. Some preliminary work indicates to

us that it should be possible to prove that no such forms exist.

K π 2 (mod π5) Nonzero 6th powers in OK (mod π5)

Q2(
√

2)
√

2 π2 1 and 1 + π2 + π3

Q2(
√
−2)

√
−2 π2 + π4 1 and 1 + π2 + π3

Q2(
√

10)
√

10 π2 1 and 1 + π2 + π3

Q2(
√
−10)

√
−10 π2 + π4 1 and 1 + π2 + π3

Q2(
√
−1) 1 +

√
−1 π2 + π3 1 and 1 + π2 + π3 + π4

Q2(
√
−5) 1 +

√
−5 π2 + π3 + π4 1 and 1 + π2 + π3 + π4

Table 1. Uniformizers and other information for our fields.

2. Preliminary concepts

In this section, we describe the main concepts and notation that will be used

throughout the proof. We begin by choosing a uniformizer π for each of the

fields K under consideration. Table 1 gives the value of π which we choose for

each field, as well as some other information which we will find useful later. Once

we have chosen a uniformizer, any integer c of K may be written in the form

c = c0 + c1π + c2π
2 + c3π

3 + · · · ,

where we have ci ∈ {0, 1} for each i.

Because we are considering homogeneous forms, if a nontrivial zero in K

exists, then we may “clear denominators” and find a nontrivial zero in the ring of

integers OK . So our goal will always be to find p-adic integral solutions. We can

also obviously assume that the coefficients of our form are in OK . Suppose that

x is one of the variables in our form. We can write the coefficient of x6 as

c = πr(c0 + c1π + c2π
2 + c3π

3 + · · · ),

where r is a nonnegative integer and c0, c1, . . . ∈ {0, 1}, with c0 = 1. We will refer

to the number r as the level of x. We also define the π-coefficient of x and the

π-coefficient of c to both be the number c1. Thus every variable in F will have

a π-coefficient of either 0 or 1.
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We now summarize some of the work of Davenport and Lewis in [4], special-

ized to our situation. Let F be the additive form

F = a1x
6
1 + a2x

6
2 + · · ·+ a9x

6
9. (2)

First, suppose that some variable x in F is at a level r ≥ 6. Writing r = 6a + b

with 0 ≤ b ≤ 5, we can write the x-term of F as cπ6a+bx6 = cπb(πax)6, where c is

a unit in OK . Making the change of variables y = πax yields a new form F ′ which

has nontrivial zeros in OK if and only if F does. Moreover, the new variable y is

at level at most 5. In this manner, we may assume that every variable of F is at

level at most 5.

Our next lemma allows us to assume that our form has certain other desirable

properties as well.

Lemma 3. Let F be an additive form as in (2) in which every variable is at

level at most 5. Suppose that (possibly after relabeling the variables) we make

a nonsingular linear change of variables of the form

F ′ =
1

πr
F (πx1, . . . , πxt, xt+1, . . . x9), (3)

so that F ′ also has coefficients in OK , and that every variable in F ′ is still at

level at most 5. Then the form F ′ has a nontrivial zero in OK if and only if F

does. The form F ′ can be written as

F ′ = F ′0 + πF ′1 + · · ·+ π5F ′5,

where each F ′i is an additive form in mi variables, the variables in each form F ′i
are distinct, and if xj is a variable in the form F ′i , then the coefficient of xj in F ′i
is not divisible by π. Finally, we may choose the change of variables so that we

additionally have the following system of inequalities:

m0 ≥ 2

m0 +m1 ≥ 3

m0 +m1 +m2 ≥ 5

m0 +m1 +m2 +m3 ≥ 6

m0 +m1 +m2 +m3 +m4 ≥ 8

m0 +m1 +m2 +m3 +m4 +m5 = 9. (4)
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While Davenport and Lewis only prove these results for the p-adic fields Qp,
their proofs apply to finite extensions without change. If F has coefficients in OK
and satisfies the system (4), then we will say that F is π-normalized.1 Note that

in a π-normalized form, every variable is at level at most 5.

Next, we define the concept of a contraction, which is the key to our proof.

Suppose that F is an additive form as in (2), and that we have some variables, say

x1, . . . , xt, which are at (possibly different) levels at most j − 1. Suppose further

that we can find elements b1, . . . , bt ∈ OK , all2 of which are units, such that

a1b
6
1 + · · ·+ atb

6
t = πjm,

for some m which is not divisible by π. Then setting xi = biT for 1 ≤ i ≤ t yields

a new variable T at level j with coefficient πjm. We call this process a contraction

of variables to a variable at level j.

Contractions are useful for finding nontrivial zeros of additive forms due to

the following version of Hensel’s Lemma. This is the standard version of Hensel’s

Lemma for finite extensions of Qp, written in the language of contractions and

specialized to our particular fields and polynomial F . For a more general discus-

sion of Hensel’s Lemma, see [7].

Lemma 4. Suppose that F is an additive form as in (2) with coefficients

inOK . Let xi be a variable at level h. Suppose that xi can be used in a contraction

of variables (or in one of a series of contractions) which produces a new variable

at level at least h+ 5. Then F has a nontrivial zero in OK .

In the proof of the theorem, our goal will be to show that if F is a normalized

form, then there exists a variable which can be moved up by at least 5 levels

via contractions. This will generally, although not always, be a variable which

originates at level 0. To this end, we make the following definitions. A variable at

level 0 will be called primary, as will any variable which is formed by a contraction

which uses a primary variable. All other variables will be referred to as secondary

variables. With this definition, one consequence of Hensel’s Lemma is that if we

can use contractions to create a primary variable at level at least 5, then F has

a nontrivial zero in OK .

1In [4], Davenport and Lewis do not use the term ‘normalized’ to refer to a form with these

properties, but give a more complicated definition of a normalized system of forms in [5]. Under

that definition, a normalized “system” of one form will have the properties mentioned here,

although these properties do not guarantee that the form meets their definition of normalized.

2Normally, the definition of a contraction would only require one variable to be a unit. However,

all the contractions made in this article satisfy our more restrictive definition, which makes

Lemma 4 and parts of the exposition somewhat simpler to state.
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3. A lower bound

In this section, we show that Γ∗(6,K) is at least as large as the bounds

given in Section 1 for each of the fields K which we are considering. We do this

by giving explicit forms which have no nontrivial solutions in K. It turns out

that we can use essentially the same form for each of the four fields for which

Γ∗(6,K) = 9. Let K be one of these fields, and let π be the uniformizer for K

defined in Section 2. Then the form

F = x61 + x62 + x63 + (1 + π)x64 + π2(1 + π)(x65 + x66 + x67) + π4x68

has no nontrivial zeros in K. To prove this, we first show that in order to make F

congruent to 0 modulo π6, every variable must be divisible by π. This can be

shown as follows.

Since the only sixth powers modulo π2 are 0 and 1 (see Table 1), we see

that in order to have F ≡ 0 (mod π2), π must divide both x4 and at least one of

x1, x2, x3. Suppose that π divides x3. Assuming first that x1, x2 are not divisible

by π, we have x61 + x62 ∈ {π2, π3} (mod π4). Next, since x65 + x66 + x67 ∈ {0, 1}
(mod π2), we have π2(1 + π)(x65 + x66 + x67) ∈ {0, π2 + π3} (mod π4). But then

having F ≡ 0 (mod π4) is impossible. On the other hand, if x1, x2 are divisible

by π, then we have

F ≡ π2(1 + π)(x65 + x66 + x67) + π4x68 (mod π6).

By considering F ≡ 0 (mod π4), we may assume that π divides x7. If x5, x6 are

not divisible by π, then we have π2(1+π)(x65 +x66) ∈ {π4 +π5, π5} (mod π6) and

π4x68 ∈ {0, π4} (mod π6), in which case having F ≡ 0 (mod π6) is impossible.

Finally, if x5, x6 are divisible by π, then it is easy to see that x8 is as well.

Therefore, all zeros of F in K must have every variable divisible by π. How-

ever, since the form is homogeneous, we should be able to cancel factors of π

from all the variables of any nontrivial zero until at least one variable is no longer

divisible by π, a contradiction. Since there exist diagonal forms in 8 variables

with no nontrivial zeros, we must have Γ∗(6,K) ≥ 9 for each of these fields.

For the other two fields K = Q2(
√
−1) and K = Q2(

√
−5), we can write

down an explicit form in 6 variables with no nontrivial zeros. For these two fields,

the form (
x61 + (1 + π)x62

)
+ π2

(
x63 + (1 + π)x64

)
+ π4

(
x65 + (1 + π)x66

)
has no nontrivial zeros in K, which can be shown in the same way as above. This

shows that Γ∗(6,K) ≥ 7 for these two fields.
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4. Preliminary lemmata

In this section, we state a number of preliminary lemmata that we will use

in the proof of the theorem. Half of these lemmata describe when we may make

certain types of contractions, while the other half give some simple situations

where we can show that F must have a nontrivial zero. Note that the hypotheses

and proofs of these lemmata involve the π-coefficient of a variable, which was

defined in Section 2.

Our first lemma in this section is the key to our proof of Theorem 1, and

will be used many times. Since Lemma 5 will be used so often, we will typically

not explicitly cite it when it is used. If we simply state that a contraction can

be made without mentioning any lemma as justification, then it will be Lemma 5

that allows us to make the contraction.

Lemma 5. Suppose that x and y are variables at level k. If x and y have

different π-coefficients, then they can be contracted to a variable T at level k+ 1.

Moreover, we can arrange so that T has whichever π-coefficient we like. If x and y

have the same π-coefficient, then they can be contracted to a variable T at level

k + 2. Also, in this case they can be contracted to a variable T at level at least

k + 3.

We note that in the case where x and y have the same π-coefficient, we cannot

control the π-coefficient of T . Moreover, if we contract to level at least k+3, then

we cannot control the exact level of T .

Proof. Without loss of generality, we may assume that both x and y are at

level 0. Let α be an element of OK such that α6 ≡ 1 + π2 (mod π3). (Note from

Table 1 that such an element exists.) Suppose first that x and y have different

π-coefficients. Looking modulo π3, we may assume that their terms in F look like

(1 + c1π + c2π
2)x6 + (1 + d1π + d2π

2)y6,

where c1, c2, d1, d2 ∈ {0, 1} and c1 6= d1. If we set x = y = T , then the coefficient

of T 6 is

π(c1 + d1) + π2(1 + c2 + d2) = π(1 + π[1 + c2 + d2]),

where we have used the fact that 2 ≡ π2 (mod π3). If we instead set x = T and

y = αT , then the coefficient of T 6 is

π(c1 + d1) + π2(c2 + d2) = π(1 + π[c2 + d2]).
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Whichever choice we make, this coefficient is divisible by π, but not by π2, and so

T is a variable at level 1. Also, the numbers c2 + d2 and 1 + c2 + d2 are different

modulo 2, and so these two possible contractions produce variables with different

π-coefficients.

Now suppose instead that x and y have the same π-coefficient, so that c1 = d1.

If we set x = y = T , then the coefficient (modulo π3) of T 6 will be

π(2c1) + π2(1 + c2 + d2) ≡ π2(1 + c2 + d2).

If we instead set x = T and y = αT , then the coefficient of T 6 will be

π(2c1) + π2(c2 + d2) ≡ π2(c2 + d2).

One of c2+d2 and 1+c2+d2 will be congruent to 1 (mod 2), and so that change of

variables produces a variable T at level 2. The other possible change of variables

yields a coefficient of T 6 which is zero modulo π3, and so T will be a variable at

level at least 3. �

The following lemma is a trivial corollary of Lemma 5, but is convenient to

state on its own.

Lemma 6. Suppose that x and y are variables at level k with different

π-coefficients. Moreover, suppose that there is at least one variable at each of

levels k + 1, . . . , k + t. Then we can use x and y in contractions which create

a variable at level at least k + t+ 1. Further, we may choose freely between any

of the following options:

• We may create the new variable at level exactly k + t + 1, with whichever

π-coefficient we like.

• We may create the new variable at level exactly k + t + 2, although we can

no longer control its π-coefficient.

• We may create the new variable at level at least k + t+ 3, although we can

control neither the exact level nor the π-coefficient of this variable.

Proof. Since x and y have different π-coefficients, Lemma 5 allows us to

contract them to a variable at level k+ 1 whose π-coefficient is different from the

π-coefficient of a variable which is already at this level. Then we may similarly

contract our new variable and a variable at level k+ 1 to form a variable at level

k+2, whose π-coefficient is different from the π-coefficient of a variable already at

that level. We continue until we form a variable at level k+t. When we make this

variable, we can choose it to have whichever π-coefficient we desire. If we wish
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to ultimately create a variable at level k + t + 1, then we make the contracted

variable at level k + t have a different π-coefficient than a variable already there.

If we wish to ultimately create a variable at a higher level, then we make the

contracted variable at level k+ t have the same π-coefficient as a variable already

there. Then a final appeal to Lemma 5 completes the proof. �

Although it is not explicitly stated in the lemma, the proof makes the fol-

lowing fact clear. If z is another variable at any of levels k+ 1, . . . , k+ t, then we

may arrange for z to also be used in the contraction.

The next two lemmata are more technical and are only needed once, when

we deal with the situation in which (m0,m1,m2,m3,m4,m5) = (3, 0, 3, 0, 3, 0).

Lemma 7. Suppose that F contains at least 3 variables at level k which

all have the same π-coefficient. Moreover, suppose that if two of these variables

are contracted to a new variable T at level k + 2, then T will have the same

π-coefficient no matter which variables were selected to make the contraction.

If K is one of the fields Q2(
√

2), Q2(
√
−2), Q2(

√
10) and Q2(

√
−10), then the

π-coefficient of T will be the same as the π-coefficients of the original variables.

If K is either Q2(
√
−1) or Q2(

√
−5), then the π-coefficient of T will be the

opposite of the π-coefficients of the original variables.

Proof. Without loss of generality, we may assume that k = 0, and also that

there are 3 variables at level 0, which we label x1, x2, x3. Since we are interested in

the π-coefficient of a variable at level 2, we need to consider all of our coefficients

modulo π4. So assume that these variables appear in the form F as

(1+cπ+d1π
2+e1π

3)x61+(1+cπ+d2π
2+e2π

3)x62+(1+cπ+d3π
2+e3π

3)x63, (5)

where we have c, d1, e1, d2, e2, d3, e3 ∈ {0, 1}.
First, we prove the lemma for the fields K = Q2(

√
2), Q2(

√
−2), Q2(

√
10)

and Q2(
√
−10). Note that for each of these fields, we have 2 ≡ π2 (mod π4),

and also that the only nonzero sixth powers modulo π4 are 1 and 1 + π2 + π3.

We now look at the results of contracting x1 and x2 to a new variable T . Let

α be an element of OK such that α6 ≡ 1 + π2 + π3 (mod π4). If we set either

x1 = x2 = T or x1 = x2 = αT , then the coefficient of T , taken modulo π4, will be

(1 + d1 + d2)π2 + (c+ e1 + e2)π3.

On the other hand, if we set x1 = T , x2 = αT , then the coefficient of T , taken

modulo π4, will be

(d1 + d2)π2 + (1 + e1 + e2)π3.
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The results when we contract the other pairs of variables are similar.

We now split the proof into two cases, depending on the value of c. Suppose

first that c = 1. If we have the same π-coefficient whenever we contract two

variables to level 2, then we must have

1 + e1 + e2 ≡ 1 + e1 + e3 ≡ 1 + e2 + e3 (mod 2).

This implies that e1 = e2 = e3, and so the π-coefficient of T will be 1, as desired.

Now suppose instead that c = 0. Suppose first that d1 = d2 = d3. Then

since only one π-coefficient is possible when we contract to a variable T at level 2,

we must have

e1 + e2 ≡ e1 + e3 ≡ e2 + e3 (mod 2).

This again implies that e1 = e2 = e3, and so the π-coefficient of T will be 0, as

desired. On the other hand, if d1, d2, d3 are not all equal, then we may assume

without loss of generality that d1 = d2 6= d3. Since only one π-coefficient is

possible for the variable T at level 2, we must have

e1 + e2 ≡ 1 + e1 + e3 ≡ 1 + e2 + e3 (mod 2).

This yields e1 ≡ e2 ≡ 1 + e3 (mod 2), which implies that the π-coefficient of T

is 0. This completes the proof of the lemma for these four fields.

Now we prove the lemma for the fields Q2(
√
−1) and Q2(

√
−5). The proof

here is a little bit different, because now we have 2 ≡ π2+π3 (mod π4). However,

it is still the case that the only sixth powers modulo π4 are 1 and 1 + π2 + π3.

As before, we look at all the possibilities for contracting the variables x1 and x2.

If we set either x1 = x2 = T or x1 = x2 = αT , then the reduced coefficient of T

will be

(1 + d1 + d2)π2 + (1 + c+ e1 + e2)π3.

If we set x1 = T , x2 = αT , then the reduced coefficient of T will be

(d1 + d2)π2 + (e1 + e2)π3.

The results when we contract other pairs of variables are similar.

Again, the situation changes depending on the value of c. If c = 1, then the

π-coefficient for T will always be e1 + e2 (mod 2). In this case, if we obtain the

same π-coefficient no matter which pair of variables we contract, then we must

have

e1 + e2 ≡ e1 + e3 ≡ e2 + e3 (mod 2).
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As above, this implies that e1 ≡ e2 ≡ e3 (mod 2), and so the π-coefficient of T

must be 0. This is the opposite π-coefficient from the variables at level 0.

Finally, suppose that c = 0. Among the values of d1, d2 and d3, at least two

of them must be the same. Suppose, without loss of generality, that d1 = d2.

If it happens that we also have d3 = d1, and only one π-coefficient is possible

when we contract to level 2, then we must have

1 + e1 + e2 ≡ 1 + e1 + e3 ≡ 1 + e2 + e3 (mod 2).

This implies that e1 = e2 = e3, and hence that the only possible π-coefficient

for T is 1. On the other hand, if d3 6= d1 and only one π-coefficient is possible

for T , then we must have

1 + e1 + e2 ≡ e1 + e3 ≡ e2 + e3 (mod 2).

In this case, we find that e1 = e2 and e1 6= e3, and again the only possible

π-coefficient for T is 1, which is the opposite π-coefficient from the π-coefficients

of the variables at level 0. This completes the proof of the lemma. �

Lemma 8. Suppose that F contains at least 3 variables at level k which all

have the same π-coefficient. Suppose further that the field K is either Q2(
√
−1)

or Q2(
√
−5). Then there are two variables at level k which can be contracted to

a variable at level at least k + 4.

Proof. Without loss of generality, we may assume that k = 0. Note that

for these two fields, we have 2 ≡ π2 + π3 (mod π4). Also, the only sixth powers

modulo π4 are 1 and 1 + π2 + π3. Let α be an element of OK such that α6 ≡
1 + π2 + π3 (mod π4). As in the proof of Lemma 7, assume that the variables

at level 0 are x1, x2 and x3, and that these variables appear in F as in (5) when

their coefficients are reduced modulo π4. We now look at all the possibilities for

contracting the variables x1 and x2. If we set x1 = x2 = T , then the coefficient

of T , reduced modulo π4, will be

(1 + d1 + d2)π2 + (1 + c+ e1 + e2)π3.

If we set x1 = T , x2 = αT , then the reduced coefficient of T will be

(d1 + d2)π2 + (e1 + e2)π3.

Again, we get a similar result when we contract other pairs of variables.



78 Michael P. Knapp

Suppose first that d1 = d2 = d3. Among our variables, there must be two for

which the e-values are equal. Without loss of generality, suppose that e1 = e2.

Then setting x1 = T , x2 = αT yields a new variable T whose coefficient is 0 when

reduced modulo π4. That is, the variable T is at level at least 4.

Suppose instead that the d-values are not all equal. Then two of them must

be equal, so suppose that d1 = d2 6= d3. If e1 = e2, then we can contract these

variables to level at least 4 as above, and we are done. So assume instead that

e1 6= e2. Now, if we make a contraction by setting x1 = x3 = T , then the

reduced coefficient of T would be (1 + c + e1 + e3)π3. On the other hand, if we

set x2 = x3 = S, then the reduced coefficient of S would be (1 + c + e2 + e3)π3.

Since e1 6= e2, one of the terms in parentheses must be 0 (mod 2), and the

corresponding contraction yields a variable at level at least 4. �

Our final five lemmata in this section describe simple situations under which

we can guarantee that the form F in (2) has a nontrivial zero in K.

Lemma 9. Suppose that F contains two variables at level k with the same

π-coefficient, a variable at level k + 3, and a variable at level k + 4. Then F has

a nontrivial zero in K.

Proof. By Lemma 5, we can contract the variables at level k to a variable

at level at least k+ 3. If this new variable is at level at least k+ 5, then we stop.

If it is at level k + 4, then it and the variable already at level k + 4 contract to

a variable at level at least k+5. If the new variable is at level k+3, then we use it

and the variable already there to make a contraction. If the resulting variable is at

level k+ 4, then we contract it with the variable already there to yield a variable

at level at least k + 5. Hence we are always able to use variables from level k in

contractions which yield a variable at level at least k + 5. The conclusion now

follows by Hensel’s Lemma. �

Lemma 10. Suppose that F contains four variables at level k, and that

they can be split into two pairs such that the variables in each pair have the same

π-coefficient. Suppose also that F has one additional variable whose level can be

any of k + 2, k + 3 or k + 4. Then F has a nontrivial zero in K.

Proof. Without loss of generality, we may assume that k = 0. By Hensel’s

Lemma, our goal is to create a primary variable at level at least 5. Call the

additional variable x, and suppose first that x is at level 4. In this case, we contract

each pair of variables at level 0 to a primary variable at level at least 3. Call these

variables S and T . If either of S and T is at level 4, then it can be contracted

with x to form a primary variable at level at least 5. If both S and T are at level 3,
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then we can contract them. If this contraction only produces a new variable at

level 4, then this variable and x contract to a primary variable at level at least 5.

Suppose instead that x is at level 3. Again, we can use the variables at

level 0 to form two primary variables S and T at level at least 3. If both of these

variables are at level 4, then we contract them, and are done. If S is at level 3

and T is at level 4, then we contract S and x. If necessary, we then contract the

resulting primary variable with T , producing a primary variable at level at least 5.

If S and T are both at level 3, then we can find two variables at level 3 with the

same π-coefficient, and at least one of them is primary. These two variables then

contract to level at least 5.

Finally, assume that x is at level 2. Again, we contract each pair of variables

at level 0, but this time we contract to two primary variables S and T at level 2.

We now have 3 variables at level 2. As above, there must be a pair with the same

π-coefficient, and at least one of them must be primary. This pair of variables

can be contracted to a primary variable at level at least 5. �

Lemma 11. Suppose that we have m0 ≥ 2, m1 ≥ 2 and m2 ≥ 1. Then F

has a nontrivial zero in K.

Proof. Suppose first that there are two variables at level 0 which have

different π-coefficients. Then Lemma 6 immediately allows us to use contractions

to create a primary variable at level at least 5. So suppose instead that the

variables at level 0 all have the same π-coefficient. Contract two of these variables

to form a primary variable at level 2. If it has the same π-coefficient as a secondary

variable at level 2, then we can contract them to form a primary variable at level

at least 5, and we are done. So suppose that this primary variable has a different

π-coefficient from any secondary variable at level 2. Now, consider the variables

at level 1. If there are two with different π-coefficients, then we can contract them

to a secondary variable at level 2 which has the same π-coefficient as the primary

variable there, and we can then contract these variables to make a primary variable

at level at least 5. In the final case, if the variables at level 1 all have the same

π-coefficient, then we can contract two of them to level exactly 3. Next, we can

use Lemma 6 on the variables at levels 2 and 3 to form a primary variable at level

at least 5. Since we are always able to construct a primary variable at level at

least 5, we are finished by Hensel’s Lemma. �

Lemma 12. Suppose that F is π-normalized and that m3 and m4 are both

nonzero. Then F has a nontrivial zero in K.

Proof. By normalization, we know that m0 ≥ 2. If there are two variables

at level 0 with the same π-coefficient, then we are finished by Lemma 9. Otherwise,
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we must have m0 = 2, and then the normalization properties (4) guarantee that

m1 ≥ 1. Since the variables at level 0 have different π-coefficients, Lemma 6 allows

us to construct a primary variable at level at least 4. If it is at level exactly 4, then

we may contract it with a variable already there to produce a primary variable

at level at least 5. This completes the proof of the lemma. �

Lemma 13. Suppose that m0 ≥ 3 and m1 ≥ 5. Then F has a nontrivial

zero in K.

Proof. With five variables at level 1, there must be two disjoint pairs such

that the variables in each pair have the same π-coefficient. We may contract these

pairs to form two variables at level at least 4. If either of these variables is at

level at least 6, then we are finished by Hensel’s Lemma. If both variables are at

level 5, then they can be contracted to a variable at level at least 6, and again

Hensel’s Lemma finishes the proof. If neither of these cases occurs, then we make

our contractions from level 1 slightly differently. We know that we can contract

one pair of variables to produce a variable at level exactly 4. Then we contract

the other pair to produce a variable at level 3. Now, since there are 3 variables

at level 0, some two of them have the same π-coefficient. Then the hypotheses of

Lemma 9 are satisfied, showing that F has a nontrivial zero. �

5. The proof of the theorem: levels with lots of variables

We now begin the proof of the theorem. We need to show that any additive

form F as in (2) must have a nontrivial zero. In this section, we show that if

F has “many” variables at the same level, then the form must have a nontrivial

zero. For the cases in this section, we do not need the full power of normalization.

We assume throughout this section that every variable is at level at most 5, but

we do not need the properties (4) about the sums of the mi. For all of the cases

in this section, we are able to treat all of the possible fields K at the same time.

Lemma 14. Suppose that F has at least 7 variables at the same level. Then

F has a nontrivial zero in K.

Proof. Suppose that F has at least 7 variables at level k. Among these

variables, there must be three pairs such that the variables in each pair have the

same π-coefficient. Contract each of these pairs to form 3 variables at level k+ 2.

Two of these new variables must have the same π-coefficient, and therefore may

be contracted to form a new variable at level at least k + 5. The conclusion now

follows from Hensel’s Lemma. �
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Lemma 15. If F has at least 6 variables at the same level, then F has

a nontrivial zero in K.

Proof. Suppose that the 6 variables are at level k, and let x1, . . . , xt be all

the variables (if any) at levels less than k. Then making the change of variables

F ′ =
1

πk
F (πx1, . . . , πxt, xt+1, . . . , x9)

moves the 6 variables to level 0, while preserving the property that all variables are

at level at most 5. Hence, we may assume at the beginning that the 6 variables are

at level 0. As always, our goal is to use Hensel’s Lemma, usually by producing a

primary variable at level at least 5. Suppose that among the variables at level 0,

we may find three disjoint pairs such that the variables in each pair have the

same π-coefficients. Then we may proceed exactly as in Lemma 14 to show that

F has a nontrivial zero. So we may assume instead that we may separate the 6

variables into 3 disjoint pairs such that the variables in two of the pairs have the

same π-coefficient, and the variables in the other pair have different π-coefficients.

We now divide the proof into cases according to which levels contain the remaining

variables.

If m1 ≥ 1, then we contract the 3 pairs to form 2 primary variables at

level 2 and one primary variable at level 1 whose π-coefficient is different than the

π-coefficient of the variable already there. The two variables at level 1 can then

be contracted to form a third primary variable at level 2. With three primary

variables at level 2, we can proceed as in the proof of Lemma 14.

If m2 ≥ 1, we again begin by forming two primary variables at level 2. Then

two of the three variables at level 2 must have the same π-coefficient, and at least

one of these variables must be primary. Again, we can now finish as in the proof

of Lemma 14.

If m3 ≥ 1, we again begin by forming two primary variables at level 2. If they

have the same π-coefficient, then we can finish as above. Otherwise, we may

contract them to a primary variable at level 3 which has the same π-coefficient as

the variable already there. We can then contract these two variables to a primary

variable at level 5, and we are done.

If m4 ≥ 1, then we begin by contracting two pairs of variables at level 0 with

the same π-coefficient, but this time we form two primary variables at level at

least 3. If either primary variable is at level 5, then we are finished. If either

primary variable is at level 4, then we can contract it with the secondary variable

already there to form a primary variable at level at least 5. If both of the primary

variables are at level 3, then we can contract them to a primary variable either
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at level at least 5 (in which case we are done) or at level 4, in which case we are

done after contracting it further with the secondary variable at level 4.

Finally, if none of the previous cases apply, then we must have m0 = 6 and

m5 = 3. Suppose that x1, . . . , x6 are the variables at level 0, and make the change

of variables

F ′ = π−5F (πx1, . . . , πx6, x7, x8, x9).

The form F ′ has 3 variables at level 0 and 6 variables at level 1. Then the hypothe-

ses of Lemma 13 are satisfied, showing that F ′ (and hence F ) has a nontrivial

zero. �

Lemma 16. If F has 5 variables at the same level, then F has a nontrivial

zero in K.

Proof. As in the proof of Lemma 15, we may assume that the 5 variables

are at level 0. We can find two pairs of these variables which have the same

π-coefficient. Each of these pairs can be contracted to a primary variable at

level at least 3. If both new variables are at level at least 4, or if both are at

level 3 and have the same π-coefficient, then we can finish as in the previous

lemmata. So assume that either both new variables are at level 3 with different

π-coefficients, or we have one new variable at level 3 and one at level 4. We now

study the positions of the remaining variables.

Suppose that m4 ≥ 1. If the two new primary variables are at level 3 with

different π-coefficients, then we can contract them to a primary variable at level 4.

So in any case, we may construct a primary variable at level 4. This can be

contracted with the secondary variable at level 4 to produce a primary variable

at level at least 5, and we are done.

Suppose now that m3 ≥ 1. If two variables at level 3, at least one of which

is primary, have the same π-coefficients, then we may contract them to produce

a primary variable at level at least 5. Otherwise, we have one primary variable

at level 3 and one at level 4, and the primary variable at level 3 has a different

π-coefficient from a secondary variable there. Then Lemma 6 allows us to con-

struct a primary variable at level at least 5, and we are done.

Next, suppose that m2 ≥ 1. In this case, instead of creating two primary

variables at level at least 3, we create two primary variables at level 2. Combined

with one secondary variable at level 2, we have a set of three variables. Two of

them must have the same π-coefficient, and one of these must be primary. We can

use these two variables to construct a primary variable at level at least 5, and we

are finished.
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Next, suppose that m1 ≥ 2 (not that m1 ≥ 1). Depending on the

π-coefficients of the variables at level 1, they can be contracted to a secondary

variable at level either 2 or 3. Either possibility puts us in one of the cases we

previously considered, so the proof is complete in this situation.

If none of the previous cases apply, then we have m1 ≤ 1 and m5 ≥ 3.

Suppose that x1, . . . , xt are the variables at level 0 and 1 (so that 5 ≤ t ≤ 6), and

make the change of variables

F ′ = π−5F (πx1, . . . , πxt, xt+1, . . . , x9).

The form F ′ has at least 3 variables at level 0 and 5 variables at level 1. As before,

the hypotheses of Lemma 13 are now satisfied, showing that F ′ (and hence F )

has a nontrivial zero. �

6. The proof of the theorem: small values of m0

In this section, we complete the proof of Theorem 1 by showing that F must

possess a nontrivial zero in the remaining cases. Here, we will make use of all the

properties of normalization. Hence we will assume that all 9 variables are at level

at most 5 and that all the inequalities in the system (4) hold. Note that we may

assume that m5 equals either 0 or 1, or else this system cannot be satisfied. By

Lemma 12, we may assume that at least one of m3 andm4 equals 0, and the results

of the previous section allow us to assume that mi ≤ 4 for all i. In particular,

we may assume that m0 ≤ 4. We now give several lemmata to finish the proof of

the theorem, basing our hypotheses on the number of variables at level 0.

Lemma 17. Suppose that the form F is π-normalized and that m0 = 4.

Then F has a nontrivial zero.

Proof. With m0 = 4, the normalization inequalities (4) give us

m1 +m2 ≥ 1, m1 +m2 +m3 ≥ 2, m1 +m2 +m3 +m4 ≥ 4,

where at least one of m3 and m4 equals 0.

Suppose first that we may divide the variables at level 0 into two pairs such

that within each pair, the variables have the same π-coefficient. If any of m2,

m3, m4 are nonzero, then Lemma 10 shows that F has a nontrivial zero. If m2 =

m3 = m4 = 0, then we have m1 ≥ 4. Then there must be two variables at level 1

with the same π-coefficient, and these can be contracted to a variable at level
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exactly 3. This again puts us in a situation in which Lemma 10 applies, and we

see that F has a nontrivial zero. Therefore we may assume that at level 0, we have

3 variables with the same π-coefficient and 1 variable with the other π-coefficient.

We split the rest of the proof into various cases.

Case A: m1 ≥ 1. Divide the variables at level 0 into two pairs such that the

variables in one pair have the same π-coefficient and the variables in the other pair

have different π-coefficients. Now, contract the pair with the same π-coefficient to

a primary variable T at level 2. Then using Lemma 6, we may use contractions to

create a primary variable at level at least 5. This completes the proof of this case.

Case B: m1 = 0 and m3 ≥ 1. Since m1 = 0, we must have m2 ≥ 1. We begin by

contracting two variables from level 0 to a primary variable T at level 2. If T has

the same π-coefficient as a secondary variable at level 2, then we contract these

variables to a primary variable at level at least 5, and we are finished. On the

other hand, if T has a different π-coefficient from some variable at level 2, then

these variables can be contracted to a primary variable at level 3 which has the

same π-coefficient as a secondary variable already there. Finally, we contract

these variables to a primary variable at level at least 5, and we are again finished.

This completes the proof of this case.

Case C: m1 = m3 = 0 and m2 = 4. If there are variables at level 2 with different

π-coefficients, then we may proceed as in the previous case to form a primary

variable at level at least 5, and we are done. If all the variables at level 2 have

the same π-coefficient, then since either m4 or m5 is nonzero, the hypotheses of

Lemma 10 are satisfied, and so F has a nontrivial zero. This finishes the proof of

this case.

Case D: m1 = m3 = 0, m2 ≤ 3 and m4 ≥ 2. First, we contract two variables at

level 0 with the same π-coefficient (call these variables x1, x2) to form a variable T

at level 2. Now assume the two variables remaining at level 0 are x3, x4 and note

that they have different π-coefficients. Make the change of variables

F ′ = F (πx3, πx4, x5, . . . , x9, T ).

The effect of this change is to move x3 and x4 to level 6. Since we now have

3 variables at level 2, two of them must have the same π-coefficient, and we can

contract them to a variable at level 4. This guarantees that we have at least 3

variables at level 4, and hence two of these must again have the same π-coefficient.

Contract them to a variable S at level 6. Since the variables already at level 6

have different π-coefficients, one of them must have the same π-coefficient as S,
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and these may be contracted to a variable at level at least 9. Since some of the

variables used in these contractions came from level 4 or lower, we have contracted

at least one variable up by at least 5 levels. This finishes the proof of this case.

Case E: We have (m0,m1,m2,m3,m4,m5) = (4, 0, 3, 0, 1, 1). After the previ-

ous cases, this is the only remaining possibility for the mi. Suppose that the

variables at level 0 are x1, . . . , x4, and consider the form F ′ obtained by making

the change of variables

F ′ = F (πx1, . . . , πx4, x5, . . . , x9).

This change moves all of the variables at level 0 to level 6. Now, since there are

3 variables at level 2, there must be two with the same π-coefficient. This puts

us in the situation of Lemma 9, and so F ′ (and hence also F ) has a nontrivial

zero. This completes the proof of the lemma. �

Lemma 18. Suppose that the form F is π-normalized and that m0 = 3.

Then F has a nontrivial zero, except possibly in the case where m0 =m2 =m4 =3

and m1 = m3 = m5 = 0.

Proof. First, note that if we have m1 ≥ 2 and m2 ≥ 1, then we are done

by Lemma 11. Hence we may assume that either m1 ≤ 1 or m2 = 0. Moreover,

we may assume by Lemma 12 that either m3 = 0 or m4 = 0. As in the previous

lemma, we split the proof into a number of cases, based on the values of the mi.

Case A: m3 = 0 and m4 = 0. In this case, the normalization properties give

m1 +m2 ≥ 5. Since we may assume that no level contains more than 4 variables,

we must have m1 = 1, m2 = 4 and m5 = 1. If all of the variables at level 2

have the same π-coefficient, then Lemma 10 shows that F has a nontrivial zero,

so we may assume that there are variables at level 2 with different π-coefficients.

Among the variables at level 0, there must be two with the same π-coefficient.

Contract these variables to a primary variable at level 2. This variable must have

the same π-coefficient as one of the secondary variables at level 2, and so we may

create a primary variable at level at least 5. This finishes the proof of this case.

We assume throughout the rest of the proof that exactly one of m3 and m4

is nonzero.

Case B: m2 = 0 and m3 = 0. In this case, we must have m1 ≥ 3 and m4 ≥ 1.

There must be two variables at level 1 with the same π-coefficient, and we may

contract these variables to produce a secondary variable at level 3. Since there

must be two variables at level 0 with the same π-coefficients, Lemma 9 shows that

F has a nontrivial zero. This completes the proof of this case.
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Case C: m2 = 0 and m4 = 0. In this case, we must have m1 ≥ 2, m3 ≥ 1

and m1 +m3 ≥ 5. First, suppose that there are two variables at level 1 with the

same π-coefficient, and contract them to a secondary variable S at level 3. If S

has the same coefficient as a variable already at level 3, then we may contract

them to a variable at level at least 6. Since a variable from level 1 was used in

the contractions, we are finished by Hensel’s Lemma. So we may assume that S

has a different π-coefficient than any of the other variables at level 3. Now we

contract two variables from level 0 to a primary variable T at level at least 3. If T

is at level 3, then it has the same π-coefficient as a secondary variable already

there, and we contract them to a primary variable at level at least 5. If T is at

level 4, then we contract two variables at level 3 to a secondary variable at level 4,

and then contract this with T to produce a primary variable at level at least 5.

Suppose instead that we cannot find two variables at level 1 with the same

π-coefficient. In this case, we contract two variables at level 0 with the same

π-coefficient to a variable at level 2. Then Lemma 6 allows us to create a primary

variable at level at least 5. This finishes the proof of this case. Note that Cases

A, B and C together allow us to assume that m2 > 0, and therefore that m1 ≤ 1.

Case D: m1 ≤ 1 and m4 = 0. Our assumptions in this case imply that m2 ≥ 1

and m3 ≥ 1. We can contract two variables at level 0 to a primary variable T at

level 2. If T has the same π-coefficient as a secondary variable at level 2, then

we can contract them to a primary variable at level at least 5. If T has a different

π-coefficient than all of the secondary variables at level 2, then Lemma 6 allows

us to construct a primary variable at level at least 5. This completes the proof of

this case.

Case E: m1 ≤ 1, m2 = 4 and m3 = 0. Note that these conditions imply that

m4 ≥ 1. We begin by contracting two of the variables from level 0 to a variable

at level 2. After making this contraction, we have 5 variables at level 2 and at

least one variable at level 4. Then the proof of Lemma 16 (applied to the case

m0 = 5 and m2 ≥ 1) shows that F has a nontrivial zero. (Note that the proof of

the relevant case of Lemma 16 does not require all 9 variables, and so it is not

an issue that we only have 8 variables left after making the initial contraction.)

Case F: m1 ≤ 1, m3 = 0, and there are variables at level 2 with different

π-coefficients. In this case, we contract two variables from level 0 to a primary

variable at level exactly 2. This has the same π-coefficient as a secondary variable

already there, so we contract these variables to a primary variable at level at

least 5.
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Case G: m1 ≤ 1, m3 = 0 and m5 = 1. These conditions guarantee that

m2 ≥ 2 and m4 ≥ 1. Moreover, after Case F, we may assume that the variables

at level 2 all have the same π-coefficient. Contract two variables at level 2 to

a new variable T at level 4. Then either Lemma 5 or Lemma 6 (depending on the

π-coefficient of T ) guarantees that T can be used in a contraction to a variable

at level at least 7. Since a variable from level 2 has been contracted up at least 5

levels, Hensel’s Lemma guarantees that F has a nontrivial zero.

We may now assume for the rest of the proof that m5 = 0. Along with all

our other assumptions, and since we are done if m2 ≥ 4, this implies that we have

m4 ≥ 2.

Case H: m1 = 1 and m3 = 0. Due to our previous work, we have m4 ≥ 2 and

we know that the variables at level 2 all have the same π-coefficient. Suppose

first that there are variables with different π-coefficients at level 4. Then we con-

tract two variables at level 2 to a variable at level 4. This must have the same

π-coefficient as a variable already there, and so we contract these variables to

a variable at level at least 7. As before, we have now contracted a variable at

level 2 up by at least 5 levels, and we are done.

If the variables at level 4 have the same π-coefficient, then we let x1, . . . , xt
be the variables at levels 0–3 and make the change of variables

F ′ =
1

π4
F (πx1, . . . , πxt, xt+1, . . . , x9).

The form F ′ may not be π-normalized, but has at least 2 variables with the

same π-coefficient at level 0, and has variables at both level 3 and level 4. Then

Lemma 9 shows that F ′ (and hence also F ) has a nontrivial zero. This completes

the proof of this case.

After the preceding cases, the only remaining possibility is that m0 = m2 =

m4 = 3 and m1 = m3 = m5 = 0. This completes the proof of the lemma. �

The next lemma completes the proof that F must have a nontrivial zero

whenever m0 = 3. We give this last situation its own lemma, because we cannot

treat all the possible fields K at the same time.

Lemma 19. Suppose that F is π-normalized and that m0 = m2 = m4 = 3

and m1 = m3 = m5 = 0. Then F has a nontrivial zero.

Proof. As shown in the proof of Lemma 18, Case F, we may assume that

the variables at level 2 all have the same π-coefficient. Suppose that there ex-

ist variables at level 4 with different π-coefficients. Then we can contract two
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variables from level 2 to a variable T at level 4. Since T will have the same

π-coefficient as a variable already there, these two variables can be contracted to

a variable at level at least 7. Then we are finished by Hensel’s Lemma. Therefore

we may also assume that the variables at level 4 all have the same π-coefficient,

and that when we contract two variables from level 2 to level 4, the only possible

π-coefficient for the contracted variable is the one opposite from the variables

already at level 4.

We can make similar arguments, possibly after making a change of variables

of the form

F ′ =
1

π2
F (πx1, πx2, πx3, x4, . . . , x9),

to deal with the variables at level 0. These arguments show that we may assume

that the variables at level 0 all have the same π-coefficient, and that if two of these

variables are contracted to a variable at level 2, then the contracted variable must

have the opposite π-coefficient from the variables already at this level. Similarly,

if two variables at level 4 are contracted to a variable at level 6, then the contracted

variable must have the opposite π-coefficient from the variables at level 0.

We now split into cases depending on the field K. Suppose first that K is one

of the fields Q2(
√

2), Q2(
√
−2), Q2(

√
10) or Q2(

√
−10). Let c be the π-coefficient

of the variables at level 0. Since only one π-coefficient is possible when two of these

variables are contracted to a variable at level 2, Lemma 7 shows that this variable

must have a π-coefficient of c. Since this must be the opposite π-coefficient from

the variables already at level 2, the variables at level 2 must have a π-coefficient

of 1 − c. Similarly, when two variables at level 2 are contracted to a variable at

level 4, Lemma 7 shows that the contracted variable must have a π-coefficient of

1 − c, and hence the variables at level 4 must have a π-coefficient of c. Finally,

if two variables at level 4 are contracted to a new variable at level 6, this new

variable must have a π-coefficient of c. But this contradicts our assumption that

this variable should have the opposite π-coefficient from the variables at level 0.

This proves the lemma for these fields.

Now suppose instead that K is either Q2(
√
−1) or Q2(

√
−5). Since all the

variables at level 0 have the same π-coefficient, Lemma 8 says that we can find

two of these variables which contract to a primary variable T at level at least 4.

If T is at level exactly 4, then we may contract it with a secondary variable from

this level to form a primary variable at level at least 5. This completes the proof

of the lemma. �

Lemma 20. Suppose that the form F is π-normalized and that m0 = 2.

Then F has a nontrivial zero.
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Proof. We begin this final lemma with a few observations. By the results

of Section 5, we may assume that no level contains more than 4 variables. That is,

we may assume that mi ≤ 4 for all i. Also, by Lemma 11, we may assume that

either m1 ≤ 1 or m2 = 0. Finally, by Lemma 12, we may assume that at most

one of m3 and m4 is nonzero. We now split the proof into a number of cases.

Case A: m4 ≥ 3. In this case, our assumptions about the values of the mi,

combined with the restrictions in the system (4), force us to have m4 = 3 and

m5 = 0. Suppose that the variables at level 4 are x7, x8 and x9, and consider the

additive form

F ′ =
1

π4
F (πx1, . . . , πx6, x7, x8, x9).

This form has coefficients in OK , is π-normalized (in our sense), and has 3 vari-

ables at level 0. Therefore F ′ (and hence F ) has a nontrivial zero by Lemma 18.

In the rest of the proof of the lemma, we may now assume that m4 ≤ 2.

Case B: m2 = 0 and m3 = 0. In this case, our assumptions about the mi force

us to have (m0,m1,m2,m3,m4,m5) = (2, 4, 0, 0, 2, 1). Since m1 = 4, there must

be two variables at level 1 which have the same π-coefficient. Then the hypotheses

of Lemma 9 are satisfied, and so F must have a nontrivial zero.

Case C: m2 = 0 and m4 = 0. In this case, we must have m1 ≥ 3 and m3 ≥ 2.

Suppose first that the variables at level 0 have different π-coefficients. Contract

these variables to a primary variable at level 1 in such a way that there are

two pairs of variables at level 1 with the same π-coefficients. Contract each of

these pairs to form two variables T1 and T2 at level exactly 3. Now, consider the

variables T1, T2, and any other variable at level 3. Two of these variables must

have the same π-coefficient, and at least one of these must have been made using

a variable from level 1. We can contract these two variables to form a variable at

level at least 6. This final variable was made using a variable from level 1, and so

Hensel’s Lemma guarantees that F has a nontrivial zero.

If the variables at level 0 have the same π-coefficient, then we begin by

considering the variables at level 1 instead. There must be two of these which

have the same π-coefficient. Contract these variables to form a variable at level

exactly 3. If this has the same π-coefficient as a variable already at level 3,

then we contract these variables to a variable at level at least 6, and we are

done. Otherwise, we now have two secondary variables at level 3 with different

π-coefficients. Contract the variables at level 0 to form a primary variable at level

at least 3. If this primary variable is at level exactly 3, then it has the same
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π-coefficient as one of the secondary variables there, and we can contract to

a primary variable at level at least 5. If the variables from level 0 contract to

a primary variable at level 4, then we can use Lemma 6 to contract the variables

at levels 3 and 4 to a primary variable at level 5. This completes the proof of

this case.

Case D: m2 6= 0. In this case, normalization and our assumptions about the mi

force us to have m1 = 1 and m2 ≥ 2. If we actually have m2 ≥ 3, then suppose

that x1, x2, x3 are the variables at levels 0 and 1, and consider the form

F ′ =
1

π2
F (πx1, πx2, πx3, x4, . . . , x9).

The form F ′ is π-normalized (in our sense), and has at least 3 variables at level 0.

So F ′ (and hence F ) has a nontrivial zero by either Lemma 17 or Lemma 18.

Finally, suppose that m2 = 2. Then normalization guarantees that m3 ≥ 1.

In fact, since m3 6= 0, we must have m4 = 0, and hence the normalization

inequalities (4) actually give m3 ≥ 3. Again, let x1, x2, x3 be the variables at

levels 0 and 1, and consider the form

F ′ =
1

π2
F (πx1, πx2, πx3, x4, . . . , x9).

The form F ′ is π-normalized and has 2 variables at level 0, no variables at level 2,

and 2 variables at level 4. If F ′ has any variables at level 3, then it has a nontrivial

zero by Lemma 12. Otherwise, F ′ has no variables at level 3, and therefore has

a nontrivial zero by Case B of this lemma. Since F ′ has a nontrivial zero, F must

have one as well. This completes the proof of the lemma, and also the proof of

the theorem. �
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