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Solubility of additive sextic forms over
ramified quadratic extensions of Qg

By MICHAEL P. KNAPP (Baltimore)

Abstract. In this article, we study the equation a1z$ + azz$ + - - - + asx® = 0 over
the six ramified quadratic extensions of the p-adic field Q2. For all of these extensions,
we show that if s > 9, then this equation has a nontrivial solution regardless of the
values of the coefficients. For four of the extensions, we show that 9 is the smallest
number of variables that guarantees that the equation will have a nontrivial solution.

1. Introduction

In this article, we are interested in nontrivial p-adic zeros of additive forms,
and specifically interested in nontrivial p-adic solutions of equations of the form

alxﬁl + agmg 4+t asacg =0, (1)

where the coefficients lie in a p-adic field. While studying a conjecture commonly
attributed to ARTIN (see [1, Introduction]), DAVENPORT and LEwIS [4] proved
that (1) has nontrivial solutions in each of the fields Q, provided only that s >
d? 4+ 1, and gave examples to show that if d + 1 = p for some prime p, then
there are additive forms in d? variables which do not have nontrivial p-adic zeros.
However, if d + 1 is composite, then a smaller number of variables suffices (see
[6, Theorem 5.2.1]). To express this compactly, write I'*(d, K) to represent the
smallest number of variables which guarantees that (1), with coefficients in the
field K, has nontrivial solutions in K regardless of the coefficients. Then the work
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of Davenport and Lewis shows that I'*(d,Q,) < d? + 1 for all degrees d and
primes p, with equality when d = p — 1.

These values of I'*(d, Q,) immediately led Davenport and Lewis to the fol-
lowing result [4]. Suppose that the coefficients of (1) are (ordinary) integers, and
define I'*(d) to be the smallest number of variables which guarantees that (1) has
a nontrivial solution in every p-adic field Q,. Then I'*(d) < d* + 1, with equality
whenever d+1 is prime. Since [4] was published, several authors (see, for example,
[2]-[3], [6], [9]-[10]) have studied the exact values of I'*(d) for various degrees d.
Currently, the exact value of I'*(d) is known for all d < 32.

Recently, the author, inspired by results of BOVEY [3], proved the following
exact formula [8] for the values of I'™*(d, Q2).

Theorem. Write d = 27dy, where dy is an odd integer, and define the

number v by
1 ifm=0;
v =7(d) = .
T+ 2 ifT>0.

Further, write d = vq + r, where q and r are integers with 0 < r <~y — 1. Then
we have
5 ifd=2;

I'(d,Qz) =
(e Q) {(27 —1g+2" otherwise.

In this article, we take the first steps in an attempt to extend the above
theorem to algebraic extensions of Q2. In particular, we study the values of
I'*(6, K), where K is one of the six ramified quadratic extensions of Q2. We prove
the following theorem.

Theorem 1. We have

I*(6,Q2(V2)) = 9 I*(6,Q2(vV-2)) =9

9, I*(6,Q2(V~10)) = 9,
7<T7(6,Q2(v-1)) <9, 7<T7(6,Q2(V-5)) <9.

Note that for our final two fields, Q2(/—1) and Q2(+/—5), we are able to
prove that 9 variables suffice to guarantee solubility, but cannot prove that this

is the minimum such value. In fact, our studies suggest that the actual values of
I'*(6, K) are smaller for these fields.

Conjecture 2. We have

I(6, Qo (V1)) = I*(6,Qx(vV=5)) = T.
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As we will see below, we are able to find specific forms in 6 variables which
have no nontrivial zeros in these fields. However, we have been unable to find
forms in 7 variables without nontrivial zeros. Some preliminary work indicates to
us that it should be possible to prove that no such forms exist.

(K H
v2)

‘ 2 (mod 7°) ‘ Nonzero 6th powers in Ok (mod 7°) ‘
2 and 1+ 72+ 73
Vv—=2) and 1+ 72+ 73

Qo 1
Qo w2+t 1
Qg(m 2 1 and 1472 +73
Q2(v/~10) 1
Qo 1
Q2 1

DO

SERED

—_

— 0 72+t and 1+m2+73
vV=1) [|[1+v-1|m?+7x3 and 1+ 7%+ 73 47t
V=5) [|[1+vV-5| 7?2+ 73+ 7t

and 1472+ 73+ 7t

Table 1. Uniformizers and other information for our fields.

2. Preliminary concepts

In this section, we describe the main concepts and notation that will be used
throughout the proof. We begin by choosing a uniformizer 7 for each of the
fields K under consideration. Table 1 gives the value of m which we choose for
each field, as well as some other information which we will find useful later. Once
we have chosen a uniformizer, any integer ¢ of K may be written in the form

2 3
c=cy+tcym+ceomt +e3mt 4,

where we have ¢; € {0, 1} for each 1.

Because we are considering homogeneous forms, if a nontrivial zero in K
exists, then we may “clear denominators” and find a nontrivial zero in the ring of
integers Ok . So our goal will always be to find p-adic integral solutions. We can
also obviously assume that the coefficients of our form are in Ok. Suppose that
x is one of the variables in our form. We can write the coefficient of 2% as

c=7"(co+ c1m + cam® + ez 4+ - -),

where r is a nonnegative integer and cg, 1, ... € {0, 1}, with ¢y = 1. We will refer
to the number r as the level of x. We also define the 7-coefficient of x and the
w-coefficient of ¢ to both be the number ¢;. Thus every variable in F' will have
a m-coefficient of either 0 or 1.
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We now summarize some of the work of Davenport and Lewis in [4], special-
ized to our situation. Let F' be the additive form

F = a128 + agxs + - - - + agxl. (2)

First, suppose that some variable x in F' is at a level r > 6. Writing r = 6a + b
with 0 < b < 5, we can write the z-term of F' as erbatby 6 — cwb(ﬂaa:)ﬁ, where ¢ is
a unit in Ok . Making the change of variables y = 7%« yields a new form F”’ which
has nontrivial zeros in Ok if and only if F' does. Moreover, the new variable y is
at level at most 5. In this manner, we may assume that every variable of F is at
level at most 5.

Our next lemma allows us to assume that our form has certain other desirable

properties as well.

Lemma 3. Let F be an additive form as in (2) in which every variable is at
level at most 5. Suppose that (possibly after relabeling the variables) we make
a nonsingular linear change of variables of the form

1
F':;F(mcl,...,wmt,xt+1,...m9)7 (3)
so that F' also has coefficients in O, and that every variable in F’ is still at
level at most 5. Then the form F' has a nontrivial zero in Ok if and only if F
does. The form F’ can be written as

F'=F)+nF +---+7°F},

where each F] is an additive form in m; variables, the variables in each form F]
are distinct, and if x; is a variable in the form F}, then the coefficient of z; in F}]
is not divisible by w. Finally, we may choose the change of variables so that we
additionally have the following system of inequalities:

mo > 2
mo + my > 3
mo + mq + mo > 5
mg + my + mo + ms > 6
mg + mq + mao +mg + my > 8
mog+mi+mo+ms+myg+ms = 9. (4)
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While Davenport and Lewis only prove these results for the p-adic fields Q,,
their proofs apply to finite extensions without change. If F' has coefficients in O
and satisfies the system (4), then we will say that F is m-normalized.! Note that
in a m-normalized form, every variable is at level at most 5.

Next, we define the concept of a contraction, which is the key to our proof.
Suppose that F' is an additive form as in (2), and that we have some variables, say
Z1,...,%¢, which are at (possibly different) levels at most j — 1. Suppose further
that we can find elements by, ..., b; € O, all®> of which are units, such that

6 6 j
a1 by + - -+ aby = mm,

for some m which is not divisible by 7. Then setting x; = b;T for 1 < i < ¢ yields
a new variable T at level j with coefficient 77/m. We call this process a contraction
of variables to a variable at level j.

Contractions are useful for finding nontrivial zeros of additive forms due to
the following version of Hensel’s Lemma. This is the standard version of Hensel’s
Lemma for finite extensions of QQ,, written in the language of contractions and
specialized to our particular fields and polynomial F'. For a more general discus-
sion of Hensel’s Lemma, see [7].

Lemma 4. Suppose that F is an additive form as in (2) with coefficients
in Og. Let x; be a variable at level h. Suppose that x; can be used in a contraction
of variables (or in one of a series of contractions) which produces a new variable
at level at least h + 5. Then I’ has a nontrivial zero in Og.

In the proof of the theorem, our goal will be to show that if F' is a normalized
form, then there exists a variable which can be moved up by at least 5 levels
via contractions. This will generally, although not always, be a variable which
originates at level 0. To this end, we make the following definitions. A variable at
level 0 will be called primary, as will any variable which is formed by a contraction
which uses a primary variable. All other variables will be referred to as secondary
variables. With this definition, one consequence of Hensel’s Lemma is that if we
can use contractions to create a primary variable at level at least 5, then F' has
a nontrivial zero in Og.

"n [4], Davenport and Lewis do not use the term ‘normalized’ to refer to a form with these
properties, but give a more complicated definition of a normalized system of forms in [5]. Under
that definition, a normalized “system” of one form will have the properties mentioned here,
although these properties do not guarantee that the form meets their definition of normalized.

2Normally, the definition of a contraction would only require one variable to be a unit. However,
all the contractions made in this article satisfy our more restrictive definition, which makes
Lemma 4 and parts of the exposition somewhat simpler to state.
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3. A lower bound

In this section, we show that I'*(6, K) is at least as large as the bounds
given in Section 1 for each of the fields K which we are considering. We do this
by giving explicit forms which have no nontrivial solutions in K. It turns out
that we can use essentially the same form for each of the four fields for which
I'*(6,K) = 9. Let K be one of these fields, and let 7 be the uniformizer for K
defined in Section 2. Then the form

F=a$+a8+ 25+ 0 +m)ab + 721 + 7)) (2 + 28 + 28) + 712

has no nontrivial zeros in K. To prove this, we first show that in order to make F'
congruent to 0 modulo 7°, every variable must be divisible by 7. This can be
shown as follows.

Since the only sixth powers modulo 72 are 0 and 1 (see Table 1), we see
that in order to have F =0 (mod 72), 7 must divide both z, and at least one of
1, T2, x3. Suppose that « divides x3. Assuming first that x1, zo are not divisible
by m, we have 2§ + 2§ € {n?, 73} (mod 7?). Next, since 28 + 28 + 2% € {0,1}
(mod 72), we have 72(1 + m) (2 + 28 + 28) € {0, 72 + 73} (mod 7*). But then
having F = 0 (mod 7*) is impossible. On the other hand, if 21, 2o are divisible
by m, then we have

F =721 47)(xf + 28 4+ 28) + 725 (mod 7°).

By considering F = 0 (mod 7*), we may assume that 7 divides 7. If x5, 26 are
not divisible by 7, then we have 72(1+m)(2f +28) € {7* +7°,7°} (mod 7%) and
7428 € {0,7*} (mod 7°), in which case having F = 0 (mod 7°%) is impossible.
Finally, if x5, x¢ are divisible by m, then it is easy to see that xg is as well.

Therefore, all zeros of F' in K must have every variable divisible by 7. How-
ever, since the form is homogeneous, we should be able to cancel factors of m
from all the variables of any nontrivial zero until at least one variable is no longer
divisible by 7, a contradiction. Since there exist diagonal forms in 8 variables
with no nontrivial zeros, we must have I'*(6, K) > 9 for each of these fields.

For the other two fields K = Qq(v/—1) and K = Qa(y/—5), we can write
down an explicit form in 6 variables with no nontrivial zeros. For these two fields,
the form

(x(f +(1+ W)xg) + 72 (:cg + (14 71'):02) + 7t (zg +(1+ W)Ig)

has no nontrivial zeros in K, which can be shown in the same way as above. This
shows that T*(6, K') > 7 for these two fields.
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4. Preliminary lemmata

In this section, we state a number of preliminary lemmata that we will use
in the proof of the theorem. Half of these lemmata describe when we may make
certain types of contractions, while the other half give some simple situations
where we can show that F' must have a nontrivial zero. Note that the hypotheses
and proofs of these lemmata involve the m-coefficient of a variable, which was
defined in Section 2.

Our first lemma in this section is the key to our proof of Theorem 1, and
will be used many times. Since Lemma 5 will be used so often, we will typically
not explicitly cite it when it is used. If we simply state that a contraction can
be made without mentioning any lemma as justification, then it will be Lemma 5
that allows us to make the contraction.

Lemma 5. Suppose that x and y are variables at level k. If x and y have
different mw-coefficients, then they can be contracted to a variable T at level k+ 1.
Moreover, we can arrange so that T has whichever m-coefficient we like. If x and y
have the same m-coefficient, then they can be contracted to a variable T at level
k + 2. Also, in this case they can be contracted to a variable T' at level at least
k+ 3.

We note that in the case where x and y have the same m-coefficient, we cannot
control the 7-coefficient of T'. Moreover, if we contract to level at least k+ 3, then
we cannot control the exact level of T'.

PRrROOF. Without loss of generality, we may assume that both = and y are at
level 0. Let a be an element of Ok such that a® = 1+ 72 (mod 7). (Note from
Table 1 that such an element exists.) Suppose first that 2 and y have different
m-coefficients. Looking modulo 7%, we may assume that their terms in F look like

(1417 + con®)a® + (1 4 dym + dom?)y®,
where ¢1,co,d1,do € {0,1} and ¢; # dy. If we set x = y = T, then the coefficient

of T8 is
(e +dy) + 121+ e+ do) = 7(1 + [l + 2 + da)),

where we have used the fact that 2 = 72 (mod 73). If we instead set x = T and
y = o7, then the coefficient of T is

m(er +dy) + 7 (co + da) = 7(1 + 7[co + da]).
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Whichever choice we make, this coefficient is divisible by =, but not by 72, and so
T is a variable at level 1. Also, the numbers ¢y + ds and 1 + ¢o + do are different
modulo 2, and so these two possible contractions produce variables with different
m-coefficients.

Now suppose instead that x and y have the same m-coefficient, so that ¢; = d;.
If we set * = y = T, then the coefficient (modulo 7) of T will be

7(2¢1) + 12(1 4 o + do) = 72(1 4 ¢ + do).
If we instead set x = T and y = o7, then the coefficient of T will be
7T(201) + 7T2(CQ + dg) = 7T2(C2 + dg)

One of co+ds and 14c3+ds will be congruent to 1 (mod 2), and so that change of
variables produces a variable T at level 2. The other possible change of variables
yields a coefficient of T which is zero modulo 73, and so T will be a variable at
level at least 3. (]

The following lemma is a trivial corollary of Lemma 5, but is convenient to
state on its own.

Lemma 6. Suppose that x and y are variables at level k with different
mw-coefficients. Moreover, suppose that there is at least one variable at each of
levels kK + 1,....k +t. Then we can use x and y in contractions which create
a variable at level at least k + t + 1. Further, we may choose freely between any
of the following options:

o We may create the new variable at level exactly k + t + 1, with whichever
m-coefficient we like.

o We may create the new variable at level exactly k 4+t + 2, although we can
no longer control its m-coeflicient.

e We may create the new variable at level at least k + t + 3, although we can
control neither the exact level nor the w-coefficient of this variable.

PROOF. Since z and y have different w-coefficients, Lemma 5 allows us to
contract them to a variable at level k 4+ 1 whose 7-coefficient is different from the
m-coefficient of a variable which is already at this level. Then we may similarly
contract our new variable and a variable at level k£ + 1 to form a variable at level
k42, whose m-coefficient is different from the m-coefficient of a variable already at
that level. We continue until we form a variable at level k+t¢. When we make this
variable, we can choose it to have whichever m-coefficient we desire. If we wish
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to ultimately create a variable at level £ + ¢t 4+ 1, then we make the contracted
variable at level k£ + t have a different m-coefficient than a variable already there.
If we wish to ultimately create a variable at a higher level, then we make the
contracted variable at level k4 ¢ have the same w-coefficient as a variable already
there. Then a final appeal to Lemma 5 completes the proof. (|

Although it is not explicitly stated in the lemma, the proof makes the fol-
lowing fact clear. If z is another variable at any of levels k+ 1, ...,k +¢, then we
may arrange for z to also be used in the contraction.

The next two lemmata are more technical and are only needed once, when
we deal with the situation in which (mg, m1, me, ms, mg, ms) = (3,0,3,0,3,0).

Lemma 7. Suppose that F contains at least 3 variables at level k which
all have the same m-coefficient. Moreover, suppose that if two of these variables
are contracted to a new variable T at level k + 2, then T will have the same
mw-coefficient no matter which variables were selected to make the contraction.

If K is one of the fields Q2(v/2), Qa(v/—2), Q2(v/10) and Qq(+/—10), then the

mw-coefficient of T will be the same as the m-coefficients of the original variables.
If K is either Qa(v/—1) or Q2(v/—5), then the m-coefficient of T will be the
opposite of the m-coefficients of the original variables.

PRrROOF. Without loss of generality, we may assume that £ = 0, and also that
there are 3 variables at level 0, which we label z1, x5, 3. Since we are interested in
the m-coefficient of a variable at level 2, we need to consider all of our coefficients
modulo 7. So assume that these variables appear in the form F as

(1+ern+dim®4e1m)al + (1+em +dom? +ean®)a§ + (1 + e+ dzn® 4-esm3) s, (5)

where we have ¢, dy, e1,ds, ea,ds, ez € {0,1}.

First, we prove the lemma for the fields K = Q(v/2), Q2(v/—2), Q2(1/10)
and Qa(y/—10). Note that for each of these fields, we have 2 = 72 (mod 7?),
and also that the only nonzero sixth powers modulo 74 are 1 and 1 + 72 + 73.
We now look at the results of contracting x; and xo to a new variable T. Let
a be an element of Ok such that a® = 1+ 72 + 73 (mod 7). If we set either

21 =x9 =T or 1 = x5 = oT, then the coefficient of T', taken modulo 7%, will be
(1+dy +d2)m + (c+ e +e)m.

On the other hand, if we set z1 = T, zo = a7, then the coefficient of T', taken
modulo 74, will be
(dv + d2)7T2 +(1+e + 62)71'3.
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The results when we contract the other pairs of variables are similar.

We now split the proof into two cases, depending on the value of ¢. Suppose
first that ¢ = 1. If we have the same m-coeflicient whenever we contract two
variables to level 2, then we must have

l+e1+es=1+4+e+es=1+4+ey+e3 (mod2).

This implies that e; = e5 = e3, and so the m-coefficient of T will be 1, as desired.
Now suppose instead that ¢ = 0. Suppose first that dy = dy = d3. Then
since only one m-coefficient is possible when we contract to a variable T at level 2,
we must have
e1+ex=e+e3=exs+es (mod?2).

This again implies that e; = e = e3, and so the w-coefficient of T will be 0, as
desired. On the other hand, if dy, ds, d3 are not all equal, then we may assume
without loss of generality that d; = do # d3. Since only one m-coefficient is
possible for the variable T at level 2, we must have

e1t+es=1+e+e3=1+ey+e3 (mod?2).

This yields e; = e3 = 1 + e3 (mod 2), which implies that the m-coefficient of T
is 0. This completes the proof of the lemma for these four fields.

Now we prove the lemma for the fields Q2(v/—1) and Q2(1v/—5). The proof
here is a little bit different, because now we have 2 = 72+ 73 (mod 7). However,
it is still the case that the only sixth powers modulo 7* are 1 and 1 + 72 + 73,
As before, we look at all the possibilities for contracting the variables x; and .
If we set either z1 = 2o = T or x1 = xo = o1, then the reduced coefficient of T
will be

(14dy +do)m? + (1 +c+ey +ex)m.

If we set x1 =T, x5 = T, then the reduced coefficient of T will be
(dl + d2)7T2 + (61 + 62)7‘(’3.

The results when we contract other pairs of variables are similar.

Again, the situation changes depending on the value of ¢. If ¢ = 1, then the
m-coefficient for T' will always be e; + e3 (mod 2). In this case, if we obtain the
same m-coefficient no matter which pair of variables we contract, then we must
have

e1t+ex=e+eg3=ex+es (mod?2).
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As above, this implies that e; = e; = e3 (mod 2), and so the w-coefficient of T
must be 0. This is the opposite m-coefficient from the variables at level 0.

Finally, suppose that ¢ = 0. Among the values of dy, ds and ds, at least two
of them must be the same. Suppose, without loss of generality, that d; = ds.
If it happens that we also have d3 = dy, and only one m-coefficient is possible
when we contract to level 2, then we must have

l+e1+es=14+e+es=14+ex3+e3 (mod2).

This implies that e; = e; = e3, and hence that the only possible m-coefficient
for T is 1. On the other hand, if d3 # d; and only one w-coefficient is possible
for T', then we must have

l+e1+es=e;+e3=es+esz (mod?2).

In this case, we find that e; = ey and e; # e3, and again the only possible
m-coefficient for T' is 1, which is the opposite m-coefficient from the m-coefficients
of the variables at level 0. This completes the proof of the lemma. (]

Lemma 8. Suppose that F' contains at least 3 variables at level k which all
have the same m-coefficient. Suppose further that the field K is either Qq(v/—1)
or Qa2(v/=5). Then there are two variables at level k which can be contracted to
a variable at level at least k + 4.

PROOF. Without loss of generality, we may assume that £k = 0. Note that
for these two fields, we have 2 = 72 + 72 (mod 7). Also, the only sixth powers

3. Let a be an element of Ok such that af =

modulo 7* are 1 and 1+ 72 + 7
1+ 72 + 73 (mod 7*). As in the proof of Lemma 7, assume that the variables
at level 0 are x1, x2 and x3, and that these variables appear in F' as in (5) when
their coefficients are reduced modulo 7. We now look at all the possibilities for
contracting the variables 1 and xo. If we set ©1 = xo = T, then the coefficient

of T, reduced modulo 7%, will be
(14dy +do)m? + (1 +c+ey +ex)m.
If we set 1 =T, xo = o', then the reduced coefficient of T" will be
(dy 4 do)7* 4 (e1 + ez)m>.

Again, we get a similar result when we contract other pairs of variables.
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Suppose first that d; = do = d3. Among our variables, there must be two for
which the e-values are equal. Without loss of generality, suppose that e; = es.
Then setting z1 = T, 9 = T yields a new variable T whose coefficient is 0 when
reduced modulo 7. That is, the variable T is at level at least 4.

Suppose instead that the d-values are not all equal. Then two of them must
be equal, so suppose that di = do # d3. If e; = ey, then we can contract these
variables to level at least 4 as above, and we are done. So assume instead that
e; # es. Now, if we make a contraction by setting xy = x3 = T, then the
reduced coefficient of T would be (1 + ¢+ e1 + e3)m>. On the other hand, if we
set 19 = x3 = S, then the reduced coefficient of S would be (1 + ¢ + e3 + e3)7>.
Since e; # ez, one of the terms in parentheses must be 0 (mod 2), and the
corresponding contraction yields a variable at level at least 4. O

Our final five lemmata in this section describe simple situations under which
we can guarantee that the form F in (2) has a nontrivial zero in K.

Lemma 9. Suppose that F' contains two variables at level k with the same
mw-coefficient, a variable at level k + 3, and a variable at level k + 4. Then F has
a nontrivial zero in K.

ProOOF. By Lemma 5, we can contract the variables at level k to a variable
at level at least k + 3. If this new variable is at level at least k + 5, then we stop.
If it is at level k + 4, then it and the variable already at level k + 4 contract to
a variable at level at least £+ 5. If the new variable is at level k+ 3, then we use it
and the variable already there to make a contraction. If the resulting variable is at
level k + 4, then we contract it with the variable already there to yield a variable
at level at least k + 5. Hence we are always able to use variables from level k in
contractions which yield a variable at level at least k + 5. The conclusion now
follows by Hensel’s Lemma. O

Lemma 10. Suppose that F' contains four variables at level k, and that
they can be split into two pairs such that the variables in each pair have the same
m-coefficient. Suppose also that F' has one additional variable whose level can be
any of k+2, k+ 3 or k+4. Then F has a nontrivial zero in K.

PRroOOF. Without loss of generality, we may assume that £k = 0. By Hensel’s
Lemma, our goal is to create a primary variable at level at least 5. Call the
additional variable z, and suppose first that x is at level 4. In this case, we contract
each pair of variables at level 0 to a primary variable at level at least 3. Call these
variables S and T'. If either of S and T is at level 4, then it can be contracted
with = to form a primary variable at level at least 5. If both S and T are at level 3,
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then we can contract them. If this contraction only produces a new variable at
level 4, then this variable and x contract to a primary variable at level at least 5.

Suppose instead that x is at level 3. Again, we can use the variables at
level 0 to form two primary variables S and T at level at least 3. If both of these
variables are at level 4, then we contract them, and are done. If S is at level 3
and T is at level 4, then we contract S and z. If necessary, we then contract the
resulting primary variable with T, producing a primary variable at level at least 5.
If S and T are both at level 3, then we can find two variables at level 3 with the
same m-coefficient, and at least one of them is primary. These two variables then
contract to level at least 5.

Finally, assume that x is at level 2. Again, we contract each pair of variables
at level 0, but this time we contract to two primary variables S and T at level 2.
We now have 3 variables at level 2. As above, there must be a pair with the same
m-coefficient, and at least one of them must be primary. This pair of variables
can be contracted to a primary variable at level at least 5. O

Lemma 11. Suppose that we have mg > 2, m; > 2 and my > 1. Then F
has a nontrivial zero in K.

PROOF. Suppose first that there are two variables at level 0 which have
different m-coefficients. Then Lemma 6 immediately allows us to use contractions
to create a primary variable at level at least 5. So suppose instead that the
variables at level 0 all have the same 7-coefficient. Contract two of these variables
to form a primary variable at level 2. If it has the same 7-coefficient as a secondary
variable at level 2, then we can contract them to form a primary variable at level
at least 5, and we are done. So suppose that this primary variable has a different
m-coefficient from any secondary variable at level 2. Now, consider the variables
at level 1. If there are two with different 7-coefficients, then we can contract them
to a secondary variable at level 2 which has the same 7w-coefficient as the primary
variable there, and we can then contract these variables to make a primary variable
at level at least 5. In the final case, if the variables at level 1 all have the same
m-coefficient, then we can contract two of them to level exactly 3. Next, we can
use Lemma 6 on the variables at levels 2 and 3 to form a primary variable at level
at least 5. Since we are always able to construct a primary variable at level at
least 5, we are finished by Hensel’s Lemma. ]

Lemma 12. Suppose that F' is m-normalized and that mgz and my4 are both
nonzero. Then F has a nontrivial zero in K.

PROOF. By normalization, we know that mqy > 2. If there are two variables
at level 0 with the same m-coefficient, then we are finished by Lemma 9. Otherwise,
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we must have my = 2, and then the normalization properties (4) guarantee that
my > 1. Since the variables at level 0 have different m-coefficients, Lemma 6 allows
us to construct a primary variable at level at least 4. If it is at level exactly 4, then
we may contract it with a variable already there to produce a primary variable
at level at least 5. This completes the proof of the lemma. ([l

Lemma 13. Suppose that my > 3 and my > 5. Then F has a nontrivial
zero in K.

ProOF. With five variables at level 1, there must be two disjoint pairs such
that the variables in each pair have the same 7-coefficient. We may contract these
pairs to form two variables at level at least 4. If either of these variables is at
level at least 6, then we are finished by Hensel’s Lemma. If both variables are at
level 5, then they can be contracted to a variable at level at least 6, and again
Hensel’s Lemma finishes the proof. If neither of these cases occurs, then we make
our contractions from level 1 slightly differently. We know that we can contract
one pair of variables to produce a variable at level exactly 4. Then we contract
the other pair to produce a variable at level 3. Now, since there are 3 variables
at level 0, some two of them have the same 7-coefficient. Then the hypotheses of
Lemma 9 are satisfied, showing that F' has a nontrivial zero. O

5. The proof of the theorem: levels with lots of variables

We now begin the proof of the theorem. We need to show that any additive
form F' as in (2) must have a nontrivial zero. In this section, we show that if
F has “many” variables at the same level, then the form must have a nontrivial
zero. For the cases in this section, we do not need the full power of normalization.
We assume throughout this section that every variable is at level at most 5, but
we do not need the properties (4) about the sums of the m;. For all of the cases
in this section, we are able to treat all of the possible fields K at the same time.

Lemma 14. Suppose that F' has at least 7 variables at the same level. Then
F' has a nontrivial zero in K.

PROOF. Suppose that F' has at least 7 variables at level k. Among these
variables, there must be three pairs such that the variables in each pair have the
same m-coefficient. Contract each of these pairs to form 3 variables at level k + 2.
Two of these new variables must have the same 7-coeflicient, and therefore may
be contracted to form a new variable at level at least k 4+ 5. The conclusion now
follows from Hensel’s Lemma. ([l
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Lemma 15. If F' has at least 6 variables at the same level, then F has
a nontrivial zero in K.

PROOF. Suppose that the 6 variables are at level k, and let z1,...,z; be all
the variables (if any) at levels less than k. Then making the change of variables

F' = ﬁF(mvl, e Ty Tig 1y -5 TY)

moves the 6 variables to level 0, while preserving the property that all variables are
at level at most 5. Hence, we may assume at the beginning that the 6 variables are
at level 0. As always, our goal is to use Hensel’s Lemma, usually by producing a
primary variable at level at least 5. Suppose that among the variables at level 0,
we may find three disjoint pairs such that the variables in each pair have the
same m-coefficients. Then we may proceed exactly as in Lemma 14 to show that
F' has a nontrivial zero. So we may assume instead that we may separate the 6
variables into 3 disjoint pairs such that the variables in two of the pairs have the
same 7-coefficient, and the variables in the other pair have different m-coefficients.
We now divide the proof into cases according to which levels contain the remaining
variables.

If my > 1, then we contract the 3 pairs to form 2 primary variables at
level 2 and one primary variable at level 1 whose m-coefficient is different than the
m-coefficient of the variable already there. The two variables at level 1 can then
be contracted to form a third primary variable at level 2. With three primary
variables at level 2, we can proceed as in the proof of Lemma 14.

If mo > 1, we again begin by forming two primary variables at level 2. Then
two of the three variables at level 2 must have the same m-coefficient, and at least
one of these variables must be primary. Again, we can now finish as in the proof
of Lemma 14.

If mg > 1, we again begin by forming two primary variables at level 2. If they
have the same m-coefficient, then we can finish as above. Otherwise, we may
contract them to a primary variable at level 3 which has the same mw-coefficient as
the variable already there. We can then contract these two variables to a primary
variable at level 5, and we are done.

If my > 1, then we begin by contracting two pairs of variables at level 0 with
the same m-coefficient, but this time we form two primary variables at level at
least 3. If either primary variable is at level 5, then we are finished. If either
primary variable is at level 4, then we can contract it with the secondary variable
already there to form a primary variable at level at least 5. If both of the primary
variables are at level 3, then we can contract them to a primary variable either
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at level at least 5 (in which case we are done) or at level 4, in which case we are
done after contracting it further with the secondary variable at level 4.

Finally, if none of the previous cases apply, then we must have my = 6 and
ms = 3. Suppose that x1, ..., xg are the variables at level 0, and make the change
of variables

’ -5
F'=77°F(ray,...,7xs, T7, T8, Tg).

The form F”’ has 3 variables at level 0 and 6 variables at level 1. Then the hypothe-
ses of Lemma 13 are satisfied, showing that F’ (and hence F') has a nontrivial
Zero. (|

Lemma 16. If F' has 5 variables at the same level, then F' has a nontrivial
zero in K.

PROOF. As in the proof of Lemma 15, we may assume that the 5 variables
are at level 0. We can find two pairs of these variables which have the same
m-coefficient. Each of these pairs can be contracted to a primary variable at
level at least 3. If both new variables are at level at least 4, or if both are at
level 3 and have the same m-coefficient, then we can finish as in the previous
lemmata. So assume that either both new variables are at level 3 with different
m-coefficients, or we have one new variable at level 3 and one at level 4. We now
study the positions of the remaining variables.

Suppose that m4 > 1. If the two new primary variables are at level 3 with
different 7m-coefficients, then we can contract them to a primary variable at level 4.
So in any case, we may construct a primary variable at level 4. This can be
contracted with the secondary variable at level 4 to produce a primary variable
at level at least 5, and we are done.

Suppose now that mz > 1. If two variables at level 3, at least one of which
is primary, have the same 7-coefficients, then we may contract them to produce
a primary variable at level at least 5. Otherwise, we have one primary variable
at level 3 and one at level 4, and the primary variable at level 3 has a different
m-coefficient from a secondary variable there. Then Lemma 6 allows us to con-
struct a primary variable at level at least 5, and we are done.

Next, suppose that mo > 1. In this case, instead of creating two primary
variables at level at least 3, we create two primary variables at level 2. Combined
with one secondary variable at level 2, we have a set of three variables. Two of
them must have the same m-coefficient, and one of these must be primary. We can
use these two variables to construct a primary variable at level at least 5, and we
are finished.
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Next, suppose that m; > 2 (not that m; > 1). Depending on the
m-coefficients of the variables at level 1, they can be contracted to a secondary
variable at level either 2 or 3. Either possibility puts us in one of the cases we
previously considered, so the proof is complete in this situation.

If none of the previous cases apply, then we have m; < 1 and ms > 3.
Suppose that x1,...,2; are the variables at level 0 and 1 (so that 5 <t < 6), and
make the change of variables

! -5
F' =77 °F(r21,...,TCt, Tt41,...,Tg).

The form F’ has at least 3 variables at level 0 and 5 variables at level 1. As before,
the hypotheses of Lemma 13 are now satisfied, showing that F’ (and hence F)
has a nontrivial zero. O

6. The proof of the theorem: small values of mg

In this section, we complete the proof of Theorem 1 by showing that F' must
possess a nontrivial zero in the remaining cases. Here, we will make use of all the
properties of normalization. Hence we will assume that all 9 variables are at level
at most 5 and that all the inequalities in the system (4) hold. Note that we may
assume that mg equals either 0 or 1, or else this system cannot be satisfied. By
Lemma 12, we may assume that at least one of mg and m,4 equals 0, and the results
of the previous section allow us to assume that m; < 4 for all i. In particular,
we may assume that mo < 4. We now give several lemmata to finish the proof of
the theorem, basing our hypotheses on the number of variables at level 0.

Lemma 17. Suppose that the form F is w-normalized and that mg = 4.
Then F' has a nontrivial zero.

ProOF. With mg = 4, the normalization inequalities (4) give us
my +mg 2> 1, my +me +mg 2> 2, my + mg +mg +my > 4,

where at least one of m3z and my4 equals 0.

Suppose first that we may divide the variables at level 0 into two pairs such
that within each pair, the variables have the same m-coefficient. If any of ms,
mg, my are nonzero, then Lemma 10 shows that F' has a nontrivial zero. If mg =
mg = my = 0, then we have m; > 4. Then there must be two variables at level 1
with the same m-coefficient, and these can be contracted to a variable at level
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exactly 3. This again puts us in a situation in which Lemma 10 applies, and we
see that F' has a nontrivial zero. Therefore we may assume that at level 0, we have
3 variables with the same m-coefficient and 1 variable with the other m-coefficient.
We split the rest of the proof into various cases.

Case A: m; > 1. Divide the variables at level 0 into two pairs such that the
variables in one pair have the same m-coefficient and the variables in the other pair
have different m-coefficients. Now, contract the pair with the same m-coefficient to
a primary variable T at level 2. Then using Lemma 6, we may use contractions to
create a primary variable at level at least 5. This completes the proof of this case.

Case B: m; = 0 and m3 > 1. Since m; = 0, we must have my > 1. We begin by
contracting two variables from level 0 to a primary variable T" at level 2. If T has
the same 7-coefficient as a secondary variable at level 2, then we contract these
variables to a primary variable at level at least 5, and we are finished. On the
other hand, if T has a different 7-coefficient from some variable at level 2, then
these variables can be contracted to a primary variable at level 3 which has the
same m-coefficient as a secondary variable already there. Finally, we contract
these variables to a primary variable at level at least 5, and we are again finished.
This completes the proof of this case.

Case C: m; = m3 = 0 and my = 4. If there are variables at level 2 with different
m-coefficients, then we may proceed as in the previous case to form a primary
variable at level at least 5, and we are done. If all the variables at level 2 have
the same 7-coefficient, then since either my4 or ms is nonzero, the hypotheses of
Lemma 10 are satisfied, and so F' has a nontrivial zero. This finishes the proof of
this case.

Case D: m; =mg3 =0, mo < 3 and my4 > 2. First, we contract two variables at
level 0 with the same m-coefficient (call these variables x1,x2) to form a variable T
at level 2. Now assume the two variables remaining at level 0 are x3, x4 and note
that they have different m-coefficients. Make the change of variables

/
F' = F(7T:L’3,7TIL’4,ZL'5,...,$9,T).

The effect of this change is to move z3 and x4 to level 6. Since we now have
3 variables at level 2, two of them must have the same m-coefficient, and we can
contract them to a variable at level 4. This guarantees that we have at least 3
variables at level 4, and hence two of these must again have the same 7-coefficient.
Contract them to a variable S at level 6. Since the variables already at level 6
have different m-coefficients, one of them must have the same m-coefficient as S,
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and these may be contracted to a variable at level at least 9. Since some of the
variables used in these contractions came from level 4 or lower, we have contracted
at least one variable up by at least 5 levels. This finishes the proof of this case.

Case E: We have (mg, m1, ma, mg, mqg, ms) = (4,0,3,0,1,1). After the previ-
ous cases, this is the only remaining possibility for the m;. Suppose that the
variables at level 0 are x1,..., x4, and consider the form F’ obtained by making
the change of variables

/
F'=F(rxy,..., 704, 25,...,29).

This change moves all of the variables at level 0 to level 6. Now, since there are
3 variables at level 2, there must be two with the same m-coefficient. This puts
us in the situation of Lemma 9, and so F” (and hence also F') has a nontrivial
zero. This completes the proof of the lemma. O

Lemma 18. Suppose that the form F is m-normalized and that mg = 3.
Then F has a nontrivial zero, except possibly in the case where mg=mgo=my4=3
and mi; = m3 = ms = 0.

PROOF. First, note that if we have my; > 2 and mo > 1, then we are done
by Lemma 11. Hence we may assume that either m; < 1 or ms = 0. Moreover,
we may assume by Lemma 12 that either mg = 0 or my = 0. As in the previous
lemma, we split the proof into a number of cases, based on the values of the m;.

Case A: mz = 0 and my4 = 0. In this case, the normalization properties give
m1 +meo > 5. Since we may assume that no level contains more than 4 variables,
we must have m; = 1, my = 4 and ms = 1. If all of the variables at level 2
have the same m-coefficient, then Lemma 10 shows that F' has a nontrivial zero,
so we may assume that there are variables at level 2 with different m-coefficients.
Among the variables at level 0, there must be two with the same m-coefficient.
Contract these variables to a primary variable at level 2. This variable must have
the same m-coefficient as one of the secondary variables at level 2, and so we may
create a primary variable at level at least 5. This finishes the proof of this case.

We assume throughout the rest of the proof that exactly one of ms and my
is nonzero.

Case B: my = 0 and ms = 0. In this case, we must have m; > 3 and my4 > 1.
There must be two variables at level 1 with the same m-coefficient, and we may
contract these variables to produce a secondary variable at level 3. Since there
must be two variables at level 0 with the same m-coefficients, Lemma 9 shows that
F has a nontrivial zero. This completes the proof of this case.
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Case C: my = 0 and my = 0. In this case, we must have m; > 2, mz > 1
and my + mg > 5. First, suppose that there are two variables at level 1 with the
same m-coefficient, and contract them to a secondary variable S at level 3. If S
has the same coefficient as a variable already at level 3, then we may contract
them to a variable at level at least 6. Since a variable from level 1 was used in
the contractions, we are finished by Hensel’s Lemma. So we may assume that S
has a different w-coefficient than any of the other variables at level 3. Now we
contract two variables from level 0 to a primary variable T" at level at least 3. If T
is at level 3, then it has the same m-coefficient as a secondary variable already
there, and we contract them to a primary variable at level at least 5. If T is at
level 4, then we contract two variables at level 3 to a secondary variable at level 4,
and then contract this with T to produce a primary variable at level at least 5.

Suppose instead that we cannot find two variables at level 1 with the same
m-coefficient. In this case, we contract two variables at level 0 with the same
m-coefficient to a variable at level 2. Then Lemma 6 allows us to create a primary
variable at level at least 5. This finishes the proof of this case. Note that Cases
A, B and C together allow us to assume that my > 0, and therefore that m; < 1.

Case D: m; <1 and my4 = 0. Our assumptions in this case imply that mo > 1
and mg > 1. We can contract two variables at level 0 to a primary variable T" at
level 2. If T has the same m-coefficient as a secondary variable at level 2, then
we can contract them to a primary variable at level at least 5. If T has a different
m-coefficient than all of the secondary variables at level 2, then Lemma 6 allows
us to construct a primary variable at level at least 5. This completes the proof of
this case.

Case E: m; <1, my = 4 and mgz = 0. Note that these conditions imply that
my4 > 1. We begin by contracting two of the variables from level 0 to a variable
at level 2. After making this contraction, we have 5 variables at level 2 and at
least one variable at level 4. Then the proof of Lemma 16 (applied to the case
mo =5 and my > 1) shows that F has a nontrivial zero. (Note that the proof of
the relevant case of Lemma 16 does not require all 9 variables, and so it is not
an issue that we only have 8 variables left after making the initial contraction.)

Case F: m; <1, mg =0, and there are variables at level 2 with different
m-coefficients. In this case, we contract two variables from level 0 to a primary
variable at level exactly 2. This has the same m-coefficient as a secondary variable
already there, so we contract these variables to a primary variable at level at
least 5.
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Case G: m; < 1, mg = 0 and ms = 1. These conditions guarantee that
mg > 2 and my > 1. Moreover, after Case F, we may assume that the variables
at level 2 all have the same m-coefficient. Contract two variables at level 2 to
a new variable T at level 4. Then either Lemma 5 or Lemma 6 (depending on the
m-coefficient of T') guarantees that T' can be used in a contraction to a variable
at level at least 7. Since a variable from level 2 has been contracted up at least 5
levels, Hensel’s Lemma guarantees that F has a nontrivial zero.

We may now assume for the rest of the proof that ms = 0. Along with all
our other assumptions, and since we are done if mg > 4, this implies that we have
my > 2.

Case H: m; = 1 and m3 = 0. Due to our previous work, we have m4 > 2 and
we know that the variables at level 2 all have the same m-coefficient. Suppose
first that there are variables with different m-coefficients at level 4. Then we con-
tract two variables at level 2 to a variable at level 4. This must have the same
m-coeflicient as a variable already there, and so we contract these variables to
a variable at level at least 7. As before, we have now contracted a variable at
level 2 up by at least 5 levels, and we are done.

If the variables at level 4 have the same m-coefficient, then we let x4, ..., x;
be the variables at levels 0-3 and make the change of variables

1
/
F'= —F(wxy,..., T, Tt41,...,Tg).

4
The form F’ may not be m-normalized, but has at least 2 variables with the
same m-coefficient at level 0, and has variables at both level 3 and level 4. Then
Lemma 9 shows that F” (and hence also F) has a nontrivial zero. This completes
the proof of this case.
After the preceding cases, the only remaining possibility is that mg = mg =
my4 = 3 and m; = mg = ms = 0. This completes the proof of the lemma. ([

The next lemma completes the proof that F' must have a nontrivial zero
whenever my = 3. We give this last situation its own lemma, because we cannot
treat all the possible fields K at the same time.

Lemma 19. Suppose that F' is m-normalized and that mg = mg = my = 3
and my; = mg = ms = 0. Then F' has a nontrivial zero.

PROOF. As shown in the proof of Lemma 18, Case F, we may assume that
the variables at level 2 all have the same 7w-coefficient. Suppose that there ex-
ist variables at level 4 with different w-coefficients. Then we can contract two
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variables from level 2 to a variable T at level 4. Since T will have the same
m-coefficient as a variable already there, these two variables can be contracted to
a variable at level at least 7. Then we are finished by Hensel’s Lemma. Therefore
we may also assume that the variables at level 4 all have the same m-coefficient,
and that when we contract two variables from level 2 to level 4, the only possible
m-coefficient for the contracted variable is the one opposite from the variables
already at level 4.

We can make similar arguments, possibly after making a change of variables
of the form

F' = ;F(?TI’]77TZ'2,7T1'3,1'4, cyT9),
to deal with the variables at level 0. These arguments show that we may assume
that the variables at level 0 all have the same m-coefficient, and that if two of these
variables are contracted to a variable at level 2, then the contracted variable must
have the opposite m-coefficient from the variables already at this level. Similarly,
if two variables at level 4 are contracted to a variable at level 6, then the contracted
variable must have the opposite m-coefficient from the variables at level 0.

We now split into cases depending on the field K. Suppose first that K is one
of the fields Q2(v/2), Q2(v/—2), Q2(v/10) or Q2(/—10). Let ¢ be the m-coefficient
of the variables at level 0. Since only one w-coefficient is possible when two of these
variables are contracted to a variable at level 2, Lemma 7 shows that this variable
must have a m-coefficient of ¢. Since this must be the opposite m-coefficient from
the variables already at level 2, the variables at level 2 must have a w-coefficient
of 1 — ¢. Similarly, when two variables at level 2 are contracted to a variable at
level 4, Lemma 7 shows that the contracted variable must have a w-coefficient of
1 — ¢, and hence the variables at level 4 must have a m-coefficient of ¢. Finally,
if two variables at level 4 are contracted to a new variable at level 6, this new
variable must have a w-coefficient of ¢. But this contradicts our assumption that
this variable should have the opposite m-coefficient from the variables at level 0.
This proves the lemma for these fields.

Now suppose instead that K is either Qo(v/—1) or Q2(v/=5). Since all the
variables at level 0 have the same 7m-coeflicient, Lemma 8 says that we can find
two of these variables which contract to a primary variable T' at level at least 4.
If T is at level exactly 4, then we may contract it with a secondary variable from
this level to form a primary variable at level at least 5. This completes the proof
of the lemma. O

Lemma 20. Suppose that the form F' is m-normalized and that mg = 2.
Then F has a nontrivial zero.



Solubility of additive sextic forms 89

PROOF. We begin this final lemma with a few observations. By the results
of Section 5, we may assume that no level contains more than 4 variables. That is,
we may assume that m; < 4 for all i. Also, by Lemma 11, we may assume that
either m; < 1 or ms = 0. Finally, by Lemma 12, we may assume that at most
one of m3 and my is nonzero. We now split the proof into a number of cases.

Case A: my > 3. In this case, our assumptions about the values of the m;,
combined with the restrictions in the system (4), force us to have my = 3 and
ms = 0. Suppose that the variables at level 4 are x7, xg and zg, and consider the
additive form

F/ = 7F(7TIL‘1, e ,7F$6,LE7,1’8,I9).
™
This form has coefficients in O, is m-normalized (in our sense), and has 3 vari-
ables at level 0. Therefore F’ (and hence F') has a nontrivial zero by Lemma 18.
In the rest of the proof of the lemma, we may now assume that my < 2.

Case B: my = 0 and m3 = 0. In this case, our assumptions about the m; force
us to have (mg, mi, ma, mg, mg, ms) = (2,4,0,0,2,1). Since my = 4, there must
be two variables at level 1 which have the same m-coefficient. Then the hypotheses
of Lemma 9 are satisfied, and so F' must have a nontrivial zero.

Case C: my = 0 and my4 = 0. In this case, we must have m; > 3 and mgz > 2.
Suppose first that the variables at level 0 have different m-coefficients. Contract
these variables to a primary variable at level 1 in such a way that there are
two pairs of variables at level 1 with the same w-coefficients. Contract each of
these pairs to form two variables T7 and T3 at level exactly 3. Now, consider the
variables T, T,, and any other variable at level 3. Two of these variables must
have the same m-coefficient, and at least one of these must have been made using
a variable from level 1. We can contract these two variables to form a variable at
level at least 6. This final variable was made using a variable from level 1, and so
Hensel’s Lemma guarantees that F' has a nontrivial zero.

If the variables at level 0 have the same 7-coefficient, then we begin by
considering the variables at level 1 instead. There must be two of these which
have the same m-coefficient. Contract these variables to form a variable at level
exactly 3. If this has the same m-coefficient as a variable already at level 3,
then we contract these variables to a variable at level at least 6, and we are
done. Otherwise, we now have two secondary variables at level 3 with different
m-coefficients. Contract the variables at level 0 to form a primary variable at level
at least 3. If this primary variable is at level exactly 3, then it has the same
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m-coeflicient as one of the secondary variables there, and we can contract to
a primary variable at level at least 5. If the variables from level 0 contract to
a primary variable at level 4, then we can use Lemma 6 to contract the variables
at levels 3 and 4 to a primary variable at level 5. This completes the proof of
this case.

Case D: my # 0. In this case, normalization and our assumptions about the m;
force us to have m; = 1 and my > 2. If we actually have my > 3, then suppose
that z1, z2, 3 are the variables at levels 0 and 1, and consider the form

F' = S F(may, g, 73, T4, . - -, Tg).
T
The form F” is m-normalized (in our sense), and has at least 3 variables at level 0.
So F’ (and hence F) has a nontrivial zero by either Lemma 17 or Lemma 18.

Finally, suppose that ms = 2. Then normalization guarantees that mg > 1.
In fact, since m3 # 0, we must have m, = 0, and hence the normalization
inequalities (4) actually give ms > 3. Again, let x1, x2, x3 be the variables at
levels 0 and 1, and consider the form

F' = ;F(wmlﬂrmz,wmg,m, ceyT9).
The form F’ is m-normalized and has 2 variables at level 0, no variables at level 2,
and 2 variables at level 4. If F’ has any variables at level 3, then it has a nontrivial
zero by Lemma 12. Otherwise, F has no variables at level 3, and therefore has
a nontrivial zero by Case B of this lemma. Since F” has a nontrivial zero, F' must
have one as well. This completes the proof of the lemma, and also the proof of
the theorem. O
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