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On the weighted sum of consecutive values of
an additive representation function

By XIAO-HUI YAN (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract. Let N be the set of nonnegative integers. For any set A ⊂ N, let RA(n)

denote the number of solutions of the equation n = a+b with a, b ∈ A. Recently, Kiss and

Sándor established some relations between |λ0RA(n)+λ1RA(n−1)+ · · ·+λdRA(n−d)|
and |{m : m ≤ n, λ0χA(m) + λ1χA(m− 1) + · · ·+ λdχA(m− d) 6= 0}|, where χA(k) = 1

if k ∈ A, otherwise χA(k) = 0. In this paper, we improve one of the results of Kiss and

Sándor to the best possible up to a constant factor.

1. Introduction

Let N be the set of nonnegative integers. For any set A ⊂ N, let RA(n)

denote the number of solutions of the equation n = a + b with a, b ∈ A. Let

χA(k) = 1 if k ∈ A, otherwise χA(k) = 0. Erdős, Sárközy and Sós (see [1], [2],

[3]) obtained many properties on the magnitude of RA(n). Recently, Kiss and

Sándor [9] generalized some results of [3]. For λ = (λ0, . . . , λd) ∈ Zd+1, let

B(A, λ, n) =

∣∣∣∣∣{m : m ≤ n,
d∑

i=0

λiχA(m− i) 6= 0}

∣∣∣∣∣ .
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Kiss and Sándor [9] obtained several related results, two of which are as

follows:

Theorem A ([9, Kiss and Sándor]). Let λ0, . . . , λd be arbitrary integers and

A ⊂ N. Then

lim sup
n→∞

∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≥ |
∑d

i=0 λi|
2(d+ 1)2

lim sup
n→∞

(
B(A, λ, n)√

n

)2

.

Theorem B ([9, Kiss and Sándor]). Let
∑d

i=0 λi > 0. Then for every

positive integer N , there exists a set A ⊂ N such that

lim sup
n→∞

∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≤ 4

d∑
i=0

|λi| lim sup
n→∞

(
B(A, λ, n)√

n

)2

and

lim sup
n→∞

B(A, λ, n)√
n

≥ N.

The inequality in Theorem B is trivial if

lim sup
n→∞

B(A, λ, n)√
n

=∞.

With a minor change of the proof of [9, Theorem 1], one may obtain the

following result.

Theorem C. Let λi (0 ≤ i ≤ d) be arbitrary integers and A ⊂ N. Then

lim sup
n→∞

∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≥ |
∑d

i=0 λi|
2v2

lim sup
n→∞

(
B(A, λ, n)√

n

)2

,

where v = |{w : λw 6= 0, 0 ≤ w ≤ d}|.

In this paper, we prove the following results.

Theorem 1. Let λi (0 ≤ i ≤ d) be arbitrary integers. Then for every

positive integer N , there exists a set A ⊂ N such that

lim sup
n→∞

∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≤
(

1 +
1

N + 1

)
2
∑d

i=0 |λi|
v2

lim sup
n→∞

(
B(A, λ, n)√

n

)2

and

lim sup
n→∞

B(A, λ, n)√
n

= v(N + 1),

where v = |{w : λw 6= 0, 0 ≤ w ≤ d}|.



On the weighted sum of consecutive values. . . 117

We have the following corollary immediately.

Corollary 1. Let λi 6= 0 (0 ≤ i ≤ d). Then for every positive integer N ,

there exists a set A ⊂ N such that

lim sup
n→∞

∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≤
(

1 +
1

N + 1

)
2
∑d

i=0 |λi|
(d+ 1)2

lim sup
n→∞

(
B(A, λ, n)√

n

)2

and

lim sup
n→∞

B(A, λ, n)√
n

= (d+ 1)(N + 1).

Comparing Theorem A and Corollary 1, both Theorem A and Corollary 1 are

the best possible up to constant factors. Comparing Theorem C and Theorem 1,

both Theorem C and Theorem 1 are the best possible up to constant factors.

2. Proof of Theorem 1

Let p1, p2, . . . be primes with p1 > 16N2(d+ 1)2 and pi > p6i−1 (i = 2, 3, . . . )

and let

Mi = p2i + pi + 1.

By Singer’s Theorem (see [11]), for each Mi, there is a Sidon set Si ⊆ [1,Mi] with

|Si| = pi. Since Si is a Sidon set, there is at most one pair s, s′ ∈ Si with s−s′ = a

for each integer a. Now we remove all pairs s, s′ ∈ Si with 0 < s− s′ ≤ √pi and

all s ∈ Si with s ≤ √pi or s ≥ Mi −
√
pi. The remaining set is Ti. Then Ti is

a Sidon set with Ti ⊆ (
√
pi,Mi −

√
pi) and

pi − 2
√
pi − 2 = |Si| − 2

√
pi − 2 ≤ |Ti| ≤ |Si| = pi

such that t− t′ > √pi for any t, t′ ∈ Ti with t > t′. Let

A =

∞⋃
k=1

(Tk ∪ (Tk + (d+ 1)) ∪ · · · ∪ (Tk +N(d+ 1))) .

For k < l, if tk ∈ Tk and tl ∈ Tl, then

tl − tk >
√
pl − (Mk −

√
pk) > p3l−1 − (p2k + pk + 1−√pk)

> p3k − p2k − pk > pk > 16N2(d+ 1)2.

It follows that

(Tk + i(d+ 1)) ∩ (Tl + j(d+ 1)) = ∅

for all k 6= l and 0 ≤ i, j ≤ N .
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Lemma 1. For any positive integerm, we have RA(m)≤2(N+1)2+2(N+1).

Proof. It is clear that RA(m) = 0 for m ≤ 2
√
p1. For every positive integer

m ≥ 2
√
p1, there exists a positive integer s such that

√
ps ≤ m <

√
ps+1. Noting

that Ti ⊆ (
√
pi,Mi −

√
pi), we have

RA(m)≤
s∑

k=1

s∑
l=1

N∑
i=0

N∑
j=0

|{(t, t′) : t+ i(d+ 1) + t′ + j(d+ 1)=m, t ∈ Tk, t′ ∈ Tl}|.

If s = 1, then by T1 being a Sidon set, we have

RA(m)≤
N∑
i=0

N∑
j=0

|{(t, t′) : t+ i(d+ 1) + t′ + j(d+ 1)=m, t, t′ ∈ T1}|≤2(N + 1)2.

If s ≥ 2, k, l ≤ s− 1 and t ∈ Tk, t′ ∈ Tl, then for any 0 ≤ i, j ≤ N , we have

t+ i(d+ 1) + t′ + j(d+ 1) ≤ 2(Ms−1 −
√
ps−1) + 2N(d+ 1)

< 2Ms−1 < 4p2s−1 <
√
ps ≤ m.

It follows that

RA(m) ≤
N∑
i=0

N∑
j=0

| {(t, t′) : t+ i(d+ 1) + t′ + j(d+ 1) = m, t ∈ Ts, t′ ∈ Ts} |

+ 2

s−1∑
l=1

N∑
i=0

N∑
j=0

| {(t, t′) : t+ i(d+ 1) + t′ + j(d+ 1)=m, t∈Ts, t′∈Tl} |

≤ 2(N + 1)

s−1∑
l=1

2N∑
u=0

| {(t, t′) : t+ t′ + u(d+ 1) = m, t ∈ Ts, t′ ∈ Tl} |

+ 2(N + 1)2. (1)

Suppose that (t, t′, u) and (t1, t
′
1, u1)(t ≥ t1) are two distinct solutions of the

equation

x+ y + z(d+ 1) = m, x ∈ Ts, y ∈
s−1⋃
l=1

Tl, 0 ≤ z ≤ 2N, (2)

then

t+ t′ + u(d+ 1) = t1 + t′1 + u1(d+ 1).
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Thus

0 ≤ t− t1 = t′1 − t′ + (u1 − u)(d+ 1) ≤Ms−1 −
√
ps−1 + 2N(d+ 1)

< Ms−1 < 2p2s−1 <
√
ps.

By the definition of Ts, we have t − t1 = 0. So t′ + u(d + 1) = t′1 + u1(d + 1).

Thus |t′ − t′1| = |u1 − u|(d + 1) ≤ 2N(d + 1) <
√
pi for any i ≥ 1. It follows

from the definition of Ti that t′ and t′1 cannot belong to the same Ti. Noting that

Ti ⊆ (
√
pi,Mi −

√
pi) and

√
pi+1 − (Mi −

√
pi) > p3i − 2p2i ≥ pi > 2N(d+ 1) ≥ |t′ − t′1|,

we know that t′ and t′1 cannot belong to the different Ti. We obtain a contradic-

tion. Hence equation (2) has at most one solution. It follows from (1) that

RA(m) ≤ 2(N + 1) + 2(N + 1)2.

This completes the proof of Lemma 1. �

Lemma 2.

lim sup
n→∞

B(A, λ, n)√
n

= v(N + 1).

Proof. Let W = {w : λw 6= 0, w = 0, . . . , d}. Since a− a′ > d for a′, a ∈ A
with a′ < a, it follows that

∑d
i=0 λiχA(n− i) 6= 0 if and only if n = a+w, where

a ∈ A and w ∈W . For any x ≥ 1, let A(x), Si(x), Ti(x) etc., denote the counting

functions of A, Si, Ti etc., respectively. Recall that

B(A, λ, n) =

∣∣∣∣∣{m : m ≤ n,
d∑

i=0

λiχA(m− i) 6= 0}

∣∣∣∣∣ ,
so we have

B(A, λ, n) = |{m : m ≤ n,m ∈ A+W}| . (3)

It follows that

B(A, λ, n) ≤ |W |A(n) = vA(n). (4)

For every positive integer n ≥ √p2, there exists an integer u ≥ 2 such that
√
pu ≤ n <

√
pu+1. Thus

A(n) ≤ (N + 1)

u∑
i=1

Ti(n) ≤ (N + 1)

u∑
i=1

Si(n) = (N + 1)

(
Su(n) +

u−1∑
i=1

pi

)
.

Noting that
u−1∑
i=1

pi ≤ (u− 1)pu−1 = o(
√
pu) = o(

√
n),
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we have

A(n) ≤ (N + 1)(Su(n) + o(
√
n)).

It is well known that Su(n) ≤
√
n+ o(

√
n) (see [4]). It follows that

A(n) ≤ (N + 1)
√
n (1 + o(1)). (5)

By (4) and (5), we have

lim sup
n→∞

B(A, λ, n)√
n

≤ lim sup
n→∞

vA(n)√
n
≤ v(N + 1). (6)

Let nk = Mk + (N + 1)(d+ 1). Then

A(nk) = (N + 1)

k∑
i=1

|Ti| = (N + 1)

k∑
i=1

pi(1 + o(1))

= (N + 1)pk(1 + o(1)) = (N + 1)
√
nk(1 + o(1)).

By pk+1 > p6k and pk ≥ p1 > 16N2(d+ 1)2, we have nk <
√
pk+1. Since

√
pk+1 > nk > Mk −

√
pk +N(d+ 1) + d,

it follows that A ∩ [nk − d, nk] = ∅. Thus, by (3), we have

B(A, λ, nk) = A(nk)|W | = v(N + 1)
√
nk (1 + o(1)).

It follows that

lim
k→∞

B(A, λ, nk)
√
nk

= v(N + 1). (7)

By (6) and (7),

lim sup
n→∞

B(A, λ, n)√
n

= v(N + 1).

This completes the proof of Lemma 2. �

Proof of Theorem 1. By Lemmas 1 and 2, we have

lim sup
n→∞

B(A, λ, n)√
n

= v(N + 1)

and ∣∣∣∣∣
d∑

i=0

λiRA(n− i)

∣∣∣∣∣ ≤
d∑

i=0

|λi|max
n

RA(n) ≤ 2

d∑
i=0

|λi|((N + 1)2 + (N + 1))

=

(
1 +

1

N + 1

)
2
∑d

i=0 |λi|
v2

lim sup
n→∞

(
B(A, λ, n)√

n

)2

.

This completes the proof of Theorem 1. �
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