

On the weighted sum of consecutive values of an additive representation function

By XIAO-HUI YAN (Nanjing) and YONG-GAO CHEN (Nanjing)

Abstract. Let \mathbb{N} be the set of nonnegative integers. For any set $A \subset \mathbb{N}$, let $R_A(n)$ denote the number of solutions of the equation $n = a + b$ with $a, b \in A$. Recently, Kiss and Sándor established some relations between $|\lambda_0 R_A(n) + \lambda_1 R_A(n-1) + \cdots + \lambda_d R_A(n-d)|$ and $|\{m : m \leq n, \lambda_0 \chi_A(m) + \lambda_1 \chi_A(m-1) + \cdots + \lambda_d \chi_A(m-d) \neq 0\}|$, where $\chi_A(k) = 1$ if $k \in A$, otherwise $\chi_A(k) = 0$. In this paper, we improve one of the results of Kiss and Sándor to the best possible up to a constant factor.

1. Introduction

Let \mathbb{N} be the set of nonnegative integers. For any set $A \subset \mathbb{N}$, let $R_A(n)$ denote the number of solutions of the equation $n = a + b$ with $a, b \in A$. Let $\chi_A(k) = 1$ if $k \in A$, otherwise $\chi_A(k) = 0$. ERDŐS, SÁRKÖZY and SÓS (see [1], [2], [3]) obtained many properties on the magnitude of $R_A(n)$. Recently, KISS and SÁNDOR [9] generalized some results of [3]. For $\underline{\lambda} = (\lambda_0, \dots, \lambda_d) \in \mathbb{Z}^{d+1}$, let

$$B(A, \underline{\lambda}, n) = \left| \left\{ m : m \leq n, \sum_{i=0}^d \lambda_i \chi_A(m-i) \neq 0 \right\} \right|.$$

Mathematics Subject Classification: 11B34.

Key words and phrases: additive number theory, general sequences, weighted sum, additive representation function.

The work is supported by the National Natural Science Foundation of China, Grant No. 11771211.

Kiss and Sándor [9] obtained several related results, two of which are as follows:

Theorem A ([9, Kiss and Sándor]). *Let $\lambda_0, \dots, \lambda_d$ be arbitrary integers and $A \subset \mathbb{N}$. Then*

$$\limsup_{n \rightarrow \infty} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| \geq \frac{|\sum_{i=0}^d \lambda_i|}{2(d+1)^2} \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2.$$

Theorem B ([9, Kiss and Sándor]). *Let $\sum_{i=0}^d \lambda_i > 0$. Then for every positive integer N , there exists a set $A \subset \mathbb{N}$ such that*

$$\limsup_{n \rightarrow \infty} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| \leq 4 \sum_{i=0}^d |\lambda_i| \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2$$

and

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \geq N.$$

The inequality in Theorem B is trivial if

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = \infty.$$

With a minor change of the proof of [9, Theorem 1], one may obtain the following result.

Theorem C. *Let λ_i ($0 \leq i \leq d$) be arbitrary integers and $A \subset \mathbb{N}$. Then*

$$\limsup_{n \rightarrow \infty} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| \geq \frac{|\sum_{i=0}^d \lambda_i|}{2v^2} \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2,$$

where $v = |\{w : \lambda_w \neq 0, 0 \leq w \leq d\}|$.

In this paper, we prove the following results.

Theorem 1. *Let λ_i ($0 \leq i \leq d$) be arbitrary integers. Then for every positive integer N , there exists a set $A \subset \mathbb{N}$ such that*

$$\limsup_{n \rightarrow \infty} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| \leq \left(1 + \frac{1}{N+1} \right) \frac{2 \sum_{i=0}^d |\lambda_i|}{v^2} \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2$$

and

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = v(N+1),$$

where $v = |\{w : \lambda_w \neq 0, 0 \leq w \leq d\}|$.

We have the following corollary immediately.

Corollary 1. *Let $\lambda_i \neq 0$ ($0 \leq i \leq d$). Then for every positive integer N , there exists a set $A \subset \mathbb{N}$ such that*

$$\limsup_{n \rightarrow \infty} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| \leq \left(1 + \frac{1}{N+1} \right) \frac{2 \sum_{i=0}^d |\lambda_i|}{(d+1)^2} \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2$$

and

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = (d+1)(N+1).$$

Comparing Theorem A and Corollary 1, both Theorem A and Corollary 1 are the best possible up to constant factors. Comparing Theorem C and Theorem 1, both Theorem C and Theorem 1 are the best possible up to constant factors.

2. Proof of Theorem 1

Let p_1, p_2, \dots be primes with $p_1 > 16N^2(d+1)^2$ and $p_i > p_{i-1}^6$ ($i = 2, 3, \dots$) and let

$$M_i = p_i^2 + p_i + 1.$$

By SINGER's Theorem (see [11]), for each M_i , there is a Sidon set $S_i \subseteq [1, M_i]$ with $|S_i| = p_i$. Since S_i is a Sidon set, there is at most one pair $s, s' \in S_i$ with $s - s' = a$ for each integer a . Now we remove all pairs $s, s' \in S_i$ with $0 < s - s' \leq \sqrt{p_i}$ and all $s \in S_i$ with $s \leq \sqrt{p_i}$ or $s \geq M_i - \sqrt{p_i}$. The remaining set is T_i . Then T_i is a Sidon set with $T_i \subseteq (\sqrt{p_i}, M_i - \sqrt{p_i})$ and

$$p_i - 2\sqrt{p_i} - 2 = |S_i| - 2\sqrt{p_i} - 2 \leq |T_i| \leq |S_i| = p_i$$

such that $t - t' > \sqrt{p_i}$ for any $t, t' \in T_i$ with $t > t'$. Let

$$A = \bigcup_{k=1}^{\infty} (T_k \cup (T_k + (d+1)) \cup \dots \cup (T_k + N(d+1))).$$

For $k < l$, if $t_k \in T_k$ and $t_l \in T_l$, then

$$\begin{aligned} t_l - t_k &> \sqrt{p_l} - (M_k - \sqrt{p_k}) > p_{l-1}^3 - (p_k^2 + p_k + 1 - \sqrt{p_k}) \\ &> p_k^3 - p_k^2 - p_k > p_k > 16N^2(d+1)^2. \end{aligned}$$

It follows that

$$(T_k + i(d+1)) \cap (T_l + j(d+1)) = \emptyset$$

for all $k \neq l$ and $0 \leq i, j \leq N$.

Lemma 1. For any positive integer m , we have $R_A(m) \leq 2(N+1)^2 + 2(N+1)$.

PROOF. It is clear that $R_A(m) = 0$ for $m \leq 2\sqrt{p_1}$. For every positive integer $m \geq 2\sqrt{p_1}$, there exists a positive integer s such that $\sqrt{p_s} \leq m < \sqrt{p_{s+1}}$. Noting that $T_i \subseteq (\sqrt{p_i}, M_i - \sqrt{p_i})$, we have

$$R_A(m) \leq \sum_{k=1}^s \sum_{l=1}^s \sum_{i=0}^N \sum_{j=0}^N |\{(t, t') : t + i(d+1) + t' + j(d+1) = m, t \in T_k, t' \in T_l\}|.$$

If $s = 1$, then by T_1 being a Sidon set, we have

$$R_A(m) \leq \sum_{i=0}^N \sum_{j=0}^N |\{(t, t') : t + i(d+1) + t' + j(d+1) = m, t, t' \in T_1\}| \leq 2(N+1)^2.$$

If $s \geq 2$, $k, l \leq s-1$ and $t \in T_k, t' \in T_l$, then for any $0 \leq i, j \leq N$, we have

$$\begin{aligned} t + i(d+1) + t' + j(d+1) &\leq 2(M_{s-1} - \sqrt{p_{s-1}}) + 2N(d+1) \\ &< 2M_{s-1} < 4p_{s-1}^2 < \sqrt{p_s} \leq m. \end{aligned}$$

It follows that

$$\begin{aligned} R_A(m) &\leq \sum_{i=0}^N \sum_{j=0}^N |\{(t, t') : t + i(d+1) + t' + j(d+1) = m, t \in T_s, t' \in T_s\}| \\ &\quad + 2 \sum_{l=1}^{s-1} \sum_{i=0}^N \sum_{j=0}^N |\{(t, t') : t + i(d+1) + t' + j(d+1) = m, t \in T_s, t' \in T_l\}| \\ &\leq 2(N+1) \sum_{l=1}^{s-1} \sum_{u=0}^{2N} |\{(t, t') : t + t' + u(d+1) = m, t \in T_s, t' \in T_l\}| \\ &\quad + 2(N+1)^2. \end{aligned} \tag{1}$$

Suppose that (t, t', u) and (t_1, t'_1, u_1) ($t \geq t_1$) are two distinct solutions of the equation

$$x + y + z(d+1) = m, \quad x \in T_s, \quad y \in \bigcup_{l=1}^{s-1} T_l, \quad 0 \leq z \leq 2N, \tag{2}$$

then

$$t + t' + u(d+1) = t_1 + t'_1 + u_1(d+1).$$

Thus

$$\begin{aligned} 0 \leq t - t_1 &= t'_1 - t' + (u_1 - u)(d + 1) \leq M_{s-1} - \sqrt{p_{s-1}} + 2N(d + 1) \\ &< M_{s-1} < 2p_{s-1}^2 < \sqrt{p_s}. \end{aligned}$$

By the definition of T_s , we have $t - t_1 = 0$. So $t' + u(d + 1) = t'_1 + u_1(d + 1)$. Thus $|t' - t'_1| = |u_1 - u|(d + 1) \leq 2N(d + 1) < \sqrt{p_i}$ for any $i \geq 1$. It follows from the definition of T_i that t' and t'_1 cannot belong to the same T_i . Noting that $T_i \subseteq (\sqrt{p_i}, M_i - \sqrt{p_i})$ and

$$\sqrt{p_{i+1}} - (M_i - \sqrt{p_i}) > p_i^3 - 2p_i^2 \geq p_i > 2N(d + 1) \geq |t' - t'_1|,$$

we know that t' and t'_1 cannot belong to the different T_i . We obtain a contradiction. Hence equation (2) has at most one solution. It follows from (1) that

$$R_A(m) \leq 2(N + 1) + 2(N + 1)^2.$$

This completes the proof of Lemma 1. \square

Lemma 2.

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = v(N + 1).$$

PROOF. Let $W = \{w : \lambda_w \neq 0, w = 0, \dots, d\}$. Since $a - a' > d$ for $a', a \in A$ with $a' < a$, it follows that $\sum_{i=0}^d \lambda_i \chi_A(n - i) \neq 0$ if and only if $n = a + w$, where $a \in A$ and $w \in W$. For any $x \geq 1$, let $A(x)$, $S_i(x)$, $T_i(x)$ etc., denote the counting functions of A , S_i , T_i etc., respectively. Recall that

$$B(A, \underline{\lambda}, n) = \left| \left\{ m : m \leq n, \sum_{i=0}^d \lambda_i \chi_A(m - i) \neq 0 \right\} \right|,$$

so we have

$$B(A, \underline{\lambda}, n) = |\{m : m \leq n, m \in A + W\}|. \quad (3)$$

It follows that

$$B(A, \underline{\lambda}, n) \leq |W|A(n) = vA(n). \quad (4)$$

For every positive integer $n \geq \sqrt{p_2}$, there exists an integer $u \geq 2$ such that $\sqrt{p_u} \leq n < \sqrt{p_{u+1}}$. Thus

$$A(n) \leq (N + 1) \sum_{i=1}^u T_i(n) \leq (N + 1) \sum_{i=1}^u S_i(n) = (N + 1) \left(S_u(n) + \sum_{i=1}^{u-1} p_i \right).$$

Noting that

$$\sum_{i=1}^{u-1} p_i \leq (u - 1)p_{u-1} = o(\sqrt{p_u}) = o(\sqrt{n}),$$

we have

$$A(n) \leq (N+1)(S_u(n) + o(\sqrt{n})).$$

It is well known that $S_u(n) \leq \sqrt{n} + o(\sqrt{n})$ (see [4]). It follows that

$$A(n) \leq (N+1)\sqrt{n} (1 + o(1)). \quad (5)$$

By (4) and (5), we have

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \leq \limsup_{n \rightarrow \infty} \frac{vA(n)}{\sqrt{n}} \leq v(N+1). \quad (6)$$

Let $n_k = M_k + (N+1)(d+1)$. Then

$$\begin{aligned} A(n_k) &= (N+1) \sum_{i=1}^k |T_i| = (N+1) \sum_{i=1}^k p_i (1 + o(1)) \\ &= (N+1)p_k (1 + o(1)) = (N+1)\sqrt{n_k} (1 + o(1)). \end{aligned}$$

By $p_{k+1} > p_k^6$ and $p_k \geq p_1 > 16N^2(d+1)^2$, we have $n_k < \sqrt{p_{k+1}}$. Since

$$\sqrt{p_{k+1}} > n_k > M_k - \sqrt{p_k} + N(d+1) + d,$$

it follows that $A \cap [n_k - d, n_k] = \emptyset$. Thus, by (3), we have

$$B(A, \underline{\lambda}, n_k) = A(n_k)|W| = v(N+1)\sqrt{n_k} (1 + o(1)).$$

It follows that

$$\lim_{k \rightarrow \infty} \frac{B(A, \underline{\lambda}, n_k)}{\sqrt{n_k}} = v(N+1). \quad (7)$$

By (6) and (7),

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = v(N+1).$$

This completes the proof of Lemma 2. \square

PROOF OF THEOREM 1. By Lemmas 1 and 2, we have

$$\limsup_{n \rightarrow \infty} \frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} = v(N+1)$$

and

$$\begin{aligned} \left| \sum_{i=0}^d \lambda_i R_A(n-i) \right| &\leq \sum_{i=0}^d |\lambda_i| \max_n R_A(n) \leq 2 \sum_{i=0}^d |\lambda_i| ((N+1)^2 + (N+1)) \\ &= \left(1 + \frac{1}{N+1}\right) \frac{2 \sum_{i=0}^d |\lambda_i|}{v^2} \limsup_{n \rightarrow \infty} \left(\frac{B(A, \underline{\lambda}, n)}{\sqrt{n}} \right)^2. \end{aligned}$$

This completes the proof of Theorem 1. \square

References

- [1] P. ERDŐS and A. SÁRKÖZY, Problems and results on additive properties of general sequences. I, *Pacific J. Math.* **118** (1985), 347–357.
- [2] P. ERDŐS and A. SÁRKÖZY, Problems and results on additive properties of general sequences. II, *Acta Math. Hungar.* **48** (1986), 201–211.
- [3] P. ERDŐS, A. SÁRKÖZY and V. T. SÓS, Problems and results on additive properties of general sequences. III, *Studia Sci. Math. Hungar.* **22** (1987), 53–63.
- [4] P. ERDŐS and P. TURÁN, On a problem of Sidon in additive number theory, and on some related problems, *J. London Math. Soc.* **16** (1941), 212–215.
- [5] H. HALBERSTAM and K. F. ROTH, Sequences, Second Edition, *Springer-Verlag, New York*, 1983.
- [6] S. KISS, Generalization of a theorem on additive representation functions, *Ann. Univ. Sci. Budapest. Eötvös Sect. Math.* **48** (2005), 15–18.
- [7] S. KISS, On a regularity property of additive representation functions, *Period. Math. Hungar.* **51** (2005), 31–35.
- [8] S. Z. KISS, On the k -th difference of an additive representation function, *Studia Sci. Math. Hungar.* **48** (2011), 93–103.
- [9] S. Z. KISS and Cs. SÁNDOR, Generalizations of some results about the regularity properties of an additive representation function, *Acta Math. Hungar.* **157** (2019), 121–140.
- [10] A. SÁRKÖZY, On additive representation functions of finite sets, I (variation), *Period. Math. Hungar.* **66** (2013), 201–210.
- [11] J. SINGER, A theorem in finite projective geometry and some applications to number theory, *Trans. Amer. Math. Soc.* **43** (1938), 377–385.

XIAO-HUI YAN
 SCHOOL OF MATHEMATICAL SCIENCES
 AND INSTITUTE OF MATHEMATICS
 NANJING NORMAL UNIVERSITY
 NANJING 210023
 P. R. CHINA

E-mail: yanxiaohui_1992@163.com

YONG-GAO CHEN
 SCHOOL OF MATHEMATICAL SCIENCES
 AND INSTITUTE OF MATHEMATICS
 NANJING NORMAL UNIVERSITY
 NANJING 210023
 P. R. CHINA

E-mail: ygchen@njnu.edu.cn

(Received July 8, 2018; revised February 10, 2019)