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The commuting graphs of finite rings

By DAVID DOLZAN (Ljubljana)

Abstract. In this paper, we investigate connectivity and diameters of commuting
graphs of finite rings. In case of a directly decomposable ring, we calculate the diameter
depending on the diameters of commuting graphs of direct summands. If the ring is
indecomposable, we examine the connectedness of the commuting graph according to
the number of isomorphic minimal idempotents.

1. Introduction

Commutativity is a well-studied and important concept in the theory of
groups and rings. One approach to studying this property is to associate cer-
tain graphs to these algebraic structures. This approach can be traced back at
least as far as BRAUER and FOWLER [4], in their attempt towards the classifica-
tion of simple finite groups. More precisely, given an algebraic structure A, one
lets I' = T'(A) be a simple (that is, has no loops or multiple edges) undirected
graph, with its vertex set equal to all the noncentral elements from A, and where
two distinct vertices form an edge if the corresponding elements commute in A.
We remark that for abelian algebras, the corresponding commuting graph is empty
(has no vertices).

The commutativity relation sometimes suffices to determine the given alge-
braic structure up to an isomorphism. If one knows the isomorphism type of
the commuting graph of an algebra, then one can often deduce certain properties
of that algebra. For example, SOLOMON and WOLDAR [9] showed that if the
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commuting graph of a nonabelian finite simple group A is isomorphic to the com-
muting graph of some group G, then groups A and G are isomorphic. In a similar
vein, MOHAMMADIAN [7] showed that a ring R is isomorphic to the matrix alge-
bra Ms(FF) of 2-by-2 matrices over a finite field F if and only if their commuting
graphs I'(R) and I'(M2(F)) are isomorphic.

One of the basic questions concerning commuting graphs is their connect-
edness and diameter. Most of the work that has been done in this regard was
the study of the commuting graph of M, (F), the algebra of n-by-n matrices over
a field F. For example, it is known that its commuting graph is connected if and
only if for each field extension K/F of degree n, there exists a proper intermediate
subfield F C I C K (see [1]). Moreover, whenever the commuting graph of M, (FF)
is connected, its diameter is bounded above by 6 (see [2]). For a finite field F,
the commuting graph of M, (F) has diameter at most 5 if n is neither a prime nor
a square of a prime (see [5]). Moreover, its diameter equals exactly 4 in case n
is an even number and n > 4. The diameter of the commuting graph of M (FF),
p a prime, is (to the author’s knowledge) unsolved as of the writing of this paper.

In this paper, we study the relationship between the structure of a finite
ring and the connectivity and diameter of its commuting graph. Since the class
of finite rings also includes all the above-mentioned cases of matrix rings over
a finite field, the study is of course too broad to be manageable by a single
approach. We therefore limit ourselves to special cases, when the structure of
the ring is known and manageable enough to provide us with sufficient tools.
Thus, we study the diameter of a directly decomposable ring and the connectivity
of an indecomposable ring of prime characteristic with the Jacobson radical of
nilpotency order 2. The methods we use include the checkered matrix ring over
a basic ring associated with the ring in question and a characterization of local
rings of prime characteristic with the Jacobson radical of nilpotency order 2.

2. Definitions and preliminaries

Let us recall some basic definitions that we shall use throughout the paper.
As usual, in a given graph, the path ¢« = 2g—...—2;_1—2;—...—x, = b
connecting vertices a and b has length n, and the length of the shortest path
connecting vertices a and b is called the distance between a and b, and denoted
by d(a,b). We denote d(a,b) = oo if there is no path connecting @ and b, and we
define d(a,a) = 0. The diameter of a graph is a maximal distance between any
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two of its vertices. Note that the diameter is infinite if there is no finite bound
on d(a,b), where a and b range over the vertices.

For a finite ring R, we denote its Jacobson radical by J(R). The ring R is
called a basic ring or a reduced ring if R/J(R) is a direct sum of finite fields. We
shall denote by T € R/J the image of x € R under the canonical homomorphism.

If e and f are idempotents in R, we follow [3] and say that e and f are
isomorphic if Re and Rf are isomorphic left R-modules. If ef = fe = f, we say
that f < e and the smallest non-zero idempotent under < is called a minimal
idempotent.

Also, we shall denote the diagonal matrix with elements aq,...,a, on the
diagonal by diag(a1, ..., ay), and E;; will denote the matrix with 1 at the position
(,7) and zeros everywhere else.

All rings in this paper are assumed finite and unital, even if this is perhaps
not always explicitly stated.

The following lemma is straightforward, but we include the proof for the sake
of completeness.

Lemma 2.1. Any ring R can be written as a direct sum of left ideals and
each summand is of the form Re, where e is a minimal idempotent in R.

PROOF. Let S = {n € Z*; there are distinct nonzero idempotents e, ..., e,
of R such that R = Re; @ ... ® Re,}. Observe that 1 € S (take e; = 1), and
also that |S| < |R|. Let N € S be the largest possible, and let eq,...,ey be
distinct nonzero idempotents such that R = Re; & ... ® Rey. We claim that
each e; is minimal. Suppose not; without loss of generality, e; is not minimal.
Thus there is a nonzero idempotent f; € R such that f; < e;. One shows easily
that Re; = Rf1 ® R(e1 — f1) and that f1,e1 — f1,eq,...,en are distinct nonzero
idempotents of R which generate R as a direct sum. But this yields a contradiction
to the maximality of V. (|

We can now use this fact in the following definition.

Definition 2.2. Suppose R is a ring and R = @], @?;1 ng), where ng) are
left ideals such that ng ) is isomorphic to Lff) as a left R-module if and only if

. . noa

i = k. Denote LEJ) = Regj), where Y~ > egj) = 1. Denote egl) by e; for each ¢
i=1j=1

and let e = e; + eg + -+ + e,. We follow [6] to define S = eRe as the basic ring

associated with ring R.

The next short lemma shows that .S is indeed a basic ring, thus the definition
makes sense.
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Lemma 2.3. The basic ring associated with a ring R is a basic ring.

PROOF. Since e;Se; C SNJ(R) = J(S), we have that S/J(S) ~ @' e;Se;.
However, for each i, e; is a minimal idempotent, thus the ring e;Se; contains no
non-trivial idempotents and is therefore a local ring. But the Jacobson radical of
S/J(S) is trivial, so each e;Se; is in fact a division ring, and hence a field. O

Let us recall the definition of a checkered matrix ring.

Definition 2.4. Let R be aring, and M = ©F_, M; a direct sum of R-modules.
Then the ring {[o ;]; s ; € Homp(M;, M;)} is called the checkered matriz ring
of My, ..., My, (and the multiplication of entries is given by the function compo-
sition).

(4)

Suppose R = ¢}, @?;1 Regj), where each el(j) is an idempotent and Re,
is isomorphic to Reff) as a left R-module if and only if i = k. Denote H; =
@?;11%6?) and e; = ez(-l) for each i. We know that Homp(Re;, Re;) ~ e;Re; (as
abelian groups, see [6, Theorem VII.2]), so one can easily see that Hompg(H;, H;)
is isomorphic as a group to the set of ¢; X ¢; matrices with elements in e;Re;.
Thus the checkered matrix ring of Hy, ..., H, is a ring of all block matrices of the
form [A;;], where A;; is a ¢; X ¢; block matrix with elements in e, Re; = ¢;Se; for
the basic ring S associated with R. We shall denote this checkered matrix ring

by M(S,{e1,ea,....en},{q1,q2,- - qn})-
The following theorem can be found in [6, Theorem X.1].

Theorem 2.5. Let R be a ring. Then there exists a basic ring S, a set of or-
thogonal idempotents {e1, ea, ..., e, } and a set of positive integers {q1,qa, ..., qn}
such that the ring R is isomorphic to the checkered matrix ring M (S, {e1,ea, ...,

Gn}, {q17q2a ceey Qn})

The next theorem gives us a characterization of local rings of prime charac-
teristic with the Jacobson radical of nilpotency order 2. Its proof can be found
in [8, Theorem 3.

Theorem 2.6. Let R be a local ring of prime characteristic p with J(R) # 0

and J(R)? = 0. Then there exist integers n, 7, ta, ..., t, such that R is isomorphic
to the ring

a by bs bn,
0 a2 o0 0

K(n,rit):= A(a,ba,bs,....by)=|: . . - © lia,ba,.. by € GF(p") ¥,
afn—1 0
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where k; = p't for alli =2,...,n.
This is now an easy corollary of the theorem.

Corollary 2.7. Let R be a local ring of prime characteristic p with J(R) # 0,
J(R)?> = 0 and q > 2. Then there exists a subring S of M,(R) such that S is
isomorphic to M,(R)/J(M,(R)).

PROOF. Since J(M,(R)) = M,(J(R)), Theorem 2.6 implies that J(R) con-
sists of all the matrices with zero diagonal, S is the subring of R generated by all
block matrices such that all their off-diagonal elements are equal to zero. 0

3. The commuting graphs

Let R be a non-commutative ring, and I' = I'(R) be its commuting graph.
The following lemma shows that in order to study the diameters of commuting
graphs of finite rings, we can limit ourselves to directly indecomposable rings.

Lemma 3.1. Suppose R is non-commutative and R =R, ® Ry & ... ® R,
for some n. Then the following two statements hold:

(1) If exactly one of the rings Ry, Ra, ..., R, is non-commutative (say, R1) then
diam(I'(R)) = diam(T'(Ry)).

(2) If at least two of the rings Ry, Rs,...,R, are non-commutative, then
diam(I'(R)) < 3. In this case, diam(I'((R)) = 3 if and only diam(I'(R;)) > 3

for all non-commutative rings R;.

PROOF. The first statement is obvious. For the second, choose non-central
elements (a1, as,...,ay),(b1,ba,...,b,) € R. Thus, there exist at least one non-
central element a; € R; and at least one non-central element b; € R;. If we can
choose any two i j, then there is a path (a1, as,...,a,)—(0,...,0,a;,0,...,0)—
0,...,0,b;,0,...,0)—(b1,b2,...,b,) in I'(R). Otherwise, the fact that (b1, b,

..,bp) is a non-central element in R implies that b; is non-central in R;. So,
a;,b; € R; are non-central elements, and a;,b; € R; are central for all j # 1.
By the assumption, there exists k € {1,2,...,n} such that k # ¢ and the ring Ry,
is non-commutative. Choose a non-central element ¢, € Rj. Now, we have a path
(ar,a2,...,a,)—(0,...,0,¢k,0,...,0)—(b1,ba,...,b,) in T'(R). This proves that
diam(I'(R)) < 3.

If there exists t € {1,...,n} such that diam(T'(R;)) = 2, then, obviously, also
diam(T'(R)) = 2. Therefore, suppose diam(I'(R;)) > 3 for all non-commutative
rings R;. For these i, there exist a;,b; € R; that are at distance of at least 3 (and
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for all R; that are commutative choose a; = b; = 0). Now, examine the elements
a=(ai,...,an) and b = (by,...,b,) in R. If diam(I'(R)) = 2, then d(a,b) < 2,
so there exists at least one ¢ such that R; is non-commutative and d(a;,b;) < 2,
which is a contradiction. O

Since every finite ring is uniquely expressible as a direct sum of rings of prime
power order (see, for example, [6, Theorem 1.1]), we can therefore limit ourselves
by the above lemma to studying the commuting graphs of rings of prime power
order. As we had previously mentioned, the diameters of commuting graphs of
matrix rings over finite fields have been quite heavily studied elsewhere, so here
we try to generalize some of those results to the commuting graphs of rings that
may have a non-trivial Jacobson radical.

The structure of finite rings in general can still be quite wild, but in some
special cases, we can try to characterize the rings in question and then study their
commuting graphs. Therefore, we now limit ourselves to rings R of characteristic p
with the property that J(R)? = 0.

The following is our main result.

Theorem 3.2. Let R be a non-commutative directly indecomposable ring
of prime characteristic p with J(R)? = 0. Let {e1,...,e,} be the set of all non-
isomorphic minimal idempotents in R, and for each i = 1,...,n let k; denote the
number of minimal idempotents in R isomorphic to the idempotent e;. Then the
following statements hold:

(1) If n =1 and k1 = 1, then I'(R) is not connected.

(2) If n =1 and ky is not a prime, then T'(R) is connected.

(3) If n =2 and k1 = ko = 1, then I'(R) is not connected.

(4) If n >3 orn =2 and ky + ky > 3, then I'(R) is connected.

ProOF. If R = My (F) for a Galois field F and % is not prime, then I'(R)
is connected by [1, Corollary 7]. Suppose now that J(R) # 0. By Theorem 2.5,
we know that R is isomorphic to M (S, {e1,ea,...,en},{q1,92,...,¢n}) for some
basic ring S, a set of orthogonal idempotents {ej, e, ..., e,} and a set of positive
n  q; . .
integers {q1,q2,...,qn}. Denote R =& > > Regj), where Rel(-]) is isomorphic
i=1j=1
to Re,(:) as a left R-module if and only if i = k. By the proof of [6, Theorem X.1],

we know that S = eRe where e = el(.l). Since J(S) = SN J(R), S is a finite
i=1

ring of characteristic p with J(S)? = 0. Also, the fact that egl) is a minimal
idempotent implies that the ring egl)Sel(-l) is a local ring with characteristic p
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and J (ez(.l)SeEl))z = 0 for each i. This means that for each ¢, either egl)Segl)
is a Galois field or J (egl)Segl)) # 0. The latter case by Theorem 2.6 implies
that el(-l)Sel(-l) is isomorphic to the ring K (n;,r;;t;) for some integers n;,r; and
some integer (n; —1)-tuple ¢;. If egl)Sel(-l) is a Galois field, we can also assume
(by a slight abuse of notation) that 651)5651) is isomorphic to the ring K (1,7;;t;)
for some integer r; and an empty set ¢;. By Theorem 2.5, we know that R is now
a block matrix ring, where all the diagonal blocks are matrices from some ring
K(ni, T35 ti)

Suppose first that R is a local ring (thus n = 1 and R = S = egl)Se(ll) =
K(ny,715t1) is a local ring). Since R is not commutative, we have n; > 2 and
r1 > 2, so there exists a € GF(p™) such that diag(a,a*?,...,a*1) is a non-
central element in R where k; = p'i for i = 2,...,n;. However, it can be easily
observed that Cr(diag(a,a*?,...,a%)) = {diag(x,2z*2,..., 2% );2 € GF(p™)},
so the commuting graph of R is not connected.

Next, examine the case n = 1 and R = M, (S) with ¢z > 2. Since § =
651)5’651) and therefore J(S) # 0, S is a local ring that satisfies the assumptions
of Theorem 2.6, so S = K(ni,r1;t1) with n; > 2. Choose matrices A,B € R
and suppose that AB = BA. By Corollary 2.7, there exist matrices A", B’ € R
such that A’B’ = B'A’ with A’ = A and B’ = B. So, A = A’ + j for some
j € J. We examine two cases: if B’ commutes with j, then also A commutes
with B’. So, suppose that B’ and j do not commute. Then, since .J?> = 0, for
any j° € J we know that (A" + j)(B'+j') = (B' + j')(A" + j) if and only if
A'j'—j'A’ = B'j — jB’. By taking into account the structure of matrices in R by
Theorem 2.5, we observe that this is a system of ¢?(g; — 1) linear equations for
¢?(q1 — 1) variables corresponding to the entries of the matrix j/. If this system
of linear equations has a maximal rank, then there exists a solution j' € J.
If, however, the system does not have a maximal rank, we have a nonzero (and
thus noncentral) j' € J such that A’j’ — A’ = 0. This implies that either A
commutes with B’ + j' or it commutes with 5/ for some j' € J. Now, choose
C € R. Since R/J = M, (F) for some Galois field F, by [1, Corollary 7] the
graph I'(R/.J) is connected. Thus, either C is central or there either exists a path
in T'(R/J) from C to the matrix Eq; . By the above argument, this implies that
there either exists a path in T'(R) from C to some matrix j € J or from C to
some D € R, such that D = E1;. Since ¢; > 2, either one of these two matrices
commutes with the non-central matrix zEg, 4, for some nonzero x € J, which
implies that the graph I'(R) is connected.
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It remains for us to consider the case n > 2. Now, for every i = 1,...,n,

(

we can see similarly as above that eil)Segl) is either a Galois field or a ring

satisfying the assumptions of Theorem 2.6, so egl)Segl) = K(n;,74;t;). Now, each
a € Ris of the forma=ay+---+a, +j with a; € el(.l)SeZ(-l) fori=1,...,n and
j € J, and if for each ¢ = 1,...,n the element a; commutes with some element
b; € egl)Segl), then we can see similarly as above (by observing the system of
linear equations for j') that either a commutes with some nonzero element in .J
or there exists j' € J such that a commutes with by + - - - + b, + 7. Suppose first
that n;, > 2 for some 4. Without any loss of generality, we can assume 4o = 1.
Then either a commutes with a nonzero element in J, or we have an element
j' € J such that a commutes with b = egl) + 4/, which further commutes with
any element in J (651)5651)). In both cases, we have a path from a to a noncentral
element in .J, which, together with the fact that J2 = 0, implies that the graph
I'(R) is connected. Next, examine the case n; = 1 foralli =1,...,n. We have two
options: suppose first that n > 2. Since R is directly indecomposable, there exist
i #j€{l,...,n} such that egl)Se§l) # 0. Again, without any loss of generality,
we may assume that ¢ = 1 and j = 2, and choose a nonzero x € egl)S’eél).
Choose also an arbitrary noncentral ¢ € R, and with a similar argument as
before, proceed to find a path in I'(R) from a either to a noncentral element
in J or to some b = egg) + 3, where j' € J. However, b then commutes with z,
so every element is connected with a path to an element in J, and since J2 = 0,
this shows that I'(R) is a connected graph. Finally, we are left to examine the
case n = 2 and k1 = k; = 1. Choose a nonzero x € J and notice that the set
{egl)aegl) + egl)be(;); a # b € S} is a connected component of I'(R) that does not

include egl) + eél) + 2, so I'(R) is disconnected. O
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