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The commuting graphs of finite rings

By DAVID DOLŽAN (Ljubljana)

Abstract. In this paper, we investigate connectivity and diameters of commuting

graphs of finite rings. In case of a directly decomposable ring, we calculate the diameter

depending on the diameters of commuting graphs of direct summands. If the ring is

indecomposable, we examine the connectedness of the commuting graph according to

the number of isomorphic minimal idempotents.

1. Introduction

Commutativity is a well-studied and important concept in the theory of

groups and rings. One approach to studying this property is to associate cer-

tain graphs to these algebraic structures. This approach can be traced back at

least as far as Brauer and Fowler [4], in their attempt towards the classifica-

tion of simple finite groups. More precisely, given an algebraic structure A, one

lets Γ = Γ(A) be a simple (that is, has no loops or multiple edges) undirected

graph, with its vertex set equal to all the noncentral elements from A, and where

two distinct vertices form an edge if the corresponding elements commute in A.

We remark that for abelian algebras, the corresponding commuting graph is empty

(has no vertices).

The commutativity relation sometimes suffices to determine the given alge-

braic structure up to an isomorphism. If one knows the isomorphism type of

the commuting graph of an algebra, then one can often deduce certain properties

of that algebra. For example, Solomon and Woldar [9] showed that if the
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commuting graph of a nonabelian finite simple group A is isomorphic to the com-

muting graph of some group G, then groups A and G are isomorphic. In a similar

vein, Mohammadian [7] showed that a ring R is isomorphic to the matrix alge-

bra M2(F) of 2-by-2 matrices over a finite field F if and only if their commuting

graphs Γ(R) and Γ(M2(F)) are isomorphic.

One of the basic questions concerning commuting graphs is their connect-

edness and diameter. Most of the work that has been done in this regard was

the study of the commuting graph of Mn(F), the algebra of n-by-n matrices over

a field F. For example, it is known that its commuting graph is connected if and

only if for each field extension K/F of degree n, there exists a proper intermediate

subfield F ( L ( K (see [1]). Moreover, whenever the commuting graph of Mn(F)

is connected, its diameter is bounded above by 6 (see [2]). For a finite field F,

the commuting graph of Mn(F) has diameter at most 5 if n is neither a prime nor

a square of a prime (see [5]). Moreover, its diameter equals exactly 4 in case n

is an even number and n ≥ 4. The diameter of the commuting graph of Mp2(F),

p a prime, is (to the author’s knowledge) unsolved as of the writing of this paper.

In this paper, we study the relationship between the structure of a finite

ring and the connectivity and diameter of its commuting graph. Since the class

of finite rings also includes all the above-mentioned cases of matrix rings over

a finite field, the study is of course too broad to be manageable by a single

approach. We therefore limit ourselves to special cases, when the structure of

the ring is known and manageable enough to provide us with sufficient tools.

Thus, we study the diameter of a directly decomposable ring and the connectivity

of an indecomposable ring of prime characteristic with the Jacobson radical of

nilpotency order 2. The methods we use include the checkered matrix ring over

a basic ring associated with the ring in question and a characterization of local

rings of prime characteristic with the Jacobson radical of nilpotency order 2.

2. Definitions and preliminaries

Let us recall some basic definitions that we shall use throughout the paper.

As usual, in a given graph, the path a = x0 . . . xi−1 xi . . . xn = b

connecting vertices a and b has length n, and the length of the shortest path

connecting vertices a and b is called the distance between a and b, and denoted

by d(a, b). We denote d(a, b) =∞ if there is no path connecting a and b, and we

define d(a, a) = 0. The diameter of a graph is a maximal distance between any
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two of its vertices. Note that the diameter is infinite if there is no finite bound

on d(a, b), where a and b range over the vertices.

For a finite ring R, we denote its Jacobson radical by J(R). The ring R is

called a basic ring or a reduced ring if R/J(R) is a direct sum of finite fields. We

shall denote by x ∈ R/J the image of x ∈ R under the canonical homomorphism.

If e and f are idempotents in R, we follow [3] and say that e and f are

isomorphic if Re and Rf are isomorphic left R-modules. If ef = fe = f , we say

that f ≤ e and the smallest non-zero idempotent under ≤ is called a minimal

idempotent.

Also, we shall denote the diagonal matrix with elements a1, . . . , an on the

diagonal by diag(a1, . . . , an), and Eij will denote the matrix with 1 at the position

(i, j) and zeros everywhere else.

All rings in this paper are assumed finite and unital, even if this is perhaps

not always explicitly stated.

The following lemma is straightforward, but we include the proof for the sake

of completeness.

Lemma 2.1. Any ring R can be written as a direct sum of left ideals and

each summand is of the form Re, where e is a minimal idempotent in R.

Proof. Let S = {n ∈ Z+; there are distinct nonzero idempotents e1, . . . , en
of R such that R = Re1 ⊕ . . . ⊕ Ren}. Observe that 1 ∈ S (take e1 = 1), and

also that |S| ≤ |R|. Let N ∈ S be the largest possible, and let e1, . . . , eN be

distinct nonzero idempotents such that R = Re1 ⊕ . . . ⊕ ReN . We claim that

each ei is minimal. Suppose not; without loss of generality, e1 is not minimal.

Thus there is a nonzero idempotent f1 ∈ R such that f1 < e1. One shows easily

that Re1 = Rf1 ⊕R(e1 − f1) and that f1, e1 − f1, e2, . . . , eN are distinct nonzero

idempotents of R which generate R as a direct sum. But this yields a contradiction

to the maximality of N . �

We can now use this fact in the following definition.

Definition 2.2. Suppose R is a ring and R = ⊕n
i=1 ⊕

qi
j=1 L

(j)
i , where L

(j)
i are

left ideals such that L
(j)
i is isomorphic to L

(t)
k as a left R-module if and only if

i = k. Denote L
(j)
i = Re

(j)
i , where

n∑
i=1

qi∑
j=1

e
(j)
i = 1. Denote e

(1)
i by ei for each i

and let e = e1 + e2 + · · ·+ en. We follow [6] to define S = eRe as the basic ring

associated with ring R.

The next short lemma shows that S is indeed a basic ring, thus the definition

makes sense.
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Lemma 2.3. The basic ring associated with a ring R is a basic ring.

Proof. Since eiSej ⊆ S ∩ J(R) = J(S), we have that S/J(S) ' ⊕n
i=1eiSei.

However, for each i, ei is a minimal idempotent, thus the ring eiSei contains no

non-trivial idempotents and is therefore a local ring. But the Jacobson radical of

S/J(S) is trivial, so each eiSei is in fact a division ring, and hence a field. �

Let us recall the definition of a checkered matrix ring.

Definition 2.4. Let R be a ring, andM = ⊕k
n=1Mi a direct sum of R-modules.

Then the ring {[αi,j ];αi,j ∈ HomR(Mi,Mj)} is called the checkered matrix ring

of M1, . . . ,Mk (and the multiplication of entries is given by the function compo-

sition).

Suppose R = ⊕n
i=1 ⊕

qi
j=1 Re

(j)
i , where each e

(j)
i is an idempotent and Re

(j)
i

is isomorphic to Re
(t)
k as a left R-module if and only if i = k. Denote Hi =

⊕qi
j=1Re

(j)
i and ei = e

(1)
i for each i. We know that HomR(Rei, Rej) ' eiRej (as

abelian groups, see [6, Theorem VII.2]), so one can easily see that HomR(Hi, Hj)

is isomorphic as a group to the set of qi × qj matrices with elements in eiRej .

Thus the checkered matrix ring of H1, . . . ,Hn is a ring of all block matrices of the

form [Aij ], where Aij is a qi× qj block matrix with elements in eiRej = eiSej for

the basic ring S associated with R. We shall denote this checkered matrix ring

by M(S, {e1, e2, . . . , en}, {q1, q2, . . . , qn}).
The following theorem can be found in [6, Theorem X.1].

Theorem 2.5. Let R be a ring. Then there exists a basic ring S, a set of or-

thogonal idempotents {e1, e2, . . . , en} and a set of positive integers {q1, q2, . . . , qn}
such that the ring R is isomorphic to the checkered matrix ring M(S, {e1, e2, . . . ,
en}, {q1, q2, . . . , qn}).

The next theorem gives us a characterization of local rings of prime charac-

teristic with the Jacobson radical of nilpotency order 2. Its proof can be found

in [8, Theorem 3].

Theorem 2.6. Let R be a local ring of prime characteristic p with J(R) 6= 0
and J(R)2 = 0. Then there exist integers n, r, t2, . . . , tn such that R is isomorphic
to the ring

K(n, r; t) :=


A(a, b2, b3, . . . , bn)=



a b2 b3 . . . bn
0 ak2 0 . . . 0
...

. . .
. . .

. . .
...

...
. . . akn−1 0

0 0 . . . 0 akn


; a, b2, . . . bn ∈ GF(pr)


,
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where ki = pti for all i = 2, . . . , n.

This is now an easy corollary of the theorem.

Corollary 2.7. Let R be a local ring of prime characteristic p with J(R) 6= 0,

J(R)2 = 0 and q ≥ 2. Then there exists a subring S of Mq(R) such that S is

isomorphic to Mq(R)/J(Mq(R)).

Proof. Since J(Mq(R)) = Mq(J(R)), Theorem 2.6 implies that J(R) con-

sists of all the matrices with zero diagonal, S is the subring of R generated by all

block matrices such that all their off-diagonal elements are equal to zero. �

3. The commuting graphs

Let R be a non-commutative ring, and Γ = Γ(R) be its commuting graph.

The following lemma shows that in order to study the diameters of commuting

graphs of finite rings, we can limit ourselves to directly indecomposable rings.

Lemma 3.1. Suppose R is non-commutative and R = R1 ⊕ R2 ⊕ . . . ⊕ Rn

for some n. Then the following two statements hold:

(1) If exactly one of the rings R1, R2, . . . , Rn is non-commutative (say, R1) then

diam(Γ(R)) = diam(Γ(R1)).

(2) If at least two of the rings R1, R2, . . . , Rn are non-commutative, then

diam(Γ(R)) ≤ 3. In this case, diam(Γ((R)) = 3 if and only diam(Γ(Ri)) ≥ 3

for all non-commutative rings Ri.

Proof. The first statement is obvious. For the second, choose non-central

elements (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ R. Thus, there exist at least one non-

central element ai ∈ Ri and at least one non-central element bj ∈ Rj . If we can

choose any two i 6=j, then there is a path (a1, a2, . . . , an) (0, . . . , 0, ai, 0, . . . , 0)

(0, . . . , 0, bj , 0, . . . , 0) (b1, b2, . . . , bn) in Γ(R). Otherwise, the fact that (b1, b2,

. . . , bn) is a non-central element in R implies that bi is non-central in Ri. So,

ai, bi ∈ Ri are non-central elements, and aj , bj ∈ Rj are central for all j 6= i.

By the assumption, there exists k ∈ {1, 2, . . . , n} such that k 6= i and the ring Rk

is non-commutative. Choose a non-central element ck ∈ Rk. Now, we have a path

(a1, a2, . . . , an) (0, . . . , 0, ck, 0, . . . , 0) (b1, b2, . . . , bn) in Γ(R). This proves that

diam(Γ(R)) ≤ 3.

If there exists t ∈ {1, . . . , n} such that diam(Γ(Rt)) = 2, then, obviously, also

diam(Γ(R)) = 2. Therefore, suppose diam(Γ(Ri)) ≥ 3 for all non-commutative

rings Ri. For these i, there exist ai, bi ∈ Ri that are at distance of at least 3 (and
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for all Rj that are commutative choose aj = bj = 0). Now, examine the elements

a = (a1, . . . , an) and b = (b1, . . . , bn) in R. If diam(Γ(R)) = 2, then d(a, b) ≤ 2,

so there exists at least one i such that Ri is non-commutative and d(ai, bi) ≤ 2,

which is a contradiction. �

Since every finite ring is uniquely expressible as a direct sum of rings of prime

power order (see, for example, [6, Theorem I.1]), we can therefore limit ourselves

by the above lemma to studying the commuting graphs of rings of prime power

order. As we had previously mentioned, the diameters of commuting graphs of

matrix rings over finite fields have been quite heavily studied elsewhere, so here

we try to generalize some of those results to the commuting graphs of rings that

may have a non-trivial Jacobson radical.

The structure of finite rings in general can still be quite wild, but in some

special cases, we can try to characterize the rings in question and then study their

commuting graphs. Therefore, we now limit ourselves to rings R of characteristic p

with the property that J(R)2 = 0.

The following is our main result.

Theorem 3.2. Let R be a non-commutative directly indecomposable ring

of prime characteristic p with J(R)2 = 0. Let {e1, . . . , en} be the set of all non-

isomorphic minimal idempotents in R, and for each i = 1, . . . , n let ki denote the

number of minimal idempotents in R isomorphic to the idempotent ei. Then the

following statements hold:

(1) If n = 1 and k1 = 1, then Γ(R) is not connected.

(2) If n = 1 and k1 is not a prime, then Γ(R) is connected.

(3) If n = 2 and k1 = k2 = 1, then Γ(R) is not connected.

(4) If n ≥ 3 or n = 2 and k1 + k2 ≥ 3, then Γ(R) is connected.

Proof. If R = Mk(F) for a Galois field F and k is not prime, then Γ(R)

is connected by [1, Corollary 7]. Suppose now that J(R) 6= 0. By Theorem 2.5,

we know that R is isomorphic to M(S, {e1, e2, . . . , en}, {q1, q2, . . . , qn}) for some

basic ring S, a set of orthogonal idempotents {e1, e2, . . . , en} and a set of positive

integers {q1, q2, . . . , qn}. Denote R = ⊕
n∑

i=1

qi∑
j=1

Re
(j)
i , where Re

(j)
i is isomorphic

to Re
(t)
k as a left R-module if and only if i = k. By the proof of [6, Theorem X.1],

we know that S = eRe where e =
n∑

i=1

e
(1)
i . Since J(S) = S ∩ J(R), S is a finite

ring of characteristic p with J(S)2 = 0. Also, the fact that e
(1)
i is a minimal

idempotent implies that the ring e
(1)
i Se

(1)
i is a local ring with characteristic p
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and J
(
e
(1)
i Se

(1)
i

)2
= 0 for each i. This means that for each i, either e

(1)
i Se

(1)
i

is a Galois field or J
(
e
(1)
i Se

(1)
i

)
6= 0. The latter case by Theorem 2.6 implies

that e
(1)
i Se

(1)
i is isomorphic to the ring K(ni, ri; ti) for some integers ni, ri and

some integer (ni−1)-tuple ti. If e
(1)
i Se

(1)
i is a Galois field, we can also assume

(by a slight abuse of notation) that e
(1)
i Se

(1)
i is isomorphic to the ring K(1, ri; ti)

for some integer ri and an empty set ti. By Theorem 2.5, we know that R is now

a block matrix ring, where all the diagonal blocks are matrices from some ring

K(ni, ri; ti).

Suppose first that R is a local ring (thus n = 1 and R = S = e
(1)
1 Se

(1)
1 =

K(n1, r1; t1) is a local ring). Since R is not commutative, we have n1 ≥ 2 and

r1 ≥ 2, so there exists a ∈ GF(pr1) such that diag(a, ak2 , . . . , akn1 ) is a non-

central element in R where ki = pti for i = 2, . . . , n1. However, it can be easily

observed that CR(diag(a, ak2 , . . . , akn1 )) = {diag(x, xk2 , . . . , xkn1 );x ∈ GF(pr1)},
so the commuting graph of R is not connected.

Next, examine the case n = 1 and R = Mq1(S) with q1 ≥ 2. Since S =

e
(1)
i Se

(1)
i and therefore J(S) 6= 0, S is a local ring that satisfies the assumptions

of Theorem 2.6, so S = K(n1, r1; t1) with n1 ≥ 2. Choose matrices A,B ∈ R

and suppose that AB = BA. By Corollary 2.7, there exist matrices A′, B′ ∈ R
such that A′B′ = B′A′ with A′ = A and B′ = B. So, A = A′ + j for some

j ∈ J . We examine two cases: if B′ commutes with j, then also A commutes

with B′. So, suppose that B′ and j do not commute. Then, since J2 = 0, for

any j′ ∈ J we know that (A′ + j)(B′ + j′) = (B′ + j′)(A′ + j) if and only if

A′j′− j′A′ = B′j− jB′. By taking into account the structure of matrices in R by

Theorem 2.5, we observe that this is a system of q21(q1 − 1) linear equations for

q21(q1 − 1) variables corresponding to the entries of the matrix j′. If this system

of linear equations has a maximal rank, then there exists a solution j′ ∈ J .

If, however, the system does not have a maximal rank, we have a nonzero (and

thus noncentral) j′ ∈ J such that A′j′ − j′A′ = 0. This implies that either A

commutes with B′ + j′ or it commutes with j′ for some j′ ∈ J . Now, choose

C ∈ R. Since R/J = Mq1(F) for some Galois field F, by [1, Corollary 7] the

graph Γ(R/J) is connected. Thus, either C is central or there either exists a path

in Γ(R/J) from C to the matrix E11 . By the above argument, this implies that

there either exists a path in Γ(R) from C to some matrix j ∈ J or from C to

some D ∈ R, such that D = E11. Since q1 ≥ 2, either one of these two matrices

commutes with the non-central matrix xEq1,q1 for some nonzero x ∈ J , which

implies that the graph Γ(R) is connected.
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It remains for us to consider the case n ≥ 2. Now, for every i = 1, . . . , n,

we can see similarly as above that e
(1)
i Se

(1)
i is either a Galois field or a ring

satisfying the assumptions of Theorem 2.6, so e
(1)
i Se

(1)
i = K(ni, ri; ti). Now, each

a ∈ R is of the form a = a1 + · · ·+ an + j with ai ∈ e(1)i Se
(1)
i for i = 1, . . . , n and

j ∈ J , and if for each i = 1, . . . , n the element ai commutes with some element

bi ∈ e
(1)
i Se

(1)
i , then we can see similarly as above (by observing the system of

linear equations for j′) that either a commutes with some nonzero element in J

or there exists j′ ∈ J such that a commutes with b1 + · · ·+ bn + j′. Suppose first

that ni0 ≥ 2 for some i0. Without any loss of generality, we can assume i0 = 1.

Then either a commutes with a nonzero element in J , or we have an element

j′ ∈ J such that a commutes with b = e
(1)
1 + j′, which further commutes with

any element in J(e
(1)
i Se

(1)
i ). In both cases, we have a path from a to a noncentral

element in J , which, together with the fact that J2 = 0, implies that the graph

Γ(R) is connected. Next, examine the case ni = 1 for all i = 1, . . . , n. We have two

options: suppose first that n > 2. Since R is directly indecomposable, there exist

i 6= j ∈ {1, . . . , n} such that e
(1)
i Se

(1)
j 6= 0. Again, without any loss of generality,

we may assume that i = 1 and j = 2, and choose a nonzero x ∈ e
(1)
1 Se

(1)
2 .

Choose also an arbitrary noncentral a ∈ R, and with a similar argument as

before, proceed to find a path in Γ(R) from a either to a noncentral element

in J or to some b = e
(3)
1 + j′, where j′ ∈ J . However, b then commutes with x,

so every element is connected with a path to an element in J , and since J2 = 0,

this shows that Γ(R) is a connected graph. Finally, we are left to examine the

case n = 2 and k1 = k2 = 1. Choose a nonzero x ∈ J and notice that the set

{e(1)1 ae
(1)
1 + e

(1)
2 be

(1)
2 ; a 6= b ∈ S} is a connected component of Γ(R) that does not

include e
(1)
1 + e

(1)
2 + x, so Γ(R) is disconnected. �
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