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Mean invariance identity

By JANUSZ MATKOWSKI (Zielona Géra)

Dedicated to Professor Zoltan Dardczy on the occasion of his 80th birthday

Abstract. For a continuous and increasing function f in a real interval I, and
a bivariable mean P defined in I?, we prescribe a pair of bivariable means M and N such
that the quasiarithmetic mean Ay generated by f is invariant with respect to the mean-
type mapping (M, N). This allows to find effectively the limit of the iterates of the mean-
type mapping (M, N). The means M and N are equal iff P is the arithmetic mean A;
they are symmetric iff so so is P. Treating f and P as the parameters, we obtain the
family of all pairs of means (M, N) such that the quasiarithmetic mean Ay is invariant
with respect to (M, N). In particular, we indicate the function f and the mean P such
that the invariance identity Ay o (M, N) = Ay coincides with the equality G o (H, A),
where G and H are the geometric and harmonic means, equivalent to the classical
Pythagorean harmony proportion.

Some examples and an application are also presented.

1. Introduction

A function M : I? — I is a mean in an interval I C R if
min (z,y) < M (z,y) < max (z,y), z,y¢€l.

The mean M is called strict if these inequalities are sharp for all z,y € I; = # y.
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Let K, M,N : I2 — I be means in I. The mean K is called invariant with
respect to the mean-type mapping (M, N) (briefly, (M, N)-invariant mean) if

Ko (M,N)=K.

The invariance of a mean with respect to a mean-type mapping is essential
in applications. For instance, the invariance of the geometric bivariable mean G
with respect to the mean-type mapping (A, H), where A and H are the arithmetic
and harmonic bivariable means, i.e. the identity

Go(AH) =G,

equivalent to the classical Pythagorean harmony proportion, allows to deduce the
convergence of the sequence of iterates of the mapping (A, H) to (G, G) in (0, 00)?.
Of course, each of the means occurring here is quasiarithmetic. In the present
paper, for every bivariable mean and an increasing generator of a quasiarithmetic
mean, we establish a bivariable mean-type mapping with respect to which the
quasi-arithmetic mean is invariant. More precisely, given a continuous strictly
increasing function f defined in an interval I C R and a bivariable function
P :1? — I, in Section 2. we construct two functions M, N : I? — R such that
P is a mean in I iff so are the functions M, N : I? — R. Moreover, M = N iff
P is the arithmetic mean A; the functions M and N are symmetric iff so is P;
the quasiarithmetic mean Ay generated by f is invariant with respect to the
mapping (M, N), i.e. Afo (M,N) = Ay, which allows to determine effectively
the limit of the sequence of its iterates (Theorem 1).

Treating f and P as the parameters, we obtain the family of all pairs of
bivariable means (M, N) such that the quasiarithmetic mean Ay is invariant with
respect to (M, N). In particular, taking I = (0,00), f = log, and P defined by

loe (25)" (571).
log %
we get Ay =G, M = H, N = A, where G and H denote the geometric and har-
monic means and, moreover, the invariance identity Ay o (M, N) = Ay coincides
with the equality Go (H, A) = G.
In Section 3, we prove Theorem 2, which is in a sense “dual” to Theorem 1.

P(z,y) = , x,y >0,

Let us note that, in the case of symmetric means, a general invariance identity
for k-variables generalized quasiarithmetic means introduced in [6], [9] trivializes.
The invariance formulas proposed here are nontrivial and may be interesting also
for symmetric means.

Some examples and an application for effectively solving a functional equation
are presented.
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2. Family of mean-type mappings and invariant
quasiarithmetic means

We shall need the following ([8]; see also [5]).

Lemma 1. Let I C R be an interval. Suppose that M, N : I? — I are
continuous means such that, for all x,y € I, x # y,

|M (z,y) — N (x,y)| < |z —y]. (1)

Then there exists a unique (M, N)-invariant mean K. Moreover, K is continuous
and the sequence of iterates (M,,N,) = (M,N)", n € N, of the mean-type
mapping (M, N) converges to the mean-type mapping (K, K) in I?; in particular,
lim M, (z,y) = lim N, (z,y) = K (z,y), =z,y€l.
n—oo

n—o0

Theorem 1. Let f : I — R be a continuous strictly increasing function in
an interval I, and let P : I? — I be such that for all z,y € I, x # vy, the numbers
L) f (@) + P00 £ () and E=LED £ (y) 4 P f (3) belong to f (1)
Then it holds: ' ‘

(i) The function M : I? — I defined by

(e f (n) 4 Benvp ()| fora £y,

x, for x =y,

M (z,y) =
is a (strict) mean in I if, and only if, P is a (strict) mean.
(ii) The function N : I? — I defined by

f (R () + Pe f (@), foraty,

x, for x =y,

N (z,y) =

is a (strict) mean in I if, and only if, P is a (strict) mean.
(ili) M = N iff P = A, where A is the arithmetic mean.
(iv) M (N) is symmetric if so is P.
(v) The quasiarithmetic mean Ay : I? — I,

Ag (2,y) = f7 (W)

is invariant with respect to the mapping (M, N) : I? — I?, i.e.

AfO(M,N) :Af
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(vi) If P is a continuous and strict mean, then the sequence ((M, N)" : n € Ny)
of iterates of the mean-type mapping (M, N) converges pointwise in I? and

nlLIr;o (M, N)n = (Af,Af) .
PROOF. (i) Assume that P is a strict mean in I, and take arbitrary =,y € I,
x # y. Without any loss of generality, we can assume that z < y. Since x <
P (z,y) <y, we have

x—P(x,y) P(x,y)—vy x—P(x,y)+P(m,y)—y

) €(0,1) and =1
rT—y Ty T—-yY T—-y
Hence, as f is increasing,
z—P(z,y) Px,y) —y
f@) < TR @) = W) < ),

whence (z.9) (z.9)
1 (x—P(z,y P(x,y)—vy
ve (B ¢ PED ) <
r—y r—y

that is min(z,y) = * < M (z,y) < y = max(z,y), which shows that M is
a mean in I.

Assume that M is a mean and take x,y € I, x < y. The definition of M and
the monotonicity of f imply that

~ P(x, P(z,y) —
Fo) < 0Dy PNV ) < ),
or equivalently, that
P — - P
0< TIN5 )~ p) and 0< ZEEED () - g
Since f (y) — f (z) > 0, we hence get
P(l’,y)—y>0 and (E—P(.’E,y)>07
T—y T—y

which implies that = min (z,y) < P (z,y) < max (z,y) = y, showing that P is
a strict mean in I.

(ii) Since the proof is similar as in the case (i), we omit it.
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(iii) Tt is easy to verify that, for z # y, the equality M (x,y) = N (x,y)

holds if
PP (g POD Uy 2= PED g POV
Y r—y T—Yy T —y
that is, iff

[f () = f W] 2P (z,y) =2z —y] =0,

whence, taking into account that f is one-to-one, iff

r+y
Plz,y)=——-

(iv) If M (z,y) = M (y,z) for x # y, then, by the definition of M,

xz— P(x, P(z,y) — —Py,x P(y,x) —

TPED p gy PN ) v P W) ) POT 2
r—y r—y y—x y—zx

whence, after simple calculations,

[f (x) = fF W] [P (z,y) — P (y,2))] = 0,

which holds true only if P (x,y) = P (y,z)) for all x # y.
(v) From the definitions of the means M, N and Ay, we have for all z,y € I,

—1 [ z—P(z,y) P(z,y)—
Ago (M,N) (z,y) = f~ f(f ( o f(;H E y“”))
LT (R )+ P @)
2

= (W) = Ay (z,y),

so Ay is (M, N)-invariant.
(vi) Since every strict mean satisfies condition (1), this result follows from
O

Lemma 1.
Remark 1. If P is a mean in I, then it is continuous on the diagonal

{(z,z) : © € I} of the square I x I, ([8]).
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Remark 2. If P is a mean in I, then the numbers =2 y) fx)+ P(m’y WY f ()

z—P(z,y) P(z,
and = f (y) + —5 yy Lf(x) belong‘to f(I). To see that the converse is not
true, take, for instance, I = R, f (z) = 2% and P (z,y) =22 —y

The following remark shows that the above theorem contains, as a very spe-
cial case, the Pythagorean harmony proportion invariance identity Go(H, A) = G.

Remark 3. Let P : (0,00)° — (0,00) be defined by

o ety )@ .
W, if v # y,

P(2,y) = ’ W
z, lf r =1,

and let f =log. From (2) an (3) we get

:A =
g N@y =A@y =—-,

Applying Theorem 1 (i) and (ii), we conclude that P is a strict mean and,

M (z,y) = H (z,y) =

z,y > 0.

of course,

A (z,9) = G (x,y) = Ty, *,y>0,
Moreover, P is continuous. By part (iv) of Theorem 1, we obtain the classi-
cal invariance identity G o (H, A) = G, equivalent to the Pythagorean harmony
proportion, which, in view of part (v), implies

lim (H,A)" = (G,G) pointwise in (0,00)°.

n—
PRrROOF. By (2) with P given by (4) and f = log, by simple calculations,
for z # y, we get

(N mEPE)
log £ log £
M (z,y) = exp . zy log z + iy—y logy
2
= = —H(zy),
r+y
and, by (3),
_ log(FE5)"(557)” g ()" ()" _
log £ log &
N (z,y) = exp m—i{y logy + gxy_y log
ZI;y A(z,y).

Since M is a strict mean, in view of Theorem 1, so is P. The remaining facts
follow from Theorem 1 and Remark 1. U
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Simple calculations allow to verify the following:

Remark 4. The mean M given by (2) in Theorem 1 is quasiarithmetic iff
there is a continuous and strictly increasing g : I — R such that
yf () —xf(x) + (x —y) [ (44 (z,9))
Pmay: ) l’,yEI,QE#y.
() 7w~ f )
The mean N given by (3) in Theorem 1 is quasiarithmetic iff there is a con-
tinuous and strictly increasing h : I — R such that
_yf@) —zf )+ (@—y) f(An(z,y))

P(z,y) = F@ -7 , Ty €el, x#y.

Thus both M and N are quasiarithmetic iff there are continuous and strictly

increasing functions g,h : I — R such that the right-hand sides of the above
expressions are equal. Comparing them, we get the equality

f(Ag (2,9)) + [ (An (z,9)) = [ () + f(y), @yl

first considered by O. SuTO [10] for analytic functions, then by the present au-
thor [4] in the class of twice differentiable functions, and in the general case by
Z. DArROCzY and Zs. PALES [1].

This remark remains true if we replace A, and Ay, by the weighted quasiarith-
metic means Ay and Aj, 1, where

Aga(z,y) =97 (tg(@) +(1-1)g(y), wzyel
(see also [2] and J. JARCZYK [3]). Hence, applying the main result of [1], we get

Remark 5. Let f,g,h: I — R be a continuous strictly increasing function in
an interval I, and let ¢ € (0,1). Then the following conditions are equivalent:

(i) Ay is invariant with respect to the mean type mapping (Ag¢, An,1-¢), i-e.
Ago(Ags, Ana—t) = Ay

(ii) The function P : I? — R,

) —af @) a9 f(Age(ey))
7w 7 , iaFy,
P (z,y) =

x, ifx =y,

is a mean.
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(iii) There is a real number a > 0, a # 1, such that for all z,y € I,

Agi (x,y) = f1 <loga (taf(x) +(1-1) af(zz))) ,

At (z,y) = f1 <loga ((1 —t)af@ 4 taf(y)» .

In particular, we hence get the following:

Invariance Identity. If f: 1 — R is continuous and strictly monotonic in an
interval I, t € (0,1), and a > 0, a # 1, then

Ay (f’l(loga (taf(z)+(1—t) af(y)>) ,fﬁl(loga ((l—t) af(””)+taf(y)>)) =As(z,y),

for all z,y € I.
Taking here f =log, a = e and t = 1/2, we get Go (A, H) = G.

3. A dual result

Theorem 2. Let f : I — R be a continuous strictly increasing function in
an interval I, and let M, N : I?> — I. Then it holds:

(i) M is a (strict) mean in I iff the function P : I*> — R defined by

zf(x)—yf(y+(y—z) f(M(z,y)) :
@) T () , ifz#y,

P(z,y) =
T, ifx=uy,

is a (strict) mean in I.
(ii) N is a (strict) mean in I iff the function Q : I? — R defined by

yf(@)—zf(y)+(x—y) f(N(z,y)) :
F@)—7(y) , ifz#y,

Q (CE, y) =

x, ifex =y,

is a (strict) mean in I.
(iii) M (N) is symmetric iff so is P (Q).
(iv) The quasiarithmetic mean Ay is invariant with respect to the mapping
(M,N):1* — I? iff
P=qQ.
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PROOF. (i) Assume that M is a mean in I, and take arbitrary z,y € I,
x # y. Assuming (without loss of generality) that < y, i.e. that x = min (z,y)
and y = max (z,y), we hence get

y < M(z,y) <y,
whence, as f is increasing,

fx) < f(M(2,9) < f(y).

Consequently, we have

(y—o)f(@)<(y—a)f(M(z,9), (y—2z)f(M(=z,y)<y—2z)f(y),

or, equivalently,

yf (x) <aof (x)+(y—x) f (M (z,y), —yf@W)+y—2z)f(M(z,y) <—xf(y).

Adding (—yf (y)) to both of the first of these inequalities, and zf (z) to both
sides of the second one, gives

yf (@) —yf(y) <af (x) —yf () + (y—x) f (M (z,y))

and
af (@) —yf )+ —2z) f(M(z,y) <zf (x) —zf (y),

whence
ylf (@)= f)l <af(z)—yf)+y—2) f(M(y) <z[f() - f)].

Since f is strictly increasing and = < y, we hence get

af (x) —yf(y) + (y —2) f (M (2,9))
f(@) = f(y)

min (z,y) =z < <y =max(z,y),
which proves that P is a mean.

Clearly, in the case when M is a strict mean, all these inequalities are sharp,
implying that P is also strict.

As all the above inequalities are equivalent, the converse implication holds
true.

(ii) We omit similar argument as in case (i), as well as easy calculations
needed to verify (iii).
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To prove (iv) note that equality P = @ is holds iff, for all z,y € I, x # y,

ef (@) —yf )+ y—2) f(M(z,y) _yf(x) —xfy)+ @ -y f(N(z,y)
f@)=f(y) f@) =) ’

which simplifies to the equality

f(M(a:,y))—i—f(M(x,y))zf(x)+f(y), v,y €l,x #y,

which is equivalent to the invariance relation Ay o (M, N) = Ay. O

Remark 6. The functions M and N in Theorem 2 (as well as the function P
in Theorem 1) need not be means.

To see it, consider two examples.

Ezample 1. Take I =R or I = (0,00); f :=1id; a,b € (0,1), b # 1 — a, and
define M, N : I? — I by

M (z,y) = ax +by, N(z,y)=(1—-a)z+(1-by, zycl
Then neither M nor N is a mean. However, we have Ay o (M,N) = Ay.

Ezxample 2. Take I = (0,00), f = log. Let M : I? — I be an arbitrary

function, and let
ry

N(iﬂ,y) = M7

z,y > 0.

Since Ay = G and, for all z,y > 0,

202 + 4?2 z+2y
x4 2y 222+ y?

GO(M,N)(JJ,y)\/ xy:\/a?:G(xay)a

the invariance equality holds.

4. An application

Theorem 3. Let f : I — R be a continuous strictly increasing function in
an interval I, let P : I?> — I a continuous a strict mean, and let M,N : I?> = I
be defined by (2) and (3). Assume that ® : I? — R is continuous on the diagonal
{(z,z) :x €I}.

Then the function ® satisfies the functional equation

¢ (M (z,y),N (z,y)) = @ (2,y), xy€l, (5)

if, and only if, there exists a continuous single variable function ¢ : I — R such
that ® = o Ay.
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PROOF. If @ : I? — R satisfies (5), then, by induction, we get
O (z,y) =Po((M,N)")(z,y), neN, x,yel, (6)

where (M, N)" is the n-th iterate of the mean-type mapping. In view of Theo-
rem 1 (v)—(vi), the means M and N are strict means

lim (M,N)" (z,y) = (Af (z,y), Af (z,y)), z,yel.

n—oo

Therefore, letting n — oo in (6) and making use of the continuity of ® on the
diagonal, we obtain

q)(may):(I)O(Af(x’y)’Af(x7y))7 z,y € 1.

Setting
pt):=d(t,t), tel,
we obtain
O (z,y) = po(Af) (x,y), myel
The converse implication is easy to verify. (]

For other applications of invariance, see [7].
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