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Mean invariance identity

By JANUSZ MATKOWSKI (Zielona Góra)

Dedicated to Professor Zoltán Daróczy on the occasion of his 80th birthday

Abstract. For a continuous and increasing function f in a real interval I, and

a bivariable mean P defined in I2, we prescribe a pair of bivariable means M and N such

that the quasiarithmetic mean Af generated by f is invariant with respect to the mean-

type mapping (M,N). This allows to find effectively the limit of the iterates of the mean-

type mapping (M,N). The means M and N are equal iff P is the arithmetic mean A;

they are symmetric iff so so is P . Treating f and P as the parameters, we obtain the

family of all pairs of means (M,N) such that the quasiarithmetic mean Af is invariant

with respect to (M,N). In particular, we indicate the function f and the mean P such

that the invariance identity Af ◦ (M,N) = Af coincides with the equality G ◦ (H,A),

where G and H are the geometric and harmonic means, equivalent to the classical

Pythagorean harmony proportion.

Some examples and an application are also presented.

1. Introduction

A function M : I2 → I is a mean in an interval I ⊂ R if

min (x, y) ≤M (x, y) ≤ max (x, y) , x, y ∈ I.

The mean M is called strict if these inequalities are sharp for all x, y ∈ I; x 6= y.
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Let K,M,N : I2 → I be means in İ. The mean K is called invariant with

respect to the mean-type mapping (M,N) (briefly, (M,N)-invariant mean) if

K ◦ (M,N) = K.

The invariance of a mean with respect to a mean-type mapping is essential

in applications. For instance, the invariance of the geometric bivariable mean G

with respect to the mean-type mapping (A,H), where A and H are the arithmetic

and harmonic bivariable means, i.e. the identity

G ◦ (A,H) = G,

equivalent to the classical Pythagorean harmony proportion, allows to deduce the

convergence of the sequence of iterates of the mapping (A,H) to (G,G) in (0,∞)
2
.

Of course, each of the means occurring here is quasiarithmetic. In the present

paper, for every bivariable mean and an increasing generator of a quasiarithmetic

mean, we establish a bivariable mean-type mapping with respect to which the

quasi-arithmetic mean is invariant. More precisely, given a continuous strictly

increasing function f defined in an interval I ⊂ R and a bivariable function

P : I2 → I, in Section 2. we construct two functions M,N : I2 → R such that

P is a mean in I iff so are the functions M,N : I2 → R. Moreover, M = N iff

P is the arithmetic mean A; the functions M and N are symmetric iff so is P ;

the quasiarithmetic mean Af generated by f is invariant with respect to the

mapping (M,N), i.e. Af ◦ (M,N) = Af , which allows to determine effectively

the limit of the sequence of its iterates (Theorem 1).

Treating f and P as the parameters, we obtain the family of all pairs of

bivariable means (M,N) such that the quasiarithmetic mean Af is invariant with

respect to (M,N). In particular, taking I = (0,∞), f = log, and P defined by

P (x, y) =
log
(

2x
x+y

)y (
x+y
2y

)x
log x

y

, x, y > 0,

we get Af = G, M = H, N = A, where G and H denote the geometric and har-

monic means and, moreover, the invariance identity Af ◦ (M,N) = Af coincides

with the equality G ◦ (H,A) = G.

In Section 3, we prove Theorem 2, which is in a sense “dual” to Theorem 1.

Let us note that, in the case of symmetric means, a general invariance identity

for k-variables generalized quasiarithmetic means introduced in [6], [9] trivializes.

The invariance formulas proposed here are nontrivial and may be interesting also

for symmetric means.

Some examples and an application for effectively solving a functional equation

are presented.
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2. Family of mean-type mappings and invariant

quasiarithmetic means

We shall need the following ([8]; see also [5]).

Lemma 1. Let I ⊂ R be an interval. Suppose that M,N : I2 → I are

continuous means such that, for all x, y ∈ I, x 6= y,

|M (x, y)−N (x, y)| < |x− y| . (1)

Then there exists a unique (M,N)-invariant mean K. Moreover, K is continuous

and the sequence of iterates (Mn, Nn) := (M,N)
n
, n ∈ N, of the mean-type

mapping (M,N) converges to the mean-type mapping (K,K) in I2; in particular,

lim
n→∞

Mn (x, y) = lim
n→∞

Nn (x, y) = K (x, y) , x, y ∈ I.

Theorem 1. Let f : I → R be a continuous strictly increasing function in

an interval I, and let P : I2 → I be such that for all x, y ∈ I, x 6= y, the numbers
x−P (x,y)

x−y f (x) + P (x,y)−y
x−y f (y) and x−P (x,y)

x−y f (y) + P (x,y)−y
x−y f (x) belong to f (I).

Then it holds:

(i) The function M : I2 → I defined by

M (x, y) :=

f−1
(

x−P (x,y)
x−y f (x) + P (x,y)−y

x−y f (y)
)
, for x 6= y,

x, for x = y,
(2)

is a (strict) mean in I if, and only if, P is a (strict) mean.

(ii) The function N : I2 → I defined by

N (x, y) :=

f−1
(

x−P (x,y)
x−y f (y) + P (x,y)−y

x−y f (x)
)
, for x 6= y,

x, for x = y,
(3)

is a (strict) mean in I if, and only if, P is a (strict) mean.

(iii) M = N iff P = A, where A is the arithmetic mean.

(iv) M (N) is symmetric if so is P .

(v) The quasiarithmetic mean Af : I2 → I,

Af (x, y) := f−1
(
f (x) + f (y)

2

)
is invariant with respect to the mapping (M,N) : I2 → I2, i.e.

Af ◦ (M,N) = Af .
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(vi) If P is a continuous and strict mean, then the sequence ((M,N)
n

: n ∈ N0)

of iterates of the mean-type mapping (M,N) converges pointwise in I2 and

lim
n→∞

(M,N)
n

= (Af , Af ) .

Proof. (i) Assume that P is a strict mean in I, and take arbitrary x, y ∈ I,

x 6= y. Without any loss of generality, we can assume that x < y. Since x <

P (x, y) < y, we have

x− P (x, y)

x− y
,
P (x, y)− y

x− y
∈ (0, 1) and

x− P (x, y)

x− y
+

P (x, y)− y

x− y
= 1.

Hence, as f is increasing,

f (x) <
x− P (x, y)

x− y
f (x) +

P (x, y)− y

x− y
f (y) < f (y) ,

whence

x < f−1
(
x− P (x, y)

x− y
f (x) +

P (x, y)− y

x− y
f (x)

)
< y,

that is min (x, y) = x < M (x, y) < y = max (x, y), which shows that M is

a mean in I.

Assume that M is a mean and take x, y ∈ I, x < y. The definition of M and

the monotonicity of f imply that

f (x) <
x− P (x, y)

x− y
f (x) +

P (x, y)− y

x− y
f (y) < f (y) ,

or equivalently, that

0 <
P (x, y)− y

x− y
[f (y)− f (x)] and 0 <

x− P (x, y)

x− y
[f (y)− f (x)] .

Since f (y)− f (x) > 0, we hence get

P (x, y)− y

x− y
> 0 and

x− P (x, y)

x− y
> 0,

which implies that x = min (x, y) < P (x, y) < max (x, y) = y, showing that P is

a strict mean in I.

(ii) Since the proof is similar as in the case (i), we omit it.
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(iii) It is easy to verify that, for x 6= y, the equality M (x, y) = N (x, y)

holds if

x− P (x, y)

x− y
f (x) +

P (x, y)− y

x− y
f (y) =

x− P (x, y)

x− y
f (y) +

P (x, y)− y

x− y
f (x) ,

that is, iff

[f (x)− f (y)] [2P (x, y)− x− y] = 0,

whence, taking into account that f is one-to-one, iff

P (x, y) =
x + y

2
.

(iv) If M (x, y) = M (y, x) for x 6= y, then, by the definition of M ,

x− P (x, y)

x− y
f (x) +

P (x, y)− y

x− y
f (y) =

y − P (y, x)

y − x
f (y) +

P (y, x)− y

y − x
f (x) ,

whence, after simple calculations,

[f (x)− f (y)] [P (x, y)− P (y, x))] = 0,

which holds true only if P (x, y) = P (y, x)) for all x 6= y.

(v) From the definitions of the means M,N and Af , we have for all x, y ∈ I,

Af ◦ (M,N) (x, y) = f−1

f
(
f−1

(
x−P (x,y)

x−y f (x) + P (x,y)−y
x−y f (y)

))
2

+
f
(
f−1

(
x−P (x,y)

x−y f (y) + P (x,y)−y
x−y f (x)

))
2


= f−1

(
f (x) + f (y)

2

)
= Af (x, y) ,

so Af is (M,N)-invariant.

(vi) Since every strict mean satisfies condition (1), this result follows from

Lemma 1. �

Remark 1. If P is a mean in I, then it is continuous on the diagonal

{(x, x) : x ∈ I} of the square I × I, ([8]).
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Remark 2. If P is a mean in I, then the numbers x−P (x,y)
x−y f (x)+P (x,y)−y

x−y f (y)

and x−P (x,y)
x−y f (y) + P (x,y)−y

x−y f (x) belong to f (I). To see that the converse is not

true, take, for instance, I = R, f (x) = x3 and P (x, y) = 2x− y.

The following remark shows that the above theorem contains, as a very spe-

cial case, the Pythagorean harmony proportion invariance identity G◦(H,A) = G.

Remark 3. Let P : (0,∞)
2 → (0,∞) be defined by

P (x, y) :=


log( 2x

x+y )
y
( x+y

2y )
x

log x
y

, if x 6= y,

x, if x = y,

(4)

and let f = log. From (2) an (3) we get

M (x, y) = H (x, y) =
2xy

x + y
, N (x, y) = A (x, y) =

x + y

2
, x, y > 0.

Applying Theorem 1 (i) and (ii), we conclude that P is a strict mean and,

of course,

A[f ] (x, y) = G (x, y) =
√
xy, x, y > 0,

Moreover, P is continuous. By part (iv) of Theorem 1, we obtain the classi-

cal invariance identity G ◦ (H,A) = G, equivalent to the Pythagorean harmony

proportion, which, in view of part (v), implies

lim
n→∞

(H,A)
n

= (G,G) pointwise in (0,∞)
2
.

Proof. By (2) with P given by (4) and f = log, by simple calculations,

for x 6= y, we get

M (x, y) = exp

x− log( 2x
x+y )

y
( x+y

2y )
x

log x
y

x− y
log x +

log( 2x
x+y )

y
( x+y

2y )
x

log x
y

− y

x− y
log y


=

2xy

x + y
= H (x, y) ,

and, by (3),

N (x, y) = exp

x− log( 2x
x+y )

y
( x+y

2y )
x

log x
y

x− y
log y +

log( 2x
x+y )

y
( x+y

2y )
x

log x
y

− y

x− y
log x


=

x + y

2
= A (x, y) .

Since M is a strict mean, in view of Theorem 1, so is P . The remaining facts

follow from Theorem 1 and Remark 1. �
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Simple calculations allow to verify the following:

Remark 4. The mean M given by (2) in Theorem 1 is quasiarithmetic iff

there is a continuous and strictly increasing g : I → R such that

P (x, y) =
yf (y)− xf (x) + (x− y) f (Ag (x, y))

f (y)− f (x)
, x, y ∈ I, x 6= y.

The mean N given by (3) in Theorem 1 is quasiarithmetic iff there is a con-

tinuous and strictly increasing h : I → R such that

P (x, y) =
yf (x)− xf (y) + (x− y) f (Ah (x, y))

f (x)− f (y)
, x, y ∈ I, x 6= y.

Thus both M and N are quasiarithmetic iff there are continuous and strictly

increasing functions g, h : I → R such that the right-hand sides of the above

expressions are equal. Comparing them, we get the equality

f (Ag (x, y)) + f (Ah (x, y)) = f (x) + f (y) , x, y ∈ I,

first considered by O. Sutô [10] for analytic functions, then by the present au-

thor [4] in the class of twice differentiable functions, and in the general case by

Z. Daróczy and Zs. Páles [1].

This remark remains true if we replace Ag and Ah by the weighted quasiarith-

metic means Ag,t and Ah,1−t, where

Ag,t (x, y) := g−1 (tg (x) + (1− t) g (y)) , x, y ∈ I.

(see also [2] and J. Jarczyk [3]). Hence, applying the main result of [1], we get

Remark 5. Let f, g, h : I → R be a continuous strictly increasing function in

an interval I, and let t ∈ (0, 1). Then the following conditions are equivalent:

(i) Af is invariant with respect to the mean type mapping (Ag,t, Ah,1−t), i.e.

Af ◦ (Ag,t, Ah,1−t) = Af .

(ii) The function P : I2 → R,

P (x, y) :=


yf(y)−xf(x)+(x−y)f(Ag,t(x,y))

f(y)−f(x) , if x 6= y,

x, if x = y,

is a mean.
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(iii) There is a real number a > 0, a 6= 1, such that for all x, y ∈ I,

Ag,t (x, y) = f−1
(

loga

(
taf(x) + (1− t) af(y)

))
;

Ah,1−t (x, y) = f−1
(

loga

(
(1− t) af(x) + taf(y)

))
.

In particular, we hence get the following:

Invariance Identity. If f : I → R is continuous and strictly monotonic in an

interval I, t ∈ (0, 1), and a > 0, a 6= 1, then

Af

(
f−1

(
loga

(
taf(x)+(1−t) af(y)

))
, f−1

(
loga

(
(1−t) af(x)+taf(y)

)))
=Af (x, y) ,

for all x, y ∈ I.

Taking here f = log, a = e and t = 1/2, we get G ◦ (A,H) = G.

3. A dual result

Theorem 2. Let f : I → R be a continuous strictly increasing function in

an interval I, and let M,N : I2 → I. Then it holds:

(i) M is a (strict) mean in I iff the function P : I2 → R defined by

P (x, y) :=


xf(x)−yf(y)+(y−x)f(M(x,y))

f(x)−f(y) , if x 6= y,

x, if x = y,

is a (strict) mean in I.

(ii) N is a (strict) mean in I iff the function Q : I2 → R defined by

Q (x, y) :=


yf(x)−xf(y)+(x−y)f(N(x,y))

f(x)−f(y) , if x 6= y,

x, if x = y,

is a (strict) mean in I.

(iii) M (N) is symmetric iff so is P (Q).

(iv) The quasiarithmetic mean Af is invariant with respect to the mapping

(M,N) : I2 → I2 iff

P = Q.
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Proof. (i) Assume that M is a mean in I, and take arbitrary x, y ∈ I,

x 6= y. Assuming (without loss of generality) that x < y, i.e. that x = min (x, y)

and y = max (x, y), we hence get

y ≤M (x, y) ≤ y,

whence, as f is increasing,

f (x) ≤ f (M (x, y)) ≤ f (y) .

Consequently, we have

(y − x) f (x) ≤ (y − x) f (M (x, y)) , (y − x) f (M (x, y)) ≤ (y − x) f (y) ,

or, equivalently,

yf (x) ≤ xf (x)+(y − x) f (M (x, y)) , −yf (y)+(y − x) f (M (x, y)) ≤ −xf (y) .

Adding (−yf (y)) to both of the first of these inequalities, and xf (x) to both

sides of the second one, gives

yf (x)− yf (y) ≤ xf (x)− yf (y) + (y − x) f (M (x, y))

and

xf (x)− yf (y) + (y − x) f (M (x, y)) ≤ xf (x)− xf (y) ,

whence

y [f (x)− f (y)] ≤ xf (x)− yf (y) + (y − x) f (M (x, y)) ≤ x [f (x)− f (y)] .

Since f is strictly increasing and x < y, we hence get

min (x, y) = x ≤ xf (x)− yf (y) + (y − x) f (M (x, y))

f (x)− f (y)
≤ y = max (x, y) ,

which proves that P is a mean.

Clearly, in the case when M is a strict mean, all these inequalities are sharp,

implying that P is also strict.

As all the above inequalities are equivalent, the converse implication holds

true.

(ii) We omit similar argument as in case (i), as well as easy calculations

needed to verify (iii).
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To prove (iv) note that equality P = Q is holds iff, for all x, y ∈ I, x 6= y,

xf (x)− yf (y) + (y − x) f (M (x, y))

f (x)− f (y)
=

yf (x)− xf (y) + (x− y) f (N (x, y))

f (x)− f (y)
,

which simplifies to the equality

f (M (x, y)) + f (M (x, y)) = f (x) + f (y) , x, y ∈ I, x 6= y,

which is equivalent to the invariance relation Af ◦ (M,N) = Af . �

Remark 6. The functions M and N in Theorem 2 (as well as the function P

in Theorem 1) need not be means.

To see it, consider two examples.

Example 1. Take I = R or I = (0,∞); f := id; a, b ∈ (0, 1), b 6= 1 − a, and

define M,N : I2 → I by

M (x, y) = ax + by, N (x, y) = (1− a)x + (1− b) y, x, y ∈ I.

Then neither M nor N is a mean. However, we have Af ◦ (M,N) = Af .

Example 2. Take I = (0,∞), f = log. Let M : I2 → I be an arbitrary

function, and let

N (x, y) =
xy

M (x, y)
, x, y > 0.

Since Af = G and, for all x, y > 0,

G ◦ (M,N) (x, y) =

√
2x2 + y2

x + 2y

x + 2y

2x2 + y2
xy =

√
xy = G (x, y) ,

the invariance equality holds.

4. An application

Theorem 3. Let f : I → R be a continuous strictly increasing function in

an interval I, let P : I2 → I a continuous a strict mean, and let M,N : I2 → I

be defined by (2) and (3). Assume that Φ : I2 → R is continuous on the diagonal

{(x, x) : x ∈ I}.
Then the function Φ satisfies the functional equation

Φ (M (x, y) , N (x, y)) = Φ (x, y) , x, y ∈ I, (5)

if, and only if, there exists a continuous single variable function ϕ : I → R such

that Φ = ϕ ◦Af .
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Proof. If Φ : I2 → R satisfies (5), then, by induction, we get

Φ (x, y) = Φ ◦ ((M,N)
n
) (x, y) , n ∈ N, x, y ∈ I, (6)

where (M,N)
n

is the n-th iterate of the mean-type mapping. In view of Theo-

rem 1 (v)–(vi), the means M and N are strict means

lim
n→∞

(M,N)
n

(x, y) = (Af (x, y) , Af (x, y)) , x, y ∈ I.

Therefore, letting n → ∞ in (6) and making use of the continuity of Φ on the

diagonal, we obtain

Φ (x, y) = Φ ◦ (Af (x, y) , Af (x, y)) , x, y ∈ I.

Setting

ϕ (t) := Φ (t, t) , t ∈ I,

we obtain

Φ (x, y) = ϕ ◦ (Af ) (x, y) , x, y ∈ I.

The converse implication is easy to verify. �

For other applications of invariance, see [7].

Acknowledgements. The author thanks the Reviewer for valuable re-

marks.
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