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Commutativity of torsion and normal Jacobi operators
on real hypersurfaces in the complex quadric

By JUAN DE DIOS PÉREZ (Granada)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi-

Civita connection and, for any non-zero real constant k, the k-th generalized Tanaka–

Webster connection. Associated to this connection we can define a differential operator

whose difference with the Lie derivative is the torsion operator of the k-th general-

ized Tanaka–Webster connection. We prove the non-existence of real hypersurfaces in

the complex quadric for which the torsion operators commute with the normal Jacobi

operator of the real hypersurface.

1. Introduction

The complex quadric Qm = SOm+2/SOmSO2 is a compact Hermitian sym-

metric space of rank 2. It is also a complex hypersurface in the complex projective

space CPm+1 (see [5], [6], [8]). The space Qm is equipped with two geometric

structures: a Kaehler structure J and a parallel circle subbundle A of the en-

domorphism bundle End(TQm), which consists of all the real structures on the

tangent space of Qm. For any A ∈ A the following relations hold: A2 = I and

AJ = −JA. A nonzero tangent vector W at a point of Qm is called singular if it

is tangent to more than one maximal flat in Qm. There are two types of singular

tangent vectors for Qm: A-principal or A-isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in

a Hermitian manifold. Since Qm is a compact Hermitian symmetric space with

Mathematics Subject Classification: 53C15, 53B25.
Key words and phrases: complex quadric, real hypersurface, normal Jacobi operator, k-th gen-

eralized Tanaka–Webster connection, torsion operators.
The author is supported by MINECO-FEDER Project MTM 2016-78807-C2-1-P.



158 Juan de Dios Pérez

rank 2, it is interesting to study real hypersurfaces M in Qm. The Kaehler

structure J of Qm induces on M an almost contact metric structure (φ, ξ, η, g),

where φ is the structure tensor field, ξ is the Reeb vector field, η is a 1-form and

g is the induced Riemannian metric of Qm.

The study of real hypersurfaces M in Qm is initiated by Berndt and Suh

in [1]. In this paper the geometric properties of real hypersurfaces M in complex

quadric Qm, which are tubes of radius r, 0 < r < π/2, around the totally geodesic

CP k in Qm, when m = 2k or tubes of radius r, 0 < r < π/2
√

2, around the

totally geodesic Qm−1 in Qm, are presented. The condition of isometric Reeb

flow is equivalent to the commuting condition of the shape operator S with the

structure tensor φ of M . The classification of such real hypersurfaces in Qm is

obtained in [2].

Given a Riemannian manifold (M̃, g̃), Jacobi fields along geodesics satisfy

a differential equation which results in the notion of Jacobi operator. That is,

if R̃ is the Riemannian curvature tensor of M̃ , and X is a tangent vector field

on M̃ , then the Jacobi operator with respect to X at a point p ∈ M̃ is given by

(R̃XY )(p) = (R̃(Y,X)X)(p),

and becomes a self adjoint endomorphism of the tangent bundle TM̃ of M̃ , i.e.,

R̃X ∈ End(TpM̃). In the case of real hypersurfaces M in Qm, we can consider the

normal Jacobi operator R̄N , where R̄ is the Riemannian curvature tensor of Qm

and N is the unit normal vector field on the real hypersurface M .

As M has an almost contact metric structure, for any non-zero real con-

stant k, we can define the so called k-th generalized Tanaka–Webster connection

∇̂(k) on M by

∇̂(k)
X Y = ∇XY + g(φSX, Y )ξ − η(Y )φSX − kη(X)φY

for any X,Y tangent to M , where ∇ is the Levi-Civita connection on M , and

S denotes the shape operator on M associated to N (see [3]). Let us call F
(k)
X Y =

g(φSX, Y )ξ − η(Y )φSX − kη(X)φY , for any X,Y tangent to M . F
(k)
X is called

the k-th Cho operator on M associated to X. Notice that if X ∈ C, the maximal

holomorphic distribution on M , given by all the vector fields orthogonal to ξ,

the associated Cho operator does not depend on k and we will denote it simply

by FX . Then, given a symmetric tensor field L of type (1,1) on M , ∇XL = ∇̂(k)
X L

for a tangent vector field X on M if and only if F
(k)
X L = LF

(k)
X , that is, the

eigenspaces of L are preserved by F
(k)
X . If L = R̄N , in [4] we proved

Theorem 1.1. There do not exist real hypersurfaces M in Qm, m ≥ 3, such

that ∇R̄N = ∇̂(k)R̄N , for any non-zero real constant k.
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The torsion of the k-th generalized Tanaka–Webster connection is given by

T (k)(X,Y ) = F
(k)
X Y − F (k)

Y X for any X,Y tangent to M . For any X tangent

to M , we define the torsion operator associated to X by T
(k)
X Y = T (k)(X,Y ) for

any Y tangent to M .

Let L denote the Lie derivative on M . Associated to the k-th generalized

Tanaka–Webster connection, we can define the differential operator of first order

L(k) by L
(k)
X Y = ∇̂(k)

X Y − ∇̂(k)
Y X = LXY + T

(k)
X Y , for any X,Y tangent to M .

Then for a symmetric tensor of type (1,1) on M , LXL = L
(k)
X L for a tangent

vector field X on M if and only if T
(k)
X L = LT

(k)
X .

In this paper we study real hypersurfaces M in Qm such that the Lie deriva-

tive and the differential operator L(k) associated to the k-th generalized Tanaka–

Webster connection coincide when we apply them to the normal Jacobi opera-

tor R̄N , that is

LR̄N = L(k)R̄N (1.1)

for some non-zero real constant k. We will prove the following

Theorem 1.2. There do not exist real hypersurfaces M in Qm, m ≥ 3, such

that LR̄N = L(k)R̄N , for any non-zero real constant k.

2. The space Qm

The complex projective space CPm+1 is considered as the Hermitian sym-

metric space of the special unitary group SUm+2, namely

CPm+1 = SUm+2/S(Um+1U1).

The symbol o = [0, ..., 0, 1] in CPm+1 is the fixed point of the action of the sta-

bilizer S(Um+1U1). The action of the special orthogonal group SOm+2 ⊂ SUm+2

on CPm+1is of cohomogeneity one. A totally geodesic real projective space

RPm+1 ⊂ CPm+1 is an orbit containing point o. The second singular orbit of

this action is the complex quadric Qm = SOm+2/SOmSO2. It is a homogeneous

model, which interprets geometrically the complex quadric Qm as the Grassmann

manifold G+
2 (Rm+2) of oriented 2-planes in Rm+2. Thus, the complex quadric Qm

is considered as a Hermitian space of rank 2. For m = 1, the complex quadric Q1

is isometric to a sphere S2 of constant curvature. For m = 2, the complex quadric

Q2 is isometric to the Riemannian product of two 2-spheres with constant curva-

ture. Therefore, we assume the dimension of complex quadric Qm to be greater

than or equal to 3.
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Moreover, the complex quadric Qm is the complex hypersurface in CPm+1

defined by the homogeneous quadric equation z2
1 + · · · + z2

m+2 = 0, where zi,

i = 1, ...,m+ 2, are homogeneous coordinates on CPm+1. The Kaehler structure

of complex projective space CPm+1 induces canonically a Kaehler structure (J, g)

on Qm, where g is a Riemannian metric with maximal holomorphic sectional

curvature 4 induced by the Fubini Study metric of CPm+1.

Consider the Riemannian fibration π : S2m+3 ⊂ Cm+2 −→ CPm+1, z 7→ [z].

Then Cm+2 	 [z] is the horizontal space of π at z ∈ S2m+3. Then at each [z]

in Qm the tangent space T[z]Q
m can be identified canonically with the orthogonal

complement of Cm+2	 ([z]⊕ [z̄]) of [z]⊕ [z̄] in Cm+2. Thus π∗|z z̄ is a unit normal

vector of Qm in CPm+1 at the point [z].

The shape operator Az̄ of Qm with respect to the unit normal vector z̄ is

given by

Az̄π∗|zw = π∗|zw̄,

for all w ∈ T[z]Q
m. The shape operator Az̄ is a complex conjugation restricted

to T[z]Q
m. The complex vector space T[z]Q

m is decomposed into

T[z]Q
m = V (Az̄)⊕ JV (Az̄),

where V (Az̄) = Rm+2 ∩ T[z]Q
m is the (+1)-eigenspace of Az̄, i.e., Az̄X = X,

and JV (Az̄) = iRm+2 ∩ T[z]Q
m is the (-1)-eigenspace of Az̄, i.e., Az̄JX = −JX

for any X ∈ V (Az̄). Geometrically, it means that Az̄ defines a real structure on

the complex vector space T[z]Q
m, which is an antilinear involution. The set of all

such shape operators Az̄ defines a parallel circle subbundle A of the endomorphism

bundle End(TQm), which consists of all the real structures on the tangent space

of Qm. For any A ∈ A the following relations hold:

A2 = I and AJ = −JA.

The Gauss equation for Qm ⊂ CPm+1 yields that the Riemannian curvature

tensor R of Qm is given by

R̄(X,Y )Z = g(Y,Z)X− g(X,Z)Y + g(JY, Z)JX− g(JX,Z)JY − 2g(JX, Y )JZ

+ g(AY,Z)AX− g(AX,Z)AY + g(JAY,Z)JAX− g(JAX,Z)JAY,

where J is the complex structure, g is the Riemannian metric and A is a real

structure in A.

A nonzero tangent vector W ∈ T[z]Q
m is called singular if it is tangent to

more than one maximal flat in Qm. There are two types of singular tangent

vectors for Qm:



Commutativity of torsion and normal Jacobi operators. . . 161

(1) A-principal. In this case, there exists a real structure A ∈ A such that W ∈
V (A).

(2) A-isotropic. In this case, there exists a real structure A ∈ A and orthonormal

vectors X, Y ∈ V (A) such that W/||W || = (X + JY )/
√

2.

For every unit vector field W tangent to Qm, there is a complex conjugation

A ∈ A and orthonormal vectors X, Y ∈ V (A) such that

W = cos(t)X + sin(t)JY, (2.1)

for some t ∈ [0, π/4]. The singular vectors correspond to the values t = 0 and

t = π/4.

3. Real hypersurfaces in Qm

Let M be a real hypersurface in Qm and N a unit normal vector field of M .

Any vector field X tangent to M satisfies the relation

JX = φX + η(X)N. (3.1)

The tangential component of the above relation defines on M a skew-symmetric

tensor field of type (1,1) φ, named the structure tensor. The structure vector

field ξ is defined by ξ = −JN and is called the Reeb vector field. The 1-form η is

given by η(X) = g(X, ξ) for any vector field X tangent to M . So, on M an almost

contact metric structure (φ, ξ, η, g) is defined. The elements of the almost contact

structure satisfy the following relations:

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY ) = g(X,Y )− η(X)η(Y ) (3.2)

for all tangent vectors X,Y to M . Relation (3.2) implies

φξ = 0.

The tangent bundle TM of M splits orthogonally into

TM = C⊕ F,

where C = ker(η) is the maximal complex subbundle of TM and F = Rξ. The

structure tensor field φ restricted to C coincides with the complex structure J .
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The shape operator of a real hypersurface M in Qm is denoted by S. The real

hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector

of the shape operator, i.e.,

Sξ = αξ, (3.3)

where α = g(Sξ, ξ) is the Reeb function.

At each point [z] ∈ M , we choose a real structure A ∈ A[z] such that

N[z] = cos(t)Z1 + sin(t)JZ2, AN[z] = cos(t)Z1 − sin(t)JZ2, (3.4)

where Z1, Z2 are orthonormal vectors in V (A) and 0 ≤ t ≤ π
4 . Moreover, the

above relations due to ξ = −JN imply

ξ[z] = − cos(t)JZ1 + sin(t)Z2, Aξ[z] = cos(t)JZ1 + sin(t)Z2. (3.5)

So, we have g(AN[z], ξ[z]) = 0.

The Codazzi equation of M is given by

g((∇XS)Y − (∇Y S)X,Z) = η(X)g(φY,Z)− η(Y )g(φX,Z)− 2η(Z)g(φX, Y )

+ g(X,AN)g(AY,Z)− g(Y,AN)g(AX,Z)

+ g(X,Aξ)g(JAY,Z)− g(Y,Aξ)g(JAX,Z) (3.6)

for any X,Y, Z tangent to M .

The normal Jacobi operator of a real hypersurface in Qm is calculated by the

Gauss equation for Y = Z = N and, because of (3.4), is given by

R̄N (X) = X + 3η(X)ξ + cos(2t)AX − g(AX,N)AN − g(AX, ξ)Aξ, (3.7)

for any X ∈ TM , where g(AN,N) = cos(2t) = −g(Aξ, ξ). Let us suppose that

(LXR̄N )Y = (L
(k)
X R̄N )Y for any X,Y tangent to M . This yields F

(k)
X R̄NY −

F
(k)

R̄NY
X − R̄NF (k)

X Y + F
(k)
Y X = 0, for any X,Y tangent to M . That is

g(φSX, R̄NY )ξ − η(R̄NY )φSX − kη(X)φR̄NY − g(φSR̄NY,X)ξ

+ η(X)φSR̄NY + kη(R̄NY )φX − g(φSX, Y )R̄Nξ + η(Y )R̄NφSX

+ kη(X)R̄NφY + g(φSY,X)R̄Nξ − η(X)R̄NφSY − kη(Y )R̄NφY = 0. (3.8)
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If we take X = ξ in (3.8), we obtain

g(φSξ, R̄NY )ξ − η(R̄NY )φSξ − kφR̄NY + φSR̄NY

− g(φSξ, Y )R̄Nξ + η(Y )R̄NφSξ + kR̄NφY − R̄NφSY = 0 (3.9)

for any Y tangent to M .

Taking X ∈ C in (3.8), we get

g((φS + Sφ)X, R̄NY )ξ − η(R̄NY )φSX + kη(R̄NY )φX

− g((φS + Sφ)X,Y )R̄Nξ + η(Y )R̄NφSX − kη(Y )R̄NφX = 0 (3.10)

for any X ∈ C, Y tangent to M .

We finish this section with the following Proposition, which concerns Hopf

hypersurfaces in Qm whose shape operator commutes with the structure tensor,

see [2].

Proposition 3.1. The following statements hold for a tube M of radius r,

0 < r < π/2 around the totally geodesic CP k in Qm, m = 2k:

(1) M is a Hopf hypersurface.

(2) The normal bundle of M consists of A-isotropic singular tangent vectors

of Qm.

(3) M has four distinct principal curvatures, unless m = 2, in which case M has

two distinct principal curvatures.

(4) The shape operator commutes with the structure tensor field φ, i.e., Sφ = φS.

(5) M is a homogeneous hypersurface.

And see also [7]:

Proposition 3.2. Let M be a Hopf hypersurface in Qm such that the normal

vector field N is A-principal everywhere. Then α = g(Sξ, ξ) is constant, and if X

∈ C is a principal curvature vector of M with principal curvature λ, then 2λ 6= α,

and φX is a principal curvature vector of M with principal curvature αλ+2
2λ−α .

4. Proof of Theorem 1.2. The case of Hopf real hypersurfaces

All the following calculations take place at an arbitrary point [z] ∈ M , but

we can omit the subscript [z] from the vector fields and other objects for the sake

of brevity.

Let us suppose that M is Hopf at [z], i.e., that Sξ = αξ holds. We will first

prove the following:
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Lemma 4.1. Let M be a Hopf real hypersurface in Qm, m ≥ 3. If LR̄N =

L(k)R̄N for some non-zero real constant k, then N is either A-isotropic or

A-principal.

Proof. As M is Hopf, (3.9) becomes

−kφR̄NY + φSR̄NY + kR̄NφY − R̄NφSY = 0 (4.1)

for any Y tangent to M . If, in particular, Y = ξ, we get

−kφR̄Nξ + φSR̄Nξ = 0. (4.2)

If in (3.10) we take Y = ξ, we have

g((φS+Sφ)X, R̄Nξ)ξ−η(R̄Nξ)φSX+kη(R̄Nξ)φX+R̄NφSX−kR̄NφX=0 (4.3)

for any X ∈ C.

Taking the scalar product of both sides of (4.3) by ξ gives 2g(φSX, R̄Nξ) +

g(SφX, R̄Nξ) − kg(φX, R̄Nξ) = 0 for any X ∈ C. From (4.2) we obtain

g(R̄Nξ, φSX) = 0, for any X ∈ C. As R̄Nξ = 4ξ + 2 cos(2t)Aξ, it follows that

2 cos(2t)g(Aξ, φSX) = 0 (4.4)

for any X ∈ C. From (4.4), if cos(2t) = 0, N is A-isotropic. If cos(2t) 6= 0,

g(Aξ, φSX) = 0 for any X ∈ C. In this case, from (3.10), if X ∈ C satisfies

SX = λX, where λ 6= k, then g(Aξ,X) = 0.

Therefore, if in C k does not appear as an eigenvalue of S or k is the unique

eigenvalue of S, g(Aξ,X) = 0 for any X ∈ C and N is A-principal. If the

unique eigenvalue of S in C is k, φS = Sφ and N should be A-isotropic, which

is a contradiction. Therefore, if in C k does not appear as an eigenvalue of S, N

must be A-principal.

Thus we must suppose there exists X ∈ C such that SX = kX, and there-

fore g(AN,X) = 0, and there exists Z ∈ C such that SZ = λZ, λ 6= k, and

then g(Aξ,Z) = 0. Moreover, we must suppose there exists W ∈ C such that

η(R̄NW ) = g(Aξ,W ) 6= 0. If not, N should be A-principal.

Let X ∈ C such that SX = kX. From (3.10) we have g((φS+Sφ)X, R̄NY )ξ−
g((φS + Sφ)X,Y )R̄Nξ = 0 for any Y tangent to M . Its scalar product with W

yields g((φS + Sφ)X,Y ) = 0 for any Y tangent to M , that is, φSX = −SφX =

kφX. Therefore SφX = −kφX. Again from (3.10) we have g((φS + Sφ)φX,

R̄NY )ξ−η(R̄NY )φSφX−kη(R̄NY )X−g((φS+Sφ)φX, Y )R̄Nξ+η(Y )R̄NφSφX+

kη(Y )R̄NX=0. But φSφX+Sφ2X=0. Therefore, it follows that−2kη(R̄NY )X+

2kη(Y )R̄NX = 0. If Y = ξ, we have −η(R̄Nξ)X + R̄NX = 0. Its scalar product

with ξ implies η(R̄NX) = 0. As for any Z ∈ C such that SZ = λZ, λ 6= k, we have

g(Aξ,Z) = 0, we arrive to a contradiction and we have finished the proof. �
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Lemma 4.2. There do not exist Hopf real hypersurfaces in Qm, m ≥ 3, such

that LR̄N = L(k)R̄N for a non-zero real constant k if N is A-isotropic.

Proof. If N is A-isotropic, R̄Nξ = 4ξ. Let X ∈ C be a unit vector field such

that SX = λX. Introducing it in (4.3), we have −4λφX + 4kφX + λR̄NφX −
kR̄NφX = 0. That is, (k − λ)R̄NφX = 4(k − λ)φX. There are two possibilities,

either λ = k or if λ 6= k, R̄NφX = 4φX.

In the second case, 4φX = φX − g(φX,AN)AN − g(φX,Aξ)Aξ. Its scalar

product with φX gives 3 = −g(φX,AN)2 − g(φX,Aξ)2, which is impossible.

Therefore SX = kX for any X ∈ C. Take X,Y ∈ C in (3.10). This yields

g((φS + Sφ)X, R̄NY )ξ − 4g((φS + Sφ)X,Y )ξ = 0. That is, 2kg(φX, R̄NY )ξ −
8kg(φX, Y )ξ = 0 for any X,Y ∈ C. Therefore g(φX, R̄NY ) = 4g(φX, Y ). Taking

Y = φX, we arrive to the same contradiction, finishing the proof. �

Lemma 4.3. There do not exist Hopf real hypersurfaces in Qm, m ≥ 3, such

that LR̄N = L(k)R̄N for some non-zero real constant k if N is A-principal.

Proof. As we suppose N is A-principal, we can write AN = N , Aξ = −ξ
and R̄Nξ = 2ξ. We also know that α is constant, and that if X ∈ C satisfies

SX = λX, then SφX = µφX, with µ = αλ+2
2λ−α .

Let {E1, ..., E2m−2} be an orthonormal basis of eigenvectors of S in C such

that SEi = λiEi, i = 1, ..., 2m − 2. For any X ∈ C, R̄NX = X + AX. As there

exists Y ∈ C such that AY = −Y , for such a vector field, R̄NY = 0. For such a Y

and X ∈ C, (3.10) yields g((φS+Sφ)X,Y ) = 0. Therefore (λi+µi)g(φEi, Y ) = 0,

for any i = 1, ..., 2m− 2. As {φE1, ..., φE2m−2} is also an orthonormal basis of C,

there exists j ∈ {1, ..., 2m− 2} such that g(φEj , Y ) 6= 0. Therefore λj + µj = 0.

From the Codazzi equation,

g((∇Ej
S)φEj − (∇φEj

S)Ej , ξ) = −2g(φEj , φEj) = −2

= g(∇Ej (−λjφEj)− S∇EjφEj −∇φEj (λjEj) + S∇φEjEj , ξ)

= λjg(φEj , φSEj) + αg(Ej , φSEj) + λjg(Ej , φSφEj)− αg(Ej , φSφEj)

= λ2
j + αλj + λ2

j − αλj = 2λ2
j ,

which is impossible and finishes the proof. �

The proof of Theorem 1.2 for Hopf real hypersurfaces follows from the Lem-

mas above.
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5. Proof of Theorem 1.2. The case of non-Hopf real hypersurfaces

If M is not Hopf at [z], we write Sξ = αξ+βU , where U is a unit vector in C,

and β is a nonzero number. Let us call CU = {X ∈ C|g(X,U) = g(X,φU) = 0}.
We will prove the following:

Lemma 5.1. Let M be a non-Hopf real hypersurface in Qm, m ≥ 3, such

that LR̄N = L(k)R̄N , for some non-zero real constant k. Then N is either

A-isotropic or A-principal.

Proof. As M is non-Hopf, (3.9) becomes

βg(φU, R̄NY )ξ − βη(R̄NY )φU − kφR̄NY + φSR̄NY

− βg(φU, Y )R̄Nξ + βη(Y )R̄NφU + kR̄NφY − R̄NφSY = 0 (5.1)

for any Y tangent to M . Taking Y = ξ in (5.1), we get βg(φU, R̄Nξ)ξ −
βη(R̄Nξ)φU − kφR̄Nξ + φSR̄Nξ = 0. Its scalar product with ξ gives

g(φU, R̄Nξ) = 0, (5.2)

that is, 2 cos(2t)g(AφU, ξ) = 0. Therefore, if cos(2t) = 0, N is A-isotropic. Thus

we suppose cos(2t) 6= 0, and then

g(AφU, ξ) = 0. (5.3)

From (5.2) the above expression becomes

−βη(R̄Nξ)φU − kφR̄Nξ + φSR̄Nξ = 0. (5.4)

Its scalar product with ξ, bearing in mind (5.2), yields

g(R̄Nξ, SφU) = 0, (5.5)

and its scalar product with X ∈ CU implies

kg(R̄Nξ, φX)− g(R̄Nξ, SφX) = 0 (5.6)

for any X ∈ CU .

The scalar product of (3.10) and φU yields

− η(R̄NY )g(SX,U) + kη(R̄NY )g(X,U)

+ η(Y )g(R̄NφSX, φU)− kη(Y )g(R̄NφX, φU) = 0
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for any X ∈ C, Y tangent to M . If also Y ∈ C, we get −η(R̄NY )(g(SX,U) −
kg(SX,U)) = 0 for any X,Y ∈ C. Therefore, if for any Y ∈ C, g(Y, R̄Nξ) =

0 = 2 cos(2t)g(Y,Aξ), as cos(2t) 6= 0, we obtain g(Y,Aξ) = 0 for any Y ∈ C, and

therefore N is A-principal. Let us suppose now that there exists Z ∈ C such that

η(R̄NZ) 6= 0, and that for any X ∈ C, g(SU,X) = kg(U,X). That is,

SU = g(SU, ξ)ξ + g(SU,U)U = βξ + kU. (5.7)

Taking X = U in (3.10), we get g((φS + Sφ)U, R̄NY )ξ − g((φS + Sφ)U, Y )

R̄Nξ = 0, for any Y tangent to M . Its scalar product with Z yields g((φS +

Sφ)U, Y ) = 0 for any Y tangent to M . Therefore SφU = −φSU , that is,

SφU = −kφU. (5.8)

Take X = φU in (3.10). Then −2kη(R̄NY )−g((φS+Sφ)φU, Y )η(R̄NU) = 0,

that is,

−2kη(R̄NY )− g(φSφU, Y )η(R̄NU) + g(SU, Y )η(R̄NU) = 0

for any Y ∈ C. This implies −2kη(R̄NY ) = 0 for any Y ∈ C, which contradicts

the existence of Z and finishes the proof. �

From Lemma 5.1, N is either A-isotropic or A-principal. Suppose first that

N is A-isotropic. Then R̄Nξ = 4ξ. Moreover, R̄NφU = φU − g(AφU,N)AN −
g(AφU, ξ)Aξ. If (5.1) is satisfied, we have βg(φU, R̄NφU)ξ−kφR̄NφU+φSR̄NφU−
βR̄Nξ−kR̄NU−R̄NφSφU = 0. Its scalar product with ξ yields βg(φU, R̄NφU)−
4β = 0. That is, 4 = g(R̄NφU, φU) = 1− g(AφU,N)2 − g(AφU, ξ)2, which is im-

possible.

Let us suppose now N is A-principal. In this case, AN = N , Aξ = −ξ,
R̄Nξ = 2ξ, and for any X ∈ C, R̄NX = X +AX.

Take Y = φU in (5.1). We obtain

βg(φU, R̄NφU)ξ−kφR̄NφU +φSR̄NφU −βR̄Nξ−kR̄NU − R̄NφSφU = 0. (5.9)

Its scalar product with ξ gives g(φU, R̄NφU) = 2 = 1 + g(AφU, φU). This

yields g(AφU, φU) = 1, which implies AφU = φU . Therefore R̄NφU = 2φU . As

AφU = φU , we have AJU = JU = −JAU . This gives AU = −U and R̄NU = 0.

Thus (5.9) becomes 2kU + 2φSφU − R̄NφSφU = 0. Its scalar product with U

implies 2k − 2g(SφU, φU) = 0. That is,

g(SφU, φU) = k. (5.10)
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Taking Y = U in (5.1), we have kR̄NφU − R̄NφSU = 0. Its scalar product

with φU gives 2k − 2g(φSU, φU) = 0 = 2k − 2g(SU,U). Then

g(SU,U) = k. (5.11)

Taking Y = U in (3.10), we have −g((φS + Sφ)X,U)R̄Nξ = 0, that is,

−2g((φS + Sφ)X,U)ξ = 0 for any X ∈ C. If X = φU , we obtain g(φSφU,U) +

g(Sφ2U,U) = 0 = −g(SφU, φU)− g(SU,U) = −2k, which is impossible, finishing

the proof of Theorem 1.2.
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