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Commutativity of torsion and normal Jacobi operators
on real hypersurfaces in the complex quadric

By JUAN DE DIOS PEREZ (Granada)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi-
Civita connection and, for any non-zero real constant k, the k-th generalized Tanaka—
Webster connection. Associated to this connection we can define a differential operator
whose difference with the Lie derivative is the torsion operator of the k-th general-
ized Tanaka—Webster connection. We prove the non-existence of real hypersurfaces in
the complex quadric for which the torsion operators commute with the normal Jacobi
operator of the real hypersurface.

1. Introduction

The complex quadric Q™ = SO,,4+2/50,,503 is a compact Hermitian sym-
metric space of rank 2. It is also a complex hypersurface in the complex projective
space CP™*! (see [5], [6], [8]). The space Q™ is equipped with two geometric
structures: a Kaehler structure J and a parallel circle subbundle 2l of the en-
domorphism bundle End(T'Q™), which consists of all the real structures on the
tangent space of Q™. For any A € 2 the following relations hold: A% = I and
AJ = —JA. A nonzero tangent vector W at a point of Q™ is called singular if it
is tangent to more than one maximal flat in Q™. There are two types of singular
tangent vectors for Q™: 2-principal or 2-isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in
a Hermitian manifold. Since Q™ is a compact Hermitian symmetric space with

Mathematics Subject Classification: 53C15, 53B25.
Key words and phrases: complex quadric, real hypersurface, normal Jacobi operator, k-th gen-

eralized Tanaka—Webster connection, torsion operators.
The author is supported by MINECO-FEDER Project MTM 2016-78807-C2-1-P.



158 Juan de Dios Pérez

rank 2, it is interesting to study real hypersurfaces M in Q™. The Kaehler
structure J of @™ induces on M an almost contact metric structure (¢,&,n,9),
where ¢ is the structure tensor field, £ is the Reeb vector field,  is a 1-form and
g is the induced Riemannian metric of Q™.

The study of real hypersurfaces M in Q™ is initiated by BERNDT and SUH
in [1]. In this paper the geometric properties of real hypersurfaces M in complex
quadric @™, which are tubes of radius r, 0 < r < 7/2, around the totally geodesic
CP* in Q™, when m = 2k or tubes of radius r, 0 < r < 7/2v/2, around the
totally geodesic @™ ! in Q™, are presented. The condition of isometric Reeb
flow is equivalent to the commuting condition of the shape operator S with the
structure tensor ¢ of M. The classification of such real hypersurfaces in Q™ is
obtained in [2].

Given a Riemannian manifold (M, §), Jacobi fields along geodesics satisfy
a differential equation which results in the notion of Jacobi operator. That is,
if R is the Riemannian curvature tensor of M, and X is a tangent vector field
on M, then the Jacobi operator with respect to X at a point p € M is given by

(RxY)(p) = (R(Y, X)X)(p),

and becomes a self adjoint endomorphism of the tangent bundle TM of M, i.e.,
Rx € End(TpM). In the case of real hypersurfaces M in Q™, we can consider the
normal Jacobi operator Ry, where R is the Riemannian curvature tensor of Q™
and N is the unit normal vector field on the real hypersurface M.

As M has an almost contact metric structure, for any non-zero real con-
stant k, we can define the so called k-th generalized Tanaka—Webster connection
V&) on M by

VRY = VxV +g(¢SX, V)¢ = n(Y)$SX — kn(X)¢Y

for any X,Y tangent to M, where V is the Levi-Civita connection on M, and
S denotes the shape operator on M associated to N (see [3]). Let us call F)((k)Y =
g(pSX,Y)E —n(Y)pSX — kn(X)@Y, for any X,Y tangent to M. F is called
the k-th Cho operator on M associated to X. Notice that if X € C, the maximal
holomorphic distribution on M, given by all the vector fields orthogonal to &,
the associated Cho operator does not depend on k and we will denote it simply
by Fx. Then, given a symmetric tensor field L of type (1,1) on M, VxL = @g];)L
for a tangent vector field X on M if and only if F)((k)L = LF)((k), that is, the
eigenspaces of L are preserved by F )((k). If L = Ry, in [4] we proved

Theorem 1.1. There do not exist real hypersurfaces M in Q™ , m > 3, such
that VRy = V® Ry, for any non-zero real constant k.



Commutativity of torsion and normal Jacobi operators. .. 159

The torsion of the k-th generalized Tanaka—Webster connection is given by
T®(X,Y) = FPY — FP X for any X,V tangent to M. For any X tangent
to M, we define the torsion operator associated to X by T)((k)Y = T(k)(X, Y) for
any Y tangent to M.

Let £ denote the Lie derivative on M. Associated to the k-th generalized
Tanaka—Webster connection, we can define the differential operator of first order
LF) by Lg’;)Y = @g];)Y — @gf)X =LxY + T)((k)Y7 for any X,Y tangent to M.
Then for a symmetric tensor of type (1,1) on M, LxL = Lg];)L for a tangent
vector field X on M if and only if T)((k)L = LT)((k).

In this paper we study real hypersurfaces M in Q™ such that the Lie deriva-
tive and the differential operator £*) associated to the k-th generalized Tanaka—
Webster connection coincide when we apply them to the normal Jacobi opera-
tor Ry, that is

LRy = L™ Ry (1.1)

for some non-zero real constant k. We will prove the following

Theorem 1.2. There do not exist real hypersurfaces M in Q™, m > 3, such
that LRy = L®) Ry, for any non-zero real constant k.

2. The space Q™

The complex projective space CP™*! is considered as the Hermitian sym-
metric space of the special unitary group SU,, 12, namely

CP™ ! = SU,42/S(Ups1Un).

The symbol o = [0, ...,0,1] in CP™*! is the fixed point of the action of the sta-
bilizer S(U,,+1U1). The action of the special orthogonal group SO,,1+2 C SUpp, 40
on CP™*lis of cohomogeneity one. A totally geodesic real projective space
RP™*L ¢ CP™! is an orbit containing point o. The second singular orbit of
this action is the complex quadric @™ = SO,y 42/50,,505. It is a homogeneous
model, which interprets geometrically the complex quadric Q™ as the Grassmann
manifold G5 (R™*+2) of oriented 2-planes in R™*2. Thus, the complex quadric Q™
is considered as a Hermitian space of rank 2. For m = 1, the complex quadric Q"
is isometric to a sphere S? of constant curvature. For m = 2, the complex quadric
Q? is isometric to the Riemannian product of two 2-spheres with constant curva-
ture. Therefore, we assume the dimension of complex quadric Q™ to be greater
than or equal to 3.
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Moreover, the complex quadric Q™ is the complex hypersurface in CP™*!
defined by the homogeneous quadric equation 2% + --- + 22, 12 = 0, where z;,
i=1,...,m+ 2, are homogeneous coordinates on CP™*!. The Kaehler structure
of complex projective space CP™*! induces canonically a Kaehler structure (.J, g)
on ™, where g is a Riemannian metric with maximal holomorphic sectional
curvature 4 induced by the Fubini Study metric of CP™ !,

Consider the Riemannian fibration 7 : $?™+3 C C™ 2 — CP™T!, 2+ [2].
Then C™*2 © [2] is the horizontal space of 7 at z € S?™+3. Then at each [z]
in Q™ the tangent space Tj,;Q™ can be identified canonically with the orthogonal
complement of C™*2 & ([2] @ [2]) of [2] ®[z] in C™*2. Thus 7.|.Z is a unit normal
vector of Q™ in CP™*! at the point [z].

The shape operator Az of Q™ with respect to the unit normal vector z is
given by

Azﬂ—*|zw = 7T*|z'w7

for all w € T[,;Q™. The shape operator A; is a complex conjugation restricted
to T1,)Q™. The complex vector space Tj,)Q™ is decomposed into

T[Z]Qm = V(Ag) @ JV(Az),

where V(Az) = R™*2 N Tp,;Q™ is the (+1)-eigenspace of Az, ie., A:X = X,
and JV(A;) = iR™2 N Ti)Q™ is the (-1)-eigenspace of Az, ie., A;JX = —JX
for any X € V(A;). Geometrically, it means that A; defines a real structure on
the complex vector space T7,;Q™, which is an antilinear involution. The set of all
such shape operators A; defines a parallel circle subbundle 2l of the endomorphism
bundle End(7'Q™), which consists of all the real structures on the tangent space
of Q™. For any A € 2 the following relations hold:

A2=1T and AJ=-JA.

The Gauss equation for Q™ C CP™*! yields that the Riemannian curvature
tensor R of Q™ is given by

R(X,Y)Z =g(Y,2)X— g(X,2)Y + g(JY, Z)JX — g(JX, Z)JY — 29(JX,Y)J Z
+ g(AY, Z)AX — g(AX, Z)AY + g(JAY, Z)JAX — g(JAX, Z)JAY,

where J is the complex structure, g is the Riemannian metric and A is a real
structure in 2.

A nonzero tangent vector W € Tj,;Q™ is called singular if it is tangent to
more than one maximal flat in Q™. There are two types of singular tangent
vectors for Q™:
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(1) A-principal. In this case, there exists a real structure A € A such that W €
V(A).

(2) A-isotropic. In this case, there exists a real structure A € 2 and orthonormal
vectors X, Y € V(A) such that W/[|W]|| = (X + JY)/V2.

For every unit vector field W tangent to Q™, there is a complex conjugation
A € 2 and orthonormal vectors X, Y € V(A) such that

W = cos(t) X + sin(t)JY, (2.1)

for some ¢ € [0,7/4]. The singular vectors correspond to the values ¢ = 0 and
t=m/4.

3. Real hypersurfaces in Q™

Let M be a real hypersurface in @™ and N a unit normal vector field of M.
Any vector field X tangent to M satisfies the relation

JX = ¢X +n(X)N. (3.1)

The tangential component of the above relation defines on M a skew-symmetric
tensor field of type (1,1) ¢, named the structure tensor. The structure vector
field € is defined by & = —JN and is called the Reeb vector field. The 1-form 7 is
given by n(X) = g(X, &) for any vector field X tangent to M. So, on M an almost
contact metric structure (¢, &, 7, g) is defined. The elements of the almost contact
structure satisfy the following relations:

¢*X =X +n(X)g, n€) =1, g(@X,0Y)=g(X,Y)=n(X)n(Y) (3.2)
for all tangent vectors X,Y to M. Relation (3.2) implies
P& =0.
The tangent bundle T'M of M splits orthogonally into
TM =Ca3J,

where € = ker(n) is the maximal complex subbundle of TM and F = R¢. The
structure tensor field ¢ restricted to € coincides with the complex structure J.
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The shape operator of a real hypersurface M in Q™ is denoted by S. The real
hypersurface is called Hopf hypersurface if the Reeb vector field is an eigenvector
of the shape operator, i.e.,

SE = at, (3.3)

where a = g(S¢,€) is the Reeb function.
At each point [z] € M, we choose a real structure A € 2} such that

N[z] = COS(t)Zl + Sin(t)JZQ, AN[Z] = COS(t)Zl — Sin(t)JZ27 (34)

where Zy, Z5 are orthonormal vectors in V(A4) and 0 < ¢ < %. Moreover, the
above relations due to £ = —JN imply

§12) = —cos(t).J Zy + sin(t) Zs, A&y, = cos(t)J Zy + sin(t) Zs. (3.5)

SO, we have g(AN[Z],E[Z]) =0.
The Codazzi equation of M is given by

9(VxS)Y — (Vy8)X,Z) = n(X)g(¢Y, Z) —n(Y)g(¢X, Z) — 2n(Z)g(¢X.Y')
+ Q(Xﬂ AN)g(AY, Z) — g(Y, AN)g(AX, Z)
+ 9(X, AQg(JAY, Z) — g(Y, AQ)g(JAX, Z) (3.6)

for any X,Y, Z tangent to M.
The normal Jacobi operator of a real hypersurface in Q™ is calculated by the
Gauss equation for Y = Z = N and, because of (3.4), is given by

Ry(X) =X 4 3n(X)& + cos(2t)AX — g(AX, N)AN — g(AX, &) AE, (3.7)

for any X € TM, where g(AN, N) = cos(2t) = —g(A4¢&, ). Let us suppose that
(LxRN)Y = (Lg?)RN)Y for any X,Y tangent to M. This yields F)((k)RNY —
FY X — RyFPY + FYPX =0, for any X, Y tangent to M. That is

9(¢SX, RNY)E — n(RNY)pSX — kn(X)pRNY — g(pSRNY, X)¢
+1(X)$SRNY + kn(RyY)$X — g(6SX,Y) R +1(Y) RydSX
+ kn(X)RnoY + g(¢SY, X)Rn& — n(X)RnoSY — kn(Y)RnoY = 0. (3.8)
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If we take X = ¢ in (3.8), we obtain

9(¢SE RNY)E — n(RNY)$SE — koRNY + dSRNY
— 9(¢SE Y )RNE +n(Y)RNSE + kRndY — RnoSY =0 (3.9)

for any Y tangent to M.
Taking X € € in (3.8), we get

9((¢S + S¢) X, RNY)E — n(RNY)pSX + kn(RnY)pX
—9((¢S+ SP)X,Y)RnE +n(Y)RyoSX — kn(Y)RyoX =0 (3.10)

for any X € C, Y tangent to M.

We finish this section with the following Proposition, which concerns Hopf
hypersurfaces in Q™ whose shape operator commutes with the structure tensor,
see [2].

Proposition 3.1. The following statements hold for a tube M of radius r,
0 < r < m/2 around the totally geodesic CP* in Q™, m = 2k:

(1) M is a Hopf hypersurface.

(2) The normal bundle of M consists of -isotropic singular tangent vectors
of Q™.

(3) M has four distinct principal curvatures, unless m = 2, in which case M has
two distinct principal curvatures.

(4) The shape operator commutes with the structure tensor field ¢, i.e., S = ¢S.

(5) M is a homogeneous hypersurface.
And see also [7]:

Proposition 3.2. Let M be a Hopf hypersurface in Q™ such that the normal
vector field N is A-principal everywhere. Then oo = g(S&,§) is constant, and if X
€ C is a principal curvature vector of M with principal curvature \, then 2\ # «,

. . . . al+2
and ¢X is a principal curvature vector of M with principal curvature g3==.

4. Proof of Theorem 1.2. The case of Hopf real hypersurfaces

All the following calculations take place at an arbitrary point [z] € M, but
we can omit the subscript [,) from the vector fields and other objects for the sake
of brevity.

Let us suppose that M is Hopf at [z], i.e., that S¢ = a€ holds. We will first
prove the following:
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Lemma 4.1. Let M be a Hopf real hypersurface in Q™, m > 3. If LRy =
LHF) Ry for some non-zero real constant k, then N is either A-isotropic or
2A-principal.

PrOOF. As M is Hopf, (3.9) becomes
—k¢RNY + ¢SRNY + kRNdY — RyopSY =0 (4.1)
for any Y tangent to M. If, in particular, ¥ = &£, we get
—k¢RNE + pSRNE = 0. (4.2)
If in (3.10) we take Y = &, we have
9((¢S+50)X, RnE)e—n(RnE)GSX +kn(RnE)pX +RyoSX —kRndX =0 (4.3)

for any X € C.

Taking the scalar product of both sides of (4.3) by ¢ gives 29(¢SX, Ry&) +
9(SeX, Ry¢) — kg(¢pX,RnE) = 0 for any X € C. From (4.2) we obtain
g(RnE ¢SX) =0, for any X € C. As Ry& = 4¢€ + 2cos(2t) A€, it follows that

2cos(2t)g(AL, ¢SX) =0 (4.4)

for any X € C. From (4.4), if cos(2t) = 0, N is A-isotropic. If cos(2t) # 0,
g(A, pSX) = 0 for any X € C. In this case, from (3.10), if X € € satisfies
SX = AX, where X\ # k, then g(A¢, X) =0.

Therefore, if in € k does not appear as an eigenvalue of S or k is the unique
eigenvalue of S, g(A¢,X) = 0 for any X € C and N is A-principal. If the
unique eigenvalue of S in € is k, ¢S = S¢ and N should be -isotropic, which
is a contradiction. Therefore, if in € k& does not appear as an eigenvalue of S, N
must be 2A-principal.

Thus we must suppose there exists X € € such that SX = kX, and there-
fore g(AN,X) = 0, and there exists Z € € such that SZ = A\Z, A\ # k, and
then g(A&, Z) = 0. Moreover, we must suppose there exists W € € such that
n(RyW) = g(A&, W) # 0. If not, N should be «-principal.

Let X € Csuch that SX = kX. From (3.10) we have g((¢S+S¢) X, RyY )¢~
g((¢S + SP)X,Y)RnE = 0 for any Y tangent to M. Its scalar product with W
yields g((¢S + S¢)X,Y) = 0 for any Y tangent to M, that is, $SX = —SpX =
k¢ X. Therefore SpX = —k¢pX. Again from (3.10) we have g((¢S + S¢)pX,
RNY)e—n(RNY)$S6X —kn(RnY )X —g((6S+S6)¢X,Y)Ru&+n(Y) Ry 5o X+
kn(Y)RnxX =0. But ¢pS¢X+S¢?X =0. Therefore, it follows that —2kn(RyY ) X+
2kn(Y)RnyX = 0. If Y = ¢, we have —n(Ry&)X + Ry X = 0. Its scalar product
with € implies n(RyX) = 0. As for any Z € €such that SZ = A\Z, X\ # k, we have
g(A&, Z) = 0, we arrive to a contradiction and we have finished the proof. ([l
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Lemma 4.2. There do not exist Hopf real hypersurfaces in Q™, m > 3, such
that LRy = L®) Ry for a non-zero real constant k if N is Q-isotropic.

PROOF. If N is U-isotropic, Ryx& = 4€. Let X € € be a unit vector field such
that SX = AX. Introducing it in (4.3), we have —4\¢X + 4k¢pX + A\RnoX —
kRn¢X = 0. That is, (k — \)Rxy¢X = 4(k — \)¢pX. There are two possibilities,
either A = k or if A # k, RyoX = 4¢X.

In the second case, 40X = ¢X — g(¢ X, AN)AN — g(¢X, AE)AE. Tts scalar
product with ¢X gives 3 = —g(¢pX, AN)? — g(¢X, A¢)?, which is impossible.

Therefore SX = kX for any X € €. Take X,Y € € in (3.10). This yields
g((¢S + SP) X, RNY)E — 4g((¢pS + S¢)X,Y )¢ = 0. That is, 2kg(¢X, RyY)E —
8kg(¢X,Y)¢ =0 for any X,Y € C. Therefore g(¢X, RyY) = 4g(¢X,Y). Taking
Y = ¢ X, we arrive to the same contradiction, finishing the proof. ([

Lemma 4.3. There do not exist Hopf real hypersurfaces in Q™, m > 3, such
that LRy = L®) Ry for some non-zero real constant k if N is 2-principal.

PROOF. As we suppose N is -principal, we can write AN = N, A{ = —¢
and Ry¢& = 26, We also know that a is constant, and that if X € @ satisfies
SX = \X, then S¢pX = p¢X, with p = +2,

Let {E1, ..., Egm—2} be an orthonormal basis of eigenvectors of S in € such
that SE; = \jE;, i =1,....,2m — 2. For any X € €, RyX = X + AX. As there
exists Y € @ such that AY = —Y, for such a vector field, RyY = 0. For such a Y
and X € €, (3.10) yields g((¢pS+S¢)X,Y) = 0. Therefore (A\;+pu;)g(¢pF;, Y) = 0,
for any i = 1,...,2m — 2. As {¢FE1, ..., pFom_o} is also an orthonormal basis of €,
there exists j € {1, ...,2m — 2} such that g(¢E;,Y) # 0. Therefore \; + p; = 0.

From the Codazzi equation,

9((Vg,8)9E; — (Vgg,5)E;,§) = —29(0E;, 9E;) = =2
= 9(VE,(=A;0E;) = SVE,0E; — Vg, (N Ej) + SVep, Ej, )
= X;j9(9E;, SE;) + ag(Ej, 9SE;) + Ajg(Ej, 9SQE;) — ag(Ej, 9SPE;)
=N +a)+ A —ak; =2)3,

which is impossible and finishes the proof. O

The proof of Theorem 1.2 for Hopf real hypersurfaces follows from the Lem-
mas above.
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5. Proof of Theorem 1.2. The case of non-Hopf real hypersurfaces

If M is not Hopf at [z], we write S§ = af+ U, where U is a unit vector in C,
and S is a nonzero number. Let us call Cy = {X € Clg(X,U) = g(X,¢U) = 0}.
We will prove the following:

Lemma 5.1. Let M be a non-Hopf real hypersurface in Q™, m > 3, such
that LRy = L(k)RN, for some non-zero real constant k. Then N Is either
2A-isotropic or 2A-principal.

PROOF. As M is non-Hopf, (3.9) becomes

B9(¢U, RNY)E — Bn(RNY)¢U — koRNY + ¢SRNY
— Bg(@U,Y)RnE + Bn(Y)RnoU + kRn¢Y — RyoSY =0 (5.1)

for any Y tangent to M. Taking Y = ¢ in (5.1), we get Bg(oU, Ry&)€E —
Bn(RnE)PU — k¢RNE + pSRNE = 0. Tts scalar product with ¢ gives

9(oU, Rn¢€) = 0, (5.2)

that is, 2 cos(2t)g(A¢U, &) = 0. Therefore, if cos(2t) = 0, N is 2A-isotropic. Thus
we suppose cos(2t) # 0, and then

9(AgU, £) = 0. (5.3)
From (5.2) the above expression becomes
—Bn(RNE)PU — k¢RNE + $SRNE = 0. (5.4)
Its scalar product with £, bearing in mind (5.2), yields
9(Rn§, S¢U) =0, (5.5)
and its scalar product with X € Gy implies
kg(Rn¢E, ¢X) — g(RnE, SoX) =0 (5.6)

for any X € Cyp.
The scalar product of (3.10) and ¢U yields

—n(RnY)g(SX,U) + kn(RyY)g(X,U)
+n(Y)g(RyoSX, pU) — kn(Y)g(Rydp X, ¢U) = 0
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for any X € C, Y tangent to M. If also Y € €, we get —n(RxY)(9(SX,U) —
kg(SX,U)) = 0 for any X,Y € €. Therefore, if for any Y € C, g(Y, Rn&) =
0 = 2cos(2t)g(Y, A€), as cos(2t) # 0, we obtain g(Y, A¢) =0 for any Y € C, and
therefore N is 2-principal. Let us suppose now that there exists Z € € such that
n(RyZ) # 0, and that for any X € €, g(SU, X) = kg(U, X). That is,

SU = g(SU, )¢ + g(SU,UNU = B¢ + kU. (5.7)

Taking X = U in (3.10), we get g((¢S + So)U, RNY )¢ — g((¢S + So)U,Y)
Ry& = 0, for any Y tangent to M. Its scalar product with Z yields g((¢S +
SP)U,Y) =0 for any Y tangent to M. Therefore SpU = —¢SU, that is,

SoU = —koU. (5.8)

Take X = ¢U in (3.10). Then —2kn(RyY)—g((¢S+S¢)pU,Y )n(RyU) = 0,
that is,

—2kn(RNY) — g(0SoU,Y)n(RyU) + g(SU, Y )n(RyU) = 0

for any Y € €. This implies —2kn(RxY) = 0 for any Y € €, which contradicts
the existence of Z and finishes the proof. O

From Lemma 5.1, N is either 2A-isotropic or A-principal. Suppose first that
N is A-isotropic. Then Ry¢ = 4€. Moreover, RyoU = ¢U — g(ApU, N)AN —
(AU, &) AE. Tf (5.1) is satisfied, we have Bg(oU, Ry ¢U)E—koRydU+¢S Ry pU—
BRNE—KkRNU — RygSoU = 0. Its scalar product with ¢ yields 8g(oU, RyoU) —
48 = 0. That is, 4 = g(RyoU, ¢U) = 1 — g(AsU, N)? — g(AgU, €)?, which is im-
possible.

Let us suppose now N is %-principal. In this case, AN = N, A{ = —¢,
Ryé=2¢, and for any X € @, Ry X = X + AX.

Take Y = ¢U in (5.1). We obtain

Bg(oU, Ry pU)Eé —kdRNdU + dSRNdU — BRNE —kRNU — Ry SoU = 0. (5.9)

Its scalar product with ¢ gives g(¢U, RyoU) = 2 = 1 + g(A¢U, ¢U). This
yields g(A¢U, ¢U) = 1, which implies ApU = ¢U. Therefore Ry¢U = 2¢U. As
ApU = ¢U, we have AJU = JU = —JAU. This gives AU = —U and RyU = 0.
Thus (5.9) becomes 2kU + 2¢S¢U — RypS¢U = 0. Its scalar product with U
implies 2k — 2g(S¢U, U) = 0. That is,

9(SeU, ¢U) = k. (5.10)
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Taking Y = U in (5.1), we have kRy¢U — Ry¢SU = 0. Its scalar product
with ¢U gives 2k — 2g(¢pSU, ¢U) = 0 = 2k — 2g(SU,U). Then

g(SU,U) = k. (5.11)

Taking Y = U in (3.10), we have —g((¢S + S¢)X,U)Ry&é = 0, that is,
—29((¢S + SP)X,U) =0 for any X € C. If X = ¢U, we obtain g(¢S¢U,U) +
g(S¢*U,U) =0 = —g(SoU, pU) — g(SU,U) = —2k, which is impossible, finishing
the proof of Theorem 1.2.
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