

Commutativity of torsion and normal Jacobi operators on real hypersurfaces in the complex quadric

By JUAN DE DIOS PÉREZ (Granada)

Abstract. On a real hypersurface in the complex quadric we can consider the Levi–Civita connection and, for any non-zero real constant k , the k -th generalized Tanaka–Webster connection. Associated to this connection we can define a differential operator whose difference with the Lie derivative is the torsion operator of the k -th generalized Tanaka–Webster connection. We prove the non-existence of real hypersurfaces in the complex quadric for which the torsion operators commute with the normal Jacobi operator of the real hypersurface.

1. Introduction

The complex quadric $Q^m = SO_{m+2}/SO_m SO_2$ is a compact Hermitian symmetric space of rank 2. It is also a complex hypersurface in the complex projective space $\mathbb{C}P^{m+1}$ (see [5], [6], [8]). The space Q^m is equipped with two geometric structures: a Kaehler structure J and a parallel circle subbundle \mathfrak{A} of the endomorphism bundle $\text{End}(TQ^m)$, which consists of all the real structures on the tangent space of Q^m . For any $A \in \mathfrak{A}$ the following relations hold: $A^2 = I$ and $AJ = -JA$. A nonzero tangent vector W at a point of Q^m is called *singular* if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for Q^m : \mathfrak{A} -principal or \mathfrak{A} -isotropic vectors.

Real hypersurfaces M are immersed submanifolds of real co-dimension 1 in a Hermitian manifold. Since Q^m is a compact Hermitian symmetric space with

Mathematics Subject Classification: 53C15, 53B25.

Key words and phrases: complex quadric, real hypersurface, normal Jacobi operator, k -th generalized Tanaka–Webster connection, torsion operators.

The author is supported by MINECO-FEDER Project MTM 2016-78807-C2-1-P.

rank 2, it is interesting to study real hypersurfaces M in Q^m . The Kaehler structure J of Q^m induces on M an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is the structure tensor field, ξ is the Reeb vector field, η is a 1-form and g is the induced Riemannian metric of Q^m .

The study of real hypersurfaces M in Q^m is initiated by BERNDT and SUH in [1]. In this paper the geometric properties of real hypersurfaces M in complex quadric Q^m , which are tubes of radius r , $0 < r < \pi/2$, around the totally geodesic $\mathbb{C}P^k$ in Q^m , when $m = 2k$ or tubes of radius r , $0 < r < \pi/2\sqrt{2}$, around the totally geodesic Q^{m-1} in Q^m , are presented. The condition of isometric Reeb flow is equivalent to the commuting condition of the shape operator S with the structure tensor ϕ of M . The classification of such real hypersurfaces in Q^m is obtained in [2].

Given a Riemannian manifold (\tilde{M}, \tilde{g}) , Jacobi fields along geodesics satisfy a differential equation which results in the notion of Jacobi operator. That is, if \tilde{R} is the Riemannian curvature tensor of \tilde{M} , and X is a tangent vector field on \tilde{M} , then the Jacobi operator with respect to X at a point $p \in \tilde{M}$ is given by

$$(\tilde{R}_X Y)(p) = (\tilde{R}(Y, X)X)(p),$$

and becomes a self adjoint endomorphism of the tangent bundle $T\tilde{M}$ of \tilde{M} , i.e., $\tilde{R}_X \in \text{End}(T_p\tilde{M})$. In the case of real hypersurfaces M in Q^m , we can consider the normal Jacobi operator \bar{R}_N , where \bar{R} is the Riemannian curvature tensor of Q^m and N is the unit normal vector field on the real hypersurface M .

As M has an almost contact metric structure, for any non-zero real constant k , we can define the so called k -th generalized Tanaka–Webster connection $\hat{\nabla}^{(k)}$ on M by

$$\hat{\nabla}_X^{(k)} Y = \nabla_X Y + g(\phi S X, Y) \xi - \eta(Y) \phi S X - k \eta(X) \phi Y$$

for any X, Y tangent to M , where ∇ is the Levi-Civita connection on M , and S denotes the shape operator on M associated to N (see [3]). Let us call $F_X^{(k)} Y = g(\phi S X, Y) \xi - \eta(Y) \phi S X - k \eta(X) \phi Y$, for any X, Y tangent to M . $F_X^{(k)}$ is called the k -th Cho operator on M associated to X . Notice that if $X \in \mathcal{C}$, the maximal holomorphic distribution on M , given by all the vector fields orthogonal to ξ , the associated Cho operator does not depend on k and we will denote it simply by F_X . Then, given a symmetric tensor field L of type (1,1) on M , $\nabla_X L = \hat{\nabla}_X^{(k)} L$ for a tangent vector field X on M if and only if $F_X^{(k)} L = L F_X^{(k)}$, that is, the eigenspaces of L are preserved by $F_X^{(k)}$. If $L = \bar{R}_N$, in [4] we proved

Theorem 1.1. *There do not exist real hypersurfaces M in Q^m , $m \geq 3$, such that $\nabla \bar{R}_N = \hat{\nabla}^{(k)} \bar{R}_N$, for any non-zero real constant k .*

The torsion of the k -th generalized Tanaka–Webster connection is given by $T^{(k)}(X, Y) = F_X^{(k)}Y - F_Y^{(k)}X$ for any X, Y tangent to M . For any X tangent to M , we define the torsion operator associated to X by $T_X^{(k)}Y = T^{(k)}(X, Y)$ for any Y tangent to M .

Let \mathcal{L} denote the Lie derivative on M . Associated to the k -th generalized Tanaka–Webster connection, we can define the differential operator of first order $\mathcal{L}^{(k)}$ by $\mathcal{L}_X^{(k)}Y = \hat{\nabla}_X^{(k)}Y - \hat{\nabla}_Y^{(k)}X = \mathcal{L}_X Y + T_X^{(k)}Y$, for any X, Y tangent to M . Then for a symmetric tensor of type (1,1) on M , $\mathcal{L}_X L = \mathcal{L}_X^{(k)}L$ for a tangent vector field X on M if and only if $T_X^{(k)}L = LT_X^{(k)}$.

In this paper we study real hypersurfaces M in Q^m such that the Lie derivative and the differential operator $\mathcal{L}^{(k)}$ associated to the k -th generalized Tanaka–Webster connection coincide when we apply them to the normal Jacobi operator \bar{R}_N , that is

$$\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N \quad (1.1)$$

for some non-zero real constant k . We will prove the following

Theorem 1.2. *There do not exist real hypersurfaces M in Q^m , $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$, for any non-zero real constant k .*

2. The space Q^m

The complex projective space $\mathbb{C}P^{m+1}$ is considered as the Hermitian symmetric space of the special unitary group SU_{m+2} , namely

$$\mathbb{C}P^{m+1} = SU_{m+2}/S(U_{m+1}U_1).$$

The symbol $o = [0, \dots, 0, 1]$ in $\mathbb{C}P^{m+1}$ is the fixed point of the action of the stabilizer $S(U_{m+1}U_1)$. The action of the special orthogonal group $SO_{m+2} \subset SU_{m+2}$ on $\mathbb{C}P^{m+1}$ is of cohomogeneity one. A totally geodesic real projective space $\mathbb{R}P^{m+1} \subset \mathbb{C}P^{m+1}$ is an orbit containing point o . The second singular orbit of this action is the complex quadric $Q^m = SO_{m+2}/SO_m SO_2$. It is a homogeneous model, which interprets geometrically the complex quadric Q^m as the Grassmann manifold $G_2^+(\mathbb{R}^{m+2})$ of oriented 2-planes in \mathbb{R}^{m+2} . Thus, the complex quadric Q^m is considered as a Hermitian space of rank 2. For $m = 1$, the complex quadric Q^1 is isometric to a sphere S^2 of constant curvature. For $m = 2$, the complex quadric Q^2 is isometric to the Riemannian product of two 2-spheres with constant curvature. Therefore, we assume the dimension of complex quadric Q^m to be greater than or equal to 3.

Moreover, the complex quadric Q^m is the complex hypersurface in $\mathbb{C}P^{m+1}$ defined by the homogeneous quadric equation $z_1^2 + \cdots + z_{m+2}^2 = 0$, where z_i , $i = 1, \dots, m+2$, are homogeneous coordinates on $\mathbb{C}P^{m+1}$. The Kaehler structure of complex projective space $\mathbb{C}P^{m+1}$ induces canonically a Kaehler structure (J, g) on Q^m , where g is a Riemannian metric with maximal holomorphic sectional curvature 4 induced by the Fubini Study metric of $\mathbb{C}P^{m+1}$.

Consider the Riemannian fibration $\pi : S^{2m+3} \subset \mathbb{C}^{m+2} \longrightarrow \mathbb{C}P^{m+1}$, $z \mapsto [z]$. Then $\mathbb{C}^{m+2} \ominus [z]$ is the horizontal space of π at $z \in S^{2m+3}$. Then at each $[z]$ in Q^m the tangent space $T_{[z]}Q^m$ can be identified canonically with the orthogonal complement of $\mathbb{C}^{m+2} \ominus ([z] \oplus [\bar{z}])$ of $[z] \oplus [\bar{z}]$ in \mathbb{C}^{m+2} . Thus $\pi_*|_z \bar{z}$ is a unit normal vector of Q^m in $\mathbb{C}P^{m+1}$ at the point $[z]$.

The shape operator $A_{\bar{z}}$ of Q^m with respect to the unit normal vector \bar{z} is given by

$$A_{\bar{z}}\pi_*|_z w = \pi_*|_z \bar{w},$$

for all $w \in T_{[z]}Q^m$. The shape operator $A_{\bar{z}}$ is a complex conjugation restricted to $T_{[z]}Q^m$. The complex vector space $T_{[z]}Q^m$ is decomposed into

$$T_{[z]}Q^m = V(A_{\bar{z}}) \oplus JV(A_{\bar{z}}),$$

where $V(A_{\bar{z}}) = \mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the $(+1)$ -eigenspace of $A_{\bar{z}}$, i.e., $A_{\bar{z}}X = X$, and $JV(A_{\bar{z}}) = i\mathbb{R}^{m+2} \cap T_{[z]}Q^m$ is the (-1) -eigenspace of $A_{\bar{z}}$, i.e., $A_{\bar{z}}JX = -JX$ for any $X \in V(A_{\bar{z}})$. Geometrically, it means that $A_{\bar{z}}$ defines a real structure on the complex vector space $T_{[z]}Q^m$, which is an antilinear involution. The set of all such shape operators $A_{\bar{z}}$ defines a parallel circle subbundle \mathfrak{A} of the endomorphism bundle $\text{End}(TQ^m)$, which consists of all the real structures on the tangent space of Q^m . For any $A \in \mathfrak{A}$ the following relations hold:

$$A^2 = I \quad \text{and} \quad AJ = -JA.$$

The Gauss equation for $Q^m \subset \mathbb{C}P^{m+1}$ yields that the Riemannian curvature tensor R of Q^m is given by

$$\begin{aligned} \bar{R}(X, Y)Z &= g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ \\ &\quad + g(AY, Z)AX - g(AX, Z)AY + g(JAY, Z)JAX - g(JAX, Z)JAY, \end{aligned}$$

where J is the complex structure, g is the Riemannian metric and A is a real structure in \mathfrak{A} .

A nonzero tangent vector $W \in T_{[z]}Q^m$ is called *singular* if it is tangent to more than one maximal flat in Q^m . There are two types of singular tangent vectors for Q^m :

- (1) **\mathfrak{A} -principal.** In this case, there exists a real structure $A \in \mathfrak{A}$ such that $W \in V(A)$.
- (2) **\mathfrak{A} -isotropic.** In this case, there exists a real structure $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that $W/\|W\| = (X + JY)/\sqrt{2}$.

For every unit vector field W tangent to Q^m , there is a complex conjugation $A \in \mathfrak{A}$ and orthonormal vectors $X, Y \in V(A)$ such that

$$W = \cos(t)X + \sin(t)JY, \quad (2.1)$$

for some $t \in [0, \pi/4]$. The singular vectors correspond to the values $t = 0$ and $t = \pi/4$.

3. Real hypersurfaces in Q^m

Let M be a real hypersurface in Q^m and N a unit normal vector field of M . Any vector field X tangent to M satisfies the relation

$$JX = \phi X + \eta(X)N. \quad (3.1)$$

The tangential component of the above relation defines on M a skew-symmetric tensor field of type (1,1) ϕ , named the structure tensor. The structure vector field ξ is defined by $\xi = -JN$ and is called the Reeb vector field. The 1-form η is given by $\eta(X) = g(X, \xi)$ for any vector field X tangent to M . So, on M an almost contact metric structure (ϕ, ξ, η, g) is defined. The elements of the almost contact structure satisfy the following relations:

$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\xi) = 1, \quad g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y) \quad (3.2)$$

for all tangent vectors X, Y to M . Relation (3.2) implies

$$\phi\xi = 0.$$

The tangent bundle TM of M splits orthogonally into

$$TM = \mathcal{C} \oplus \mathcal{F},$$

where $\mathcal{C} = \ker(\eta)$ is the maximal complex subbundle of TM and $\mathcal{F} = \mathbb{R}\xi$. The structure tensor field ϕ restricted to \mathcal{C} coincides with the complex structure J .

The shape operator of a real hypersurface M in Q^m is denoted by S . The real hypersurface is called *Hopf hypersurface* if the Reeb vector field is an eigenvector of the shape operator, i.e.,

$$S\xi = \alpha\xi, \quad (3.3)$$

where $\alpha = g(S\xi, \xi)$ is the Reeb function.

At each point $[z] \in M$, we choose a real structure $A \in \mathfrak{A}_{[z]}$ such that

$$N_{[z]} = \cos(t)Z_1 + \sin(t)JZ_2, \quad AN_{[z]} = \cos(t)Z_1 - \sin(t)JZ_2, \quad (3.4)$$

where Z_1, Z_2 are orthonormal vectors in $V(A)$ and $0 \leq t \leq \frac{\pi}{4}$. Moreover, the above relations due to $\xi = -JN$ imply

$$\xi_{[z]} = -\cos(t)JZ_1 + \sin(t)Z_2, \quad A\xi_{[z]} = \cos(t)JZ_1 + \sin(t)Z_2. \quad (3.5)$$

So, we have $g(AN_{[z]}, \xi_{[z]}) = 0$.

The Codazzi equation of M is given by

$$\begin{aligned} g((\nabla_X S)Y - (\nabla_Y S)X, Z) &= \eta(X)g(\phi Y, Z) - \eta(Y)g(\phi X, Z) - 2\eta(Z)g(\phi X, Y) \\ &\quad + g(X, AN)g(AY, Z) - g(Y, AN)g(AX, Z) \\ &\quad + g(X, A\xi)g(JAY, Z) - g(Y, A\xi)g(JAX, Z) \end{aligned} \quad (3.6)$$

for any X, Y, Z tangent to M .

The normal Jacobi operator of a real hypersurface in Q^m is calculated by the Gauss equation for $Y = Z = N$ and, because of (3.4), is given by

$$\bar{R}_N(X) = X + 3\eta(X)\xi + \cos(2t)AX - g(AX, N)AN - g(AX, \xi)A\xi, \quad (3.7)$$

for any $X \in TM$, where $g(AN, N) = \cos(2t) = -g(A\xi, \xi)$. Let us suppose that $(\mathcal{L}_X \bar{R}_N)Y = (\mathcal{L}_X^{(k)} \bar{R}_N)Y$ for any X, Y tangent to M . This yields $F_X^{(k)} \bar{R}_N Y - F_{\bar{R}_N Y}^{(k)} X - \bar{R}_N F_X^{(k)} Y + F_Y^{(k)} X = 0$, for any X, Y tangent to M . That is

$$\begin{aligned} &g(\phi S X, \bar{R}_N Y) \xi - \eta(\bar{R}_N Y) \phi S X - k\eta(X) \phi \bar{R}_N Y - g(\phi S \bar{R}_N Y, X) \xi \\ &+ \eta(X) \phi S \bar{R}_N Y + k\eta(\bar{R}_N Y) \phi X - g(\phi S X, Y) \bar{R}_N \xi + \eta(Y) \bar{R}_N \phi S X \\ &+ k\eta(X) \bar{R}_N \phi Y + g(\phi S Y, X) \bar{R}_N \xi - \eta(X) \bar{R}_N \phi S Y - k\eta(Y) \bar{R}_N \phi Y = 0. \end{aligned} \quad (3.8)$$

If we take $X = \xi$ in (3.8), we obtain

$$\begin{aligned} & g(\phi S\xi, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi S\xi - k\phi \bar{R}_N Y + \phi S \bar{R}_N Y \\ & - g(\phi S\xi, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi S\xi + k\bar{R}_N \phi Y - \bar{R}_N \phi S Y = 0 \end{aligned} \quad (3.9)$$

for any Y tangent to M .

Taking $X \in \mathcal{C}$ in (3.8), we get

$$\begin{aligned} & g((\phi S + S\phi)X, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi SX + k\eta(\bar{R}_N Y)\phi X \\ & - g((\phi S + S\phi)X, Y)\bar{R}_N \xi + \eta(Y)\bar{R}_N \phi SX - k\eta(Y)\bar{R}_N \phi X = 0 \end{aligned} \quad (3.10)$$

for any $X \in \mathcal{C}$, Y tangent to M .

We finish this section with the following Proposition, which concerns Hopf hypersurfaces in Q^m whose shape operator commutes with the structure tensor, see [2].

Proposition 3.1. *The following statements hold for a tube M of radius r , $0 < r < \pi/2$ around the totally geodesic $\mathbb{C}P^k$ in Q^m , $m = 2k$:*

- (1) *M is a Hopf hypersurface.*
- (2) *The normal bundle of M consists of \mathfrak{A} -isotropic singular tangent vectors of Q^m .*
- (3) *M has four distinct principal curvatures, unless $m = 2$, in which case M has two distinct principal curvatures.*
- (4) *The shape operator commutes with the structure tensor field ϕ , i.e., $S\phi = \phi S$.*
- (5) *M is a homogeneous hypersurface.*

And see also [7]:

Proposition 3.2. *Let M be a Hopf hypersurface in Q^m such that the normal vector field N is \mathfrak{A} -principal everywhere. Then $\alpha = g(S\xi, \xi)$ is constant, and if $X \in \mathcal{C}$ is a principal curvature vector of M with principal curvature λ , then $2\lambda \neq \alpha$, and ϕX is a principal curvature vector of M with principal curvature $\frac{\alpha\lambda+2}{2\lambda-\alpha}$.*

4. Proof of Theorem 1.2. The case of Hopf real hypersurfaces

All the following calculations take place at an arbitrary point $[z] \in M$, but we can omit the subscript $[z]$ from the vector fields and other objects for the sake of brevity.

Let us suppose that M is Hopf at $[z]$, i.e., that $S\xi = \alpha\xi$ holds. We will first prove the following:

Lemma 4.1. *Let M be a Hopf real hypersurface in Q^m , $m \geq 3$. If $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$ for some non-zero real constant k , then N is either \mathfrak{A} -isotropic or \mathfrak{A} -principal.*

PROOF. As M is Hopf, (3.9) becomes

$$-k\phi\bar{R}_N Y + \phi S\bar{R}_N Y + k\bar{R}_N\phi Y - \bar{R}_N\phi SY = 0 \quad (4.1)$$

for any Y tangent to M . If, in particular, $Y = \xi$, we get

$$-k\phi\bar{R}_N\xi + \phi S\bar{R}_N\xi = 0. \quad (4.2)$$

If in (3.10) we take $Y = \xi$, we have

$$g((\phi S + S\phi)X, \bar{R}_N\xi)\xi - \eta(\bar{R}_N\xi)\phi SX + k\eta(\bar{R}_N\xi)\phi X + \bar{R}_N\phi SX - k\bar{R}_N\phi X = 0 \quad (4.3)$$

for any $X \in \mathcal{C}$.

Taking the scalar product of both sides of (4.3) by ξ gives $2g(\phi SX, \bar{R}_N\xi) + g(S\phi X, \bar{R}_N\xi) - kg(\phi X, \bar{R}_N\xi) = 0$ for any $X \in \mathcal{C}$. From (4.2) we obtain $g(\bar{R}_N\xi, \phi SX) = 0$, for any $X \in \mathcal{C}$. As $\bar{R}_N\xi = 4\xi + 2\cos(2t)A\xi$, it follows that

$$2\cos(2t)g(A\xi, \phi SX) = 0 \quad (4.4)$$

for any $X \in \mathcal{C}$. From (4.4), if $\cos(2t) = 0$, N is \mathfrak{A} -isotropic. If $\cos(2t) \neq 0$, $g(A\xi, \phi SX) = 0$ for any $X \in \mathcal{C}$. In this case, from (3.10), if $X \in \mathcal{C}$ satisfies $SX = \lambda X$, where $\lambda \neq k$, then $g(A\xi, X) = 0$.

Therefore, if in \mathcal{C} k does not appear as an eigenvalue of S or k is the unique eigenvalue of S , $g(A\xi, X) = 0$ for any $X \in \mathcal{C}$ and N is \mathfrak{A} -principal. If the unique eigenvalue of S in \mathcal{C} is k , $\phi S = S\phi$ and N should be \mathfrak{A} -isotropic, which is a contradiction. Therefore, if in \mathcal{C} k does not appear as an eigenvalue of S , N must be \mathfrak{A} -principal.

Thus we must suppose there exists $X \in \mathcal{C}$ such that $SX = kX$, and therefore $g(AN, X) = 0$, and there exists $Z \in \mathcal{C}$ such that $SZ = \lambda Z$, $\lambda \neq k$, and then $g(A\xi, Z) = 0$. Moreover, we must suppose there exists $W \in \mathcal{C}$ such that $\eta(\bar{R}_N W) = g(A\xi, W) \neq 0$. If not, N should be \mathfrak{A} -principal.

Let $X \in \mathcal{C}$ such that $SX = kX$. From (3.10) we have $g((\phi S + S\phi)X, \bar{R}_N Y)\xi - g((\phi S + S\phi)X, Y)\bar{R}_N\xi = 0$ for any Y tangent to M . Its scalar product with W yields $g((\phi S + S\phi)X, Y) = 0$ for any Y tangent to M , that is, $\phi SX = -S\phi X = k\phi X$. Therefore $S\phi X = -k\phi X$. Again from (3.10) we have $g((\phi S + S\phi)\phi X, \bar{R}_N Y)\xi - \eta(\bar{R}_N Y)\phi S\phi X - k\eta(\bar{R}_N Y)X - g((\phi S + S\phi)\phi X, Y)\bar{R}_N\xi + \eta(Y)\bar{R}_N\phi S\phi X + k\eta(Y)\bar{R}_N X = 0$. But $\phi S\phi X + S\phi^2 X = 0$. Therefore, it follows that $-2k\eta(\bar{R}_N Y)X + 2k\eta(Y)\bar{R}_N X = 0$. If $Y = \xi$, we have $-\eta(\bar{R}_N\xi)X + \bar{R}_N X = 0$. Its scalar product with ξ implies $\eta(\bar{R}_N X) = 0$. As for any $Z \in \mathcal{C}$ such that $SZ = \lambda Z$, $\lambda \neq k$, we have $g(A\xi, Z) = 0$, we arrive to a contradiction and we have finished the proof. \square

Lemma 4.2. *There do not exist Hopf real hypersurfaces in Q^m , $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$ for a non-zero real constant k if N is \mathfrak{A} -isotropic.*

PROOF. If N is \mathfrak{A} -isotropic, $\bar{R}_N\xi = 4\xi$. Let $X \in \mathcal{C}$ be a unit vector field such that $SX = \lambda X$. Introducing it in (4.3), we have $-4\lambda\phi X + 4k\phi X + \lambda\bar{R}_N\phi X - k\bar{R}_N\phi X = 0$. That is, $(k - \lambda)\bar{R}_N\phi X = 4(k - \lambda)\phi X$. There are two possibilities, either $\lambda = k$ or if $\lambda \neq k$, $\bar{R}_N\phi X = 4\phi X$.

In the second case, $4\phi X = \phi X - g(\phi X, AN)AN - g(\phi X, A\xi)A\xi$. Its scalar product with ϕX gives $3 = -g(\phi X, AN)^2 - g(\phi X, A\xi)^2$, which is impossible.

Therefore $SX = kX$ for any $X \in \mathcal{C}$. Take $X, Y \in \mathcal{C}$ in (3.10). This yields $g((\phi S + S\phi)X, \bar{R}_N Y)\xi - 4g((\phi S + S\phi)X, Y)\xi = 0$. That is, $2kg(\phi X, \bar{R}_N Y)\xi - 8kg(\phi X, Y)\xi = 0$ for any $X, Y \in \mathcal{C}$. Therefore $g(\phi X, \bar{R}_N Y) = 4g(\phi X, Y)$. Taking $Y = \phi X$, we arrive to the same contradiction, finishing the proof. \square

Lemma 4.3. *There do not exist Hopf real hypersurfaces in Q^m , $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$ for some non-zero real constant k if N is \mathfrak{A} -principal.*

PROOF. As we suppose N is \mathfrak{A} -principal, we can write $AN = N$, $A\xi = -\xi$ and $\bar{R}_N\xi = 2\xi$. We also know that α is constant, and that if $X \in \mathcal{C}$ satisfies $SX = \lambda X$, then $S\phi X = \mu\phi X$, with $\mu = \frac{\alpha\lambda+2}{2\lambda-\alpha}$.

Let $\{E_1, \dots, E_{2m-2}\}$ be an orthonormal basis of eigenvectors of S in \mathcal{C} such that $SE_i = \lambda_i E_i$, $i = 1, \dots, 2m-2$. For any $X \in \mathcal{C}$, $\bar{R}_N X = X + AX$. As there exists $Y \in \mathcal{C}$ such that $AY = -Y$, for such a vector field, $\bar{R}_N Y = 0$. For such a Y and $X \in \mathcal{C}$, (3.10) yields $g((\phi S + S\phi)X, Y) = 0$. Therefore $(\lambda_i + \mu_i)g(\phi E_i, Y) = 0$, for any $i = 1, \dots, 2m-2$. As $\{\phi E_1, \dots, \phi E_{2m-2}\}$ is also an orthonormal basis of \mathcal{C} , there exists $j \in \{1, \dots, 2m-2\}$ such that $g(\phi E_j, Y) \neq 0$. Therefore $\lambda_j + \mu_j = 0$.

From the Codazzi equation,

$$\begin{aligned} g((\nabla_{E_j} S)\phi E_j - (\nabla_{\phi E_j} S)E_j, \xi) &= -2g(\phi E_j, \phi E_j) = -2 \\ &= g(\nabla_{E_j}(-\lambda_j\phi E_j) - S\nabla_{E_j}\phi E_j - \nabla_{\phi E_j}(\lambda_j E_j) + S\nabla_{\phi E_j}E_j, \xi) \\ &= \lambda_j g(\phi E_j, \phi S E_j) + \alpha g(E_j, \phi S E_j) + \lambda_j g(E_j, \phi S\phi E_j) - \alpha g(E_j, \phi S\phi E_j) \\ &= \lambda_j^2 + \alpha\lambda_j + \lambda_j^2 - \alpha\lambda_j = 2\lambda_j^2, \end{aligned}$$

which is impossible and finishes the proof. \square

The proof of Theorem 1.2 for Hopf real hypersurfaces follows from the Lemmas above.

5. Proof of Theorem 1.2. The case of non-Hopf real hypersurfaces

If M is not Hopf at $[z]$, we write $S\xi = \alpha\xi + \beta U$, where U is a unit vector in \mathcal{C} , and β is a nonzero number. Let us call $\mathcal{C}_U = \{X \in \mathcal{C} | g(X, U) = g(X, \phi U) = 0\}$. We will prove the following:

Lemma 5.1. *Let M be a non-Hopf real hypersurface in Q^m , $m \geq 3$, such that $\mathcal{L}\bar{R}_N = \mathcal{L}^{(k)}\bar{R}_N$, for some non-zero real constant k . Then N is either \mathfrak{A} -isotropic or \mathfrak{A} -principal.*

PROOF. As M is non-Hopf, (3.9) becomes

$$\begin{aligned} & \beta g(\phi U, \bar{R}_N Y) \xi - \beta \eta(\bar{R}_N Y) \phi U - k \phi \bar{R}_N Y + \phi S \bar{R}_N Y \\ & - \beta g(\phi U, Y) \bar{R}_N \xi + \beta \eta(Y) \bar{R}_N \phi U + k \bar{R}_N \phi Y - \bar{R}_N \phi S Y = 0 \end{aligned} \quad (5.1)$$

for any Y tangent to M . Taking $Y = \xi$ in (5.1), we get $\beta g(\phi U, \bar{R}_N \xi) \xi - \beta \eta(\bar{R}_N \xi) \phi U - k \phi \bar{R}_N \xi + \phi S \bar{R}_N \xi = 0$. Its scalar product with ξ gives

$$g(\phi U, \bar{R}_N \xi) = 0, \quad (5.2)$$

that is, $2 \cos(2t) g(A\phi U, \xi) = 0$. Therefore, if $\cos(2t) = 0$, N is \mathfrak{A} -isotropic. Thus we suppose $\cos(2t) \neq 0$, and then

$$g(A\phi U, \xi) = 0. \quad (5.3)$$

From (5.2) the above expression becomes

$$-\beta \eta(\bar{R}_N \xi) \phi U - k \phi \bar{R}_N \xi + \phi S \bar{R}_N \xi = 0. \quad (5.4)$$

Its scalar product with ξ , bearing in mind (5.2), yields

$$g(\bar{R}_N \xi, S\phi U) = 0, \quad (5.5)$$

and its scalar product with $X \in \mathcal{C}_U$ implies

$$kg(\bar{R}_N \xi, \phi X) - g(\bar{R}_N \xi, S\phi X) = 0 \quad (5.6)$$

for any $X \in \mathcal{C}_U$.

The scalar product of (3.10) and ϕU yields

$$\begin{aligned} & -\eta(\bar{R}_N Y) g(SX, U) + k\eta(\bar{R}_N Y) g(X, U) \\ & + \eta(Y) g(\bar{R}_N \phi SX, \phi U) - k\eta(Y) g(\bar{R}_N \phi X, \phi U) = 0 \end{aligned}$$

for any $X \in \mathcal{C}$, Y tangent to M . If also $Y \in \mathcal{C}$, we get $-\eta(\bar{R}_N Y)(g(SX, U) - kg(SX, U)) = 0$ for any $X, Y \in \mathcal{C}$. Therefore, if for any $Y \in \mathcal{C}$, $g(Y, \bar{R}_N \xi) = 0 = 2 \cos(2t)g(Y, A\xi)$, as $\cos(2t) \neq 0$, we obtain $g(Y, A\xi) = 0$ for any $Y \in \mathcal{C}$, and therefore N is \mathfrak{A} -principal. Let us suppose now that there exists $Z \in \mathcal{C}$ such that $\eta(\bar{R}_N Z) \neq 0$, and that for any $X \in \mathcal{C}$, $g(SU, X) = kg(U, X)$. That is,

$$SU = g(SU, \xi)\xi + g(SU, U)U = \beta\xi + kU. \quad (5.7)$$

Taking $X = U$ in (3.10), we get $g((\phi S + S\phi)U, \bar{R}_N Y)\xi - g((\phi S + S\phi)U, Y)\bar{R}_N \xi = 0$, for any Y tangent to M . Its scalar product with Z yields $g((\phi S + S\phi)U, Y) = 0$ for any Y tangent to M . Therefore $S\phi U = -\phi SU$, that is,

$$S\phi U = -k\phi U. \quad (5.8)$$

Take $X = \phi U$ in (3.10). Then $-2k\eta(\bar{R}_N Y) - g((\phi S + S\phi)\phi U, Y)\eta(\bar{R}_N U) = 0$, that is,

$$-2k\eta(\bar{R}_N Y) - g(\phi S\phi U, Y)\eta(\bar{R}_N U) + g(SU, Y)\eta(\bar{R}_N U) = 0$$

for any $Y \in \mathcal{C}$. This implies $-2k\eta(\bar{R}_N Y) = 0$ for any $Y \in \mathcal{C}$, which contradicts the existence of Z and finishes the proof. \square

From Lemma 5.1, N is either \mathfrak{A} -isotropic or \mathfrak{A} -principal. Suppose first that N is \mathfrak{A} -isotropic. Then $\bar{R}_N \xi = 4\xi$. Moreover, $\bar{R}_N \phi U = \phi U - g(A\phi U, N)AN - g(A\phi U, \xi)A\xi$. If (5.1) is satisfied, we have $\beta g(\phi U, \bar{R}_N \phi U)\xi - k\phi \bar{R}_N \phi U + \phi S\bar{R}_N \phi U - \beta \bar{R}_N \xi - k\bar{R}_N U - \bar{R}_N \phi S\phi U = 0$. Its scalar product with ξ yields $\beta g(\phi U, \bar{R}_N \phi U) - 4\beta = 0$. That is, $4 = g(\bar{R}_N \phi U, \phi U) = 1 - g(A\phi U, N)^2 - g(A\phi U, \xi)^2$, which is impossible.

Let us suppose now N is \mathfrak{A} -principal. In this case, $AN = N$, $A\xi = -\xi$, $\bar{R}_N \xi = 2\xi$, and for any $X \in \mathcal{C}$, $\bar{R}_N X = X + AX$.

Take $Y = \phi U$ in (5.1). We obtain

$$\beta g(\phi U, \bar{R}_N \phi U)\xi - k\phi \bar{R}_N \phi U + \phi S\bar{R}_N \phi U - \beta \bar{R}_N \xi - k\bar{R}_N U - \bar{R}_N \phi S\phi U = 0. \quad (5.9)$$

Its scalar product with ξ gives $g(\phi U, \bar{R}_N \phi U) = 2 = 1 + g(A\phi U, \phi U)$. This yields $g(A\phi U, \phi U) = 1$, which implies $A\phi U = \phi U$. Therefore $\bar{R}_N \phi U = 2\phi U$. As $A\phi U = \phi U$, we have $AJU = JU = -JAU$. This gives $AU = -U$ and $\bar{R}_N U = 0$. Thus (5.9) becomes $2kU + 2\phi S\phi U - \bar{R}_N \phi S\phi U = 0$. Its scalar product with U implies $2k - 2g(S\phi U, \phi U) = 0$. That is,

$$g(S\phi U, \phi U) = k. \quad (5.10)$$

Taking $Y = U$ in (5.1), we have $k\bar{R}_N\phi U - \bar{R}_N\phi SU = 0$. Its scalar product with ϕU gives $2k - 2g(\phi SU, \phi U) = 0 = 2k - 2g(SU, U)$. Then

$$g(SU, U) = k. \quad (5.11)$$

Taking $Y = U$ in (3.10), we have $-g((\phi S + S\phi)X, U)\bar{R}_N\xi = 0$, that is, $-2g((\phi S + S\phi)X, U)\xi = 0$ for any $X \in \mathcal{C}$. If $X = \phi U$, we obtain $g(\phi S\phi U, U) + g(S\phi^2 U, U) = 0 = -g(S\phi U, \phi U) - g(SU, U) = -2k$, which is impossible, finishing the proof of Theorem 1.2.

References

- [1] J. BERNDT and Y. J. SUH, On the geometry of homogeneous real hypersurfaces in the complex quadric, In: Proceedings of the 16th International Workshop on Differential Geometry and the 5th KNUGRG-OCAMI Differential Geometry Workshop, *Natl. Inst. Math. Sci. (NIMS)*, Taejön **16** (2012), 1–9.
- [2] J. BERNDT and Y. J. SUH, Real hypersurfaces with isometric Reeb flow in complex quadrics, *Internat. J. Math.* **24** (2013), 1350050, 18 pp.
- [3] J. T. CHO, CR-structures on real hypersurfaces of a complex space form, *Publ. Math. Debrecen* **54** (1999), 473–487.
- [4] J. D. PÉREZ and Y. J. SUH, Commutativity of Cho and normal Jacobi operators on real hypersurfaces in the complex quadric, *Publ. Math. Debrecen* **94** (2019), 359–367.
- [5] B. SMYTH, Differential geometry of complex hypersurfaces, *Ann. of Math. (2)* **85** (1967), 246–266.
- [6] Y. J. SUH, Real hypersurfaces in the complex quadric with commuting and parallel Ricci tensor, *J. Geom. Phys.* **106** (2016), 130–142.
- [7] Y. J. SUH, Real hypersurfaces in the complex quadric with Reeb parallel shape operator, *Internat. J. Math.* **25** (2014), 1450059, 17 pp.
- [8] Y. J. SUH and D. H. HWANG, Real hypersurfaces in the complex quadric with commuting Ricci tensor, *Sci. China Math.* **59** (2016), 2185–2198.

JUAN DE DIOS PÉREZ
DEPARTAMENTO DE GEOMETRÍA
Y TOPOLOGÍA
UNIVERSIDAD DE GRANADA
18071 GRANADA
SPAIN

E-mail: jd.perez@ugr.es

(Received August 17, 2018; revised November 19, 2018)