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An annihilator condition on Leavitt path algebras

By GRZEGORZ BAJOR (Warsaw) and MICHAL ZIEMBOWSKI (Warsaw)

Abstract. Let F be a row-finite graph, and let K be a field. In the present paper,
necessary and sufficient conditions are established for F to get the Leavitt path algebra
L (F) which satisfies Property (A).

1. Introduction and preliminaries

The Leavitt path algebra Ly (E) has its origins in works of ABRAMS and
ARANDA PINO [1], [2], and ARA, MORENO and PARDO [8]. In the first two men-
tioned works, the authors provide characterizations of the simplicity and purely
infinite simplicity, respectively, of the Leavitt path algebra Ly (E) in terms of
properties of the graph F only. That result in some way determines one of the
directions of research in the area, which aims to express the properties of rings in
graph language. In the third paper, Ara et al. explicitly described the natural iso-
morphism between the lattice of graded ideals of the Leavitt path algebra L (F)
and the lattice of order ideals of the monoid V(Lg(E)). The object discussed
is of great interest to researchers, as evidenced by the large number of published
articles and the multitude of results obtained. It is worth mentioning that the
Leavitt path algebra Lk (F) is the algebraic analogue of the Cuntz—Krieger alge-
bra C*(E) considered in [24].

A commutative ring R has Property (A) if every finitely generated ideal of R
consisting entirely of zero-divisors has a non-zero annihilator. This property was
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introduced by HUCKABA and KELLER [19], and has been called Condition (C)
by Quentel. The class of commutative rings with Property (A) is quite large
and has been studied by many authors (see [7], [12], [15], [19]-[20], [22]-[23]).
Polynomial rings, rings whose classical ring of quotients is von Neumann regular,
Noetherian rings [21, p. 56] and rings whose prime ideals are maximal [15] are
well-known examples of rings in this class. On the other hand, KAPLANSKY [21,
p. 63] showed that there are non-Noetherian rings which do not have Property (A).
As an application of the considered property we want to mention that HINKLE
and HUCKABA [16] using it widened the concept of Kronecker function rings from
integral domains to rings with zero-divisors.

In [17], HONG et al. extended Property (A) to the non-commutative setting
as follows: a ring R has right (left) Property (A) if every finitely generated two-
sided ideal of R consisting entirely of left (right) zero-divisors has a right (left)
non-zero annihilator. A ring R is said to have Property (A) if R has right and
left Property (A). By [17, Example 1.2] Property (A) is not left-right symmetric.

Another condition often considered in tandem with Property (A) (in the
commutative case see [19], [22], and in the non-commutative case see [18], [25]),
is the following: a ring R has right annihilator condition (for short, R has right
(a.c.)), if, for every 2-generated right ideal J = aR+ bR of R, there is ¢ € R such
that annZ(J) = annf*(cR). Left (a.c.) is defined similarly.

By [5] for an arbitrary graph F and a field K, in the Leavitt path alge-
bra Li(F) all finitely generated one-sided ideals are principal (such rings in the
literature are called Bézout). Thus Lg (F) satisfies always right and left (a.c.).

By the above it is natural, and it is our main motivation, to ask about
Property (A) in the context of Leavitt path algebras. This motivation is reinforced
by the fact that every commutative Bézout ring R satisfies Property (A), which
is easy to see.

It occurs that we are able to give the full answer to the described problem.
More precisely, we give necessary and sufficient conditions on a row-finite graph E
to get Li(F) with Property (A) (see Theorems 2.11 and 2.12). This allows us
to construct an example of a non-commutative algebra which is Bézout and does
not satisfy left and right Property (A) (see Example 2.13). But we want to stress
that the mentioned example is only the consequence of our main findings and it
is not the main purpose of the work.

Now we want to recall some basic definitions.

A directed graph E = (E°, E',r, s) consists of two sets E, E' and functions
r,s: E' — E°. The elements of E° are called vertices and the elements of E' are
called edges. For each edge e, r(e) is the range of e and s(e) is the source of e.
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A vertex which emits no edges is called a sink. A graph is called row-finite if
s71(v) is a finite set for each vertex v.

A path w in a graph F is a sequence of edges m = ejes...e, such that
r(e;) = s(ej41) for i = 1,...,n — 1. We define s(w) = s(e1) and r(7) = r(en)-
If r(m) = s(m) and s(e;) # s(e;) for every ¢ # j, then 7 is called a cycle. An edge e
is an ezit of a cycle m = ejea. .. e, if s(e) = s(e;) for some 4, and e # e;. If 7 is
a cycle in E, then by E°(m) we denote the set of all vertices which are sources of
edges appearing in 7. The length of a path 7 is denoted by |7|.

As in many places in the literature, we will consider the relation > on E° in
the following way: v > w for v,w € E if there is a path o € E (possibly empty)
such that s(0) = v and 7(0) = w. If S is a subset of E°, then for a vertex v,
v > S (resp., S > v) means that there is w € S such that v > w (resp., w > v).
For sets S, 8" C EY, S > S’ means that there is v € S such that v > S’. By H(S)
we denote the set of all vertices v € E° such that S > w.

For a ring R, the right (left) annihilator of a set X C R is denoted by
annf*(X) (annf*(X)).

Let E = (E°, E',r, s) be a directed graph, and let K be a field. We define
the Leavitt path K-algebra Li(E) (L(E) for short) as the K-algebra generated
by the set E° together with {e,e* : e € E'} which satisfy the following relations:

1
2

(1) vv' = 6y v for all v,0" € EY,

(2) s(e)e =er(e) =e for all e € B!,
(3) e*s(e) =r(e)e* =e* for all e € EY,
(4) e*f =0de ¢r(f) foralle, f € E',

()

5) v= Z{eEEli s(e)=v} €€ for every vertex v which is not a sink and emits finite

number of edges.

For an edge e € E', the element e* is called a ghost-edge, and for a path

o =ejey...e, we denote the so called ghost-path e}er _; .

..ej by o*.
For the general notation, terminology and results in Leavitt path algebras,
we refer to [1], [4], [6] and [10].

We will need the following lemma which can be found in [1].

Lemma 1.1. Let E be a graph, and let K be a field. Then every monomial
in Ly (F) is of the following form:

a) kv withk € K and v € E°, or
(a) ,

(b) kei, -...-ei fi-...- ff withke K, n,m>0,n+m>0,e;, f;, € E' for

1<k<n1</l<m.
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We will say that for the paths o = ejes...€,,7 = f1fa... fin, an edge e is
a factor of the monomial o - 7* if either e = e; for some 7, or e = f; for some j.
We leave the proof of the following lemma to the reader.

Lemma 1.2. Let E be a graph. For the vertices v,w € E°, there exist paths
o and 7 such that vor*w # 0 if and only if there is v € E° such that v > u and
w > u (in other words H(v) N H(w) # ).

By [13, Theorem 8] every ideal I of L(F) is generated by elements of the form
v+ >0 k;m?, for some ¢ > 1, where v € E°, 7 is a cycle based at v and k; € K
(hoping that this will not lead to a misunderstanding, the above generators will
be denoted by v+, k;w"). For a set T of generators of I which are of the above
form, we consider the set

E%(I) = {v € EY: U+Zki7ri € T for some cycle w based at v and k; € K} .

(2

Theorem 1.3. Let E be a row-finite graph, K a field, and let I be a non-zero
ideal of Ly (FE). Then the following are equivalent:

(1) The right annihilator of I is equal to 0; annt <) (I)=0.

(2) The left annihilator of I is equal to 0; anneLK(E)(I) =0.

(3) For any set T of generators of I which consists of elements of the form
v, k;m?, where v € E°, 7 is a cycle based at v and k; € K, and for any
vertex u € E°, H(EX(I)) N H(u) # 0.

PROOF. (1) = (3). Let I be an ideal of L(E) with annf(E)(I) = 0. For

a contradiction, suppose that for a set T' consisting of elements of the form v +
>, kim® and generating I, H(ES(I))NH (u) = () for some u € E°. Then taking any
element v+, k;m € T and a monomial o7* of the form presented in Lemma 1.1,
we can see that (v + Y, kig')or*u = 0. Indeed, as L(E) is Z-graded (see [1,
Lemma 1.7]), it is enough to show that vor*u = 0 and for any 4, g'or*u = 0.
But this follows, as for any 4, r(g') = v and we assumed H(E$(I)) N H(u) = 0,
which in particular gives H(v) N H(u) = (). Thus Tu = 0, a contradiction.

(3) = (1). Assume that (3) holds, and to get a contradiction, suppose that
Q= annf(E)(I) is not equal to 0. It is easy to see that @ is an ideal of L(E).
Let u + Zj r;&7 with a vertex u and a cycle £ based at u, be one of non-zero
elements generating (). By assumption, there is v + >, k;n' € I such that for
some w € E° v > w and u > w. Let a, 8 be paths such that s(a) = u, r(a) = w
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and s(f) =wv, r(B) = w. As L(E) is Z-graded and

(v + Z k;ﬂri) Ba* | u+ Z rjfj =0,
i J

we have fa* = vBa*u = 0, a contradiction. Thus @ = 0.
Since (2) < (3) can be proved in a similar way as the previous equivalence,
the proof is finished. a

We want to mention that another way of proving the above theorem is to use
the fact that for an arbitrary graph F and a field K, Li(E) is nonsingular (see
[6, Proposition 2.3.7]).

2. Leavitt path algebras satisfying Property (A)

It is well known (see [9, Corollary 3.5]) that if E is a finite acyclic graph,
then L (E) is a K-matricial algebra, which means that L(E) = @!_, M, (K) for
some positive integers ¢,nq, ..., n;. Thus in this case Ly (E) satisfies Property (A)
by [17, Proposition 1.3]. Therefore, in this section, considering graphs with a finite
number of vertices, we focus on graphs with at least one non-trivial cycle.

Lemma 2.1. Let E be a row-finite graph with finite E°, and let K be a field.
If E has a cycle 7 and a vertex v € E° such that E°(mr) > v and v # E°(r), then
Lk (FE) has neither right nor left Property (A).

PROOF. Let v be a vertex, and 7 be a cycle based at a vertex v’, which
satisfy conditions presented above. Assume that € is a path such that s(e) = v’
and r(e) = v. Let

Pw)={we E":w > H(v)},
and for T = E°\ P(v) consider the ideal I of L(E) generated by the finite set
{v} UT. Notice that we have E°(7) C P(v). Let z be a non-zero element of I.
Then
n Mp
Tr = kv”U+ quq+2kl a@f -V ﬂl/ﬁz + Zkaj 'JPJE;j ~p~5pj5pj,
qeT i=1 peT j=1

where o, @, Bi, By, 0pj, Opj, Opj, 0p; are paths (possibly empty), k,, ke, are ele-
ments of K, and n,m, are positive integers. Let

s=max({|B;]:i=1,...,n}U{|6p;l :p€T,j=1,...,mp}),



174 Grzegorz Bajor and Michal Ziembowski
and let
s=max({|f;| 1t =1,...,n}U{|0p;| :peT,j=1,...,mp}).

Take p € T and j € {1,...,m,}, and consider the product

— N 25
OpjOp; D Opjlp; =T

As |6,;| <5 and |72%| > 23, we can see that either this product is zero or there is
a path v such that

<k

=* 25 _ T . .
OpjOp; D Opjlp; T =0pT,:-p-vy-m#O.

If the latter holds, then p > v" > v, which means that p € P(v), a contradiction.
Thus

Myp
§ : § —x% <* 25 __
kpj 'Uij'pj ~p~6pj§m- - T —0
peT j=1

By similar arguments, we get

kv - w2 = quq - = (Zki'aiaf'“'5i5:> -1 =0,
i=1

qeT

and finally z-72% =0. Also, using arguments as above, one can see that (72%)*.z=0.
Thus we showed that any element of I is a left and right zero-divisor.

As it is easy to see, using Theorem 1.3, that annf(E) (I)=0= anneL(E) (1),
L(E) has neither right nor left Property (A). O

Inspired by [11, Definition 2.1], we formulate the following.
Definition 2.2. Let E be a row-finite graph. Suppose that there are subsets
E?, B9, EY of E° satisfying the following conditions:
(i) EYUEJUES = E",

(i) EY N EY =0 for any i # j,
) EY is not empty set, and EY is finite,
) EY # EQUES and ES # EY UEY,
(v) for each v € EY, v > EY and v > ES,
(vi) for each cycle 7 in E, E°(7) C EY U EY.
Then the triple (EY, E9, EY) will be called a partition of E°.

(iii

(iv
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For a row-finite graph E, the partition (E°,(),)) will be called a trivial par-
tition.

Remark 2.3. (a) Notice that by points (iv) and (vi), if 7 is a cycle in E and
(EY, EY, EY) is a partition of EY, then either E°(7) C EY or E°(7) C ES.

(b) As it will be presented in Example 2.7, a non-trivial partition of E° is
not uniquely determined.

(c) Notice that if ES = (), then also EY = ) (see Definition 2.2(v)). On the
other hand, it is possible that EY = () and EY # (). In this case, E is a disconnected
graph and it should be clear that by properties presented in the above definition
and well-known facts on decompositions of Leavitt path algebras of disconnected
graphs, L(E) = L(Fy) x L(Fy), where for ¢ = 1,2, F; is the subgraph of E such
that F? = E? and F}! is the set of all edges e appearing in E with s(e),r(e) € EY.

Proposition 2.4. If E is a row-finite graph and (EY, ES, EY) is not the
trivial partition of E°, then there are proper subgraphs £ and & of E such that

PROOF. By Remark 2.3(c), the thesis follows if ES is an empty set. There-
fore, in the rest of the proof, we assume that EYJ is not an empty set, which implies
that also EY is not empty.

Let for i =1,2,3,

E} ={ec E':r(e) € EY}.

Then Ef N E} = ( for any i # j and B} UE; UE3 = E".

Notice that if an edge e belongs to Ef, then r(e) € E?, and it follows that
s(e) € EYUEY. If e € Fi, then s(e),r(e) € ES. Thus & = (EYUES, E} UE}) is
a proper subgraph of E. By similar reasons, & = (EJ U EY, E3 U E}) is a proper
subgraph of E. We will show that L(E) = L(&;) x L(&).

We define a map ¢ : L(E) — L(&;) x L(E;) on generators of L(E) as follows,
and then we extend it linearly and multiplicatively (see [11, Proposition 2.4]).
For a vertex v € E° and an edge e € E',

(v,0), ifveEY (e,0), ifee E}
d(v) =< (0,v), fveEY, o¢le)=1(0,e), ifecE,
(v,v), ifve ES (e,e), ifee E}

(e*,0), ifeec FEf
), ifecEL. (2.1)
(e*,e*), ife€ Fi
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Now, we will show that ¢ preserves relations in L(E), which together with
the above will guarantee that ¢ is an algebra homomorphism.

Let e € Ei. Then r(e) € EY, so it must be also s(e) € EJ. Thus direct
calculation shows that ¢(s(e)e) = ¢(e) = p(er(e)). Also direct calculations show
that the appropriate relations are preserved by ¢ for e € E{ U Ed and for ghost-
edges e*.

Clearly, if e # ¢’ for edges e, ¢/, then ¢(e*e’) = 0. Whereas for an edge e,
d(e*e) = ¢(r(e)). Indeed, if e € Ef, then r(e) € EY C &) and ¢(ee) =
o(e*)p(e) = (e*,0)(e,0) = (e*e,0) = (r(e),0) = ¢(r(e)). The same holds for
e € E}. For e € Ei, we have r(e) € EY. As E§ C EYNEY and EX C &N &3,
we get d(e*e) = B(e*)d(e) = (%, %) er ) = (e*e, e*e) = (r(e), r(e)) = d(r(e)).

Suppose now that v is a vertex of E which is not a sink. Then in L(FE)

v = E ee*.

{e€E':s(e)=v}

we have

We will only consider the case v € EY, because the other cases result from similar
considerations. Let ey,...,ex be all edges such that s(e;) = v and r(e;) € EY,
let fi,...f; be all edges such that s(f;) = v and 7(f;) € EY, and finally let
hi,...hs be all edges such that s(hy) = v and r(hy) € EY. Then

k t s
UZZ@'GZ»‘—&-ij'f;-I—Zhe-hZ,
i=1 j=1 =1

and by definition,

k

t S
G| eier +> fi S5+ Y hehp
j=1 =1

i=1
k s t s

=D e+ Y he-hi, > fiofr+ > i | = (v,0) = 6(v).
i=1 =1 j=1 =1

Thus it follows that ¢ is a well-defined K-algebra homomorphism.

Although injectivity of ¢ can be justified using the Graded Uniqueness The-
orem (see [6, Theorem 2.2.15]), for the sake of completeness, we provide a direct
proof.

We will need the following pretty obvious fact: for paths 0,9 in L(E), if for
p € {1,2} an edge e € Ezl, is a factor of o - 6*, then all factors of o - §* are from
E!UE].
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To get a contradiction, suppose that there is a non-zero 2 € L(E) such that
¢(x) = 0. We can see that

T = Z k1iu; + Z kajv; + Z k3gwy + Z ko By + Z ko B3 + Z ks B3,
i j t

where all kg, k, are from K, and for any i,j,t, u; € EY, v; € ES and w; € EY,
respectively. Moreover, in any a;f3f, at least one of the factors is from FEf, in
any agf33, at least one of the factors is from E3, and in any as/3;, all factors are
from Fi. By definition of ¢, we get ¢(x) = (a,b), where

a=> kiui+» kaw+ Y kionfi + Y ksasBs,
i ¢

b= Z kajv; + Z kaiwys + Z koo By + Z ksasfs,
i t

and the fact that ¢(z) = 0 gives a =0 =b. As a = 0, we have z =} kojv; +
3" ko33, Since in any a5 there is an edge from F3, we get by definition of ¢,
(]5(.%') = ¢(Z] kgj’Uj + Z kgagﬁék) = (0, Zj k‘gjvj + Z k‘gagﬁ;), which implies with
what we already said that z = 0, a contradiction. Thus ¢ is injective.

We will prove that ¢ is surjective. As the main step to achieve the intended
goal, we will show that for any v € EY, there are a and b such that ¢(a) = (v,0),
and ¢(b) = (0,v). Let

Doy = {v € EY : for each edge e such that s(e) = v, we have r(e) € EY U E9}.

It is not hard to see that if EY is not empty, then Dy is also not empty. Now let
k be a positive integer, and suppose that we already defined Dy, ..., Dyx_1. Then
we define D;, as follows:

k—1
Dy = {v € E9\ U D; : for each edge e such that s(e) = v,
i=0

we have r(e) EE?UEQUDOU...UDkl}.

As by Definition 2.2(iii) the set EY is finite, there is a non-negative integer ¢ such
that the sets Dy,..., D, are not empty, and starting from this point, we have
Dg+1 :D5+2 =... 2@ Notice that DOUD1 UUD[ :Eg

Now, let v € Dy, and let eq,...,e, be all edges such that s(e;) = v and
r(e;) € EY, and let fi,..., f,, be all such edges that s(f;) = v and r(f;) € ES.
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Then in L(E), v =331 eief + 300, fif5, and (301, eief) = (30, eief,0) =
(v,0). Also 63272, fif;) = (0,v).

Suppose now that for some positive integer k, if v/ € Do U ... U Dg_1, then
there are a,b € L(FE) such that ¢(a) = (v,0) and ¢(b) = (0,v"), and suppose
that Dy # (). Consider a vertex v € Dy. Then there are vertices vf,...,v; €
Do U ...U Dg_1 such that for any v; there is an edge Ej, J = 1,...,t, such
that s(h;) = v and r(h;) = v},
range in EY U EY. Furthermore, for any j = 1,...,¢, there are aj,b; € L(E)
with ¢(a;) = (v},0),6(b;) = (0,v}). Notice that ¢(a;v; + bjvi) = ¢(a;)d(v}) +
B(bj)p(vi) = (v}, 0)(v}, j) (0, )(UJ,UJ) = (v},v}) = ¢(v}), which means that

ajvé +ij = v] = ajv +v bjv for any j.

Let e1,...,€, be all edges such that s(¢;) = v and r(¢;) € EY, and let
fis--- fm be all such that s(f;) = v and r(f;) € E9. Then

v=> GG +Y i f > e
j ¢
— et + ZJTJ . JTJ* + ZE(Uéaevé + UZbgUZ)sz*
j 4
=Y @ a + > T+ heaphe + Y he(vjbevp)he
j 4 4
and it follows that J
Soaa + Y he@Wawphe > T T+ Y he(vibevp)he
% 4 J 14

o(v) = (v,v), we get that in L(&), v=>,¢ & +), h?(véawé)h?i and in
L(Eg), V=06 6+, h[(vébﬂ)e)hg*, which means that

¢ (Zez &+ Zhe(v,’gaevé)hz*> = (v,0)
i 4

and any other edge with v as a source has the

and
¢ (Zez &+ Zm@;m@m*) = (0,v).
i ¢

We have proved above that for any v € EY, there are a and b such that
8(a) = (1,0), and B() = (0,0).

For any edge e € Ei, we have e = er(e) and e* = r(e)e* with r(e) € EY.
Let ¢(a)=(r(e),0) and ¢(b)=(0,7(e)) for a,b€ L(E). Then ¢(ea) = (e, e)(r(e),0)
= (e,0), and similarly, ¢(eb) = (0,e). Moreover, ¢(ae*) = (e*,0) and ¢(be*) =
(0,¢e*). Using (2), (2.1), we just showed that indeed ¢ is surjective. O
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The pair (€1,&;) of proper subgraphs of E related to a non-trivial partition
(EY, EY, EY), which is constructed at the beginning of the above proof, will be
called an iso-partition of E.

Recall (see [14]) that a cycle 7 in a graph E is an extreme cycle if m has an
exit and for any v € E°\ E°(7), if E°(7) > v, then v > E°(7w). Notice that
if m is an extreme cycle, then for a vertex v € EY v > E°) if and only if
v > H(E°(r)).

Lemma 2.5. Let E be a row-finite graph with finite E°. Assume that in E
there are a cycle m and a vertex v such that v # E°(r). Moreover, assume that
in E every cycle with an exit is an extreme cycle. Then there exists a non-trivial
partition (EY, EY, EY) of E° and for related iso-partition (£1,&2) of E, in & and
in & any cycle with an exit is an extreme cycle. Moreover, 7 is a cycle in & and
for any vertex w € Y, w > E°(r).

PrROOF. For the cycle m, consider the following sets:

B={wcE’:w>H(E(r)) and H(E(7)) # w}.
E ={we E°: for every u € H(E°(n)),w % u},
ES={weB:w>E}},  EY=HE(n)U(B\E)).

Notice that EY # (), and it is not difficult to deduce that EYJ is also not
empty. If EY = (), then (EY, EY, () is a non-trivial partition such that the related
iso-partition satisfies required properties (see Remark 2.3(c)). Therefore, in the
rest of the proof, we assume that EY is not empty.

The proofs of the conditions (i)—(v) of Definition 2.2 are straightforward.
To see (vi), notice that as in E any cycle with an exit is an extreme cycle, every
cycle \ in E must contain an edge e such that r(e) € EY U ES. Indeed, otherwise
E°()\) C E2. By definition of the sets B and EY, there is ¢ € H(E®(r)) such that
E°(X\) > c. Since EY C B, we have ¢ # E°()), a contradiction.

On the other hand, by definition of EY?, if there is an edge e appearing in
a cycle A such that 7(e) € EY, then E°(\) C EY. The same holds for cycles
which have an edge f such that r(f) € EY. Thus for each cycle \ in E, either
E°(\) C EY or E°(\) C EX.

Now, we consider related iso-partition (£1,&2) of E with & = (EYUES, B} U
Ed), & = (ES U ES, EY U E}), where for i = 1,2,3, E} = {e € E' : r(e) € E?}.
As E} C &) for i = 1,2, the fact that in & and & any cycle with an exit is an
extreme cycle follows from what we said and definitions of E] and E}. Since the
rest follows from the construction of £, the proof is complete. ([l
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We would like to emphasize here that the above proof starts with a fixed
cycle 7, and all constructions are related to . Therefore (EY, E9, EJ) will be
called a m-partition of E° and eventually we will consider 7-iso-partition (&1, &2)
of E.

Example 2.6. To illustrate the above construction, consider the following
graph with the highlighted cycle 7

T

) )

—
E = oV PSS s @W1 oW2
o2 o3

Then we get m-partition (EY, EY, EY) of EY with EY = {wy,ws, w3}, B =
{v}, EY = {u1,u2}. Moreover, we have m-iso-partition (€1, &2) of E, where

E1 = ol — 5 o1 o2 Ey= eV <—— oUt
o2 oWs o2

and finally L(E) = L(&) x L(&s).

Ezample 2.7. As mentioned before, for a graph E, a partition of E°, as
defined above, is not unique. Consider the following graph:

T T
E= o° ot1 oV o1 oW1 o2

T | 7

o2 U2 o3
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Then we get m-partition (EY, E9, EY) with EV={w1, ws, w3}, E9 ={v,t1,ts, s}
and EY = {uy,uz}.

On the other hand, we consider 7-partition (E?,Eg,ﬁg) with
=0 =0 =0
E| ={s}, Ey;={v,ui,uz,wi,wa,ws} and FEg={t;,t2}.

It is clear that in any case we get a related iso-partition of E.
We want to recall some well-known definitions.

Definition 2.8. A graph E is said to be downward directed if for any vertices
v,w € EY, H(v) N H(w) # 0.

A subset X of EY is hereditary if w € X and w > v imply v € X.

We say that X C E° is saturated if whenever s~!(v) # () and {r(e) : s(e) =
v} C X, then v € X.

Lemma 2.9. Let E be a row-finite graph with finite E°, and let K be a field.
Then the following conditions are equivalent:

(1) Graph E has the following properties:
(a) graph E is downward directed;
(b) every cycle with an exit is an extreme cycle;
(c) if graph E contains cycles, then there is at least one cycle with an exit.

(2) Every cycle in E has an exit and E° is the only non-empty hereditary and
saturated set in E°.

(3) Lk(F) is a simple algebra with an identity.

PROOF. (2) < (3). As EU is finite, L(E) has an identity, so the equivalence
holds by [1, Theorem 3.11].

(1) = (2). Suppose, for a contradiction, that there exists a cycle x without
an exit. By (c), there is another cycle 7, which has an exit f. Notice that E°(7)N
E°%(k) = 0. Indeed, if there is a vertex v € E°(w) N E%(k), then s(f) > v. By
assumption (b), v > s(f) also. Hence, k has an exit, a contradiction.

Let us consider some vertices v € E°(k) and w € E°(r). By (a) there exists
a vertex u, such that v > u and w > u. Since x does not have an exit, u € E°(k),
but in £ any cycle with an exit is an extreme cycle which yields v > u > E°(r),
a contradiction. We conclude that in E every cycle has an exit.

Now, suppose for a contradiction that there exists a non-empty hereditary
and saturated set F that is not equal to E°. Let v € F. We have that for all
cycles 7 in the considered graph E, E°(w) C H(v) C F. Indeed, let u € E°(7).
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Then by (a) there is a vertex s such that s € H(v) N H(u). By (b) we have
s > E°%m). Thus H(v) > E%(7), so E°(7) C H(v).

Note that (a) assures that graph E is not disjoint, and that it cannot contain
any isolated vertices. Moreover, for any sink w € E°, H(w) N H(v) # () implies
w € H(v) C F. So F contains all the sinks and all the cycles in E.

As F is finite, by using what we have proved, it is not hard to see that there
exists a vertex w € E°\ F which is not a sink and any edge that it emits is ranged
at a vertex in F. Then as F' is saturated, we get w € F', a contradiction.

(3) = (1). Since we have already (2) < (3), E satisfies property (c), and as
L(FE) has an identity, (a) follows from Theorem 1.3.

If (b) does not hold, then there is a cycle  and a vertex v such that E°(7) > v
and v # E°(m). Let

Q(r)={uecE’: u>Em}.

It is easy to check, that E°\ Q(n) is hereditary. It is also saturated, because
for any vertex in Q(7), there exists a path to a vertex of E°(w). Notice that
v € EY\ Q(m), so the set E°\ Q() is non-empty. By (2), which is equivalent
to (3), we have Q() = 0, a contradiction, as E°(7) C Q(). O

The following lemma will be useful in our further considerations.

Lemma 2.10. Let E be a row-finite graph with E° finite, and let K be
a field. Suppose that there is a cycle w in E such that for any v € E°, v > E°(r).
Moreover, suppose that in E any cycle with an exit is an extreme cycle. Then
L(FE) has Property (A).

PrOOF. If 7 has an exit, then using Lemma 2.9 we can see that L(E) is
a simple algebra with 1. Thus L(E) has Property (A). If 7 does not have an
exit, then 7 is the only cycle in E (justification for this fact is presented below).
Thus if v € E°\ E%(7), then we have v > E°(7) and E°(r) % v. Hence by [3,
Theorem 3.3], L(E) = My(K[z,2~1]) for some d. Then using [17, Proposition 1.3
and Theorem 2.1], we can see that L(E) has Property (A).

To see that 7 is the only cycle in F if 7 does not have an exit, suppose that
there is a cycle «’ in E such that 7’ # 7. It is not hard to see that there is an
edge e which appears in 7’ and does not appear in 7 (remember that 7 has no
exits). If s(e) € E°(m), then 7 has an exit, a contradiction. Thus s(e) € E?\
E°(m). By assumption, s(e) > EY(r). It implies that for any vertex w € E°(r),
E°(7') > w, and 7’ has an exit. As in E any cycle with an exit is an extreme
cycle, we also have w > E°(7), and w > s(e). In particular, it follows that 7 has
an exit, a contradiction. ([l
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Collecting all information received so far, we are ready to prove the main
results of this paper.

Theorem 2.11. Let K be a field. If E is a row-finite graph and E° is finite,
then the following are equivalent:
(1) Lk (E) has Property (A).
(2) Lk (FE) has left Property (A).
(3) Lk (FE) has right Property (A).
(4)

In graph E, any cycle with an exit is an extreme cycle.

ProoF. Implications (1) = (4), (2) = (4), (3) = (4) follow from Lemma 2.1.

We will show now that (4) implies (1), which is obviously enough to finish
our proof. By the paragraph immediately preceding Lemma 2.1, it is enough to
work with the assumption that there is at least one cycle 7 in F.

If for any vertex v € E°, v > EY(7), then the result follows from Lemma 2.10.

There remains to be considered the case where v # E°(7) for some vertex
v € EY By Proposition 2.4 and Lemma 2.5, there is a non-trivial 7-partition
(EY, EY, EY) of E° and related m-iso-partition (€1, &>) such that L(E) =2 L(&;) x
L(&;). In this case, by Lemma 2.10 the algebra L(&;) has Property (A). As graph
&, is row-finite and in & any cycle with an exit is an extreme cycle, we can replace
E by & and work now with L(&2) in the same way as we did with L(E). It is
easy to see that after finite number of steps we will get graphs F} = &1, Fy ..., F,
for some n > 1 such that L(F) & L(Fy) X ... x L(F,) and for any 4, L(F;) has
Property (A). Thus by [17, Proposition 1.3] L(E) has Property (A). O

Theorem 2.12. Let K be a field. If E is a row-finite graph and E° is
infinite, then the following are equivalent:
(1) Lk (FE) has Property (A).
(2) Lk (F) has left Property (A).
(3) Lk (FE) has right Property (A).
(4) For any finite set F C E°, there is a vertex vg such that H(F)N H(vg) = 0.

PROOF. We will show (3) < (4). If E is infinite, then any element of L(E)
is a zero-divisor. Thus L(FE) has right Property (A) if and only if any finitely
generated ideal I of L(E) has a non-zero right annihilator.

Assume that (4) holds and let aq,...,a, be elements of L(E), where n is
a positive integer. Assume that all a;’s are monomials. It is easy to see that the
set of all vertices u such that a;u # 0 for some i = 1,...,n is finite. Denote this set
by F. Take j € {1,...,n}, and consider any paths «, 3. We claim (a;af8*)vp = 0.
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Indeed, if we assume the contrary, then a;a # 0 and, in particular, a;w # 0 where
w = s(a). Sow € F. Since vp = s(B) and r(a) = r(B), we conclude that r(«) €
H(w) N H(vp) and this contradicts (4). Thus vp annihilates the ideal generated
by ai,...,a,. As any finitely generated ideal of L(F) is contained in an ideal
generated by finitely many monomials, by the above, L(FE) has right Property (A),
so (3) holds.

To show opposite implication, suppose that there is a finite set F' such that
for any vertex v, H(F) N H(v) # (. Then, by Theorem 1.3, the right annihilator
of the ideal I of L(E) which is generated by F' is equal zero. Thus by what we
said at the beginning, L(E) does not have Property (A). It follows that we showed
that (3) < (4).

As (2) & (4) can be proved in a similar way, the proof is finished. O

Example 2.13. In this example we want to consider graph E of the following

form:
e C oV L> o
and the Toeplitz algebra Ly (F). As in E, the cycle e based at v with exit f is

not extreme, Li(FE) is an example of algebra which is Bézout (by [5]) and has
neither right nor left Property (A).
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