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An annihilator condition on Leavitt path algebras

By GRZEGORZ BAJOR (Warsaw) and MICHA L ZIEMBOWSKI (Warsaw)

Abstract. Let E be a row-finite graph, and let K be a field. In the present paper,

necessary and sufficient conditions are established for E to get the Leavitt path algebra

LK(E) which satisfies Property (A).

1. Introduction and preliminaries

The Leavitt path algebra LK(E) has its origins in works of Abrams and

Aranda Pino [1], [2], and Ara, Moreno and Pardo [8]. In the first two men-

tioned works, the authors provide characterizations of the simplicity and purely

infinite simplicity, respectively, of the Leavitt path algebra LK(E) in terms of

properties of the graph E only. That result in some way determines one of the

directions of research in the area, which aims to express the properties of rings in

graph language. In the third paper, Ara et al. explicitly described the natural iso-

morphism between the lattice of graded ideals of the Leavitt path algebra LK(E)

and the lattice of order ideals of the monoid V (LK(E)). The object discussed

is of great interest to researchers, as evidenced by the large number of published

articles and the multitude of results obtained. It is worth mentioning that the

Leavitt path algebra LK(E) is the algebraic analogue of the Cuntz–Krieger alge-

bra C∗(E) considered in [24].

A commutative ring R has Property (A) if every finitely generated ideal of R

consisting entirely of zero-divisors has a non-zero annihilator. This property was
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introduced by Huckaba and Keller [19], and has been called Condition (C)

by Quentel. The class of commutative rings with Property (A) is quite large

and has been studied by many authors (see [7], [12], [15], [19]–[20], [22]–[23]).

Polynomial rings, rings whose classical ring of quotients is von Neumann regular,

Noetherian rings [21, p. 56] and rings whose prime ideals are maximal [15] are

well-known examples of rings in this class. On the other hand, Kaplansky [21,

p. 63] showed that there are non-Noetherian rings which do not have Property (A).

As an application of the considered property we want to mention that Hinkle

and Huckaba [16] using it widened the concept of Kronecker function rings from

integral domains to rings with zero-divisors.

In [17], Hong et al. extended Property (A) to the non-commutative setting

as follows: a ring R has right (left) Property (A) if every finitely generated two-

sided ideal of R consisting entirely of left (right) zero-divisors has a right (left)

non-zero annihilator. A ring R is said to have Property (A) if R has right and

left Property (A). By [17, Example 1.2] Property (A) is not left-right symmetric.

Another condition often considered in tandem with Property (A) (in the

commutative case see [19], [22], and in the non-commutative case see [18], [25]),

is the following: a ring R has right annihilator condition (for short, R has right

(a.c.)), if, for every 2-generated right ideal J = aR+ bR of R, there is c ∈ R such

that annRr (J) = annRr (cR). Left (a.c.) is defined similarly.

By [5] for an arbitrary graph E and a field K, in the Leavitt path alge-

bra LK(E) all finitely generated one-sided ideals are principal (such rings in the

literature are called Bézout). Thus LK(E) satisfies always right and left (a.c.).

By the above it is natural, and it is our main motivation, to ask about

Property (A) in the context of Leavitt path algebras. This motivation is reinforced

by the fact that every commutative Bézout ring R satisfies Property (A), which

is easy to see.

It occurs that we are able to give the full answer to the described problem.

More precisely, we give necessary and sufficient conditions on a row-finite graph E

to get LK(E) with Property (A) (see Theorems 2.11 and 2.12). This allows us

to construct an example of a non-commutative algebra which is Bézout and does

not satisfy left and right Property (A) (see Example 2.13). But we want to stress

that the mentioned example is only the consequence of our main findings and it

is not the main purpose of the work.

Now we want to recall some basic definitions.

A directed graph E = (E0, E1, r, s) consists of two sets E0, E1 and functions

r, s : E1 → E0. The elements of E0 are called vertices and the elements of E1 are

called edges. For each edge e, r(e) is the range of e and s(e) is the source of e.
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A vertex which emits no edges is called a sink. A graph is called row-finite if

s−1(v) is a finite set for each vertex v.

A path π in a graph E is a sequence of edges π = e1e2 . . . en such that

r(ei) = s(ei+1) for i = 1, . . . , n − 1. We define s(π) = s(e1) and r(π) = r(en).

If r(π) = s(π) and s(ei) 6= s(ej) for every i 6= j, then π is called a cycle. An edge e

is an exit of a cycle π = e1e2 . . . en if s(e) = s(ei) for some i, and e 6= ei. If π is

a cycle in E, then by E0(π) we denote the set of all vertices which are sources of

edges appearing in π. The length of a path π is denoted by |π|.
As in many places in the literature, we will consider the relation ≥ on E0 in

the following way: v ≥ w for v, w ∈ E0 if there is a path σ ∈ E (possibly empty)

such that s(σ) = v and r(σ) = w. If S is a subset of E0, then for a vertex v,

v ≥ S (resp., S ≥ v) means that there is w ∈ S such that v ≥ w (resp., w ≥ v).

For sets S, S′ ⊆ E0, S ≥ S′ means that there is v ∈ S such that v ≥ S′. By H(S)

we denote the set of all vertices u ∈ E0 such that S ≥ u.

For a ring R, the right (left) annihilator of a set X ⊆ R is denoted by

annRr (X) (annR` (X)).

Let E = (E0, E1, r, s) be a directed graph, and let K be a field. We define

the Leavitt path K-algebra LK(E) (L(E) for short) as the K-algebra generated

by the set E0 together with {e, e∗ : e ∈ E1} which satisfy the following relations:

(1) vv′ = δv,v′v for all v, v′ ∈ E0,

(2) s(e)e = er(e) = e for all e ∈ E1,

(3) e∗s(e) = r(e)e∗ = e∗ for all e ∈ E1,

(4) e∗f = δe,fr(f) for all e, f ∈ E1,

(5) v =
∑
{e∈E1: s(e)=v} ee

∗ for every vertex v which is not a sink and emits finite

number of edges.

For an edge e ∈ E1, the element e∗ is called a ghost-edge, and for a path

σ = e1e2 . . . en we denote the so called ghost-path e∗ne
∗
n−1 . . . e

∗
1 by σ∗.

For the general notation, terminology and results in Leavitt path algebras,

we refer to [1], [4], [6] and [10].

We will need the following lemma which can be found in [1].

Lemma 1.1. Let E be a graph, and let K be a field. Then every monomial

in LK(E) is of the following form:

(a) kv with k ∈ K and v ∈ E0, or

(b) kei1 · . . . · einf∗j1 · . . . · f
∗
jm

with k ∈ K, n,m ≥ 0, n+m > 0, eik , fj` ∈ E1 for

1 ≤ k ≤ n, 1 ≤ ` ≤ m.
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We will say that for the paths σ = e1e2 . . . en, τ = f1f2 . . . fm, an edge e is

a factor of the monomial σ · τ∗ if either e = ei for some i, or e = fj for some j.

We leave the proof of the following lemma to the reader.

Lemma 1.2. Let E be a graph. For the vertices v, w ∈ E0, there exist paths

σ and τ such that vστ∗w 6= 0 if and only if there is u ∈ E0 such that v ≥ u and

w ≥ u (in other words H(v) ∩H(w) 6= ∅).

By [13, Theorem 8] every ideal I of L(E) is generated by elements of the form

v +
∑q
i=1 kiπ

i, for some q ≥ 1, where v ∈ E0, π is a cycle based at v and ki ∈ K
(hoping that this will not lead to a misunderstanding, the above generators will

be denoted by v+
∑
i kiπ

i). For a set T of generators of I which are of the above

form, we consider the set

E0
T (I) =

{
v ∈ E0 : v +

∑
i

kiπ
i ∈ T for some cycle π based at v and ki ∈ K

}
.

Theorem 1.3. Let E be a row-finite graph, K a field, and let I be a non-zero

ideal of LK(E). Then the following are equivalent:

(1) The right annihilator of I is equal to 0; ann
LK(E)
r (I) = 0.

(2) The left annihilator of I is equal to 0; ann
LK(E)
` (I) = 0.

(3) For any set T of generators of I which consists of elements of the form

v +
∑
i kiπ

i, where v ∈ E0, π is a cycle based at v and ki ∈ K, and for any

vertex u ∈ E0, H(E0
T (I)) ∩H(u) 6= ∅.

Proof. (1) ⇒ (3). Let I be an ideal of L(E) with ann
L(E)
r (I) = 0. For

a contradiction, suppose that for a set T consisting of elements of the form v +∑
i kiπ

i and generating I, H(E0
T (I))∩H(u) = ∅ for some u ∈ E0. Then taking any

element v+
∑
i kiπ

i ∈ T and a monomial στ∗ of the form presented in Lemma 1.1,

we can see that (v +
∑
i kig

i)στ∗u = 0. Indeed, as L(E) is Z-graded (see [1,

Lemma 1.7]), it is enough to show that vστ∗u = 0 and for any i, giστ∗u = 0.

But this follows, as for any i, r(gi) = v and we assumed H(E0
T (I)) ∩H(u) = ∅,

which in particular gives H(v) ∩H(u) = ∅. Thus Iu = 0, a contradiction.

(3) ⇒ (1). Assume that (3) holds, and to get a contradiction, suppose that

Q = ann
L(E)
r (I) is not equal to 0. It is easy to see that Q is an ideal of L(E).

Let u +
∑
j rjξ

j with a vertex u and a cycle ξ based at u, be one of non-zero

elements generating Q. By assumption, there is v +
∑
i kiπ

i ∈ I such that for

some w ∈ E0, v ≥ w and u ≥ w. Let α, β be paths such that s(α) = u, r(α) = w
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and s(β) = v, r(β) = w. As L(E) is Z-graded and(
v +

∑
i

kiπ
i

)
βα∗

u+
∑
j

rjξ
j

 = 0,

we have βα∗ = vβα∗u = 0, a contradiction. Thus Q = 0.

Since (2) ⇔ (3) can be proved in a similar way as the previous equivalence,

the proof is finished. �

We want to mention that another way of proving the above theorem is to use

the fact that for an arbitrary graph E and a field K, LK(E) is nonsingular (see

[6, Proposition 2.3.7]).

2. Leavitt path algebras satisfying Property (A)

It is well known (see [9, Corollary 3.5]) that if E is a finite acyclic graph,

then LK(E) is a K-matricial algebra, which means that L(E) ∼=
⊕t

i=1Mni
(K) for

some positive integers t, n1, . . . , nt. Thus in this case LK(E) satisfies Property (A)

by [17, Proposition 1.3]. Therefore, in this section, considering graphs with a finite

number of vertices, we focus on graphs with at least one non-trivial cycle.

Lemma 2.1. Let E be a row-finite graph with finite E0, and let K be a field.

If E has a cycle π and a vertex v ∈ E0 such that E0(π) ≥ v and v 6≥ E0(π), then

LK(E) has neither right nor left Property (A).

Proof. Let v be a vertex, and π be a cycle based at a vertex v′, which

satisfy conditions presented above. Assume that ε is a path such that s(ε) = v′

and r(ε) = v. Let

P (v) = {w ∈ E0 : w ≥ H(v)},

and for T = E0 \ P (v) consider the ideal I of L(E) generated by the finite set

{v} ∪ T . Notice that we have E0(π) ⊆ P (v). Let x be a non-zero element of I.

Then

x = kvv +
∑
q∈T

kqq +

n∑
i=1

ki · αiα∗i · v · βiβ
∗
i +

∑
p∈T

mp∑
j=1

kpj · σpjσ∗pj · p · δpjδ
∗
pj ,

where αi, αi, βi, βi, σpj , σpj , δpj , δpj are paths (possibly empty), kµ, kζη are ele-

ments of K, and n,mp are positive integers. Let

s = max({|βi| : i = 1, . . . , n} ∪ {|δpj | : p ∈ T, j = 1, . . . ,mp}),
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and let

s = max({|βi| : i = 1, . . . , n} ∪ {|δpj | : p ∈ T, j = 1, . . . ,mp}).

Take p ∈ T and j ∈ {1, . . . ,mp}, and consider the product

σpjσ
∗
pj · p · δpjδ

∗
pj · π2s.

As |δpj | ≤ s and |π2s| ≥ 2s, we can see that either this product is zero or there is

a path γ such that

σpjσ
∗
pj · p · δpjδ

∗
pj · π2s = σpjσ

∗
pj · p · γ · π 6= 0.

If the latter holds, then p ≥ v′ ≥ v, which means that p ∈ P (v), a contradiction.

Thus ∑
p∈T

mp∑
j=1

kpj · σpjσ∗pj · p · δpjδ
∗
pj

 · π2s = 0.

By similar arguments, we get

kvv · π2s =

∑
q∈T

kqq

 · π2s =

(
n∑
i=1

ki · αiα∗i · v · βiβ
∗
i

)
· π2s = 0,

and finally x·π2s=0. Also, using arguments as above, one can see that (π2s)∗·x=0.

Thus we showed that any element of I is a left and right zero-divisor.

As it is easy to see, using Theorem 1.3, that ann
L(E)
r (I) = 0 = ann

L(E)
` (I),

L(E) has neither right nor left Property (A). �

Inspired by [11, Definition 2.1], we formulate the following.

Definition 2.2. Let E be a row-finite graph. Suppose that there are subsets

E0
1 , E

0
2 , E

0
3 of E0 satisfying the following conditions:

(i) E0
1 ∪ E0

2 ∪ E0
3 = E0,

(ii) E0
i ∩ E0

j = ∅ for any i 6= j,

(iii) E0
1 is not empty set, and E0

3 is finite,

(iv) E0
1 6≥ E0

2 ∪ E0
3 and E0

2 6≥ E0
1 ∪ E0

3 ,

(v) for each v ∈ E0
3 , v ≥ E0

1 and v ≥ E0
2 ,

(vi) for each cycle π in E, E0(π) ⊆ E0
1 ∪ E0

2 .

Then the triple (E0
1 , E

0
2 , E

0
3) will be called a partition of E0.
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For a row-finite graph E, the partition (E0, ∅, ∅) will be called a trivial par-

tition.

Remark 2.3. (a) Notice that by points (iv) and (vi), if π is a cycle in E and

(E0
1 , E

0
2 , E

0
3) is a partition of E0, then either E0(π) ⊆ E0

1 or E0(π) ⊆ E0
2 .

(b) As it will be presented in Example 2.7, a non-trivial partition of E0 is

not uniquely determined.

(c) Notice that if E0
2 = ∅, then also E0

3 = ∅ (see Definition 2.2(v)). On the

other hand, it is possible that E0
3 = ∅ and E0

2 6= ∅. In this case, E is a disconnected

graph and it should be clear that by properties presented in the above definition

and well-known facts on decompositions of Leavitt path algebras of disconnected

graphs, L(E) ∼= L(F1) × L(F2), where for i = 1, 2, Fi is the subgraph of E such

that F 0
i = E0

i and F 1
i is the set of all edges e appearing in E with s(e), r(e) ∈ E0

i .

Proposition 2.4. If E is a row-finite graph and (E0
1 , E

0
2 , E

0
3) is not the

trivial partition of E0, then there are proper subgraphs E1 and E2 of E such that

L(E) ∼= L(E1)× L(E2).

Proof. By Remark 2.3(c), the thesis follows if E0
3 is an empty set. There-

fore, in the rest of the proof, we assume that E0
3 is not an empty set, which implies

that also E0
2 is not empty.

Let for i = 1, 2, 3,

E1
i = {e ∈ E1 : r(e) ∈ E0

i }.

Then E1
i ∩ E1

j = ∅ for any i 6= j and E1
1 ∪ E1

2 ∪ E1
3 = E1.

Notice that if an edge e belongs to E1
1 , then r(e) ∈ E0

1 , and it follows that

s(e) ∈ E0
1 ∪E0

3 . If e ∈ E1
3 , then s(e), r(e) ∈ E0

3 . Thus E1 = (E0
1 ∪E0

3 , E
1
1 ∪E1

3) is

a proper subgraph of E. By similar reasons, E2 = (E0
2 ∪E0

3 , E
1
2 ∪E1

3) is a proper

subgraph of E. We will show that L(E) ∼= L(E1)× L(E2).

We define a map φ : L(E)→ L(E1)×L(E2) on generators of L(E) as follows,

and then we extend it linearly and multiplicatively (see [11, Proposition 2.4]).

For a vertex v ∈ E0 and an edge e ∈ E1,

φ(v) =


(v, 0), if v ∈ E0

1

(0, v), if v ∈ E0
2

(v, v), if v ∈ E0
3

, φ(e) =


(e, 0), if e ∈ E1

1

(0, e), if e ∈ E1
2

(e, e), if e ∈ E1
3

,

φ(e∗) =


(e∗, 0), if e ∈ E1

1

(0, e∗), if e ∈ E1
2

(e∗, e∗), if e ∈ E1
3

. (2.1)
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Now, we will show that φ preserves relations in L(E), which together with

the above will guarantee that φ is an algebra homomorphism.

Let e ∈ E1
3 . Then r(e) ∈ E0

3 , so it must be also s(e) ∈ E0
3 . Thus direct

calculation shows that φ(s(e)e) = φ(e) = φ(er(e)). Also direct calculations show

that the appropriate relations are preserved by φ for e ∈ E1
1 ∪ E1

2 and for ghost-

edges e∗.

Clearly, if e 6= e′ for edges e, e′, then φ(e∗e′) = 0. Whereas for an edge e,

φ(e∗e) = φ(r(e)). Indeed, if e ∈ E1
1 , then r(e) ∈ E0

1 ⊆ E01 and φ(e∗e) =

φ(e∗)φ(e) = (e∗, 0)(e, 0) = (e∗e, 0) = (r(e), 0) = φ(r(e)). The same holds for

e ∈ E1
2 . For e ∈ E1

3 , we have r(e) ∈ E0
3 . As E0

3 ⊆ E01 ∩ E02 and E1
3 ⊆ E11 ∩ E12 ,

we get φ(e∗e) = φ(e∗)φ(e) = (e∗, e∗)(e, e) = (e∗e, e∗e) = (r(e), r(e)) = φ(r(e)).

Suppose now that v is a vertex of E which is not a sink. Then in L(E)

we have

v =
∑

{e∈E1:s(e)=v}

ee∗.

We will only consider the case v ∈ E0
3 , because the other cases result from similar

considerations. Let e1, . . . , ek be all edges such that s(ei) = v and r(ei) ∈ E0
1 ,

let f1, . . . ft be all edges such that s(fj) = v and r(fj) ∈ E0
2 , and finally let

h1, . . . hs be all edges such that s(h`) = v and r(h`) ∈ E0
3 . Then

v =

k∑
i=1

ei · e∗i +

t∑
j=1

fj · f∗j +

s∑
`=1

h` · h∗` ,

and by definition,

φ

 k∑
i=1

ei · e∗i +

t∑
j=1

fj · f∗j +

s∑
`=1

h` · h∗`


=

 k∑
i=1

ei · e∗i +

s∑
`=1

h` · h∗` ,
t∑

j=1

fj · f∗j +

s∑
`=1

h` · h∗`

 = (v, v) = φ(v).

Thus it follows that φ is a well-defined K-algebra homomorphism.

Although injectivity of φ can be justified using the Graded Uniqueness The-

orem (see [6, Theorem 2.2.15]), for the sake of completeness, we provide a direct

proof.

We will need the following pretty obvious fact: for paths σ, δ in L(E), if for

p ∈ {1, 2} an edge e ∈ E1
p is a factor of σ · δ∗, then all factors of σ · δ∗ are from

E1
p ∪ E1

3 .
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To get a contradiction, suppose that there is a non-zero x ∈ L(E) such that

φ(x) = 0. We can see that

x =
∑
i

k1iui +
∑
j

k2jvj +
∑
t

k3twt +
∑

k1α1β
∗
1 +

∑
k2α2β

∗
2 +

∑
k3α3β

∗
3 ,

where all kpq, kg are from K, and for any i, j, t, ui ∈ E0
1 , vj ∈ E0

2 and wt ∈ E0
3 ,

respectively. Moreover, in any α1β
∗
1 , at least one of the factors is from E1

1 , in

any α2β
∗
2 , at least one of the factors is from E1

2 , and in any α3β
∗
3 , all factors are

from E1
3 . By definition of φ, we get φ(x) = (a, b), where

a =
∑
i

k1iui +
∑
t

k3twt +
∑

k1α1β
∗
1 +

∑
k3α3β

∗
3 ,

b =
∑
j

k2jvj +
∑
t

k3twt +
∑

k2α2β
∗
2 +

∑
k3α3β

∗
3 ,

and the fact that φ(x) = 0 gives a = 0 = b. As a = 0, we have x =
∑
j k2jvj +∑

k2α2β
∗
2 . Since in any α2β

∗
2 there is an edge from E1

2 , we get by definition of φ,

φ(x) = φ(
∑
j k2jvj +

∑
k2α2β

∗
2) = (0,

∑
j k2jvj +

∑
k2α2β

∗
2), which implies with

what we already said that x = 0, a contradiction. Thus φ is injective.

We will prove that φ is surjective. As the main step to achieve the intended

goal, we will show that for any v ∈ E0
3 , there are a and b such that φ(a) = (v, 0),

and φ(b) = (0, v). Let

D0 = {v ∈ E0
3 : for each edge e such that s(e) = v, we have r(e) ∈ E0

1 ∪ E0
2}.

It is not hard to see that if E0
3 is not empty, then D0 is also not empty. Now let

k be a positive integer, and suppose that we already defined D0, . . . , Dk−1. Then

we define Dk as follows:

Dk =

{
v ∈ E0

3 \
k−1⋃
i=0

Di : for each edge e such that s(e) = v,

we have r(e) ∈ E0
1 ∪ E0

2 ∪D0 ∪ . . . ∪Dk−1

}
.

As by Definition 2.2(iii) the set E0
3 is finite, there is a non-negative integer ` such

that the sets D0, . . . , D` are not empty, and starting from this point, we have

D`+1 = D`+2 = . . . = ∅. Notice that D0 ∪D1 ∪ . . . ∪D` = E0
3 .

Now, let v ∈ D0, and let e1, . . . , en be all edges such that s(ei) = v and

r(ei) ∈ E0
1 , and let f1, . . . , fm be all such edges that s(fj) = v and r(fj) ∈ E0

2 .
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Then in L(E), v =
∑n
i=1 eie

∗
i +

∑m
j=1 fjf

∗
j , and φ(

∑n
i=1 eie

∗
i ) = (

∑n
i=1 eie

∗
i , 0) =

(v, 0). Also φ(
∑m
j=1 fjf

∗
j ) = (0, v).

Suppose now that for some positive integer k, if v′ ∈ D0 ∪ . . . ∪Dk−1, then

there are a, b ∈ L(E) such that φ(a) = (v′, 0) and φ(b) = (0, v′), and suppose

that Dk 6= ∅. Consider a vertex v ∈ Dk. Then there are vertices v′1, . . . , v
′
t ∈

D0 ∪ . . . ∪ Dk−1 such that for any v′j there is an edge hj , j = 1, . . . , t, such

that s(hj) = v and r(hj) = v′j , and any other edge with v as a source has the

range in E0
1 ∪ E0

2 . Furthermore, for any j = 1, . . . , t, there are aj , bj ∈ L(E)

with φ(aj) = (v′j , 0), φ(bj) = (0, v′j). Notice that φ(ajv
′
j + bjv

′
j) = φ(aj)φ(v′j) +

φ(bj)φ(v′j) = (v′j , 0)(v′j , v
′
j) + (0, v′j)(v

′
j , v
′
j) = (v′j , v

′
j) = φ(v′j), which means that

ajv
′
j + bjv

′
j = v′j = v′jajv

′
j + v′jbjv

′
j for any j.

Let e1, . . . , en be all edges such that s(ei) = v and r(ei) ∈ E0
1 , and let

f1, . . . , fm be all such that s(f j) = v and r(f j) ∈ E0
2 . Then

v =
∑
i

ei · ei∗ +
∑
j

fj · fj
∗

+
∑
`

h` · h`
∗

=
∑
i

ei · ei∗ +
∑
j

fj · fj
∗

+
∑
`

h`(v
′
`a`v

′
` + v′`b`v

′
`)h`

∗

=
∑
i

ei · ei∗ +
∑
j

fj · fj
∗

+
∑
`

h`(v
′
`a`v

′
`)h`

∗
+
∑
`

h`(v
′
`b`v

′
`)h`

∗
,

and it follows that

φ(v) =

∑
i

ei · ei∗ +
∑
`

h`(v
′
`a`v

′
`)h`

∗
,
∑
j

fj · fj
∗

+
∑
`

h`(v
′
`b`v

′
`)h`

∗

 .

As φ(v) = (v, v), we get that in L(E1), v =
∑
i ei · ei

∗ +
∑
` h`(v

′
`a`v

′
`)h`

∗
, and in

L(E2), v =
∑
i ei · ei

∗ +
∑
` h`(v

′
`b`v

′
`)h`

∗
, which means that

φ

(∑
i

ei · ei∗ +
∑
`

h`(v
′
`a`v

′
`)h`

∗
)

= (v, 0)

and

φ

(∑
i

ei · ei∗ +
∑
`

h`(v
′
`b`v

′
`)h`

∗
)

= (0, v).

We have proved above that for any v ∈ E0
3 , there are a and b such that

φ(a) = (v, 0), and φ(b) = (0, v).

For any edge e ∈ E1
3 , we have e = er(e) and e∗ = r(e)e∗ with r(e) ∈ E0

3 .

Let φ(a)=(r(e), 0) and φ(b)=(0, r(e)) for a, b∈L(E). Then φ(ea) = (e, e)(r(e), 0)

= (e, 0), and similarly, φ(eb) = (0, e). Moreover, φ(ae∗) = (e∗, 0) and φ(be∗) =

(0, e∗). Using (2), (2.1), we just showed that indeed φ is surjective. �
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The pair (E1, E2) of proper subgraphs of E related to a non-trivial partition

(E0
1 , E

0
2 , E

0
3), which is constructed at the beginning of the above proof, will be

called an iso-partition of E.

Recall (see [14]) that a cycle π in a graph E is an extreme cycle if π has an

exit and for any v ∈ E0 \ E0(π), if E0(π) ≥ v, then v ≥ E0(π). Notice that

if π is an extreme cycle, then for a vertex v ∈ E0, v ≥ E0(π) if and only if

v ≥ H(E0(π)).

Lemma 2.5. Let E be a row-finite graph with finite E0. Assume that in E

there are a cycle π and a vertex v such that v 6≥ E0(π). Moreover, assume that

in E every cycle with an exit is an extreme cycle. Then there exists a non-trivial

partition (E0
1 , E

0
2 , E

0
3) of E0 and for related iso-partition (E1, E2) of E, in E1 and

in E2 any cycle with an exit is an extreme cycle. Moreover, π is a cycle in E1 and

for any vertex w ∈ E01 , w ≥ E0(π).

Proof. For the cycle π, consider the following sets:

B = {w ∈ E0 : w ≥ H(E0(π)) and H(E0(π)) 6≥ w}.

E0
2 = {w ∈ E0 : for every u ∈ H(E0(π)), w 6≥ u},

E0
3 = {w ∈ B : w ≥ E0

2}, E0
1 = H(E0(π)) ∪ (B \ E0

3).

Notice that E0
1 6= ∅, and it is not difficult to deduce that E0

2 is also not

empty. If E0
3 = ∅, then (E0

1 , E
0
2 , ∅) is a non-trivial partition such that the related

iso-partition satisfies required properties (see Remark 2.3(c)). Therefore, in the

rest of the proof, we assume that E0
3 is not empty.

The proofs of the conditions (i)–(v) of Definition 2.2 are straightforward.

To see (vi), notice that as in E any cycle with an exit is an extreme cycle, every

cycle λ in E must contain an edge e such that r(e) ∈ E0
1 ∪E0

2 . Indeed, otherwise

E0(λ) ⊆ E0
3 . By definition of the sets B and E0

3 , there is c ∈ H(E0(π)) such that

E0(λ) ≥ c. Since E0
3 ⊆ B, we have c 6≥ E0(λ), a contradiction.

On the other hand, by definition of E0
1 , if there is an edge e appearing in

a cycle λ such that r(e) ∈ E0
1 , then E0(λ) ⊆ E0

1 . The same holds for cycles

which have an edge f such that r(f) ∈ E0
2 . Thus for each cycle λ in E, either

E0(λ) ⊆ E0
1 or E0(λ) ⊆ E0

2 .

Now, we consider related iso-partition (E1, E2) of E with E1 = (E0
1 ∪E0

3 , E
1
1 ∪

E1
3), E2 = (E0

2 ∪ E0
3 , E

1
2 ∪ E1

3), where for i = 1, 2, 3, E1
i = {e ∈ E1 : r(e) ∈ E0

i }.
As E1

i ⊆ E0i for i = 1, 2, the fact that in E1 and E2 any cycle with an exit is an

extreme cycle follows from what we said and definitions of E1
1 and E1

2 . Since the

rest follows from the construction of E1, the proof is complete. �
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We would like to emphasize here that the above proof starts with a fixed

cycle π, and all constructions are related to π. Therefore (E0
1 , E

0
2 , E

0
3) will be

called a π-partition of E0 and eventually we will consider π-iso-partition (E1, E2)

of E.

Example 2.6. To illustrate the above construction, consider the following

graph with the highlighted cycle π

E = •v
��

•u1oo // •w1

π

�� ++
•w2

kk gg

•u2

OO

•w3

OO <<

Then we get π-partition (E0
1 , E

0
2 , E

0
3) of E0 with E0

1 = {w1, w2, w3}, E0
2 =

{v}, E0
3 = {u1, u2}. Moreover, we have π-iso-partition (E1, E2) of E, where

E1 = •u1 // •w1

π

�� ++
•w2

kk gg E2 = •v
��

•u1oo

•u2

OO

•w3

OO <<

•u2

OO

and finally L(E) ∼= L(E1)× L(E2).

Example 2.7. As mentioned before, for a graph E, a partition of E0, as

defined above, is not unique. Consider the following graph:

E = •s

τ

��

•t1oo // •v
��

•u1oo // •w1

π

�� ++
•w2

kk gg

•t2

OO

•u2

OO

•w3

OO <<
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Then we get π-partition (E0
1 , E

0
2 , E

0
3) with E0

1={w1, w2, w3}, E0
2 ={v, t1, t2, s}

and E0
3 = {u1, u2}.

On the other hand, we consider τ -partition (E
0

1, E
0

2, E
0

3) with

E
0

1 = {s}, E
0

2 = {v, u1, u2, w1, w2, w3} and E
0

3 = {t1, t2}.

It is clear that in any case we get a related iso-partition of E.

We want to recall some well-known definitions.

Definition 2.8. A graph E is said to be downward directed if for any vertices

v, w ∈ E0, H(v) ∩H(w) 6= ∅.
A subset X of E0 is hereditary if w ∈ X and w ≥ v imply v ∈ X.

We say that X ⊆ E0 is saturated if whenever s−1(v) 6= ∅ and {r(e) : s(e) =

v} ⊆ X, then v ∈ X.

Lemma 2.9. Let E be a row-finite graph with finite E0, and let K be a field.

Then the following conditions are equivalent:

(1) Graph E has the following properties:

(a) graph E is downward directed;

(b) every cycle with an exit is an extreme cycle;

(c) if graph E contains cycles, then there is at least one cycle with an exit.

(2) Every cycle in E has an exit and E0 is the only non-empty hereditary and

saturated set in E0.

(3) LK(E) is a simple algebra with an identity.

Proof. (2) ⇔ (3). As E0 is finite, L(E) has an identity, so the equivalence

holds by [1, Theorem 3.11].

(1) ⇒ (2). Suppose, for a contradiction, that there exists a cycle κ without

an exit. By (c), there is another cycle π, which has an exit f . Notice that E0(π)∩
E0(κ) = ∅. Indeed, if there is a vertex v ∈ E0(π) ∩ E0(κ), then s(f) ≥ v. By

assumption (b), v ≥ s(f) also. Hence, κ has an exit, a contradiction.

Let us consider some vertices v ∈ E0(κ) and w ∈ E0(π). By (a) there exists

a vertex u, such that v ≥ u and w ≥ u. Since κ does not have an exit, u ∈ E0(κ),

but in E any cycle with an exit is an extreme cycle which yields v ≥ u ≥ E0(π),

a contradiction. We conclude that in E every cycle has an exit.

Now, suppose for a contradiction that there exists a non-empty hereditary

and saturated set F that is not equal to E0. Let v ∈ F . We have that for all

cycles π in the considered graph E, E0(π) ⊆ H(v) ⊆ F . Indeed, let u ∈ E0(π).
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Then by (a) there is a vertex s such that s ∈ H(v) ∩ H(u). By (b) we have

s ≥ E0(π). Thus H(v) ≥ E0(π), so E0(π) ⊆ H(v).

Note that (a) assures that graph E is not disjoint, and that it cannot contain

any isolated vertices. Moreover, for any sink w ∈ E0, H(w) ∩H(v) 6= ∅ implies

w ∈ H(v) ⊆ F . So F contains all the sinks and all the cycles in E.

As E is finite, by using what we have proved, it is not hard to see that there

exists a vertex w ∈ E0 \F which is not a sink and any edge that it emits is ranged

at a vertex in F . Then as F is saturated, we get w ∈ F , a contradiction.

(3) ⇒ (1). Since we have already (2) ⇔ (3), E satisfies property (c), and as

L(E) has an identity, (a) follows from Theorem 1.3.

If (b) does not hold, then there is a cycle π and a vertex v such that E0(π) ≥ v
and v � E0(π). Let

Q(π) = {u ∈ E0 : u ≥ E0(π)}.

It is easy to check, that E0 \ Q(π) is hereditary. It is also saturated, because

for any vertex in Q(π), there exists a path to a vertex of E0(π). Notice that

v ∈ E0 \ Q(π), so the set E0 \ Q(π) is non-empty. By (2), which is equivalent

to (3), we have Q(π) = ∅, a contradiction, as E0(π) ⊆ Q(π). �

The following lemma will be useful in our further considerations.

Lemma 2.10. Let E be a row-finite graph with E0 finite, and let K be

a field. Suppose that there is a cycle π in E such that for any v ∈ E0, v ≥ E0(π).

Moreover, suppose that in E any cycle with an exit is an extreme cycle. Then

L(E) has Property (A).

Proof. If π has an exit, then using Lemma 2.9 we can see that L(E) is

a simple algebra with 1. Thus L(E) has Property (A). If π does not have an

exit, then π is the only cycle in E (justification for this fact is presented below).

Thus if v ∈ E0 \ E0(π), then we have v ≥ E0(π) and E0(π) 6≥ v. Hence by [3,

Theorem 3.3], L(E) ∼= Md(K[x, x−1]) for some d. Then using [17, Proposition 1.3

and Theorem 2.1], we can see that L(E) has Property (A).

To see that π is the only cycle in E if π does not have an exit, suppose that

there is a cycle π′ in E such that π′ 6= π. It is not hard to see that there is an

edge e which appears in π′ and does not appear in π (remember that π has no

exits). If s(e) ∈ E0(π), then π has an exit, a contradiction. Thus s(e) ∈ E0 \
E0(π). By assumption, s(e) ≥ E0(π). It implies that for any vertex w ∈ E0(π),

E0(π′) ≥ w, and π′ has an exit. As in E any cycle with an exit is an extreme

cycle, we also have w ≥ E0(π′), and w ≥ s(e). In particular, it follows that π has

an exit, a contradiction. �
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Collecting all information received so far, we are ready to prove the main

results of this paper.

Theorem 2.11. Let K be a field. If E is a row-finite graph and E0 is finite,

then the following are equivalent:

(1) LK(E) has Property (A).

(2) LK(E) has left Property (A).

(3) LK(E) has right Property (A).

(4) In graph E, any cycle with an exit is an extreme cycle.

Proof. Implications (1)⇒ (4), (2)⇒ (4), (3)⇒ (4) follow from Lemma 2.1.

We will show now that (4) implies (1), which is obviously enough to finish

our proof. By the paragraph immediately preceding Lemma 2.1, it is enough to

work with the assumption that there is at least one cycle π in E.

If for any vertex v ∈ E0, v ≥ E0(π), then the result follows from Lemma 2.10.

There remains to be considered the case where v 6≥ E0(π) for some vertex

v ∈ E0. By Proposition 2.4 and Lemma 2.5, there is a non-trivial π-partition

(E0
1 , E

0
2 , E

0
3) of E0 and related π-iso-partition (E1, E2) such that L(E) ∼= L(E1)×

L(E2). In this case, by Lemma 2.10 the algebra L(E1) has Property (A). As graph

E2 is row-finite and in E2 any cycle with an exit is an extreme cycle, we can replace

E by E2 and work now with L(E2) in the same way as we did with L(E). It is

easy to see that after finite number of steps we will get graphs F1 = E1, F2 . . . , Fn
for some n ≥ 1 such that L(E) ∼= L(F1) × . . . × L(Fn) and for any i, L(Fi) has

Property (A). Thus by [17, Proposition 1.3] L(E) has Property (A). �

Theorem 2.12. Let K be a field. If E is a row-finite graph and E0 is

infinite, then the following are equivalent:

(1) LK(E) has Property (A).

(2) LK(E) has left Property (A).

(3) LK(E) has right Property (A).

(4) For any finite set F ⊆ E0, there is a vertex vF such that H(F )∩H(vF ) = ∅.

Proof. We will show (3) ⇔ (4). If E0 is infinite, then any element of L(E)

is a zero-divisor. Thus L(E) has right Property (A) if and only if any finitely

generated ideal I of L(E) has a non-zero right annihilator.

Assume that (4) holds and let a1, . . . , an be elements of L(E), where n is

a positive integer. Assume that all aj ’s are monomials. It is easy to see that the

set of all vertices u such that aiu 6= 0 for some i = 1, . . . , n is finite. Denote this set

by F . Take j ∈ {1, . . . , n}, and consider any paths α, β. We claim (ajαβ
∗)vF = 0.
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Indeed, if we assume the contrary, then ajα 6= 0 and, in particular, ajw 6= 0 where

w = s(α). So w ∈ F . Since vF = s(β) and r(α) = r(β), we conclude that r(α) ∈
H(w) ∩H(vF ) and this contradicts (4). Thus vF annihilates the ideal generated

by a1, . . . , an. As any finitely generated ideal of L(E) is contained in an ideal

generated by finitely many monomials, by the above, L(E) has right Property (A),

so (3) holds.

To show opposite implication, suppose that there is a finite set F such that

for any vertex v, H(F ) ∩H(v) 6= ∅. Then, by Theorem 1.3, the right annihilator

of the ideal I of L(E) which is generated by F is equal zero. Thus by what we

said at the beginning, L(E) does not have Property (A). It follows that we showed

that (3) ⇔ (4).

As (2) ⇔ (4) can be proved in a similar way, the proof is finished. �

Example 2.13. In this example we want to consider graph E of the following

form:

•ve
77

f
// •u

and the Toeplitz algebra LK(E). As in E, the cycle e based at v with exit f is

not extreme, LK(E) is an example of algebra which is Bézout (by [5]) and has

neither right nor left Property (A).

Acknowledgements. We thank the anonymous reviewers for their careful

reading of this paper and their many insightful comments and suggestions which

led to improve it. We are also grateful to Pawe l Naroski for valuable comments

and suggestions.

References

[1] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra 293
(2005), 319–334.

[2] G. Abrams and G. Aranda Pino, Purely infinite simple Leavitt path algebras, J. Pure
Appl. Algebra 207 (2006), 553–563.

[3] G. Abrams, G. Aranda Pino and M. Siles Molina, Locally finite Leavitt path algebras,

Israel J. Math. 165 (2008), 329–348.

[4] G. Abrams, Leavitt path algebras: the first decade, Bull. Math. Sci. 5 (2015), 59–120.

[5] G. Abrams, F. Mantese and A. Tonolo, Leavitt path algebras are Bézout, Israel J.
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