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Remarks on nonlinear Schrödinger equations
with the harmonic potential

By HONGZI CONG (Dalian) and QIDI ZHANG (Shanghai)

Abstract. We show that the small solution for a type of nonlinear Schrödinger

equation with the harmonic potential exists over a longer time interval than the one given

by local existence theory. We also get a control of the Sobolev norm of the solution on

that time interval. We exploit the structure of nonlinearity to estimate the small divisor

and perform a normal form process.

1. Introduction and the main result

We are interested in lower bounds for the lifespan of the solution to the

nonlinear Schrödinger equation with the harmonic potential

i∂tu = (−∆ + |x|2)u− up, (t, x) ∈ R× Rd (1.1)

with small initial data, where integer d is the space dimension and p > 0 is an

integer. If we neglect the harmonic potential, then from the point view of scaling,

the critical regularity is sc = d
2 −

2
p−1 . Thus sc > 1 if d ≥ 3 and p is large.

This falls into the interesting energy-supercritical case, about which there are few

results. Almost global existence for solutions of equation

i∂tu = (−∆ + |x|2 +M)u− up, (t, x) ∈ R× Rd

Mathematics Subject Classification: 35Q55.

Key words and phrases: Schrödinger equations, the harmonic oscillator, normal forms.
The second author is the corresponding author.

The first author was supported in part by the National Natural Science Foundation of China

No. 11671066. The second author was supported in part by the National Natural Science

Foundation of China No. 11601154.



206 Hongzi Cong and Qidi Zhang

with small initial data has been obtained in [2], where M is a Hermite multiplier

operator. The operator M plays an important role in their proof, actually, it was

used to avoid the resonance. We are curious about what happens if M is set to

be zero, i.e., what could we say about (1.1)?

There are some results for the similar equation:

i∂tu = (−∆ + |x|2)u+ λ|u|p−1u, (t, x) ∈ R× Rd, (1.2)

where p ∈ (1,+∞) when d = 1, 2, and p ∈ (1, 1 + 4
d−2 ] when d ≥ 3. If λ ≥ 0 or if

λ < 0 and 1 < p < 1+ 4
d , then there exists a global in time solution to (1.2) for any

initial datum u0 ∈ Σ1 defined in (1.4), while if λ < 0 and if 1 + 4
d ≤ p < 1 + 4

d−2

when d ≥ 3, the solution to (1.2) still exists globally for any initial datum u0 ∈ Σ1

with small norm. However, it may happen that the solution to (1.2) blows up in

finite time if λ < 0 and if 1 + 4
d ≤ p < 1 + 4

d−2 when d ≥ 3. Lifespan estimates

were obtained when a blow-up happens. We refer to [1] and references therein

for details in this energy-subcritical case. The energy-critical case, i.e., (1.2) with

p = 1 + 4
d−2 (d ≥ 3), is more subtle and has been studied in [3].

We also mention the results about long-time existence for nonlinear Klein–

Gordon and wave equations with the harmonic potential [5]–[7].

We are in the position to state our main result. Consider (1.1) with initial

data

u(t, x) |t=0 = εu0 , (1.3)

where ε > 0 is a parameter. Because of the harmonic potential, it is natural to

consider the solution in the space

Σk := {u ∈ L2(Rd) : xα∂βxu ∈ L2(Rd),∀|α|+ |β| ≤ k} (1.4)

for some nonnegative integer k. By local existence theory, problems (1.1) and

(1.3) admit a unique solution defined on the time interval |t| ≤ cε−(p−1) for

any u0 in the unit ball of Σk, provided k is large enough and ε > 0 is small

enough. The main result of this paper is the following:

Theorem 1.1. Let d be odd and p a positive even integer. Then there exists

s0, ε0 and c, C > 0 such that for any ε ∈ (0, ε0), any integer s ≥ s0, any u0 ∈ Σs

with ||u0||Σs ≤ 1, there exists a unique solution

u ∈ C1 ((−Tε, Tε) ,Σs)

to (1.1), (1.3) with Tε ≥ cε−(2p−2). Moreover, ∀ t ∈ (−Tε, Tε), one has

‖u(t, ·)‖Σs ≤ Cε. (1.5)
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Remark 1.1. The result still holds if up in (1.1) is replaced by∑
p1,p2∈N,p1+p2=p

c(p1, p2)up1up2

for any real constant c(p1, p2).

Remark 1.2. It seems that the other cases, for instance, when d is even and

p is odd, are difficult to deal with, because of the following reason: in those cases

(3.4) does not hold true, so there are resonant terms which are difficult to treat

using this method. However, by the same analysis, the result of the above theorem

holds for the following equation:

i∂tu = (−∆ + |x|2 + 1)u− up, x ∈ Rd,

for even d and positive even p.

In the next section, we provide some preliminaries, and the last section is

devoted to the proof of the theorem. Let us explain the main idea. We want to

control the Sobolev norm of the solution, whose time derivative is a multilinear

expression in u homogenous of order p + 1 (see (3.1)). We then perturb it so

that (i) the time derivative of the perturbation cancels out the right-hand side of

(3.1), up to a high-order term O
(
‖u‖2pH̃s(Rd)

)
; (ii) the perturbation is controlled

by the power of ‖u‖H̃s(Rd) (see Lemma 3.1). In the end, the standard continuous

argument allows one to show that the Sobolev norm of the solution is bounded

in the time interval.

2. Preliminaries

Let −∆+ |x|2 be the harmonic oscillator on L2(Rd). Its eigenvalues are given

by λ2
n with

λn =
√

2n+ d, n = 0, 1, 2, . . . .

We denote by Πn the orthogonal projection onto the eigenspace associated to λ2
n,

and by E , the algebraic direct sum of the ranges of the Π′ns, n ∈ N. Denote

Λ =
√
−∆ + |x|2.

We shall work in the space

H̃s(Rd) :=

{
u ∈ L2(Rd) :

∑
n∈N

λ2s
n ‖Πnu‖2L2(Rd) < +∞

}
,
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which is equivalent to Σs defined in (1.4) when s is a natural number (see [5]).

Thus we shall not distinguish Σs with H̃s(Rd) when s is a nonnegative integer.

The constant C in the paper could be different from line to line. From now on,

we shall also denote by max1,max2,max3, respectively, the largest, the second

largest and the third largest element among λn0 , λn1 , . . . , λnp for natural numbers

n0, n1, . . . , np. One should easily distinguish these notations from the functions

“ max ” in the following context.

We shall need the following proposition.

Proposition 2.1. Let p > 1 be a natural number. There is a positive

constant ν such that for any natural number N , there is CN > 0 satisfying

that for any n0, n1, . . . , np ∈ N, any u0, u1, . . . , up ∈ L2(Rd), one has for any

δ ∈
(

0, 1
d+3

)
∣∣∣∣∫

Rd
(Πn0

u0) (Πn1
u1) · · ·

(
Πnpup

)
dx

∣∣∣∣ ≤ CN (max1 ·max2)
−( 1

d+3−δ)

× maxν3 · (max2 ·max3)
N

(|max2
1−max2

2|+ max2 ·max3)
N

p∏
j=0

‖uj‖L2(Rd) .

Proof. The proof is similar to that of [7, Proposition 2.1]. We give it here

for convenience of the reader. By symmetry we may assume

λn0
≥ λn1

≥ · · · ≥ λnp ,

i.e.,

max1 = λn0 , max2 = λn1 , max3 = λn2 .

Thus we are reduced to showing∣∣∣∣∫
Rd

(Πn0u0) (Πn1u1) · · ·
(
Πnpup

)
dx

∣∣∣∣
≤ CN (λn0

λn1
)
−( 1

d+3−δ) λνn2
· (λn1

· λn2
)
N(∣∣λ2

n0
− λ2

n1

∣∣+ λn1λn2

)N p∏
j=0

‖uj‖L2(Rd) . (2.1)

On the one hand, by Hölder’s inequalities,∣∣∣∣∫
Rd

(Πn0u0) (Πn1u1) · · ·
(
Πnpup

)
dx

∣∣∣∣ ≤ p∏
j=0

∥∥Πnjuj
∥∥
Lqj (Rd)

(2.2)
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with q0, q1, . . . , qp ∈ [2,+∞) satisfying

1

q0
+

1

q1
+ · · ·+ 1

qp
= 1.

From [4, Corollary 3.2], we know

‖Πnu‖Lq(Rd) ≤ Cλ
ρ(q)
n ‖u‖L2(Rd) , (2.3)

where

ρ(q) =


−
(

1
2 −

1
q

)
, if d+1

2(d+3) <
1
q ≤

1
2 ,

− 1
3 + d

3

(
1
2 −

1
q

)
, if max

{
d−2
2d , 0

}
≤ 1

q <
d+1

2(d+3) ,

−1 + d
(

1
2 −

1
q

)
, if 0 < 1

q ≤ max
{
d−2
2d , 0

}
.

(2.4)

We set for any δ1 ∈ (0, δ) with δ ∈
(

0, 1
3+d

)
,

1

q0
=

1

q1
=

d+ 1

2(d+ 3)
+δ1,

1

q2
= 2

(
1

d+ 3
− δ1

)
, qj =∞, j = 3, · · · , p.

Then from (2.2)–(2.4) and Sobolev’s inequalities, we deduce∣∣∣∣∫
Rd

(Πn0u0) (Πn1u1) · · ·
(
Πnpup

)
dx

∣∣∣∣
≤ C (λn0λn1)

−( 1
2−

d+1
2(d+3)

−δ1) λν1n2

p∏
j=0

‖uj‖L2(Rd)

= C (λn0
λn1

)
−( 1

d+3−δ1) λν1n2

p∏
j=0

‖uj‖L2(Rd), (2.5)

for some ν1 > 0, where we also used the symmetric assumption λn2
≥ · · · ≥ λnp .

On the other hand, it follows from (1.3.6) in [5] that there exists ν2, and for

any N1 ∈ N, there exists a constant CN1
> 0, such that∣∣∣∣∫

Rd
(Πn0

u0) (Πn1
u1) · · ·

(
Πnpup

)
dx

∣∣∣∣
≤ CN1

λν2n2
· (λn1

· λn2
)
N1(∣∣λ2

n0
− λ2

n1

∣∣+ λn1λn2

)N1

p∏
j=0

‖uj‖L2(Rd). (2.6)

Then (2.1) follows from (2.5) and (2.6). This concludes the proof. �
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3. Proof of the main theorem

By the local theory, it suffices to show

‖u(t, ·)‖2H̃s(Rd) ≤ C
2ε2, ∀ t ∈ [−cε−(2p−2), cε−(2p−2)],

for some C, c > 0. We only need to prove

Es(u)(t) := 〈Λsu,Λsu〉 ≤ C2ε2, ∀ t ∈ [−cε−(2p−2), cε−(2p−2)],

since

Es(u)(t) = ‖u(t, ·)‖2H̃s(Rd) .

Thus we have by (1.1)

d

dt
Es(u)(t) = 2 Re i〈Λsu,Λsi∂tu〉

= 2 Re i〈Λsu,Λs+2u〉 − 2 Re i〈Λsu,Λsup〉 = 2 Im〈Λsu,Λsup〉.

Decomposing

u =
∑
n∈N

Πnu,

we obtain, denoting ~n = (n0, n1, . . . , np) ∈ Np+1,

d

dt
Es(u)(t) = 2 Im

∑
~n∈Np+1

〈ΛsΠn0u,Λ
s
(
(Πn1u) · · · (Πnpu)

)
〉. (3.1)

Lemma 3.1. Assume that d is odd and that p > 1 is even. Then there exists

a quantity Q = Q(t) such that

d

dt
(Es(u)(t)−Q(t)) = O

(
‖u‖2pH̃s(Rd)

)
, Q(t) = O

(
‖u‖p+1

H̃s(Rd)

)
if s is large enough.

Proof of Lemma 3.1. Set

L~n(u)(t) = 〈ΛsΠn0
u,Λs

(
(Πn1

u) · · · (Πnpu)
)
〉. (3.2)

Then we get by (1.1), denoting Dt = i∂t,
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d

dt
L~n(u)(t) = (−i)〈ΛsΠn0Dtu,Λ

s
(
(Πn1u) · · · (Πnpu)

)
〉

+ i

p∑
j=1

〈ΛsΠn0
u,Λs

(
(Πn1

u) · · · (ΠnjDtu) · · · (Πnpu)
)
〉

= (−i)〈ΛsΠn0
Λ2u,Λs

(
(Πn1

u) · · · (Πnpu)
)
〉

+ i

p∑
j=1

〈ΛsΠn0
u,Λs

(
(Πn1

u) · · · (ΠnjΛ
2u) · · · (Πnpu)

)
〉

+ i〈ΛsΠn0u
p,Λs

(
(Πn1u) · · · (Πnpu)

)
〉

− i
p∑
j=1

〈ΛsΠn0
u,Λs

(
(Πn1

u) · · · (Πnju
p) · · · (Πnpu)

)
〉

= (−i)

λ2
n0
−

p∑
j=1

λ2
nj

 〈ΛsΠn0u,Λ
s
(
(Πn1u) · · · (Πnpu)

)
〉

+ i〈ΛsΠn0
up,Λs

(
(Πn1

u) · · · (Πnpu)
)
〉

− i
p∑
j=1

〈ΛsΠn0u,Λ
s
(
(Πn1u) · · · (Πnju

p) · · · (Πnpu)
)
〉. (3.3)

Since we assume that d is odd and that p > 1 is even, we have for any ~n ∈ Np+1,∣∣∣λ2
n0
−

p∑
j=1

λ2
nj

∣∣∣ =
∣∣∣2n0 − 2(n1 + n2 + · · ·+ np)− (p− 1)d

∣∣∣ ≥ 1. (3.4)

Therefore it is meaningful to define

Q(t) = 2 Im
∑

~n∈Np+1

(−i)

λ2
n0
−

p∑
j=1

λ2
nj

−1

L~n(u)(t). (3.5)

By similar computation as in (3.3), we obtain

d

dt
Q(t) = 2 Im

∑
~n∈Np+1

(L~n(u)(t)−R~n(u)(t)) , (3.6)

where

R~n(u)(t) =

λ2
n0
−

p∑
j=1

λ2
nj

−1 [ 〈
ΛsΠn0u

p,Λs
(
(Πn1u) · · · (Πnpu)

)〉
−

p∑
j=1

〈
ΛsΠn0

u,Λs
(
(Πn1

u) · · · (Πnju
p) · · · (Πnpu)

)〉 ]
.
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Subtracting (3.6) from (3.1), we obtain

d

dt

(
Es(u)(t)−Q(t)

)
= R(t),

where

R(t) = 2 Im
∑

~n∈Np+1

R~n(u)(t).

Thus to prove Lemma 3.1, we are left to showing the following claim.

Claim.

Q(t) = O
(
‖u‖p+1

H̃s(Rd)

)
and R(t) = O

(
‖u‖2pH̃s(Rd)

)
for large s. (3.7)

Since Λ is self-adjoint, in view of (3.2) and (3.5), one has

Q(t) = 2 Im
∑

~n∈Np+1

(−i)

λ2
n0
−

p∑
j=1

λ2
nj

−1 〈
Λ2sΠn0

u, (Πn1
u) · · · (Πnpu)

〉

= 2 Im
∑

~n∈Np+1

(−i)

λ2
n0
−

p∑
j=1

λ2
nj

−1 ∫
Rd
λ2s
n0

(Πn0
u)

p∏
j=1

(
Πnju

)
dx.

It follows from Proposition 2.1 with δ = 1
2(d+3) and Hölder’s inequalities that

|Q(t)| ≤ CN
∑

~n∈Np+1

1

(λ2
n0
−
∑p
j=1 λ

2
nj )
·

λ2s
n0

(max1 ·max2)
1

2(d+3)

× maxν3 · (max2 ·max3)
N

(|max2
1−max2

2|+ max2 ·max3)
N
‖Πn0

u‖L2(Rd)

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

≤ CN ‖u‖H̃s(Rd)

(∑
n0∈N

T (n0)2

)1/2

,

where

T (n0) =
∑
~n′∈Np

F (n0, ~n
′, u)

with ~n′ = (n1, . . . , np) and
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F (n0, ~n
′, u) =

1

(λ2
n0
−
∑p
j=1 λ

2
nj )
·

λsn0

(max1 ·max2)
1

2(d+3)

× maxν3 · (max2 ·max3)
N

(|max2
1−max2

2|+ max2 ·max3)
N

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

. (3.8)

Now to prove the first estimate in (3.7), it suffices to show that there exists

a constant Cs > 0 depending on s only such that∑
n0∈N

T (n0)2 ≤ Cs ‖u‖2pH̃s(Rd)
.

To show this inequality, without loss of generality, we assume

λn1
≥ λn2

≥ · · · ≥ λnp .

Note that λni ≥ λnj is equivalent to ni ≥ nj . So setting

S = {~n ∈ Np+1 : n1 ≥ n2 ≥ · · · ≥ np},

A = {~n ∈ Np+1 : n0 ≤ n2}, Ac = {~n ∈ Np+1 : n0 > n2},

we only need to show∑
n0∈N

TA(n0)2 ≤ Cs ‖u‖2pH̃s(Rd)
,

∑
n0∈N

TAc(n0)2 ≤ Cs ‖u‖2pH̃s(Rd)
, (3.9)

where

TA(n0) =
∑
~n′∈Np

1S∩AF (n0, ~n
′, u), TAc(n0) =

∑
~n′∈Np

1S∩AcF (n0, ~n
′, u).

To estimate
∑
n0∈N TA(n0)2, we note that on the support of 1S∩AF (n0, ~n

′, u),

max1 = λn1 , max2 = λn2 , max3 = max(λn3 , λn0).

By the definition of TA(n0), (3.8), (3.4), Hölder’s inequalities and the fact that

(max2 ·max3)
N

(max1 ·max2)
1

2(d+3) (|max2
1−max2

2|+ max2 ·max3)
N
≤ 1,
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one has

∑
n0∈N

TA(n0)2 ≤ C
∑
n0∈N

∑
~n′∈A

1S∩Aλ
s
n0

max(λn3
, λn0

)ν
p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

2

≤ C
∑
n0∈N

∑
~n′∈A

1S∩Aλ
−2
n0
λ
s+ν+2

2
n1 λ

s+ν+2
2

n2

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

2

≤ C
∑
n0∈N

λ−4
n0
‖u‖2p
H̃
s+ν+5

2 (Rd)
≤ C ‖u‖2pH̃s(Rd)

if s ≥ ν + 5. This gives the first inequality in (3.9).

To obtain the second inequality in (3.9), we note that on the support of

1S∩AcF (n0, ~n
′, u), one has

max1 = max(λn0
, λn1

), max2 = min(λn0
, λn1

), max3 = λn2
.

So we get by (3.8),

|1S∩AcF (n0, ~n
′, u)| = 1S∩Ac

∣∣∣∣∣ 1

(λ2
n0
−
∑p
j=1 λ

2
nj )

∣∣∣∣∣ λsn0

(λn0
λn1

)
1

2(d+3)

×
λνn2
· (min(λn0 , λn1) · λn2)

N(∣∣λ2
n0
− λ2

n1

∣∣+ min(λn0
, λn1

) · λn2

)N p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

. (3.10)

Remark that

1S∩Ac
λn0
·min(λn0

, λn1
) · λn2∣∣λ2

n0
− λ2

n1

∣∣+ min(λn0 , λn1) · λn2

≤ 2λn1
,

since when |λ2
n0
− λ2

n1
| ≤ 1

2λ
2
n0

, one has λn0
< 2λn1

, so this holds trivially, while

when |λ2
n0
− λ2

n1
| > 1

2λ
2
n0

, the left-hand side is less than

1S∩Ac
λn0
·min(λn0

, λn1
) · λn2

1
2λ

2
n0

≤ 2 min(λn0
, λn1

) ≤ 2λn1
.

Consequently, taking N = s, we get by (3.10),

|1S∩AcF (n0, ~n
′, u)|

≤ C1S∩Ac
∣∣∣∣∣ 1

(λ2
n0
−
∑p
j=1 λ

2
nj )

∣∣∣∣∣ λsn1
λνn2

(λn0
λn1

)
1

2(d+3)

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

.
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As a result, when |λ2
n0
− λ2

n1
| > Cλ2

n2
for some large C, one has∣∣∣∣∣ 1

(λ2
n0
−
∑p
j=1 λ

2
nj )

∣∣∣∣∣ ≤ C 1

|λ2
n0
− λ2

n1
|+ 1

,

so we obtain in this case,

|1S∩AcF (n0, ~n
′, u)|

≤ C 1

|λ2
n0
− λ2

n1
|+ 1

·
λsn1

λνn2

(λn0
λn1

)
1

2(d+3)

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

; (3.11)

while when |λ2
n0
− λ2

n1
| ≤ Cλ2

n2
, by (3.4) we have

|1S∩AcF (n0, ~n
′, u)|

≤ C
λ2
n2

|λ2
n0
− λ2

n1
|+ 1

λsn1
λνn2

(λn0
λn1

)
1

2(d+3)

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

. (3.12)

Since

(λn0λn1)
1

2(d+3) ≥ (|λ2
n0
− λ2

n1
|+ 1)τ

for some τ ∈
(

0, 1
4(d+3)

)
, we deduce from (3.11), (3.12), Hölder’s and Young’s

inequalities:

∑
n0∈N

TAc(n0)2 =
∑
n0∈N

( ∑
~n′∈Np

1S∩AcF (n0, ~n
′, u)

)2

≤ C
∑
n0∈N

 ∑
~n′∈Np

λsn1
λν+2
n2

(|λ2
n0
− λ2

n1
|+ 1)1+τ

p∏
j=1

∥∥Πnju
∥∥
L2(Rd)

2

≤ C
∑
n0∈N

(∑
n1∈N

λsn1

(|n0 − n1|+ 1)1+τ
‖Πn1u‖L2(Rd) ‖u‖

p−1

H̃s(Rd)

)2

≤ C

(∑
n0∈N

1

(n0+1)1+τ

)2(∑
n1∈N

λ2s
n1
‖Πn1

u‖2L2(Rd)

)
‖u‖2p−2

H̃s(Rd)
≤C ‖u‖2pH̃s(Rd)

,

provided s > ν+ 4. This finishes the proof of the first estimate in the claim. The

other estimate in (3.7) can be shown in the same way by noting that H̃s
(
Rd
)

is

an algebra when s is large. This concludes the proof of the claim and thus that

of Lemma 3.1. �
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Now we go back to prove the main theorem. Note that there is a constant C1

independent of t such that

C−2
1 ‖u(t)‖2Σs ≤ Es(u)(t) ≤ C1 ‖u(t)‖2Σs ,

and that there is another constant M > 0 such that

Es(u)(0) ≤M2ε2, Q(0) ≤Mp+1εp+1 ≤M2ε2, if Mε < 1,

since u0 belongs to the unit ball of Σs. Let K be a constant such that K > 2M .

We claim that if ε is small enough, we have

Es(u)(t) ≤ K2ε2 ≤ 1, ∀ t ∈ [−cε−(2p−2), cε−(2p−2)], (3.13)

for some K > 0. We use the standard continuity argument to prove this claim.

By the choice of K, we know (3.13) holds when t = 0. Thus it suffices to show

that the bound of form (3.13) actually implies the stronger estimate

Es(u)(t) ≤ 3

4
K2ε2, ∀ t ∈ [−cε−(2p−2), cε−(2p−2)].

We deduce from Lemma 3.1

Es(u)(t) ≤ Q(t) + Es(u)(0)−Q(0) + c

∫ t

0

‖u(τ)‖2pΣs dτ.

Since the bounds of (3.13) imply

||u(τ)||Σs(Rd) ≤ c1
√
Es(u)(τ) ≤ c1Kε,

we obtain form Lemma 3.1

Es(u)(t) ≤ ccp+1
1 Kp+1εp+1 + 2M2ε2 + cc2p1 K

2pε2p|t| ≤ 3

4
K2ε2,

for any |t| ≤ 1
8 (cc2p1 K

2p−2)−1ε−(2p−2), provided ε is so small that

ccp+1
1 Kp−1εp−1 <

1

8
.

This concludes the proof of the claim. So the solution exists at least over a time

interval of length of order cε−(2p−2) with uniformly bounded Sobolev norm esti-

mate (1.5) holding on that interval.
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