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Remarks on nonlinear Schrédinger equations
with the harmonic potential

By HONGZI CONG (Dalian) and QIDI ZHANG (Shanghai)

Abstract. We show that the small solution for a type of nonlinear Schrodinger
equation with the harmonic potential exists over a longer time interval than the one given
by local existence theory. We also get a control of the Sobolev norm of the solution on
that time interval. We exploit the structure of nonlinearity to estimate the small divisor
and perform a normal form process.

1. Introduction and the main result

We are interested in lower bounds for the lifespan of the solution to the
nonlinear Schrédinger equation with the harmonic potential

i0u = (—A+ |z|Hu—uP, (t,z) € R x R? (1.1)

with small initial data, where integer d is the space dimension and p > 0 is an

integer. If we neglect the harmonic potential, then from the point view of scaling,

the critical regularity is s, = % — %. Thus s, > 1 if d > 3 and p is large.

This falls into the interesting energy-supercritical case, about which there are few
results. Almost global existence for solutions of equation

i0pu = (—A + |z)> + M)u —uP, (t,z) € R x R?
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with small initial data has been obtained in [2], where M is a Hermite multiplier
operator. The operator M plays an important role in their proof, actually, it was
used to avoid the resonance. We are curious about what happens if M is set to
be zero, i.e., what could we say about (1.1)?

There are some results for the similar equation:
i0pu = (—A + |z*)u + Nu[P"tu, (t,z) € R x RY, (1.2)

where p € (1,400) when d =1,2, and p € (1,1 4+ d%z] when d > 3. If A > 0 or if
A <0and 1< p <1432, then there exists a global in time solution to (1.2) for any
initial datum ug € $' defined in (1.4), while if A < 0 and if 1+ § <p <1+ 3%
when d > 3, the solution to (1.2) still exists globally for any initial datum ug € :*
with small norm. However, it may happen that the solution to (1.2) blows up in
finite time if A < 0 and if 1 + % <p<1l+ ﬁ when d > 3. Lifespan estimates
were obtained when a blow-up happens. We refer to [1] and references therein
for details in this energy-subcritical case. The energy-critical case, i.e., (1.2) with
p=1+ % (d > 3), is more subtle and has been studied in [3].

We also mention the results about long-time existence for nonlinear Klein—
Gordon and wave equations with the harmonic potential [5]-[7].
We are in the position to state our main result. Consider (1.1) with initial
data
u(t, ) |t=0 = eug , (1.3)
where £ > 0 is a parameter. Because of the harmonic potential, it is natural to
consider the solution in the space

Y= {u e L2(RY) : 2*0Pu € L*(R?),V|a| + |8 < k} (1.4)

for some nonnegative integer k. By local existence theory, problems (1.1) and
(1.3) admit a unique solution defined on the time interval [t| < ce=®~1) for
any ug in the unit ball of ¥, provided k is large enough and ¢ > 0 is small
enough. The main result of this paper is the following:

Theorem 1.1. Let d be odd and p a positive even integer. Then there exists
S0, €0 and ¢,C > 0 such that for any ¢ € (0,g¢), any integer s > sq, any ug € %.°
with ||ug||s. < 1, there exists a unique solution

uweCH((-T.,1.),%°%)
to (1.1), (1.3) with T. > ce~?*»=2). Moreover, ¥V t € (—T.,T.), one has

[u(t, )5 < Ce. (1.5)
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Remark 1.1. The result still holds if u? in (1.1) is replaced by

Z c(p1, p2)uP P2

P1,p2EN,p1+p2=p
for any real constant ¢(p1,p2).

Remark 1.2. Tt seems that the other cases, for instance, when d is even and
p is odd, are difficult to deal with, because of the following reason: in those cases
(3.4) does not hold true, so there are resonant terms which are difficult to treat
using this method. However, by the same analysis, the result of the above theorem
holds for the following equation:

iOu=(—A+ |z +Du—uP, z€R%
for even d and positive even p.

In the next section, we provide some preliminaries, and the last section is
devoted to the proof of the theorem. Let us explain the main idea. We want to
control the Sobolev norm of the solution, whose time derivative is a multilinear
expression in u homogenous of order p + 1 (see (3.1)). We then perturb it so
that (i) the time derivative of the perturbation cancels out the right-hand side of
(3.1), up to a high-order term O (Hu||fr~i(w)); (ii) the perturbation is controlled
by the power of HU”ﬁs(Rd) (see Lemma 3.1). In the end, the standard continuous
argument allows one to show that the Sobolev norm of the solution is bounded
in the time interval.

2. Preliminaries

Let —A+|x|? be the harmonic oscillator on L2(R?). Its eigenvalues are given
by A2 with
A =V2n+d, n=0,1,2,....

We denote by II,, the orthogonal projection onto the eigenspace associated to A2,
and by &, the algebraic direct sum of the ranges of the I/ s,n € N. Denote

A=/—A+ ]t

We shall work in the space

HE(RY) = {u e L*(RY) : Z A2s ||Hnuuiz(Rd) < -i-oo} ,

neN
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which is equivalent to 3° defined in (1.4) when s is a natural number (see [5]).
Thus we shall not distinguish %* with #*(R?) when s is a nonnegative integer.
The constant C' in the paper could be different from line to line. From now on,
we shall also denote by max;, maxs, maxs, respectively, the largest, the second
largest and the third largest element among Ay, An,, .. ., Ay, for natural numbers
ng,n1,...,np. One should easily distinguish these notations from the functions
“max” in the following context.
We shall need the following proposition.

Proposition 2.1. Let p > 1 be a natural number. There is a positive
constant v such that for any natural number N, there is Cy > 0 satisfying
that for any ng,ni,...,n, € N, any ug,u1,...,u, € L*(R?), one has for any

§€ (0,%)

/ (I uo) (T, uy) - - - (anup) dz| < Cn (maxy ~maxz)7(%+376)
]Rd

maxy - (maxs - maxs)™

5 N H ||“J||L2 (Rd) *

(Jmax} — max3| + maxy - maxz)" g

PROOF. The proof is similar to that of [7, Proposition 2.1]. We give it here
for convenience of the reader. By symmetry we may assume

)\nOZAnIZ"'>)\nP7

i.e.

maxi = An,, maxs = A, , maxs = Ap,.

Thus we are reduced to showing

/ (o) (M ur) - -+ (T, up) da
Rd

A (Any - Ang
: ¥ H sl o gay - (2:1)

< Cn (nghn,) (@5 79)
wi ) (|xz2, — A2, \+An1An2) -

On the one hand, by Holder’s inequalities,

/d (H”UUO) (Hruul) (H”pul” d'r
R

P
H [T, 051 o (R9) (2.2)
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with qo, q1,...,qp € [2,+00) satisfying
1 1 1
== =1
G q1 dp

From [4, Corollary 3.2], we know

Tl pogray < CND ([l 2 gay (2.3)
where
_<%_$)’ if 2(d+13) <$§%’
p@)=3-3+3(3-1),  ifmac{HR0}<i<glh (24
~1+d(5-1), if 0 < ! < max{%2,0}

We set for any 61 € (0,6) with § € (O, ﬁ),

1 1 d+1 1 1
—:—:7—"—6’ —:2 7—6 ’:OO, ':3’---7 .
o @ 2d+3) 7 <d+3 1) v ’ g

Then from (2.2)—(2.4) and Sobolev’s inequalities, we deduce

/ (Mg t0) (U, 1) -+ - (1L, ) dt
Rd

< C Anghny)~ (Bl —01) ym H sl g
7=0

=C (AngAn, )~ (z4s—01) N II il L2 gy, (2.5)

for some 11 > 0, where we also used the symmetric assumption Ap, > -+ > Ay,
On the other hand, it follows from (1.3.6) in [5] that there exists v, and for
any N; € N, there exists a constant C, > 0, such that

‘/}Rd (Mneuo) (Mpywr) -+ - (L, up) dz

AZ2 (A A )N
N (’)\2 i)\g ‘1+ PV )Nl H ”u]”Lz (R?). (2.6)
no ni\ng —

Then (2.1) follows from (2.5) and (2.6). This concludes the proof. O
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3. Proof of the main theorem

By the local theory, it suffices to show

<C%?, Vte [—ce_(Qp_Q),cs_(Q”_2)],

[u(t, )l

2~
Hs (RE)
for some C,c > 0. We only need to prove

Ey(u)(t) := (A5u, A®u) < C%e%, YV te[—ce™ B2 e= P72

since

Es(u)(t) = [lu(t, )]

2
He(Rd) *

Thus we have by (1.1)

%Es(u)(t) — 9 Rei(Aw, A%idyu)
= 2Rei(A%u, A*T2u) — 2Rei(ASu, A*uP) = 2Tm(A*u, A*uP).
Decomposing
u = Z 1L, u,
neN

we obtain, denoting 7 = (ng, n1,...,n,) € NPT1

d S S

S Bs(u)(t) =2Im > (A Hpgu, A (L, ) - - (I, w). (3.1)

neENpt1

Lemma 3.1. Assume that d is odd and that p > 1 is even. Then there exists
a quantity @ = Q(t) such that

d

2 (B )(®) = Q1) = 0 (Jlu

) Q0 =0 (Il

if s is large enough.

PROOF OF LEMMA 3.1. Set
Lz (u)(t) = (A°I, u, A® ((Hnlu) e (anu))>. (3.2)

Then we get by (1.1), denoting Dy = id,
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d

%Lﬁ(u)(t) = (—i)(A°Il,, Dyu, A® ((Hmu) T (an“>)>

+i Y (AT u, A (M, w) - - - (1L, Dyw) - - - (T, w)))

.
i M@
)

= (=) (A° My A%u, A (I, ) -+ (I, w)))

+i Y (ATpou, A% (Hp,u) - (I, A%u) - -+ (T, w)))

.
i M@
I

=

+14 anOuP’ A® ((Hﬂlu) e (anu))>

(N°nou, A® (M, ) - -+ (I, uP) -+ - (T, )

—1

-

<
Il
Jan

= (=) (Aig - Z A?y) (AL u, A ((Hmu) T (anu))>

+ (AT, uP, A® ((Hmu) e (anu))>
P
=iy (N Tagu, A (M) -« (M u?) -+ (T, u). (3.3)
j=1
Since we assume that d is odd and that p > 1 is even, we have for any 7 € NP+,

p
2 2
A=A
=1

Therefore it is meaningful to define

Q) =2Im Y ((—i) (Aio—zxij)) L(w(®).  (35)

neNptH1

- ‘2n0—2(n1+n2+~--+np)—(p—l)d‘ > 1. (3.4)

By similar computation as in (3.3), we obtain

Lam=2mm Y (La(u)) - Ra(w)(0), (36)
neNpt1
where
, -1
Ri(u)(t) = (Afm - Z)\?Lj) [<A8Hn0u1’7As (M, ) - -+ (M, w)))
j=1

= D ATy, A () -+ (T ) - (T, ) |

j=1
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Subtracting (3.6) from (3.1), we obtain

where

R(t)=2Im > Rg(u)().

neNp+1

Thus to prove Lemma 3.1, we are left to showing the following claim.

Claim.

QW) =0 (lultt,,)  and  R(t) =0 (Jul, ) forlarges.  (3.7)

Since A is self-adjoint, in view of (3.2) and (3.5), one has

-1

p
Qt)=2Im > [ (=i) (A2, =D A% (AT, u, (T, w) - - (I, u))
AENP+L Jj=1
—1

p p
=2Im Y | (=) [ A2, =D AL /RdAii(Hnou)H(Hnjﬁ) dz.
j=1 j=1

AeNP+1
It follows from Proposition 2.1 with § = m and Holder’s inequalities that
1 )\25
Q@) < COn : =
ﬁe%,,:ﬂ (A2, — ?:1 )‘%j) (max; - maxs) e

maxy - (maxs - maxs)™

P
x [Tyl sy T 1110,
(|maX%fmaX§|+maxz.max3)N oL (R)jle " HLQ(W)

1/2
<Cn Hu”ﬁs(Rd) (Z T(n0)2> )

no€eN

where

T(no) = Y F(no, i, 1)

71’ eNP

with @’ = (n1,...,n,) and
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1 AS,

(AR — §:1 )‘721]') (max; -maXQ)W

p
N H HHnjﬂHLZ(]Rd) . (38)
j=1

F(?’Lo,ﬁ/7ﬂ) =

maxy - (max - maxs)™

(Jmax? — max3| + maxs - maxg)

Now to prove the first estimate in (3.7), it suffices to show that there exists
a constant C's > 0 depending on s only such that

S T(no)? < ol -

no€eN

To show this inequality, without loss of generality, we assume

)\nl 2/\71 Z"‘>/\np~

2

Note that A,, > Ay, is equivalent to n; > n;. So setting

S:{ﬁGNP+1:n12n22~~2nP},

A:{ﬁENP+11n0§n2}, Ac:{ﬁGNP+IZn0>n2},
we only need to show

—n2 —2
> Talmo)* < Collal, oy Y Tacno)® < Culall. ooy (39)
no€eN no€eN

where

TA(”O): Z ISQAF(no,ﬁ/,ﬂ), TAc(no): Z 1SﬂACF(n05ﬁ/aﬁ)'

7’ NP 7’ ENP

To estimate aneN Ta(no)?, we note that on the support of 15naF (ng, 7', ),
maxj = Ap,, maxs = Ap,, maxg = max(An;, Ang)-
By the definition of T'4(no), (3.8), (3.4), Holder’s inequalities and the fact that

N
(maxs - maxs)

2

<1
(max; - maxs) @ (|max? — max3| + maxa ~maX3)N

— i
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one has

2

p
Z Ta(no) <o Z Z 1SOA)\n0 max(Ang s Ang) H HH”7UHL2(Rd)
TN j=1

no€EN €A
2
_9 s+;+2 +r+ o
S C Z Z ]-SOA)\nO )\nl )\nz n; (R)
noeN \n’€A j=1
Z >‘ ||UH~s+u+5( Rd) = <Clu HH s (RY)
no€eN

if s > v+ 5. This gives the first inequality in (3.9).
To obtain the second inequality in (3.9), we note that on the support of
1snacF(ng, ', @), one has

max; = max(Ang, An, ), maxg = min(An,, An,)s maxs = Ap,.
So we get by (3.8),
Ano

Angny) 759

p
j=1

11snacF(no, ', @) = 1gnac

()\%0 - ?:1 )\%])
)‘rVLQ ) (min(Anoa )‘nl) : )‘nQ)N
(|22, = A2 | + min(Ang, Any) - Any)

Remark that

Ang - Min(Apg, Ay ) - Any <o
nys

1snac ; -
A2 = A2 [+ min(Any, Any ) - Ay

since when [A2 — A2 | < $A2 , one has A,, < 2),,, so this holds trivially, while

2%ng?

when [A2 — A2 | > %)\% , the left-hand side is less than

Ang - min(Apg, Any ) - A

o "2 < 2min(Ang, Any) < 2An, .
27'no

1snac

Consequently, taking N = s, we get by (3.10),

|1SQACF(nO7ﬁ/7ﬂ)‘

A2 A

n1 ' n2
(AnoAn )2(d+3) Jl;[ HHTLJUHLQ (Rd)

< Clsnac

()\%0 - ?:1 )\%])
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As a result, when [A2 — A2 | > CAZ_ for some large C, one has

1 o 1
(A2, =25 A8) |~ AR, = AR+ T
so we obtain in this case,
[1snacF(no, @', a)|
1 o, N
= C|>\2 X2 [+1 ) : H HHnJ“HL2(Rd)7

ni

()‘no/\ 2(d+3) j=1
while when [A2 — A2 | < CX2_, by (3.4) we have

11snaeF(no, ', )|

A2 A5 AV
<C = o I, w
PR A ESTINE T 17l

2d+3 .
@F 5o

Since
oAy ) 2@ > (N2 = A2 [ +1)7

215

(3.11)

(3.12)

for some 7 € (0, M), we deduce from (3.11), (3.12), Holder’s and Young’s

inequalities:
2
Z Tae(no)? = Z < Z 1SQACF(nO,ﬁ”u)>
no€EN noeN \iene
2
=0 e )
- no€N \ ienr (A2, = A2 [+ 1)+ st n; 2l L2 (Rd)

IN

, 2
¢ Z (Z (Jno — na |+ 1)+ ||H"1“||L2(Rd) H“”Hs Rd)>

no€N €N

2p 2
S(’(Z@,(noﬂ HT) (ZA Hmuum(Rd)nu 1y SO, 0, -
no

ni €N

provided s > v + 4. This finishes the proof of the first estimate in the claim. The
other estimate in (3.7) can be shown in the same way by noting that H* (R?) is

an algebra when s is large. This concludes the proof of the claim and thus that

of Lemma 3.1.

O
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Now we go back to prove the main theorem. Note that there is a constant C;
independent of ¢ such that

2

Cr2 Ju(t) s < Es(u)(t) < Cy [Ju(t)| .

and that there is another constant M > 0 such that
Ey(u)(0) < M?e?, Q(0) < MPTePth < M2e? if Me < 1,

since ug belongs to the unit ball of ¥°. Let K be a constant such that K > 2M.
We claim that if € is small enough, we have

Ey(u)(t) < K?* < 1, Vite[—ce 2D cem P2 (3.13)

for some K > 0. We use the standard continuity argument to prove this claim.
By the choice of K, we know (3.13) holds when ¢ = 0. Thus it suffices to show
that the bound of form (3.13) actually implies the stronger estimate

3
Es(u)(t) < 1K252, Vte [_66*(21072)’657(21972)]'

We deduce from Lemma 3.1

2p
5 dT.

Bu(u)(t) < Q(t) + Eu(u)(0) — Q(0) + ¢ / u(r)|

Since the bounds of (3.13) imply
[[w(T)]|ss may < c1v/ Es(u)(1) < e1Ke,

we obtain form Lemma 3.1

3
E (u)(t) < e KPHLePTL L on2e? 4 P KPPt < ZKQSQ’
for any [t| < é(CC%Z’K%_?)_15_(21’_2)7 provided ¢ is so small that

1
e RPTerl < 3
This concludes the proof of the claim. So the solution exists at least over a time
interval of length of order ce=(*?=2) with uniformly bounded Sobolev norm esti-

mate (1.5) holding on that interval.
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