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Abstract. Let X = {z1 < z2 < ---} be an infinite subset of positive integers and
X, = (%, ;—i, ce i—z), n =1,2,.... In this paper we give new necessary and sufficient
conditions for X for that the sequence of blocks X, has an asymptotic distribution

function.

1. Introduction

Denote by N the set of all positive integers. Let X = {z; < 29 <xz3 <---}
be an infinite subset of N.
The following sequence of finite sequences derived from X
r1 1 X2 I1 T2 X3 r1 X2 Tn

LI (1)

b b ) b) b PR | b) bR
xr1 T2 T2 T3 T3 I3 Tn Tn Tn

is called the ratio block sequence of the sequence X.
It is formed by the blocks X1, X5,..., X,,..., where

X:() n=12....

Tn T T,
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is called the n-th block. This kind of block sequences was introduced by
O. STRAUCH and J. T. TOTH [11] and they studied the set G(X,,) of its distri-
bution functions.

In this paper we prove that a block sequence X,, has an asymptotic distri-
bution function if and only if the arithmetic mean of the elements of X,, tends to
a non-negative real number not greater than % for n — oco. Further, we show that
if the asymptotic distribution function is of the form x*, then Inz, is asymptot-
ically equal to §ln n.

The rest of our paper is organized as follows. In Section 2 and Section 3,
we recall some known definitions, notations and theorems, which will be used and
extended. In Section 4, our new results are presented.

2. Definitions

The following basic definitions are from O. STRAUCH’s paper [9].
e 1 <z < 3 < --- denotes a sequence of positive integers, and = denotes
an element of (0, 1].
« For each n € N, consider the step distribution function
#{i <nj it <a}

F(Xna'r) = n s

for z € [0,1), and for x = 1, we define F(X,,,1) = 1.

« A non-decreasing function g : [0,1] — [0,1], g(0) = 0, g(1) = 1 is called a dis-
tribution function (abbreviated d.f.). We shall identify any two d.f.s coinciding
at common points of continuity.

o« A df g(x)is ad.f. of the sequence of blocks X,,, n = 1,2,..., if there exists
an increasing sequence nq < ng < --- of positive integers such that
lim F(X,,,z)=g(z)
k— o0
a.e. on [0,1]. This is equivalent to the weak convergence, i.e., the preceding
limit holds for every point = € [0, 1] of continuity of g(z).
« Denote by G(X,,) the set of all d.f.s of X,,, n =1,2,.... The set of distribution
functions of ratio block sequences was studied in [1]-[6], [9].

If G(X,,) = {g(z)} is a singleton, the d.f. g(x) is also called the asymptotic
distribution function (abbreviated a.d.f.) of X,.
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Especially, if G(X,,) = {z}, then we say that the sequence of blocks X, is
uniformly distributed (abbreviated as u.d.) in [0, 1].

We will use some auxiliary results based on the following two theorems of
Helly (see the First and Second Helly theorem [10, Th. 4.1.0.10 and Th. 4.1.0.11,
p. 45]).

Helly’s selection principle: For any sequence g,(z), n = 1,2,..., of d.f.s in
[0,1], there exists a subsequence gy, (¢), k =1,2,..., and a d.f. g(z) such that
limg 00 gn, () = g(z) ace.

Second Helly theorem: If we have lim,_ o gn, () = g(x) a.e. in [0,1], then
for every continuous function f : [0,1] — R, we have lim, fol f(z)dgn(z) =
Jo F(@)dg(@).

Note that applying Helly’s selection principle, from the sequence F(X,,z),
n =1,2,..., one can select a subsequence F(X,,,x), k = 1,2,..., such that
limy o0 F(Xp,,2) = g(z) holds not only for the continuity points x of g(z),
but also for all z € [0, 1].

We will use the one-step d.f. ¢, (x) with step 1 at « defined on [0, 1] via
{0, if r <a,

colx) =
() 1, ifz>a.

In particular, we always have ¢, (0) =0 and ¢, (1) = 1.

3. Overwiew of known results

In this section we mention known results related to the topic of this paper
and some other ones we use in the proofs of our theorems.

(A1) If g(x) € G(X,,) increases and is continuous at z = 8 and g(8) > 0, then
there exists 1 < a < oo such that ag(zf) € G(X,,). If every d.f. of G(X,,)
is continuous at 1, then a = 1/g(8), [11, Prop. 3.1 and Th. 3.2].
(A2) Assume that G(X,,) is singleton, i.e., G(X,,) = {g(z)}. Then either g(z) =
co(z) for x € [0,1]; or g(x) = z* for some 0 < A < 1 and = € [0,1],
[11, Th. 8.2].
(A3) Let 0 < A < 1 be a real number. Then G(X,,) = {z*} if and only if for
every k € N

lim =2 = k>, (2)

[5, Th. 1.



222 Jézsef Bukor, Ferdindnd Filip and Janos T. Téth

(A4) Let 0 < A < 1 be a real number. If G(X,,) = {2}, then

. Tn+1
lim =2F

n—oco I,

=1

)

[3, Remark 3].

(A5) Assume that all d.f.s in G(X,,) are continuous at 1. Then all d.f.s in
G(X,) are continuous on (0, 1], i.e., the only discontinuity point can be 0
[11, Th. 4.1].

(A6) Assume that all d.f. in G(X,) are continuous at 1 and that, for every
g € G(X,,), we have fol g(x)dx = ¢, where ¢ > 0 is a constant. Then:
(i) If g € G(X,,) increases at every point 8 € (0,1), then g(z) = "= for
every z € [0,1].
(ii) If g € G(X,,) is constant on (a, §) C (0,1], then G(X,,) is a singleton
and g(z) = ¢o(x) a.e. on [0,1], [11, Th. 7.2].
(A7) The L? discrepancy of the block X, is defined by

D@ (X,) = /0 (F(Xn, ) — x)zda:,

which can be expressed as

n

1 1 — 1 1 -
(2) L 2 _ - o R
DE(Xy) =g+ —5 > ai— — > wi— 5o D |wi—wjl,
noi—1 ™ oi=1 n

4,5=1
see [8]. For every increasing sequence x,, of positive integers

lim D@ (X,) =0+« lim F(X,,z)=x (3)
n—oo

n—roo

holds. The left-hand side can be divided into three limits (cf. [7, Th. 1]):

() dimnsoo o 00 7 = 35,

Jim DP(X,) =0+={ (i) lim, e T D T = g (4)
(i) Ly, oo i S0 o — 2y = L
(A8)
Ll
G(X,) ={c(2)} = nhﬁn;() - ;xl =0, (5)
G(X) = (@)} <= tm =33 [ Bl -
n)— 150 m,n—o00 Mn T T, -

i=1 j=1
[11, Th. 7.1].
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(A9)

1 n
co(z) € G(X,,) < liminf — Zl‘i =0,

n—oo NI, 4
i=1

[4, Th. 4].
(A10) maxgeq(x,) fy 9(x)de > 3, [11, Th. 7.1].

(A11) By the Helly theorem and integration by parts of the Riemann—Stieltjes
integral, if F(X,,,z) — g(z), then

1 ng 1 1
1 T
2dF (X, ,z) = — e / zdg(z) =1 —/ g(z)dx
/0 * Nk ; Tng 0 0
(9, p. 155].
4. Results

The equivalence (5) gives a characterization of the set X for the case G(X,,) =
{co(x)}. One may ask what happens if we assume that the arithmetic mean of the
numbers ;—;, 1 =1,2,...,n tends to a nonzero real number as n — oo. We will
make use of the following lemma.

Lemma 1. Let
Il
Then all distribution functions in G(X,,) are continuous at 1.

PROOF. By (A10) and (A11) we have that s < 1. Assuming the contrary,
let us suppose that there exists a d.f. g(z), which is not continuous at 1. Then,

for some h > 0 and arbitrary € > 0, there exists a sequence ng, k = 1,2, ... such
that
#{Zgnk : Imi <1—€}
g(l—¢) = lim . <1l-h<l
k— o0 nk

Namely, there exists an A > 0 such that for arbitrary € > 0, we can find sequences
my, ng, k =1,2,... with the properties

) <z <
(1 - g)xnk < Ty, and lim #{Z Tmp = Ti = x"k}
k—o00 nk

> h. (8)
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By (7)—(8) for given € > 0, there exists a ko such that for arbitrary k > ko,

we have
mpg .
i > my(s —e), (9)
‘ Tm
=1 k
further -
> (1-e), (10)
T,
and

#ixm, <z <an,}
nk

>h—¢ (11)

for the sequences my, ng, k=1,2,....

To get a contradiction, we shall make use of the observation that there are
relatively a “lot” of elements between z,,,, and z,,, it follows that the average of
the members of the block X,,, will be greater than s + ¢; thus, (7) fails, which is
a contradiction. For this, we give a lower bound for

St = -3 =1<Z ey I)

n x n x x
k= e E\G=1 e o1 T

mi Nk
s o SPatD DR
[ N T A R
Using (10) together with (9) and by the inequalities x; > ,,, for i = my +
1,...,nk, we get

S(ny) > » ((1 —e)my(s —e) + (ng — mk)xmk)

ng Nk

> nik((l —&)my(s — &) + (nk — my) (1 — €)),

which we can rewrite in the form

S(ng) > (1—¢) — %(1 —e)(1-s+e),

so, by (11)
S(ng) >0 —-e)+(h—e—-1)(1—-e)(1—s+e).

For € — 0, this lower bound tends to s + h — sh. Therefore,

ny
T

.. 1
lim inf —
k—oo My “

1=

- >s+h—sh=s+h(l—3s)>s,
1 Tk

which is a contradiction with (7). O
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Theorem 1. Let 0 < A < 1 be a real number. Then G(X,,) = {z*} if and
only if

n

lim —y == 12
s an A+1 (12)

PRrROOF. The proof of the sufficient part follows from the Helly theorem
(see (A11)). We have

1 2 1 1 1 A
Jim — ;:1 . /0 xdg(zx) /0 g(z)dx /0 x dx T

Now, let us suppose that (12) holds. Let g(z) € G(X,,) and F(X,,,,z) — §(z)
for k — oco. Then by (Al1),

[t =1 [z =1 L3 A
) I@de=1- [Fadgle) =1 - lm S5 T =1 TR

It follows from Lemma 1 that all distribution functions in G(X,,) are continuous
at 1. If g(x) were constant on some interval (a, 8] C (0,1], then we would have
g(x) = co(z), but it is impossible according to (5). Therefore, by part (i) of (A6),

we get
1

A+1

j(z)=z 1 =2 O

The proved theorem has interesting consequences for the case A = 1. Then
X, is uniformly distributed. If (12) holds for A = 1 (i.e., part (i) of (4) holds),
then lim,, ;. D®(X,,) = 0, for this reason, by (A7) parts (ii) and (iii) of (4) hold
too. This consequence of the theorem we formulate in the next corollary.

Corollary 1. Let

Then

n
1 , 1 , 1
lim — g r; =, and lim — E |z; — x| = 5.
n— oo n_’ljn — : 3 n—o0 NIy, 3
1=

It is worth mentioning that we did not improve (4), the very nice and deep
result of O. Strauch in the general case for which it was originally formulated.
In [7], distribution functions for sequences reduced modulo 1 were studied.

We will be looking at sets the block-sequences of which have a single distribu-
tion function. According to the previous discussion, this can be only of type co(z)
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or z*, A € (0,1]. We will show that ) is closely related to how fast the sequence
Zp is increasing. In the case A = 1 (uniform distribution), the sequence x,, may
increase only slowly. With the decrease of A, x,, increases more rapidly, finally,
it increases the fastest in the case of ¢q(x).

We will deal with the case G(X,,) = {co(x)} separately.

Theorem 2. Let X = {a; < 23 < ...} C N, and let G(X,,) = {co(2)}.

Then
Inxz,

lim = 0. (13)

n—oo Inmn

PROOF. As the distribution function of X, is identically equal to 1 for all
€ (0, 1], for any = € (0,1], we have
i<
lim —#{ T2 J =1
n—o00 2n

In particular, for a fixed € > 0, for large enough n we have

#{i: £—2<5}>1
2n 2’

which is possible only if x,, < exa,.

What (13) means is that, for an arbitrary k > 0, there is a threshold index ny,
so whenever n > ng,
Ty > nk.

We will prove this by contradiction. Assume there is a k£ > 0 and infinitely many
corresponding natural numbers m with

T < mF. (14)

Fix ¢ > 0 so that
e <273, (15)

Then there is an ng such that x,, < exs, for all n > ng.
Since (14) is satisfied by infinitely many numbers, we can find natural num-
bers [, m so that

Tm <mF, 2 >mng, and 2% <m < 2%FL (16)
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Multiplying the inequalities
Lot < ETl+1

Tot+1 < ETgl+2

To21-1 < ETg21
we get
Ty < e’:‘ll‘gzl, (17)

however, (16) implies

To2 < Ty < mF < 2Dk

Moreover, it follows by (17) and (15) that

g < el2@IHDE o 9=3lk+QUHDE _ oh—lk < 1

thus, x4 < 1, a contradiction. O
When the single distribution function is of the form 2*, we will use (A3).

Theorem 3. Let X = {1 <22 < ...} CN, and A € (0, 1] be a real number.
If G(X,,) = {z*}, then
1
lim 2% _ 1 (18)

n—oo Inn A

PRrooOF. It suffices to show that for any e, where 0 < ¢ < %, there is an ng

so that whenever n > ng,
nx"e <z, <nite (19)
Indeed, let € > 0 be given. It follows from (2) that for each n > 0, there is some m

so that for all n > m,

2% (1—n) < 2% < 23 (1 +1). (20)

n

Repeatedly using the above inequalities, we get

2X(1—n) < 2 <23 (147
Tm
2% (1—n) < 2™ < 2%(1+4 )
T2m
1 Lok, 1
23(1—n) < ——— <2x(1+n),

Lok—1yy,
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which multiply to
25 (1 — )k < 225 < 9% (1 4 )k, (21)

Tm

respectively, after replacing k with k 4+ 1, we get

o' (1 — p)ktt < T2 985 (g 4 )kt (22)
Tm
Fix some n > 0 for which
2°>14n and 25(1—-1n)>1, (23)

and let m be the corresponding threshold index, i.e., such a number that (20) be
true for all n > m. Let kg be the smallest natural number k such that

k
2¢ 1 k 1
m2> (1 d 2°(1 — x 24
(1+77> >z,2>(14+n) an (2°(1—mn)) >1*77mA (24)

(as the right-hand side is constant, this is possible), moreover, ng be 2*om.
Let n > ng be an arbitrary natural number. Then we can find k > kg with

2km <n< 2k+1m,
(i) In (19), we will first consider only the case
e

Ty <NATE,

the second inequality works analogously. Since
Ty < Toktiy, < xm2$(1 +n)"1 and nxte > (ka)iﬁ,

it suffices to show that
(ka)%+6 > me%(l +,’7)k+1

holds. This inequality is equivalent to

2 \* N Tm2% (14 1)
1+n ’

mxte

which follows from (23) and (24).
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(ii) The inequality
nx"¢ < Ty
follows from

Tm2% (1= )k > (2 m)x e,
which is obtained from
Ty > Tokpy, > xm2§(1 —n)* and nxe < (2k+1m)%75.
This, in turn, follows from the second part of (23) and (24). O

Corollary 2. Let X = {z1 < 22 < ...} C N, and the sequence of blocks
X, be uniformly distributed in [0, 1], i.e., G(X,) = {«}. Then

|
lim —2m 1.,
n—oo Inn

The subsequent examples will demonstrate that the two previous theorems
cannot be reversed.

Example. Define the sequence a,, as follows: let a,, = n! forany n =1,2.....
Consider the set

oo
X:{x1<x2<x3<-.-}: U{an—kl,an—|—2,...,an+2"71}.

n=1
The set X shows that the converse of Theorem 2 is false. This set satisfies (13).
It is easy to check that
1 n
limsup — T; >
n—)oop NIy ; ‘e

thus, by (5), we have that G(X,,) # {co(x)}.
We will now define a set Y which will show that the converse of Theorem 3
is false for A = 1. Let

Y = {y1 < Y2 < } = (U [agn_l,agn) ﬂN) U (U[agn,agn_H) 02N> ,

n=1 n=1

1
27

where 2N denotes the set of all even positive integers. It is easily shown that In g,
is asymptotically equal to Inn. We will prove that the block-sequence (Y;,) is not
uniformly distributed.

Let n > 5 be an arbitrary odd natural number. Denote by m the natural
number for which y,,, = n!. The definition of Y immediately yields that m < %n!
and yo,, = n! +m. Thus

Yom nl4+m _ml43nl 7

= = —. 2
Ym n! < n! 4 (25)
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If we suppose that the block-sequence (Y;,) is uniformly distributed, then (2)
implies that

Y2m

lim = 2.

m—ro0 ym

But this contradicts (25). Hence (Y;,) is not uniformly distributed.

(1]
2]
(3]
(4]
(5]
[6]
[7]

(8]
[9]

(10]

References

V. BALAZ, L. Mi1Sik, O. STRAUCH and J. T. TOTH, Distribution functions of ratio sequences,
111, Publ. Math. Debrecen 82 (2013), 511-529.

V. BALAZ, L. Mi1SiKk, O. STRAUCH and J. T. T6TH, Distribution functions of ratio sequences,
IV, Period. Math. Hungar. 66 (2013), 1-22.

F. FiLip, L. MiSik and J. T. TéTH, On distribution function of certain block sequences,
Unif. Distrib. Theory 2 (2007), 115-126.

F. FiLip, L. MiSik and J. T. TOTH, On ratio block sequences with extreme distribution
function, Math. Slovaca 59 (2009), 275-282.

F. FiLip and J. T. TOTH, Characterization of asymptotic distribution functions of ratio
block sequences, Period. Math. Hungar. 60 (2010), 115-126.

G. GRrREKOS and O. STRAUCH, Distribution functions of ratio sequences. II, Unif. Distrib.
Theory 2 (2007), 53-77.

O. STRAUCH, A new moment problem of distribution functions in the unit interval, Math.
Slovaca 44 (1994), 171-211.

O. STrRAUCH, L? discrepancy, Math. Slovaca 44 (1994), 601-632.

O. STRAUCH, Distribution functions of ratio sequences, an expository paper, Tatra Mt.
Math. Publ. 64 (2015), 133-185.

O. STRAUCH and S. PORUBSKY, Distribution of Sequences: A Sampler, Peter Lang, Frank-
furt am Main, 2005.

[11] O. STrRAUCH and J. T. TéTH, Distribution functions of ratio sequences, Publ. Math. Debre-
cen 58 (2001), 751-778.

JOZSEF BUKOR FERDINAND FILIP

DEPARTMENT OF MATHEMATICS DEPARTMENT OF MATHEMATICS

AND INFORMATICS AND INFORMATICS

J. SELYE UNIVERSITY J. SELYE UNIVERSITY

KOMARNO KOMARNO

SLOVAKIA SLOVAKIA

E-mail: bukorj@ujs.sk E-mail: £filipf@ujs.sk

JANOS T. TOTH

DEPARTMENT OF MATHEMATICS
AND INFORMATICS

J. SELYE UNIVERSITY

KOMARNO

SLOVAKIA

E-mail: tothjOujs.sk

(Received November 14, 2018; revised January 24, 2019)



