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Abstract. Let X = {x1 < x2 < · · · } be an infinite subset of positive integers and

Xn =
(

x1
xn

, x2
xn

, . . . , xn
xn

)
, n = 1, 2, . . . . In this paper we give new necessary and sufficient

conditions for X for that the sequence of blocks Xn has an asymptotic distribution

function.

1. Introduction

Denote by N the set of all positive integers. Let X = {x1 < x2 < x3 < · · · }
be an infinite subset of N.

The following sequence of finite sequences derived from X

x1
x1
,
x1
x2
,
x2
x2
,
x1
x3
,
x2
x3
,
x3
x3
, . . . ,

x1
xn
,
x2
xn
, . . . ,

xn
xn
, . . . (1)

is called the ratio block sequence of the sequence X.

It is formed by the blocks X1, X2, . . . , Xn, . . . , where

Xn =

(
x1
xn
,
x2
xn
, . . . ,

xn
xn

)
, n = 1, 2, . . .
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is called the n-th block. This kind of block sequences was introduced by

O. Strauch and J. T. Tóth [11] and they studied the set G(Xn) of its distri-

bution functions.

In this paper we prove that a block sequence Xn has an asymptotic distri-

bution function if and only if the arithmetic mean of the elements of Xn tends to

a non-negative real number not greater than 1
2 for n→∞. Further, we show that

if the asymptotic distribution function is of the form xλ, then lnxn is asymptot-

ically equal to 1
λ lnn.

The rest of our paper is organized as follows. In Section 2 and Section 3,

we recall some known definitions, notations and theorems, which will be used and

extended. In Section 4, our new results are presented.

2. Definitions

The following basic definitions are from O. Strauch’s paper [9].

• 1 ≤ x1 < x2 < · · · denotes a sequence of positive integers, and x denotes

an element of (0, 1].

• For each n ∈ N, consider the step distribution function

F (Xn, x) =
#{i ≤ n; xixn < x}

n
,

for x ∈ [0, 1), and for x = 1, we define F (Xn, 1) = 1.

• A non-decreasing function g : [0, 1] → [0, 1], g(0) = 0, g(1) = 1 is called a dis-

tribution function (abbreviated d.f.). We shall identify any two d.f.s coinciding

at common points of continuity.

• A d.f. g(x) is a d.f. of the sequence of blocks Xn, n = 1, 2, . . . , if there exists

an increasing sequence n1 < n2 < · · · of positive integers such that

lim
k→∞

F (Xnk , x) = g(x)

a.e. on [0, 1]. This is equivalent to the weak convergence, i.e., the preceding

limit holds for every point x ∈ [0, 1] of continuity of g(x).

• Denote by G(Xn) the set of all d.f.s of Xn, n = 1, 2, . . . . The set of distribution

functions of ratio block sequences was studied in [1]–[6], [9].

If G(Xn) = {g(x)} is a singleton, the d.f. g(x) is also called the asymptotic

distribution function (abbreviated a.d.f.) of Xn.
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Especially, if G(Xn) = {x}, then we say that the sequence of blocks Xn is

uniformly distributed (abbreviated as u.d.) in [0, 1].

We will use some auxiliary results based on the following two theorems of

Helly (see the First and Second Helly theorem [10, Th. 4.1.0.10 and Th. 4.1.0.11,

p. 45]).

• Helly’s selection principle: For any sequence gn(x), n = 1, 2, . . . , of d.f.s in

[0, 1], there exists a subsequence gnk(x), k = 1, 2, . . . , and a d.f. g(x) such that

limk→∞ gnk(x) = g(x) a.e.

• Second Helly theorem: If we have limn→∞ gnk(x) = g(x) a.e. in [0, 1], then

for every continuous function f : [0, 1] → R, we have limn→∞
∫ 1

0
f(x)dgn(x) =∫ 1

0
f(x)dg(x).

• Note that applying Helly’s selection principle, from the sequence F (Xn, x),

n = 1, 2, . . . , one can select a subsequence F (Xnk , x), k = 1, 2, . . . , such that

limk→∞ F (Xnk , x) = g(x) holds not only for the continuity points x of g(x),

but also for all x ∈ [0, 1].

• We will use the one-step d.f. cα(x) with step 1 at α defined on [0, 1] via

cα(x) =

{
0, if x ≤ α,
1, if x > α.

In particular, we always have cα(0) = 0 and cα(1) = 1.

3. Overwiew of known results

In this section we mention known results related to the topic of this paper

and some other ones we use in the proofs of our theorems.

(A1) If g(x) ∈ G(Xn) increases and is continuous at x = β and g(β) > 0, then

there exists 1 ≤ α <∞ such that αg(xβ) ∈ G(Xn). If every d.f. of G(Xn)

is continuous at 1, then α = 1/g(β), [11, Prop. 3.1 and Th. 3.2].

(A2) Assume that G(Xn) is singleton, i.e., G(Xn) = {g(x)}. Then either g(x) =

c0(x) for x ∈ [0, 1]; or g(x) = xλ for some 0 < λ ≤ 1 and x ∈ [0, 1],

[11, Th. 8.2].

(A3) Let 0 < λ ≤ 1 be a real number. Then G(Xn) = {xλ} if and only if for

every k ∈ N
lim
n→∞

xkn
xn

= k
1
λ , (2)

[5, Th. 1].
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(A4) Let 0 < λ ≤ 1 be a real number. If G(Xn) = {xλ}, then

lim
n→∞

xn+1

xn
= 1,

[3, Remark 3].

(A5) Assume that all d.f.s in G(Xn) are continuous at 1. Then all d.f.s in

G(Xn) are continuous on (0, 1], i.e., the only discontinuity point can be 0

[11, Th. 4.1].

(A6) Assume that all d.f. in G(Xn) are continuous at 1 and that, for every

g ∈ G(Xn), we have
∫ 1

0
g(x)dx = c, where c > 0 is a constant. Then:

(i) If g ∈ G(Xn) increases at every point β ∈ (0, 1), then g(x) = x
1−c
c for

every x ∈ [0, 1].

(ii) If g ∈ G(Xn) is constant on (α, β) ⊂ (0, 1], then G(Xn) is a singleton

and g(x) = c0(x) a.e. on [0, 1], [11, Th. 7.2].

(A7) The L2 discrepancy of the block Xn is defined by

D(2)(Xn) =

∫ 1

0

(
F (Xn, x)− x

)2
dx,

which can be expressed as

D(2)(Xn) =
1

3
+

1

nx2n

n∑
i=1

x2i −
1

nxn

n∑
i=1

xi −
1

2n2xn

n∑
i,j=1

|xi − xj |,

see [8]. For every increasing sequence xn of positive integers

lim
n→∞

D(2)(Xn) = 0⇐⇒ lim
n→∞

F (Xn, x) = x (3)

holds. The left-hand side can be divided into three limits (cf. [7, Th. 1]):

lim
n→∞

D(2)(Xn) = 0⇐⇒


(i) limn→∞

1
nxn

∑n
i=1 xi = 1

2 ,

(ii) limn→∞
1
nx2

n

∑n
i=1 x

2
i = 1

3 ,

(iii) limn→∞
1

n2xn

∑n
i,j=1 |xi − xj | =

1
3 .

(4)

(A8)

G(Xn) = {c0(x)} ⇐⇒ lim
n→∞

1

nxn

n∑
i=1

xi = 0, (5)

G(Xn) = {c0(x)} ⇐⇒ lim
m,n→∞

1

mn

m∑
i=1

n∑
j=1

∣∣∣∣ xixm − xj
xn

∣∣∣∣ = 0, (6)

[11, Th. 7.1].
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(A9)

c0(x) ∈ G(Xn)⇐⇒ lim inf
n→∞

1

nxn

n∑
i=1

xi = 0,

[4, Th. 4].

(A10) maxg∈G(Xn)

∫ 1

0
g(x)dx ≥ 1

2 , [11, Th. 7.1].

(A11) By the Helly theorem and integration by parts of the Riemann–Stieltjes

integral, if F (Xnk , x)→ g(x), then

∫ 1

0

xdF (Xnk , x) =
1

nk

nk∑
i=1

xi
xnk

→
∫ 1

0

xdg(x) = 1−
∫ 1

0

g(x)dx

[9, p. 155].

4. Results

The equivalence (5) gives a characterization of the setX for the caseG(Xn) =

{c0(x)}. One may ask what happens if we assume that the arithmetic mean of the

numbers xi
xn

, i = 1, 2, . . . , n tends to a nonzero real number as n → ∞. We will

make use of the following lemma.

Lemma 1. Let

lim
n→∞

1

n

n∑
i=1

xi
xn

= s > 0. (7)

Then all distribution functions in G(Xn) are continuous at 1.

Proof. By (A10) and (A11) we have that s ≤ 1
2 . Assuming the contrary,

let us suppose that there exists a d.f. g(x), which is not continuous at 1. Then,

for some h > 0 and arbitrary ε > 0, there exists a sequence nk, k = 1, 2, . . . such

that

g(1− ε) = lim
k→∞

#{i ≤ nk : xi
xnk

< 1− ε}
nk

≤ 1− h < 1.

Namely, there exists an h > 0 such that for arbitrary ε > 0, we can find sequences

mk, nk, k = 1, 2, . . . with the properties

(1− ε)xnk ≤ xmk and lim
k→∞

#{i : xmk ≤ xi ≤ xnk}
nk

≥ h. (8)
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By (7)–(8) for given ε > 0, there exists a k0 such that for arbitrary k > k0,

we have
mk∑
i=1

xi
xmk

> mk(s− ε), (9)

further
xmk
xnk

≥ (1− ε), (10)

and
#{i : xmk ≤ xi ≤ xnk}

nk
> h− ε (11)

for the sequences mk, nk, k = 1, 2, . . . .

To get a contradiction, we shall make use of the observation that there are

relatively a “lot” of elements between xmk and xnk , it follows that the average of

the members of the block Xnk will be greater than s+ ε; thus, (7) fails, which is

a contradiction. For this, we give a lower bound for

S(nk) =
1

nk

nk∑
i=1

xi
xnk

=
1

nk

(
mk∑
i=1

xi
xnk

+

nk∑
i=mk+1

xi
xnk

)

=
1

nk

(
xmk
xnk

mk∑
i=1

xi
xmk

+

nk∑
i=mk+1

xi
xnk

)
.

Using (10) together with (9) and by the inequalities xi > xmk for i = mk +

1, . . . , nk, we get

S(nk) >
1

nk

(
(1− ε)mk(s− ε) + (nk −mk)

xmk
xnk

)
≥ 1

nk

(
(1− ε)mk(s− ε) + (nk −mk)(1− ε)

)
,

which we can rewrite in the form

S(nk) > (1− ε)− mk

nk
(1− ε)(1− s+ ε),

so, by (11)

S(nk) > (1− ε) + (h− ε− 1)(1− ε)(1− s+ ε).

For ε→ 0, this lower bound tends to s+ h− sh. Therefore,

lim inf
k→∞

1

nk

nk∑
i=1

xi
xnk
≥ s+ h− sh = s+ h(1− s) > s,

which is a contradiction with (7). �
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Theorem 1. Let 0 < λ ≤ 1 be a real number. Then G(Xn) = {xλ} if and
only if

lim
n→∞

1

n

n∑
i=1

xi
xn

=
λ

λ+ 1
. (12)

Proof. The proof of the sufficient part follows from the Helly theorem

(see (A11)). We have

lim
n→∞

1

n

n∑
i=1

xi
xn

=

∫ 1

0

xdg(x) = 1−
∫ 1

0

g(x)dx = 1−
∫ 1

0

xλdx =
λ

λ+ 1
.

Now, let us suppose that (12) holds. Let g̃(x) ∈ G(Xn) and F (Xnk , x)→ g̃(x)

for k →∞. Then by (A11),∫ 1

0

g̃(x)dx = 1−
∫ 1

0

xdg̃(x) = 1− lim
k→∞

1

nk

nk∑
i=1

xi
xnk

= 1− λ

λ+ 1
=

1

λ+ 1
.

It follows from Lemma 1 that all distribution functions in G(Xn) are continuous

at 1. If g̃(x) were constant on some interval (α, β] ⊂ (0, 1], then we would have

g̃(x) = c0(x), but it is impossible according to (5). Therefore, by part (i) of (A6),

we get

g̃(x) = x

1− 1
λ+1
1

λ+1 = xλ. �

The proved theorem has interesting consequences for the case λ = 1. Then

Xn is uniformly distributed. If (12) holds for λ = 1 (i.e., part (i) of (4) holds),

then limn→∞D(2)(Xn) = 0, for this reason, by (A7) parts (ii) and (iii) of (4) hold

too. This consequence of the theorem we formulate in the next corollary.

Corollary 1. Let

lim
n→∞

1

n

n∑
i=1

xi
xn

=
1

2
.

Then

lim
n→∞

1

nx2n

n∑
i=1

x2i =
1

3
and lim

n→∞

1

n2xn

n∑
i,j=1

|xi − xj | =
1

3
.

It is worth mentioning that we did not improve (4), the very nice and deep

result of O. Strauch in the general case for which it was originally formulated.

In [7], distribution functions for sequences reduced modulo 1 were studied.

We will be looking at sets the block-sequences of which have a single distribu-

tion function. According to the previous discussion, this can be only of type c0(x)
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or xλ, λ ∈ (0, 1]. We will show that λ is closely related to how fast the sequence

xn is increasing. In the case λ = 1 (uniform distribution), the sequence xn may

increase only slowly. With the decrease of λ, xn increases more rapidly, finally,

it increases the fastest in the case of c0(x).

We will deal with the case G(Xn) = {c0(x)} separately.

Theorem 2. Let X = {x1 < x2 < . . . } ⊂ N, and let G(Xn) = {c0(x)}.
Then

lim
n→∞

lnxn
lnn

=∞. (13)

Proof. As the distribution function of Xn is identically equal to 1 for all

x ∈ (0, 1], for any x ∈ (0, 1], we have

lim
n→∞

#{i : xi
x2n

< x}
2n

= 1.

In particular, for a fixed ε > 0, for large enough n we have

#{i : xi
x2n

< ε}
2n

>
1

2
,

which is possible only if xn < εx2n.

What (13) means is that, for an arbitrary k > 0, there is a threshold index n0,

so whenever n > n0,

xn > nk.

We will prove this by contradiction. Assume there is a k > 0 and infinitely many

corresponding natural numbers m with

xm ≤ mk. (14)

Fix ε > 0 so that

ε < 2−3k. (15)

Then there is an n0 such that xn < εx2n for all n > n0.

Since (14) is satisfied by infinitely many numbers, we can find natural num-

bers l,m so that

xm ≤ mk, 2l > n0, and 22l ≤ m < 22l+1. (16)
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Multiplying the inequalities

x2l < εx2l+1

x2l+1 < εx2l+2

. . .

x22l−1 < εx22l

we get

x2l < εlx22l , (17)

however, (16) implies

x22l ≤ xm ≤ mk < 2(2l+1)k.

Moreover, it follows by (17) and (15) that

x2l < εl2(2l+1)k < 2−3lk+(2l+1)k = 2k−lk ≤ 1,

thus, x2l < 1, a contradiction. �

When the single distribution function is of the form xλ, we will use (A3).

Theorem 3. Let X = {x1 < x2 < . . . } ⊂ N, and λ ∈ (0, 1] be a real number.

If G(Xn) = {xλ}, then

lim
n→∞

lnxn
lnn

=
1

λ
. (18)

Proof. It suffices to show that for any ε, where 0 < ε < 1
λ , there is an n0

so that whenever n > n0,

n
1
λ−ε < xn < n

1
λ+ε. (19)

Indeed, let ε > 0 be given. It follows from (2) that for each η > 0, there is some m

so that for all n ≥ m,

2
1
λ (1− η) <

x2n
xn

< 2
1
λ (1 + η). (20)

Repeatedly using the above inequalities, we get

2
1
λ (1− η) <

x2m
xm

< 2
1
λ (1 + η)

2
1
λ (1− η) <

x4m
x2m

< 2
1
λ (1 + η)

. . .

2
1
λ (1− η) <

x2km
x2k−1m

< 2
1
λ (1 + η),
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which multiply to

2
k
λ (1− η)k <

x2km
xm

< 2
k
λ (1 + η)k, (21)

respectively, after replacing k with k + 1, we get

2
k+1
λ (1− η)k+1 <

x2k+1m

xm
< 2

k+1
λ (1 + η)k+1. (22)

Fix some η > 0 for which

2ε > 1 + η and 2ε(1− η) > 1, (23)

and let m be the corresponding threshold index, i.e., such a number that (20) be

true for all n ≥ m. Let k0 be the smallest natural number k such that(
2ε

1 + η

)k
> xm2

1
λ (1 + η) and (2ε(1− η))

k
>

2
1
λ−ε

1− η
m

1
λ (24)

(as the right-hand side is constant, this is possible), moreover, n0 be 2k0m.

Let n ≥ n0 be an arbitrary natural number. Then we can find k ≥ k0 with

2km ≤ n < 2k+1m.

(i) In (19), we will first consider only the case

xn < n
1
λ+ε,

the second inequality works analogously. Since

xn < x2k+1m < xm2
k+1
λ (1 + η)k+1 and n

1
λ+ε ≥ (2km)

1
λ+ε,

it suffices to show that

(2km)
1
λ+ε > xm2

k+1
λ (1 + η)k+1

holds. This inequality is equivalent to(
2ε

1 + η

)k
>
xm2

1
λ (1 + η)

m
1
λ+ε

,

which follows from (23) and (24).
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(ii) The inequality

n
1
λ−ε < xn

follows from

xm2
k
λ (1− η)k > (2k+1m)

1
λ−ε,

which is obtained from

xn > x2km ≥ xm2
k
λ (1− η)k and n

1
λ−ε < (2k+1m)

1
λ−ε.

This, in turn, follows from the second part of (23) and (24). �

Corollary 2. Let X = {x1 < x2 < . . . } ⊂ N, and the sequence of blocks

Xn be uniformly distributed in [0, 1], i.e., G(Xn) = {x}. Then

lim
n→∞

lnxn
lnn

= 1.

The subsequent examples will demonstrate that the two previous theorems

cannot be reversed.

Example. Define the sequence an as follows: let an = n! for any n = 1, 2. . . . .

Consider the set

X = {x1 < x2 < x3 < · · · } =

∞⋃
n=1

{an + 1, an + 2, . . . , an + 2n−1}.

The set X shows that the converse of Theorem 2 is false. This set satisfies (13).

It is easy to check that

lim sup
n→∞

1

nxn

n∑
i=1

xi ≥
1

2
,

thus, by (5), we have that G(Xn) 6= {c0(x)}.
We will now define a set Y which will show that the converse of Theorem 3

is false for λ = 1. Let

Y = {y1 < y2 < · · · } =

( ∞⋃
n=1

[a2n−1, a2n) ∩ N

)
∪

( ∞⋃
n=1

[a2n, a2n+1) ∩ 2N

)
,

where 2N denotes the set of all even positive integers. It is easily shown that ln yn
is asymptotically equal to lnn. We will prove that the block-sequence (Yn) is not

uniformly distributed.

Let n ≥ 5 be an arbitrary odd natural number. Denote by m the natural

number for which ym = n!. The definition of Y immediately yields that m < 3
4n!

and y2m = n! +m. Thus

y2m
ym

=
n! +m

n!
<
n! + 3

4n!

n!
=

7

4
. (25)
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If we suppose that the block-sequence (Yn) is uniformly distributed, then (2)

implies that

lim
m→∞

y2m
ym

= 2.

But this contradicts (25). Hence (Yn) is not uniformly distributed.
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