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On the factors of CNS polynomials with
dominant constant term

By HORST BRUNOTTE (Diusseldorf)

Abstract. It is proved that every monic integer expansive polynomial without
positive real roots is a factor of an effectively computable CNS polynomial with dominant
constant term.

1. Introduction

A monic integer polynomial f is a CNS polynomial if every integer polynomial
is congruent to some polynomial in {0,...,|f(0)| — 1} [X] modulo f. The concept
of a CNS polynomial and the notion of a canonical number system (CNS) were
introduced by A. PETHO [9] and extended in the sequel (see, for example, [1],
[4], [13], [10]). Compared to other number systems, canonical number systems
seem to be rather exceptional (e.g., see [10]). Detailed background information
on the historical development and relations of CNS polynomials to other areas
such as shift radix systems, finite automata or fractal tilings can be found in the
survey by P. KIRSCHENHOFER and J. M. THUSWALDNER [7] and the literature
cited there.

Many years ago, A. PETHO [8] asked whether each monic integer polynomial
all of whose roots lie outside the closed unit disk and are non-positive is a factor
of a CNS polynomial. In this note we give an affirmative answer to this question
by a constructive proof based on a classical result by AkiyAMA-RAO [3] and
SCHEICHER—THUSWALDNER [12].
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2. Real expansive polynomials without positive roots

Our principal interest lies in the set £ of real monic expansive polynomials
of positive degree which do not have a real positive root. Remember that a real
polynomial f is called expansive if all its roots lie outside the closed unit disk.
We often need the sum of the absolute values of the coefficients of f, known as
the length of f and abbreviated by L (f). Further, it turns out that

Gu(f)i= [[ X"=a") (e

a€Zy

are helpful auxiliary functions; here Z ¢ denotes the multiset of roots of f.

Now we formulate our result which implies in particular that every f € £ is
a factor of a monic polynomial with non-negative coefficients and strictly dom-
inant constant term. Recall that f is said to have a strictly dominant constant
term if its length is less than 2|f(0)| (cf. [6]).

Theorem 1. Let f be a real monic expansive polynomial of positive degree
which does not have a real positive root. For every p > 0, we can effectively com-
pute an odd natural number n and a monic polynomial h with integer coefficients
such that the product hG,(f) has only non-negative coefficients and

L(hGn(f)) < (1+p) (hGu(f))(0).

The proof of this result is provided at the end of the following section. Here
we recall a fundamental classical result on CNS polynomials.

Proposition 2 (Akiyama Rao [3, Theorem 3.2]%, Scheicher-Thuswaldner
[12, Theorem 5.8]). Every monic polynomial with non-negative integer coefficients
and strictly dominant constant term is a CNS polynomial.

These two results allow a positive answer to Pethé’s question mentioned
above.

Theorem 3. Every monic expansive integer polynomial without positive real
roots is a factor of an effectively computable CNS polynomial with non-negative
coefficients and strictly dominant constant term.

IN is the set of positive rational integers and No = N U {0}.

2Note that the assumption “expanding” is not used in the respective part of the proof.
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PROOF. Take f € £NZ[X]. Theorem 1 with p := 1 yields some effectively
computable n € N and a monic polynomial h € Z[X] such that F' := hG,,(f) has
only non-negative coefficients and

L(F) < 2F(0).

This means that F has a strictly dominant constant term. Observe that the
coefficients of G,,(f) are, up to signs, the values of the elementary symmetric
functions in the variables o™ where o runs through the roots of f. Thus, G, (f)
has integer coefficients, and we conclude F' € Ny[X]. Clearly, f divides G, (f),
hence there is some (monic) g € Z[X] with fg = G,,(F). We resume that

F = f(gh)
satisfies the prerequisites of Proposition 2, hence F' is a CNS polynomial. O

For completeness’ sake let us state a trivial consequence of Theorem 3. Recall
that for integer polynomials f € £ we defined [5, Section 3]

~v(f) = inf {deg(g) : g € Z[X], gf is a CNS polynomial},

and see the example in Section 4 below.

Corollary 4. For every f € £NZ[X], we have y(f) < oo.

3. Proof of Theorem 1

Let us first collect some facts on the function G,, and the length of a poly-
nomial.

Lemma 5. (1) For f,g € R[X] and n € N, we have
Gn(fg) = Gn(f)Gnlg)-
(2) Let « € C\R, n € N and g, := (X — a™)(X —a"). Then we have
Gn(q1)(X) = gn(X").

PRrOOF. (i) Clear by the definition of G,,.
(ii) We verify

Gn(@)(X) = (X" —a™)(X" —2@") = gn(X"). .
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For convenience, we write

L(f) =L(f)/If(0)

for f € R[X] with f(0) # 0.
Lemma 6. Let f € R[X]| with f(0) # 0.

(1) L(f(X™)=L(f) (neN).
(2) If all coefficients of f are non-negative, we have L (f) = f(1)/£(0).

(3) For g € R[X] with g(0) # 0, we have L (fg) <L (f) L(g).

PROOF. Clear by well-known properties of the length function (e.g., see [5,
Lemma 2]) and the definition. O

Now we gather some rather technical auxiliary means to establish Theorem 1
for quadratic real expansive polynomials with negative discriminant. For simplic-
ity, we concentrate on multipliers which are powers of linear integer polynomials.

Our first lemma can immediately be verified.

Lemma 7. For b,c,r € R and m € N, we have
(X +7)™- (X2 —bX +¢)

=7r"c+r" Hem —br)X + anm(k)Xk + (mr — b)X™H 4 X2
k=2

with
. m m—k+2 m m—k+1 mY m—k
Prom (k) = (k—2)T b(k—l)r —|—c<k)7‘
m o\ .
_ (k 4 1)7‘ Efrom ()
and 1-k k-1
From(k) = ””T_c b 2 <k <m).

After these preparations, we present our first main lemma on particular
quadratic polynomials, where we use the set

D, :={f €R[X] : f(0) #0, f monic with only
non-negative coefficients and L(f) <1+ p}.
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Lemma 8. Let p >0, 0 <n <log(l1+p), 0 <e <min{1,7n/2}, and assume

1
0<b<ec ) <4c and c¢>—-"———.
exp(n/2) —1

For r > max {b, ¢/(ec — b)}, we have
(X + ) (X? = bX +¢) € D, NR-o[X],
where R+ denotes the set of positive reals.

PrROOF. First we show that for m := |er|, we have

pi= (X +7)"(X% - bX +c) € Ruo[X]. (3.1)
Indeed, we observe
er—1l<m<er<r, (3.2)
and -
m > =’ (3.3)

because the following implications hold:
b b
(ec=b)r>c = er——>1 = ~<er—1<m.
c c

Thus, trivially m > 1 by (3.3) and r > b/m, and by Lemma 7, the linear and the
second highest coefficients of p are positive.
Therefore, (3.1) drops out if m = 1, and we let m > 2. For 2 < k < m,

we have
(k—=1r>m—(k—2)b

by (3.2), and using the notation of Lemma 7, we verify
k(m —k+2) frm(k) = kr((k — D)r—(m — (k —2)b))+((m—k)* + 3(m— k) + 2)c
> ((m—k)?+3(m—k)+2)c>2c¢> 0.

Now (3.1) is clear by Lemma 7.
Exploiting the well-known fact that the map

x+—log(l+41/x) (x €[1,00))
takes its values in (0, 1), our prerequisites and (3.2), we check
1 1 1 n n
mlog 1+; +log 1+E <e|rlog 1+; +§<5+§§77§10g(1+p),

and Lemma 6 (iii) yields

= 1 1\ 1
L(p)=(1+r)’”(1—b+c)mc§<1+T) (1+C)<1+p. 0
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For o € C\ R, we set
o = (X — )(X — ).
Without loss of generality, we tacitly assume 6 := arg(a) € (0, 7) if not mentioned
otherwise. For convenience, we further introduce the following notation. If 6 is
a rational multiple of m, we write

o="r (u,v €N, u < w, ged(u,v) =1)
v

and set v(a) := v; otherwise we set v(a) := 0.

Lemma 9. For « € C\ R, n € N and
Qo = X% = by X + ¢, = (X —a™)(X —a"), (3.4)

the following statements hold:

(1) by =2R(a™), ¢, = |a|2", and for the discriminant of g, ., we have
discr (qa.n) = —4 |a]*™ sin?(nd) < 0.

(2) discr (ga,n) = 0 if and only if v(a) divides n.

PROOF. (i) The first two statements are well-known, and we have

diser (gan) = (2 |a|” cos(nf))? — 4 |a)*"

= 4|a*" (cos?(nf) — 1) = —4|a|*" sin(nf)) < 0.
(ii) From (i), we deduce
discr (ga,n) =0 <= sin(nf)) =0 <= nf =mn

for some m € N, or

discr (ga,n) =0 <= 0 = %W = ()

for some m,u € N with ged(u,v(a))=1.
The proof can now easily be completed. O
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Lemma 10. Let o € C\R with |a| > 1. For everye >0, B > 0 and C > 0,
we have
|bp| < ecn, —B and ¢, >C

for all

nZHmaXHlog((Hm)/e)J’ { log C J}

log |a] 2log |
where we use the notation (3.4).

ProOOF. From the implication

logC
n> 2 = 2nlog|al > logC,
2log ||
we deduce ¢, = |a|?" > C. By our prerequisites, |a|™ exceeds the largest root

(14 /1 +¢eB)/e of the quadratic equation ex? — 2z — B = 0. Thus we have
ela*™ —2|a” — B > 0,

yielding
br| = 2|a|"| cos(nd)| < 2|a|" < ec, — B. U

Since we are interested in the quadratic polynomials g, , which have a neg-
ative discriminant, we find it convenient to introduce the set

a€Zy

for the real monic polynomial f, where we put

M(a) = {{HEN o (a €Ror (o ¢ R and v(a) =0)),
{neN:n odd and v(a) f n} (a¢ R and v(a) #0).

Let us give some simple examples.

Ezample 11. (1) Let a € R\ {0} and ¢ a root of unity different from +1.
For o := a( Lemma 9 yields

N, ={neN: n odd and v(a) [ n}.

(2) Every odd prime which does not divide v(«) for any o € Zy \ R belongs
to Nf.
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The following properties of the set Ny can immediately be verified.

Lemma 12. (1) For a € C\ R, we have
Ny, ={neN: n odd}\ {nv(a) : n € N}.
(2) If g € R[X] is a monic non-constant divisor of f, then Ny is contained in N.

Now we are in a position to formulate our second main lemma.

Lemma 13. Let p > 0 and o € C\ R with |a| > 1. Then there exists N € N
such that for all n > N with n € N,_, there is some t € Z[X] with the property

t gan € D, NR5o[X]. (3.5)
Moreover, N and t can effectively be computed, and we can choose
t=(X+nr)" (3.6)

with m € Ny and r € N.

PROOF. Set 1 :=log(1+p) and pick 0 < € < min{1, p, n/2}. By Lemma 10
we compute an N € N such that

|bn| < d > ! !
n| <éec, and ¢, > max ;
" p—e’ exp(n/2) -1
for all n > N, where we use the notation (3.4).
Let n > N with n € J\/'qa, and set ¢ := ga,n, b := by, and c := ¢y,
If b < 0, we trivially have ¢ € R5o[X], and with ¢ := 1 we immediately check

— 1+1b|+c
Clg = Lt

1
<E+6+1§1+p’

thus (3.5) holds.

Now let b > 0. Note that by our choice of n and Lemma 9, the discriminant
of ¢ is negative. Take an integer r with the property r > max {b, ¢/(ec — b)}, put
m = |er] and ¢t := (X +7)™. Then Lemma 8 yields

tg € D, NR5o[X],

and we are done. O

For convenience, we reformulate a result from [5] in our surroundings here.
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Lemma 14. Let f be a real monic expansive polynomial of positive degree,
p >0 and
log ((1 + p)l/dEg(f) — 1)

N: =1+
log ||

; (3.7)

where 1 € C is a root of minimal modulus of f.

(1) We have
L(Gn(f)) <1+p

for all natural n > N.

(2) Ifall roots of f are real, then we have G,,(f) € D,, for all odd natural integers
n > N.

PRrROOF. (i) See [5, Lemma 5].
(i) Since n is odd, G, (f) is a product of polynomials with non-negative coeffi-
cients, and then our assertion is clear by (i). d

Let us now establish a more technical version of Theorem 1.

Proposition 15. If f € £ and p > 0, then there exists N € N with the
following property: If n > N is odd and not divisible by v(«a) for any o € Z5 \ R,
then there exists some h € Z[X]| such that

hGyL(f) € D,.

Moreover, N and h can effectively be computed, and we can choose

h = (H(X +r)> . (H(X" + 5)) (3.8)

reR sES

with (possibly empty) multisets R, S of positive integers.

Proor. We proceed by induction on the number c; of pairs of complex
conjugate roots of f. If ¢; = 0, then our claim is clear by Lemma 14 (ii) with
h:=1and N given by (3.7).

Now we let ¢y > 0, pick a non-real root a of f, set q := ¢q, g := f/q and

o:=+1+p—1,

thus
0<o<p.
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Lemma 13 yields an effectively computable K € N such that for every odd n > K
which is not divisible by v(«), we can determine some t € Z[X] of the form (3.6)
such that

tqan € Dy € D,,

which by Lemmas 5 and 6 implies
tH(X") Gr(q) = t(X") Gan(X") = (tgan)(X") € D,. (3.9)

Thus, if g is constant, we are done, because f = ¢ and t(X™) has the form (3.8).

Otherwise, we have g € £ with ¢, < ¢y, and by induction hypothesis, we com-
pute some M € N such that for all odd n > M not divisible by v(8) for any
B € Zy \ R, we can determine some s € Z[X] of the form (3.8) such that

sGr(g) € D,. (3.10)
Put
N :=max{K,M,v(v) : v€Zs \R}

and consider an odd n > N not divisible by v(y) for any v € Z¢\R. By the above
and Lemma 12, we find s,t € Z[X] satisfying (3.8), (3.9) and (3.10), and with

h(X) :=s(X)-t(X™)
we infer
hGn(f) = (s(X) Gn(9)) - (X™)Gn(q)) € Do - Dy €D,

from Lemmas 5 and 6 and [5, Lemma 4]. Clearly, h has the form (3.8), and the
proof is terminated. O

Now we straightforwardly provide a proof of Theorem 1. Let f € £ and p > 0.
Exploiting Proposition 15, we take a suitable odd n € N (e.g., we may choose
a prime larger than max{2,v(a) : a € Z; \ R}) and compute some h € Z[X]
such that

hGu(f) € D,

i.e., all coefficients of h G, (f) are non-negative and

L(hGu(f)) < (14 p) (hGn(£))(0).

The proof is completed. O
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4. Concluding remarks

With some more effort, the method of our proofs above allows the algorithmic
determination of a CNS multiple of a polynomial f which satisfies the prerequi-
sites of Theorem 3. Obviously, Proposition 15 exploits rather crude bounds to
construct a very special CNS multiple of f. Therefore we might expect that a con-
struction of other multiples of f which are better adapted to the structure of f can
be easier in favorable cases. The reader may check this by [5, Example 13 (iii)];
here we illustrate this observation by another example.

Consider

fi=X5—4X*+3X3+12X2 - 26X + 20,

which factorizes in the form
f=(X+2)(X?-2X +2)(X? -4X +5),
hence its root are —2, 1 +1iand 2 +1i. Thus f € £, and by [2, Lemma 2] f is not
a CNS polynomial, since f(1) < f(0).
Similarly as in the proof of Theorem 3 (Lemma 13, respectively), we set
p:=2Y3 -1 n:=(og2)/3 and ¢:= (log2)/6.
By Lemma 14 we have
X"+2"=G,(X+2)eD, (n odd,n > 3).

For o := 1+ 1 with arg(a) = 7/4 we find n > 9, and we check that this lower
bound for n also suffices for the root 2 +1i of f. Again exploiting the proof of
Lemma 13, we set r := 24 and m := 2, and then we convince ourselves that

(X +24)%-Go(f) = (X +24)2-Go(X +2)-Go(X?—2X +2)-Go(X*—4X +5) € Dy,
hence it is a CNS polynomial by Proposition 2 and therefore

y(f) < 42.

On the other hand, again applying Proposition 2, we check that (X + 24)? -
G3(f) is a CNS polynomial, because it can be written as

X7 448X 10 4 576X 15 + 8 X1 4+ 384X 13 + 4608 X ™2 + 117X + 5616 X 10
+67392X° 4+ 1404X8 + 67392X7 + 808704X° + 4744 X° + 227712X*
+ 2732544 X3 + 8000X 2 + 384000X + 4608000,

yielding the sharper bound
v(f) < 12.
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