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On the factors of CNS polynomials with
dominant constant term

By HORST BRUNOTTE (Düsseldorf)

Abstract. It is proved that every monic integer expansive polynomial without

positive real roots is a factor of an effectively computable CNS polynomial with dominant

constant term.

1. Introduction

A monic integer polynomial f is a CNS polynomial if every integer polynomial

is congruent to some polynomial in {0, . . . , |f(0)| − 1} [X] modulo f . The concept

of a CNS polynomial and the notion of a canonical number system (CNS) were

introduced by A. Pethő [9] and extended in the sequel (see, for example, [1],

[4], [13], [10]). Compared to other number systems, canonical number systems

seem to be rather exceptional (e.g., see [10]). Detailed background information

on the historical development and relations of CNS polynomials to other areas

such as shift radix systems, finite automata or fractal tilings can be found in the

survey by P. Kirschenhofer and J. M. Thuswaldner [7] and the literature

cited there.

Many years ago, A. Pethő [8] asked whether each monic integer polynomial

all of whose roots lie outside the closed unit disk and are non-positive is a factor

of a CNS polynomial. In this note we give an affirmative answer to this question

by a constructive proof based on a classical result by Akiyama–Rao [3] and

Scheicher–Thuswaldner [12].
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2. Real expansive polynomials without positive roots

Our principal interest lies in the set E of real monic expansive polynomials

of positive degree which do not have a real positive root. Remember that a real

polynomial f is called expansive if all its roots lie outside the closed unit disk.

We often need the sum of the absolute values of the coefficients of f , known as

the length of f and abbreviated by L (f). Further, it turns out that

Gn(f) :=
∏
α∈Zf

(Xn − αn) (n ∈ N)

are helpful auxiliary functions1; here Zf denotes the multiset of roots of f .

Now we formulate our result which implies in particular that every f ∈ E is

a factor of a monic polynomial with non-negative coefficients and strictly dom-

inant constant term. Recall that f is said to have a strictly dominant constant

term if its length is less than 2 |f(0)| (cf. [6]).

Theorem 1. Let f be a real monic expansive polynomial of positive degree

which does not have a real positive root. For every ρ > 0, we can effectively com-

pute an odd natural number n and a monic polynomial h with integer coefficients

such that the product hGn(f) has only non-negative coefficients and

L (hGn(f)) < (1 + ρ) (hGn(f))(0).

The proof of this result is provided at the end of the following section. Here

we recall a fundamental classical result on CNS polynomials.

Proposition 2 (Akiyama–Rao [3, Theorem 3.2]2, Scheicher–Thuswaldner

[12, Theorem 5.8]). Every monic polynomial with non-negative integer coefficients

and strictly dominant constant term is a CNS polynomial.

These two results allow a positive answer to Pethő’s question mentioned

above.

Theorem 3. Every monic expansive integer polynomial without positive real

roots is a factor of an effectively computable CNS polynomial with non-negative

coefficients and strictly dominant constant term.

1N is the set of positive rational integers and N0 = N ∪ {0}.

2Note that the assumption “expanding” is not used in the respective part of the proof.
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Proof. Take f ∈ E ∩ Z[X]. Theorem 1 with ρ := 1 yields some effectively

computable n ∈ N and a monic polynomial h ∈ Z[X] such that F := hGn(f) has

only non-negative coefficients and

L(F ) < 2F (0).

This means that F has a strictly dominant constant term. Observe that the

coefficients of Gn(f) are, up to signs, the values of the elementary symmetric

functions in the variables αn where α runs through the roots of f . Thus, Gn(f)

has integer coefficients, and we conclude F ∈ N0[X]. Clearly, f divides Gn(f),

hence there is some (monic) g ∈ Z[X] with fg = Gn(F ). We resume that

F = f(gh)

satisfies the prerequisites of Proposition 2, hence F is a CNS polynomial. �

For completeness’ sake let us state a trivial consequence of Theorem 3. Recall

that for integer polynomials f ∈ E we defined [5, Section 3]

γ(f) = inf {deg(g) : g ∈ Z[X], gf is a CNS polynomial} ,

and see the example in Section 4 below.

Corollary 4. For every f ∈ E ∩ Z[X], we have γ(f) <∞.

3. Proof of Theorem 1

Let us first collect some facts on the function Gn and the length of a poly-

nomial.

Lemma 5. (1) For f, g ∈ R[X] and n ∈ N, we have

Gn(fg) = Gn(f)Gn(g).

(2) Let α ∈ C \ R, n ∈ N and qn := (X − αn)(X − αn). Then we have

Gn(q1)(X) = qn(Xn).

Proof. (i) Clear by the definition of Gn.

(ii) We verify

Gn(q1)(X) = (Xn − αn)(Xn − αn) = qn(Xn). �
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For convenience, we write

L (f) := L (f)/ |f(0)|

for f ∈ R[X] with f(0) 6= 0.

Lemma 6. Let f ∈ R[X] with f(0) 6= 0.

(1) L (f(Xn)) = L (f) (n ∈ N).

(2) If all coefficients of f are non-negative, we have L (f) = f(1)/f(0).

(3) For g ∈ R[X] with g(0) 6= 0, we have L (fg) ≤ L (f) L (g).

Proof. Clear by well-known properties of the length function (e.g., see [5,

Lemma 2]) and the definition. �

Now we gather some rather technical auxiliary means to establish Theorem 1

for quadratic real expansive polynomials with negative discriminant. For simplic-

ity, we concentrate on multipliers which are powers of linear integer polynomials.

Our first lemma can immediately be verified.

Lemma 7. For b, c, r ∈ R and m ∈ N, we have

(X + r)m · (X2 − bX + c)

= rmc+ rm−1(cm− br)X +

m∑
k=2

pr,m(k)Xk + (mr − b)Xm+1 +Xm+2

with

pr,m(k) : =

(
m

k − 2

)
rm−k+2 − b

(
m

k − 1

)
rm−k+1 + c

(
m

k

)
rm−k

=

(
m

k − 1

)
rm−kfr,m(k)

and

fr,m(k) :=
m+ 1− k

k
c− br +

k − 1

m+ 2− k
r2 (2 ≤ k ≤ m).

After these preparations, we present our first main lemma on particular

quadratic polynomials, where we use the set

Dρ :=
{
f ∈ R[X] : f(0) 6= 0, f monic with only

non-negative coefficients and L(f) < 1 + ρ
}
.
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Lemma 8. Let ρ > 0, 0 < η ≤ log(1+ρ), 0 < ε ≤ min {1, η/2}, and assume

0 ≤ b < εc, b2 < 4c and c ≥ 1

exp(η/2)− 1
.

For r > max {b, c/(εc− b)}, we have

(X + r)bεrc(X2 − bX + c) ∈ Dρ ∩ R>0[X],

where R>0 denotes the set of positive reals.

Proof. First we show that for m := bεrc, we have

p := (X + r)m(X2 − bX + c) ∈ R>0[X]. (3.1)

Indeed, we observe

εr − 1 < m ≤ εr ≤ r, (3.2)

and

m >
br

c
, (3.3)

because the following implications hold:

(εc− b)r > c =⇒ εr − br

c
> 1 =⇒ br

c
< εr − 1 < m.

Thus, trivially m ≥ 1 by (3.3) and r > b/m, and by Lemma 7, the linear and the

second highest coefficients of p are positive.

Therefore, (3.1) drops out if m = 1, and we let m ≥ 2. For 2 ≤ k ≤ m,

we have

(k − 1)r ≥ m− (k − 2)b

by (3.2), and using the notation of Lemma 7, we verify

k(m− k + 2)fr,m(k) = kr((k − 1)r−(m− (k − 2)b))+((m− k)2 + 3(m− k) + 2)c

≥ ((m− k)2 + 3(m− k) + 2)c ≥ 2c > 0.

Now (3.1) is clear by Lemma 7.

Exploiting the well-known fact that the map

x 7→ log(1 + 1/x) (x ∈ [1,∞))

takes its values in (0, 1), our prerequisites and (3.2), we check

m log

(
1 +

1

r

)
+log

(
1 +

1

c

)
≤ ε

(
r log

(
1 +

1

r

))
+
η

2
< ε+

η

2
≤ η ≤ log(1+ρ),

and Lemma 6 (iii) yields

L(p) = (1 + r)m(1− b+ c)
1

rmc
≤
(

1 +
1

r

)m(
1 +

1

c

)
< 1 + ρ. �
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For α ∈ C \ R, we set

qα := (X − α)(X − ᾱ).

Without loss of generality, we tacitly assume θ := arg(α) ∈ (0, π) if not mentioned

otherwise. For convenience, we further introduce the following notation. If θ is

a rational multiple of π, we write

θ =
u

v
π (u, v ∈ N, u < v, gcd(u, v) = 1)

and set v(α) := v; otherwise we set v(α) := 0.

Lemma 9. For α ∈ C \ R, n ∈ N and

qα,n := X2 − bnX + cn := (X − αn)(X − ᾱn), (3.4)

the following statements hold:

(1) bn = 2<(αn), cn = |α|2n, and for the discriminant of qα,n, we have

discr (qα,n) = −4 |α|2n sin2(nθ) ≤ 0.

(2) discr (qα,n) = 0 if and only if v(α) divides n.

Proof. (i) The first two statements are well-known, and we have

discr (qα,n) = (2 |α|n cos(nθ))2 − 4 |α|2n

= 4 |α|2n (cos2(nθ)− 1) = −4 |α|2n sin2(nθ)) ≤ 0.

(ii) From (i), we deduce

discr (qα,n) = 0 ⇐⇒ sin(nθ)) = 0 ⇐⇒ nθ = mπ

for some m ∈ N, or

discr (qα,n) = 0 ⇐⇒ θ =
m

n
π =

u

v(α)
π

for some m,u ∈ N with gcd(u, v(α))=1.

The proof can now easily be completed. �
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Lemma 10. Let α ∈ C\R with |α| > 1. For every ε > 0, B ≥ 0 and C > 0,

we have

|bn| < εcn −B and cn > C

for all

n ≥ 1 + max

{⌊
log((1 +

√
1 + εB)/ε)

log |α|

⌋
,

⌊
logC

2 log |α|

⌋}
,

where we use the notation (3.4).

Proof. From the implication

n >
logC

2 log |α|
=⇒ 2n log |α| > logC,

we deduce cn = |α|2n > C. By our prerequisites, |α|n exceeds the largest root

(1 +
√

1 + εB)/ε of the quadratic equation εx2 − 2x−B = 0. Thus we have

ε|α|2n − 2|α|n −B > 0,

yielding

|bn| = 2|α|n| cos(nθ)| ≤ 2|α|n < εcn −B. �

Since we are interested in the quadratic polynomials qα,n which have a neg-

ative discriminant, we find it convenient to introduce the set

Nf :=
⋂
α∈Zf

M(α)

for the real monic polynomial f , where we put

M(α) =

{
{n ∈ N : n odd} (α ∈ R or (α /∈ R and v(α) = 0)),

{n ∈ N : n odd and v(α) 6 | n} (α /∈ R and v(α) 6= 0).

Let us give some simple examples.

Example 11. (1) Let a ∈ R \ {0} and ζ a root of unity different from ±1.

For α := aζ Lemma 9 yields

Nqα = {n ∈ N : n odd and v(α) 6 | n} .

(2) Every odd prime which does not divide v(α) for any α ∈ Zf \ R belongs

to Nf .
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The following properties of the set Nf can immediately be verified.

Lemma 12. (1) For α ∈ C \ R, we have

Nqα = {n ∈ N : n odd} \ {nv(α) : n ∈ N} .

(2) If g ∈ R[X] is a monic non-constant divisor of f , then Nf is contained in Ng.

Now we are in a position to formulate our second main lemma.

Lemma 13. Let ρ > 0 and α ∈ C\R with |α| > 1. Then there exists N ∈ N
such that for all n ≥ N with n ∈ Nqα , there is some t ∈ Z[X] with the property

t qα,n ∈ Dρ ∩ R>0[X]. (3.5)

Moreover, N and t can effectively be computed, and we can choose

t = (X + r)m (3.6)

with m ∈ N0 and r ∈ N.

Proof. Set η := log(1+ρ) and pick 0 < ε < min {1, ρ, η/2}. By Lemma 10

we compute an N ∈ N such that

|bn| < εcn and cn ≥ max

{
1

ρ− ε
,

1

exp(η/2)− 1

}
for all n ≥ N , where we use the notation (3.4).

Let n ≥ N with n ∈ Nqα , and set q := qα,n, b := bn and c := cn.

If b < 0, we trivially have q ∈ R>0[X], and with t := 1 we immediately check

L (tq) =
1 + |b|+ c

c
<

1

c
+ ε+ 1 ≤ 1 + ρ,

thus (3.5) holds.

Now let b ≥ 0. Note that by our choice of n and Lemma 9, the discriminant

of q is negative. Take an integer r with the property r > max {b, c/(εc− b)}, put

m := bεrc and t := (X + r)m. Then Lemma 8 yields

tq ∈ Dρ ∩ R>0[X],

and we are done. �

For convenience, we reformulate a result from [5] in our surroundings here.



Factors of CNS polynomials 239

Lemma 14. Let f be a real monic expansive polynomial of positive degree,

ρ > 0 and

N := 1 +

⌈
−

log
(
(1 + ρ)1/ deg(f) − 1

)
log |µ|

⌉
, (3.7)

where µ ∈ C is a root of minimal modulus of f .

(1) We have

L(Gn(f)) < 1 + ρ

for all natural n ≥ N .

(2) If all roots of f are real, then we have Gn(f) ∈ Dρ for all odd natural integers

n ≥ N .

Proof. (i) See [5, Lemma 5].

(ii) Since n is odd, Gn(f) is a product of polynomials with non-negative coeffi-

cients, and then our assertion is clear by (i). �

Let us now establish a more technical version of Theorem 1.

Proposition 15. If f ∈ E and ρ > 0, then there exists N ∈ N with the

following property: If n ≥ N is odd and not divisible by v(α) for any α ∈ Zf \R,

then there exists some h ∈ Z[X] such that

hGn(f) ∈ Dρ.

Moreover, N and h can effectively be computed, and we can choose

h =

(∏
r∈R

(X + r)

)
·

(∏
s∈S

(Xn + s)

)
(3.8)

with (possibly empty) multisets R,S of positive integers.

Proof. We proceed by induction on the number cf of pairs of complex

conjugate roots of f . If cf = 0, then our claim is clear by Lemma 14 (ii) with

h := 1 and N given by (3.7).

Now we let cf > 0, pick a non-real root α of f , set q := qα, g := f/q and

σ :=
√

1 + ρ− 1,

thus

0 < σ < ρ.
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Lemma 13 yields an effectively computable K ∈ N such that for every odd n ≥ K
which is not divisible by v(α), we can determine some t ∈ Z[X] of the form (3.6)

such that

t qα,n ∈ Dσ ⊆ Dρ,

which by Lemmas 5 and 6 implies

t(Xn)Gn(q) = t(Xn) qα,n(Xn) = (t qα,n)(Xn) ∈ Dρ. (3.9)

Thus, if g is constant, we are done, because f = q and t(Xn) has the form (3.8).

Otherwise, we have g ∈ E with cg < cf , and by induction hypothesis, we com-

pute some M ∈ N such that for all odd n ≥ M not divisible by v(β) for any

β ∈ Zg \ R, we can determine some s ∈ Z[X] of the form (3.8) such that

sGn(g) ∈ Dσ. (3.10)

Put

N := max {K,M, v(γ) : γ ∈ Zf \ R}

and consider an odd n ≥ N not divisible by v(γ) for any γ ∈ Zf \R. By the above

and Lemma 12, we find s, t ∈ Z[X] satisfying (3.8), (3.9) and (3.10), and with

h(X) := s(X) · t(Xn)

we infer

hGn(f) = (s(X)Gn(g)) · (t(Xn)Gn(q)) ∈ Dσ · Dσ ⊆ Dρ

from Lemmas 5 and 6 and [5, Lemma 4]. Clearly, h has the form (3.8), and the

proof is terminated. �

Now we straightforwardly provide a proof of Theorem 1. Let f ∈ E and ρ > 0.

Exploiting Proposition 15, we take a suitable odd n ∈ N (e.g., we may choose

a prime larger than max {2, v(α) : α ∈ Zf \ R}) and compute some h ∈ Z[X]

such that

hGn(f) ∈ Dρ,

i.e., all coefficients of hGn(f) are non-negative and

L (hGn(f)) < (1 + ρ) (hGn(f))(0).

The proof is completed. �
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4. Concluding remarks

With some more effort, the method of our proofs above allows the algorithmic

determination of a CNS multiple of a polynomial f which satisfies the prerequi-

sites of Theorem 3. Obviously, Proposition 15 exploits rather crude bounds to

construct a very special CNS multiple of f . Therefore we might expect that a con-

struction of other multiples of f which are better adapted to the structure of f can

be easier in favorable cases. The reader may check this by [5, Example 13 (iii)];

here we illustrate this observation by another example.

Consider

f := X5 − 4X4 + 3X3 + 12X2 − 26X + 20,

which factorizes in the form

f = (X + 2)(X2 − 2X + 2)(X2 − 4X + 5),

hence its root are −2, 1± i and 2± i. Thus f ∈ E , and by [2, Lemma 2] f is not

a CNS polynomial, since f(1) < f(0).

Similarly as in the proof of Theorem 3 (Lemma 13, respectively), we set

ρ := 21/3 − 1, η := (log 2)/3 and ε := (log 2)/6.

By Lemma 14 we have

Xn + 2n = Gn(X + 2) ∈ Dρ (n odd, n ≥ 3).

For α := 1 + i with arg(α) = π/4 we find n ≥ 9, and we check that this lower

bound for n also suffices for the root 2 + i of f . Again exploiting the proof of

Lemma 13, we set r := 24 and m := 2, and then we convince ourselves that

(X+24)2 ·G9(f) = (X+24)2 ·G9(X+2)·G9(X2−2X+2)·G9(X2−4X+5) ∈ D1,

hence it is a CNS polynomial by Proposition 2 and therefore

γ(f) ≤ 42.

On the other hand, again applying Proposition 2, we check that (X + 24)2 ·
G3(f) is a CNS polynomial, because it can be written as

X17 + 48X16 + 576X15 + 8X14 + 384X13 + 4608X12 + 117X11 + 5616X10

+ 67392X9 + 1404X8 + 67392X7 + 808704X6 + 4744X5 + 227712X4

+ 2732544X3 + 8000X2 + 384000X + 4608000,

yielding the sharper bound

γ(f) ≤ 12.
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[9] A. Pethő, Connections between power integral bases and radix representations in algebraic

number fields, In: Proceedings of the 2003 Nagoya Conference “Yokoi–Chowla Conjecture
and Related Problems”, Saga University, Saga, 2004, 115–125.
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