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Some Pexider-type generalizations of the symmetrized
multiplicative functional equation on monoids

By BRUCE EBANKS (Louisville)

Abstract. The symmetrized multiplicative functional equation on a semigroup is

f(xy) + f(yx) = 2f(x)f(y), and it is known that such a function must be multiplicative

if the co-domain is a field of characteristic different from 2. Here we consider some

generalizations including the fully Pexiderized equation f(xy) + g(yx) = h(x)k(y) for

four unknown functions f, g, h, k. This equation has been solved on groups; here we

solve it on monoids. Other related functional equations are also treated.

1. Introduction

Let S be a semigroup and K a (for us commutative) field. A function f :

S → K is said to be multiplicative if

f(xy) = f(x)f(y) for all x, y ∈ S,

and the equation is known as the (Cauchy) multiplicative functional equation.

The symmetrized multiplicative functional equation is

f(xy) + f(yx) = 2f(x)f(y) for all x, y ∈ S. (1)

Clearly, the first equation implies the second. If one assumes that K is a field

of characteristic different from 2, then the second equation also implies the first.

Indeed, the following is [3, Theorem 3.21].
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Proposition 1. Let S be a semigroup and K a field with char(K) 6= 2.

Then f : S → K satisfies (1) if and only f is multiplicative.

The main focus of the present investigation is the fully Pexiderized version

f(xy) + g(yx) = h(x)k(y), x, y ∈ S, (2)

of (1), in which we have four unknown functions f, g, h, k : S → K. This equation

has been treated by Elfen, Perkins and Sahoo [2] for the case when S is

a group.

Here we assume that the semigroup S is a monoid, which means there is an

identity element e ∈ S (that is, ex = xe = x for all x ∈ S). Our co-domain K is

a field with characteristic unequal to 2. Let K∗ := K \ {0}.
We also need the following notion. If S is a monoid and K is a field, then

a function t : S → K is said to be central if t(xy) = t(yx) for all x, y ∈ S. Note

that every multiplicative function from S to K is central since K is commutative.

The outline of the paper is as follows. The next section contains our main

result, Theorem 3, which gives the general solution of (2). Then follows a section

with some additional related results. One provides the solution of

f(xy) + g(yx) = h(x) + k(y) + βh(x)k(y), x, y ∈ S,

under the assumption that β 6= 0. Another solves the functional equation

f(xy) + f(yx) = g(x)h(y) + k(y), x, y ∈ S,

in the case that h is non-constant.

2. General solution of (2)

The following is an improved version of [2, Theorem 4]. We remove the

assumptions that f, g, and h are nonzero functions.

Theorem 2. Let S be a monoid, let K be a field with char(K) 6= 2, and

suppose f, g, h : S → K. Then the triple (f, g, h) satisfies

f(xy) + g(yx) = h(x)h(y), x, y ∈ S, (3)

if and only if there exist a multiplicative function m : S → K with m 6= 0,

a central function t : S → K, and a constant α ∈ K such that

f =
α2

2
m+ t, g =

α2

2
m− t, h = αm. (4)
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Proof. It is easily checked that the forms in (4) fulfill (3). For the converse,

first suppose h = 0. Then (3) becomes

f(xy) + g(yx) = 0, x, y ∈ S.

With y = e this yields g = −f , so we have f(xy)− f(yx) = 0. Thus f is central

and we have (4) with α = 0.

For the rest of the proof, we assume h 6= 0 and follow the general outline of

the proof of [2, Theorem 4], finding the forms of f − g and f + g independently

and then combining them.

First we find f − g. Since the right-hand side of (3) is symmetric in x and y,

we have

f(xy) + g(yx) = f(yx) + g(xy), x, y ∈ S.

This means the function t : S → K defined by

t :=
f − g

2

is central, and f − g = 2t.

To find f + g, we put y = e in (3), arriving at

f(x) + g(x) = h(x)h(e), x ∈ S. (5)

If h(e) = 0, then we see that g = −f , and (3) becomes

f(xy)− f(yx) = h(x)h(y), x, y ∈ S.

Interchanging x and y here and comparing the result, we get

0 = 2h(x)h(y), x, y ∈ S.

Since char(K) 6= 2, that contradicts our assumption that h 6= 0. Therefore

h(e) 6= 0.

Interchanging x and y in (3) and adding, we arrive at

(f + g)(xy) + (f + g)(yx) = 2h(x)h(y), x, y ∈ S. (6)

With α := h(e) ∈ K∗, using (5) we can rewrite this as

αh(xy) + αh(yx) = 2h(x)h(y), x, y ∈ S,

which means the function h/α satisfies (1). Hence, by Proposition 1 we have

h = αm for some multiplicative function m : S → K. Moreover m 6= 0, since

h 6= 0. Referring to (5) once more, we see that

f + g = αh = α2m, x ∈ S.

Combining the forms of f−g and f+g, we find that f and g are as claimed. �
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Our main result is the following generalization of [2, Theorem 5] to monoids.

We again remove the assumptions that our unknown functions are nonzero. Recall

that (2) is the fully Pexiderized symmetrized multiplication equation

f(xy) + g(yx) = h(x)k(y), x, y ∈ S.

Theorem 3. Let S be a monoid, K a field with char(K) 6= 2, and suppose

f, g, h, k : S → K. The solutions (f, g, h, k) of (2) fall into three classes:

(i) h = 0, k is arbitrary, and there exists a central function t : S → K such that

f = −g = t.

(ii) h is arbitrary, k = 0, and there exists a central function t : S → K such that

f = −g = t.

(iii) There exist a multiplicative function m : S → K with m 6= 0, a central

function t : S → K, and constants λ, α ∈ K∗ such that

f =
λα

2
m+ t, g =

λα

2
m− t, h = αm, k = λm. (7)

Proof. It is easy to check that the functions of the forms specified above

satisfy equation (2). For the converse, consider first the case that h = 0 or k = 0.

In either case, the other function (k or h respectively) is arbitrary. As in the proof

of the previous theorem we get f = −g = t for some central function t : S → K,

so we are in class (i) or (ii).

For the remainder of the proof, we assume that h 6= 0 and k 6= 0. Putting

y = e in (2) yields

f(x) + g(x) = h(x)k(e), x ∈ S. (8)

We claim that k(e) 6= 0. Indeed, suppose k(e) = 0. Then (8) shows that g = −f
and (2) gives

f(xy) = f(yx) + h(x)k(y), x, y ∈ S.

Computing f(xyz) two ways, we have, on the one hand,

f(x · yz) = f(yzx) + h(x)k(yz) = f(zxy) + h(y)k(zx) + h(x)k(yz),

and on the other hand,

f(xy · z) = f(zxy) + h(xy)k(z).
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Hence

h(y)k(zx) + h(x)k(yz) = h(xy)k(z), x, y, z ∈ S.

Putting z = e here, we get

h(y)k(x) + h(x)k(y) = h(xy)k(e) = 0, x, y ∈ S. (9)

Since h 6= 0, we can choose y = y0 such that h(y0) 6= 0, and with this obtain

that k = δh for δ = −k(y0)/h(y0) ∈ K. Moreover δ ∈ K∗, since k 6= 0. Thus (9)

reduces to

2h(x)h(y) = 0, x, y ∈ S.

Since char(K) 6= 2, this contradicts h 6= 0.

Therefore k(e) 6= 0. Also, (2) with x = e gives f + g = h(e)k. Comparing

this with (8), we get

h =
h(e)

k(e)
k.

Since h 6= 0, this equation shows that h(e) 6= 0, so we have k = δh for δ =

k(e)/h(e) ∈ K∗.
With this representation for k, equation (2) can now be written as

f(xy) + g(yx) = δh(x)h(y), x, y ∈ S.

Thus the triple ( 1
δ f,

1
δ g, h) satisfies equation (3). By Theorem 2, we conclude that

there exist a multiplicative function m : S → K with m 6= 0, a central function

t′ : S → K, and a constant α ∈ K∗ (since h 6= 0) such that

1

δ
f =

α2

2
m+ t′,

1

δ
g =

α2

2
m− t′, h = αm.

Finally, defining t : S → K and λ ∈ K∗ by t := δt′ and λ := δα we have (7),

as claimed. �

3. Further results

In [2, Theorem 9], the authors also considered the functional equation

f(xy) + g(yx) = 2h(x) + 2h(y) + 2βh(x)h(y)

for three unknown functions f, g, h and a nonzero constant β, solving it on groups.

Here we consider the more general equation

f(xy) + g(yx) = h(x) + k(y) + βh(x)k(y) (10)

for four unknown functions and solve it on monoids.
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Theorem 4. Let S be a monoid, K a field with char(K) 6= 2, let β ∈ K∗
and f, g, h, k : S → K. The solutions (f, g, h, k) of (10) fall into three classes:

(i) h = −1/β, k is arbitrary, and there exists a central function t : S → K for

which

f = −g − 1

β
= t.

(ii) h is arbitrary, k = −1/β, and there exists a central function t : S → K for

which

f = −g − 1

β
= t.

(iii) There exist a multiplicative function m : S → K with m 6= 0, a central

function t : S → K, and constants λ, α ∈ K∗ such that

f = β
λα

2
m+ t, g = β

λα

2
m− t− 1

β
, h = αm− 1

β
, k = λm− 1

β
. (11)

Proof. First suppose that either h = −1/β or k = −1/β. In either case,

the other function of the pair (h, k) is arbitrary and our functional equation (10)

becomes

f(xy) + g(yx) = − 1

β
.

With y = e we get g = −f − 1/β, and the equation reduces further to f(xy) −
f(yx) = 0, showing that f is central. Thus we are in solution class (i) or (ii).

For the rest of the proof, we assume that h 6= −1/β 6= k and write (10)

in the form

1 + βf(xy) + βg(yx) = [1 + βh(x)][1 + βk(y)], x, y ∈ K.

Defining

f ′ := βf, g′ := 1 + βg, h′ := 1 + βh, k′ := 1 + βk,

we see that (f ′, g′, h′, k′) is a solution of (2), with h′ 6= 0 and k′ 6= 0. Hence,

by Theorem 3 we have

f ′ =
λ′α′

2
m+ t′, g′ =

λ′α′

2
m− t′, h′ = α′m, k′ = λ′m

for some multiplicative function m : S → K with m 6= 0, a central function

t′ : S → K, and constants λ′, α′ ∈ K∗. Defining λ := λ′/β, α := α′/β, and

t := t′/β, we have (11).

Conversely, it is easy to check that the forms listed in (i)–(iii) are solutions

of (10). �
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From this, one easily gets the following consequence.

Corollary 5. Let S be a monoid, K a field with char(K) 6= 2, f, g, h, k :

S → K, and γ, δ ∈ K. The solutions (f, g, h, k) of

f(xy) + g(yx) = γh(x) + δk(y) + h(x)k(y), x, y ∈ S,

fall into three classes:

(i) h = −δ, k is arbitrary, and there exists a central function t : S → K for

which

f = −g − γδ = t.

(ii) h is arbitrary, k = −γ, and there exists a central function t : S → K for

which

f = −g − γδ = t.

(iii) There exist a multiplicative function m : S → K with m 6= 0, a central

function t : S → K, and constants λ, α ∈ K∗ such that

f =
λα

2
m+ t, g =

λα

2
m− t− γδ, h = αm− δ, k = λm− γ.

Proof. The proof is a simple application of Theorem 3 in the cases γ = 0

and δ = 0, and that of Theorem 4 in the case γδ 6= 0. The details are left to the

reader. �

Our final result concerns the functional equation

f(xy) + f(yx) = g(x)h(y) + l(y), x, y ∈ S, (12)

which is a symmetrized version of equation (1.2) in [1] that was treated there

on non-abelian groups.

Theorem 6. Suppose S is a monoid, K is a field with char(K) 6= 2, and

f, g, h, l : S → K are functions with h nonconstant. The solutions (f, g, h, l) of

(12) fall into two classes:

(i) There exist constants δ, γ ∈ K such that f = δ, g = γ, h is arbitrary

(nonconstant), and l = 2δ − γh.

(ii) There exist a nonconstant multiplicative function m : S → K, and constants

β, α ∈ K∗ and δ, γ ∈ K such that

f =
βα

2
m+ δ, g = β(m− 1) + γ, h = αm, l = 2δ + (β − γ)h.
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Proof. To begin, put y = e, respectively x = e in (12), getting h(e)g+l(e) =

2f = g(e)h+ l, so that

l = h(e)g − g(e)h+ l(e).

With this we rewrite (12) as

f(xy) + f(yx) = [g(x)− g(e)]h(y) + h(e)g(y) + l(e), x, y ∈ S. (13)

Since the left side is symmetric in x and y, so is the right side, hence we arrive at

[g(x)− g(e)][h(y)− h(e)] = [g(y)− g(e)][h(x)− h(e)], x, y ∈ S. (14)

By the hypothesis, there exists a y0 ∈ S such that h(y0) 6= h(e). With y = y0
in (14), we get

g − g(e) = λ[h− h(e)] (15)

for some constant λ ∈ K. Now (13) becomes

f(xy) + f(yx) = λh(x)h(y) + 2δ, x, y ∈ S, (16)

where 2δ := −λh(e)2 + h(e)g(e) + l(e).

Suppose first that λ = 0. From (16) (with y = e) we see that f = δ, and

from (15) we get that g = g(e) =: γ. Now (12) reduces to 2δ = γh+ l, from which

solution class (i) follows.

If, on the other hand, λ 6= 0, then we write (16) as

f ′(xy) + f ′(yx) = h(x)h(y), x, y ∈ S,

where f ′ := (f − δ)/λ. Thus by Theorem 2 (taking g = f := f ′), we have

f ′ =
α2

2
m, h = αm,

for some constant α ∈ K and multiplicative function m : S → K with m 6= 0.

Furthermore, since h is nonconstant, we require that m be nonconstant and α 6= 0.

Defining β := λα (6= 0), we see that f and h are as claimed in solution (ii).

Computing g from (15) we find that g = β(m− 1) + γ, where γ := g(e). Finally,

we calculate from (12) that

l(y) = βαm(x)m(y) + 2δ − [β(m(x)− 1) + γ]αm(y) = 2δ + (β − γ)αm(y),

and we are in solution class (ii).

The converse is a simple verification. �
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We close with a few words about the assumptions β 6= 0 in Theorem 4 and

h is nonconstant in Theorem 6. The treatments of (10) in the case β = 0 and

of (12) in the case h is constant are complicated by the fact that non-central

solutions then arise. Indeed, both functional equations then contain as a special

case the symmetrized additive equation

f(xy) + f(yx) = 2f(x) + 2f(y), x, y ∈ S,

which has non-central solutions. (For further discussion of this equation, we refer

the reader to [3, Section 2.4].) For example, consider the Heisenberg group H3

consisting of all matrices of the form1 u w

0 1 v

0 0 1


for u, v, w ∈ R under matrix multiplication. On this group, the symmetrized

additive equation has non-central solution

f

1 u w

0 1 v

0 0 1

 = 2w − uv.
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