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Some Pexider-type generalizations of the symmetrized
multiplicative functional equation on monoids

By BRUCE EBANKS (Louisville)

Abstract. The symmetrized multiplicative functional equation on a semigroup is
flxy) + f(yx) = 2f(z) f(y), and it is known that such a function must be multiplicative
if the co-domain is a field of characteristic different from 2. Here we consider some
generalizations including the fully Pexiderized equation f(zy) + g(yx) = h(z)k(y) for
four unknown functions f, g, h,k. This equation has been solved on groups; here we
solve it on monoids. Other related functional equations are also treated.

1. Introduction

Let S be a semigroup and K a (for us commutative) field. A function f :
S — K is said to be multiplicative if

flzy) = f(z)f(y) forallz,ye S,

and the equation is known as the (Cauchy) multiplicative functional equation.
The symmetrized multiplicative functional equation is

flzy) + fyz) =2f(x)f(y) forallz,yeS. (1)

Clearly, the first equation implies the second. If one assumes that K is a field
of characteristic different from 2, then the second equation also implies the first.
Indeed, the following is [3, Theorem 3.21].
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Proposition 1. Let S be a semigroup and K a field with char(K) # 2.
Then f : S — K satisfies (1) if and only f is multiplicative.

The main focus of the present investigation is the fully Pexiderized version

f(zy) + g(yx) = h(z)k(y), T,y € 5, (2)

of (1), in which we have four unknown functions f, g, h,k : S — K. This equation
has been treated by ELFEN, PERKINS and SAHOO [2] for the case when S is
a group.

Here we assume that the semigroup S is a monoid, which means there is an
identity element e € S (that is, ex = ze = z for all z € S). Our co-domain K is
a field with characteristic unequal to 2. Let K* := K \ {0}.

We also need the following notion. If S is a monoid and K is a field, then
a function ¢ : S — K is said to be central if t(zy) = t(yx) for all z,y € S. Note
that every multiplicative function from S to K is central since K is commutative.

The outline of the paper is as follows. The next section contains our main
result, Theorem 3, which gives the general solution of (2). Then follows a section
with some additional related results. One provides the solution of

f(zy) + g(yx) = h(x) + k(y) + Bh(2)k(y), =,y €S,

under the assumption that 5 # 0. Another solves the functional equation

f(zy) + fyz) = g(x)h(y) + k(y),  z,y €S,

in the case that A is non-constant.

2. General solution of (2)

The following is an improved version of [2, Theorem 4]. We remove the
assumptions that f, g, and h are nonzero functions.

Theorem 2. Let S be a monoid, let K be a field with char(K) # 2, and
suppose f,g,h: S — K. Then the triple (f, g, h) satisfies

f(zy) + g(yx) = h(2)h(y), >,y €S, (3)

if and only if there exist a multiplicative function m : S — K with m # 0,
a central function t : S — K, and a constant o € K such that

2 2

f:%m—i—t, g=—m—t, h = am. (4)
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PROOF. Tt is easily checked that the forms in (4) fulfill (3). For the converse,
first suppose h = 0. Then (3) becomes

f(zy) +g(yx) =0, z,y € S.

With y = e this yields g = —f, so we have f(xy) — f(yx) = 0. Thus f is central
and we have (4) with a = 0.

For the rest of the proof, we assume h # 0 and follow the general outline of
the proof of [2, Theorem 4], finding the forms of f — g and f + g independently
and then combining them.

First we find f — g. Since the right-hand side of (3) is symmetric in  and y,
we have

flay) +9(yz) = flyz) + g(xy),  z,yeS.
This means the function ¢ : § — K defined by
_f-9
2

t:

is central, and f — g = 2t.
To find f + g, we put y = e in (3), arriving at

f(@)+ g(x) = h(z)h(e),  z€S. (5)
If h(e) = 0, then we see that g = — f, and (3) becomes
flay) = flyx) = h(z)h(y),  x,y €S
Interchanging x and y here and comparing the result, we get
0 = 2h(z)h(y), z,y €8.

Since char(K) # 2, that contradicts our assumption that h # 0. Therefore
h(e) # 0.

Interchanging x and y in (3) and adding, we arrive at
(f+9)(@y) + (f +9)(yz) =2h(x)h(y),  z,y€eS. (6)
With « := h(e) € K*, using (5) we can rewrite this as
ah(zy) + ah(yz) = 2h(z)h(y), x,y €8,

which means the function h/« satisfies (1). Hence, by Proposition 1 we have
h = am for some multiplicative function m : S — K. Moreover m # 0, since
h # 0. Referring to (5) once more, we see that

f+g=ah=a’m, r€eS.

Combining the forms of f—g and f+g, we find that f and g are as claimed. [J
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Our main result is the following generalization of [2, Theorem 5] to monoids.
We again remove the assumptions that our unknown functions are nonzero. Recall
that (2) is the fully Pexiderized symmetrized multiplication equation

f(zy) + g(yx) = h(z)k(y), z,y € S.

Theorem 3. Let S be a monoid, K a field with char(K) # 2, and suppose
fig,h,k: S — K. The solutions (f,g,h,k) of (2) fall into three classes:

(i) h =0, k is arbitrary, and there exists a central function t : S — K such that
f=-g=t

(ii) h is arbitrary, k = 0, and there exists a central function t : S — K such that
f=-g=t

(iii) There exist a multiplicative function m : S — K with m # 0, a central
function t : S — K, and constants \,« € K* such that

A A
f:7am+t7 gzgm—t, h = am, k= m. (7)

PROOF. It is easy to check that the functions of the forms specified above
satisfy equation (2). For the converse, consider first the case that h = 0 or k£ = 0.
In either case, the other function (k or h respectively) is arbitrary. As in the proof
of the previous theorem we get f = —g =t for some central function ¢ : S — K,
so we are in class (i) or (ii).

For the remainder of the proof, we assume that h # 0 and k& # 0. Putting
y = e in (2) yields

f(@) +g(x) = h(z)k(e),  weS. (®)

We claim that k(e) # 0. Indeed, suppose k(e) = 0. Then (8) shows that g = —f
and (2) gives

flxy) = flyx) + M(@)k(y), =y €S
Computing f(zyz) two ways, we have, on the one hand,

[z -yz) = fyzz) + h(z)k(yz) = f(zzy) + h(y)k(zz) + h(x)k(yz),

and on the other hand,

f(zy - 2) = f(zzy) + h(zy)k(2).
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Hence
h(y)k(zx) + h(z2)k(yz) = h(zy)k(z), x,y,z € S.

Putting z = e here, we get
hy)k(x) + h(x)k(y) = h(zy)k(e) =0,  z,y€S. (9)

Since h # 0, we can choose y = yo such that h(yp) # 0, and with this obtain
that k = 6h for 6 = —k(yo)/h(yo) € K. Moreover § € K*, since k # 0. Thus (9)
reduces to

2h(z)h(y) =0, z,y €.

Since char(K') # 2, this contradicts h # 0.
Therefore k(e) # 0. Also, (2) with z = e gives f + g = h(e)k. Comparing
this with (8), we get .
h(e
h = @k.
Since h # 0, this equation shows that h(e) # 0, so we have k = 0h for § =
k(e)/h(e) € K*.

With this representation for k, equation (2) can now be written as

f(zy) + g(yx) = 6h(z)h(y),  z,y€S.

Thus the triple (%f, %g, h) satisfies equation (3). By Theorem 2, we conclude that
there exist a multiplicative function m : S — K with m # 0, a central function
t': S — K, and a constant « € K* (since h # 0) such that

1 a? , 1 a? ,

Sff7m+t, ng7mft, h = am.
Finally, defining ¢ : S — K and A € K* by ¢t := ' and X := da we have (7),
as claimed. (]

3. Further results

In [2, Theorem 9], the authors also considered the functional equation

f(zy) + g(yx) = 2h(z) + 2h(y) + 28h(z)h(y)

for three unknown functions f, g, h and a nonzero constant 3, solving it on groups.
Here we consider the more general equation

f(xy) + g(yx) = h(z) + k(y) + Bh(z)k(y) (10)

for four unknown functions and solve it on monoids.
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Theorem 4. Let S be a monoid, K a field with char(K) # 2, let f € K*
and f,g,h,k: S — K. The solutions (f,g,h,k) of (10) fall into three classes:

(i) h = =1/B, k is arbitrary, and there exists a central function t : S — K for
which

1
=—g— ==t
f=-9-3
(ii) h is arbitrary, k = —1/f, and there exists a central function t : S — K for
which 1
f=—g-=t
B

(iii) There exist a multiplicative function m : S — K with m # 0, a central
function t : S — K, and constants A\, « € K* such that

Ao Ao 1 1 1
f=8—m+Ht, =pf—m—-t——=, h=am—-——-, k=Am——. (11
2 2 B B B an
PROOF. First suppose that either h = —1/8 or k = —1/5. In either case,
the other function of the pair (h, k) is arbitrary and our functional equation (10)

becomes L

flzy) +g(yx) = 3

With y = e we get ¢ = —f — 1/, and the equation reduces further to f(xy) —
f(yx) = 0, showing that f is central. Thus we are in solution class (i) or (ii).

For the rest of the proof, we assume that h # —1/8 # k and write (10)
in the form

1+ Bf(xy) + By(yx) = 1+ Bh(x)|[1 + Bk(y)], z,ye K.

Defining
fr=8f  ¢=1+pg. K:=1+Bh K :=1+pk,

we see that (f/,¢',h', k') is a solution of (2), with h’ # 0 and k' # 0. Hence,
by Theorem 3 we have

PNy e , Nd Y
m = m—
2 ) g 2 )

f = W =a'm, K =XNm
for some multiplicative function m : S — K with m # 0, a central function
t': S — K, and constants \',a’ € K*. Defining A := X /B,a := o'/, and
t:=1t'/B, we have (11).

Conversely, it is easy to check that the forms listed in (i)—(iii) are solutions
of (10). O
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From this, one easily gets the following consequence.

Corollary 5. Let S be a monoid, K a field with char(K) # 2, f,g,h,k :
S — K, and 7,6 € K. The solutions (f, g, h,k) of

f(zy) + g(yx) = vh(z) + 6k(y) + h(z)k(y),  z,y €S,

fall into three classes:

(i) h = =6, k is arbitrary, and there exists a central function t : S — K for
which
f=—-g—70=t.
(ii) h is arbitrary, k = —, and there exists a central function t : S — K for
which

f=—-g9g—70=t.

(iii) There exist a multiplicative function m : S — K with m # 0, a central
function t : S — K, and constants A\, « € K* such that

A A
f:?aert, gzgmft—'yts, h=am — 4, k=2Am —~.

PROOF. The proof is a simple application of Theorem 3 in the cases v = 0
and 6 = 0, and that of Theorem 4 in the case v§ # 0. The details are left to the
reader. O

Our final result concerns the functional equation

flzy) + f(yz) = g(x)h(y) + U(y), T,y € S, (12)

which is a symmetrized version of equation (1.2) in [1] that was treated there
on non-abelian groups.

Theorem 6. Suppose S is a monoid, K is a field with char(K) # 2, and
fig,h,1: S — K are functions with h nonconstant. The solutions (f,g,h,l) of
(12) fall into two classes:

(i) There exist constants 6,7 € K such that f = §, g = ~, h is arbitrary
(nonconstant), and [ = 20 — ~vh.

(ii) There exist a nonconstant multiplicative function m : S — K, and constants
B,a € K* and 6,y € K such that

f=5%m+0d,  g=Bm-1)+v, h=am, 1=20+(B-h
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PROOF. To begin, put y = e, respectively x = e in (12), getting h(e)g+i(e) =
2f = g(e)h +1, so that
I=nh(e)g—gle)h+1(e).
With this we rewrite (12) as
fay) + flyz) = [9(x) — g(e)]h(y) + h(e)g(y) +1(e),  xyeS.  (13)

Since the left side is symmetric in z and y, so is the right side, hence we arrive at

[9(x) = g(e)][h(y) — h(e)] = [9(y) — g(e)l[h(z) — h(e)],  xyeS.  (14)

By the hypothesis, there exists a yo € S such that h(yg) # h(e). With y = yo
in (14), we get

9 —g(e) = Alh — h(e)] (15)
for some constant A € K. Now (13) becomes
fxy) + f(yz) = A(x)h(y) +26,  x,y €S, (16)

where 26 := —\h(e)? + h(e)g(e) + I(e).

Suppose first that A = 0. From (16) (with y = e) we see that f = J, and
from (15) we get that g = g(e) =: v. Now (12) reduces to 2§ = vh+1, from which
solution class (i) follows.

If, on the other hand, A # 0, then we write (16) as

f'(zy) + f'(yx) = h(x)h(y),  z,y €S,

where f':= (f — §)/\. Thus by Theorem 2 (taking g = f := f’), we have

= —=—m, h = am,

for some constant o € K and multiplicative function m : S — K with m # 0.
Furthermore, since h is nonconstant, we require that m be nonconstant and « # 0.
Defining § := Aa (# 0), we see that f and h are as claimed in solution (ii).
Computing g from (15) we find that g = 8(m — 1) + 7, where v := g(e). Finally,
we calculate from (12) that

y) = Bam(z)m(y) + 26 — [B(m(x) — 1) +ylam(y) = 26 + (8 — y)am(y),

and we are in solution class (ii).
The converse is a simple verification. ([l
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We close with a few words about the assumptions 8 # 0 in Theorem 4 and
h is nonconstant in Theorem 6. The treatments of (10) in the case § = 0 and
of (12) in the case h is constant are complicated by the fact that non-central
solutions then arise. Indeed, both functional equations then contain as a special
case the symmetrized additive equation

flzy) + flyx) =2f(z) + 2f(y), =@ y€ES,

which has non-central solutions. (For further discussion of this equation, we refer
the reader to [3, Section 2.4].) For example, consider the Heisenberg group Hj
consisting of all matrices of the form

1
0
0

o~ 2
— e 8

for u,v,w € R under matrix multiplication. On this group, the symmetrized
additive equation has non-central solution

1 u w
f10 1 o] =2w-—uv.
0 0 1
References

[1] B.R. EBANKS, General solution of a simple Levi-Civita functional equation on non-abelian
groups, Aequationes Math. 85 (2013), 359-378.

[2] H.H. ELFEN, A. PERKINS and P. K. SAHOO, A few simple Levi-Civita functional equations
on groups, Elem. Math. 73 (2018), 109-121.

[3] H. STETK£R, Functional Equations on Groups, World Scientific, Singapore, 2013.

BRUCE EBANKS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF LOUISVILLE
LOUISVILLE, KENTUCKY 40292
USA

E-mail: ebanks1950@gmail.com

(Received February 27, 2019; revised March 31, 2019)



