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Random cherry graphs

By TAMÁS F. MÓRI (Budapest) and SÁNDOR ROKOB (Budapest)

Abstract. Due to the popularity of randomly evolving graph processes, there ex-

ists a randomized version of many recursively defined graph models. This is also the

case with the cherry tree, which was introduced by Bukszár and Prékopa to improve

Bonferroni type upper bounds on the probability of the union of random events. Here

we consider a substantially extended random analogue of that model, embedding it into

a general time-dependent branching process.

1. Introduction

In [3], Bukszár and Prékopa introduced the following recursively defined

graph model, called cherry tree. Initially, there is only an adjacent pair of vertices,

the only cherry tree on exactly two vertices. From a cherry tree one can obtain

another cherry tree by adding a new vertex and two new edges connecting this

new vertex to two already existing vertices. This new, length 2 path between the

two already existing vertices is called cherry. Note that, in spite of their name,

cherry trees are not trees in the usual graph theoretic sense, as they generally

contain cycles.

Their purpose was to improve the Hunter–Worsley second-order upper bound

on the probability of union of random events (see, e.g., [14]). The main idea

behind their reasoning was to extend the spanning tree in the Hunter–Worsley
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inequality to a cherry tree. In fact, the extension they used was the so-called

t-cherry tree, a particular type of cherry trees where the cherries are always added

to adjacent old vertices.

Apart from its use for constructing probability bounds, the graph model itself

was not further studied. A few years later a randomized generalization of this

model was introduced in [10], where random evolving m-ary trees were introduced

and examined. In the case m = 2, this model reduces to a random t-cherry tree.

A slightly related model is analysed with martingale methods in [1],[2] and [7].

In the particular case where the parameters of the model are appropriately set

(p = 1), it also defines a kind of random evolving cherry tree.

Here we consider a more general version of the random t-cherry tree. For

the sake of convenience, this generalized model will also be called cherry tree

or cherry graph. The main direction on the generalization is twofold: firstly,

an edge is allowed to grow randomly many cherries at the same time; secondly,

the possibility of edge deletion is introduced. This breaks the monotonicity of

growth, making the analyis much harder, but we hope it will be much easier to

find real life applications for the generalized model.

The paper is organized as follows. First we gave a precise definition of the

generalized version of the random cherry tree. Then we introduce the continu-

ous time version of the model, completed with a well-known stochastic process,

namely, the Crump–Mode–Jagers process, which then constitutes the backbone

of the analysis hereafter. Using this continuous version, we establish several prop-

erties of the model, such as the probability of extinction, the asymptotic number

of vertices or edges, the evolution of the degree of a fixed vertex, and so on.

2. Model

In this section, we introduce the basic notations and define our model of

interest. Before setting up the model, we need some definitions.

2.1. Discrete time. Assume we have a graph with only one edge connecting

two vertices. Now, add a new vertex to this graph. If it is connected to both

endpoints of the given edge, these new edges (and the new middle vertex) are

called a cherry (of the existing edge). Alternatively, if the new vertex is joined to

only one randomly chosen endpoint of the existing edge, the new edge (and the

new vertex) is called a semi-cherry or cherry stem (of the existing edge).

Now, we have everything to describe the main object of our further exami-

nations.
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Definition 2.1. The random cherry tree is a graph process evolving in discrete

time steps in the following way.

(1) Initially, there is only one edge with two vertices.

(2) In a general step, the current graph changes in exactly one way of the

following options:

(a) A randomly chosen edge is deleted.

(b) A random number of cherries or semi-cherries are joined to a randomly

chosen edge (reproduction event).

To get a well-defined model, we have to specify what randomly means. For

this purpose we need some more notations. Let En and Vn denote the sets of

edges and vertices of the graph after n steps, resp. At the n-th step, let Dn(e)

denote the event that e ∈ En becomes deleted, and Cn(e) denote that cherries and

semi-cherries are joined to e ∈ En (reproduction). Note that these notations are

meaningful only in the case when En is not empty. In a reproduction event, let κn
and εn denote the random number of new vertices and edges added to the graph,

resp. The pairs (κ1, ε1), (κ2, ε2), . . . are iid copies of a generic pair of positive

integer-valued random variables (κ, ε), where

ε =

κ∑
i=1

ϕi,

with iid summands ϕ1, ϕ2, . . . , independent of κ, that represent the amounts of

new edges connecting the new vertices to the existing graph. Thus,

P(ϕi = 2) = p and P(ϕi = 1) = 1− p.

We will suppose that κ has an everywhere finite probability generating function

gκ(z) = E(zκ). Then gε(z) = E(zε) <∞ for every z ∈ R as well; more precisely,

gε(z) = gκ(pz2 + (1− p)z).
Finally, let ξn(e) denote the number of cherries and semi-cherries attached

to edge e ∈ En before the n-th step (regardless that they still are in the graph or

got deleted at an earlier stage). This will be called the biological age of edge e at

the n-th step.

Using these notations, we are able to define the probabilities of the events

Dn(e) and Cn(e):

P(Dn(e)) = qn(b+ c ξn(e)) and P(Cn(e)) = qn,
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where b, c are positive constants, and qn is a normalizing multiplier in order that

the sum of probabilities of all these events be equal to 1.

An alternative formulation can be given by introducing weights of edges.

When an edge is added to the graph, initially it has weight 1 + b. Every cherry

and semi-cherry connected to an edge increases the edge’s weight by 2c and c,

resp. At each step, we first select an existing edge with probability proportional

to its weight w, then either we delete it with probability 1−1/w, or reproduction

takes place, with probability 1/w.

So far we have given the mathematically rigorous definition of our random

cherry graph, although it does not seem easy to treat. An obvious, and, as we will

see, useful, idea is to change the time from discrete to continuous, examine the new

continuous version, and then draw the appropriate conclusions on the original,

embedded model. So, in the next subsection we will define this continuous version

of our randomly evolving graph.

2.2. Continuous time. First of all, ignore the fact that the time elapsed be-

tween consecutive events is considered as unit, and take a look at the role of

the edges. After a new edge is drawn between a new and a previously existing

vertex, it grows a random number of cherries and semi-cherries at the same time,

on a random number of occasions before its deletion, which happens with proba-

bility proportional to a linear function of the number of these new edges. Hence,

whenever new cherries and semi-cherries are joined to an edge, these new edges

can be interpreted as descendants of the selected edge.

Accepting this approach, it is much easier to introduce the corresponding

continuous time version of the previuosly defined random cherry graph. Further-

more, it can give the reader the idea, how our analysis will be performed in the

forthcoming sections.

Definition 2.2. The continuous random cherry tree is a graph process which

is evolving in continuous time, as described below.

(1) Initially, there is only one edge, joining two vertices, called the ancestor.

(2) An edge produces possibly more than one new edges, as its children, at

different birth events, which form a homogeneous Poisson process of unit

density. Formally:

(a) At every birth event a random number κ of new vertices are added to

the current graph. Their numbers are iid random variables.

(b) Each of these new vertices is connected to either a randomly chosen
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endpoint of the selected edge with probability 1 − p, or both of its

endpoints with probability p.

(3) To consider the deletion (or death) of an edge, let us call the time elapsed

from its birth the edge’s physical age, and let the number of new edges born

up to physical age t be denoted by ξ(t) (this is the edge’s biological age). The

edge is deleted at physical age t with hazard rate b+ cξ(t), a linear function

of its biological age. This means that the (conditional to the reproducing

process) probability of surviving physical age t is equal to

exp

(
−
∫ t

0

(b+ cξ(s))ds

)
.

Life histories of the different edges are assumed to be independent.

Looking at this continuous time model, one can ask how can this take us closer

to the analysis of our original cherry graph. The answer is somehow hidden in

the phrasing of its definition. Indeed, we used the words ancestor, children, birth

and death to suggest that, in spite of its derivation, the described graph, looking

at the process from the viewpoint of the edges, is nothing else than a Markov

branching process. Though the Markov property is a strong and profitable feature

that a stochastic process can have, here we will only use the fact that this is

just a special case of the so-called general time-dependent branching process, or

Crump–Mode–Jagers (CMJ) process.

2.3. General branching processes. Since there are several monographs dis-

cussing the properties of general branching processes (see, e.g., [4]–[6], [13], or

[8]–[9]), here we only summarize how our model fits the theory of CMJ processes,

borrowing the notations from [11] and [13].

Consider an arbitrary edge in our graph. Denote the Poisson process of its

birth events by (π(t))t≥0, and its life span by λ, with survival function S(t) =

P(λ > t). At the consecutive birth events τi (i = 1, 2, . . . ) this edge gives birth

to εi (i = 1, 2, . . . ) random edges, which are connected to its endpoints forming

cherries or cherry stems. Hence the number of descendants of this parent edge

up to the i-th birth event is equal to the sum Bi = ε1 + ε2 + · · · + εi, thus its

biological age at physical age t is given by the random sum ξ(t) = Bπ(t∧λ). This

defines a compound Poisson process. In the theory of general branching processes,

the process (ξ(t))t≥0 is called the reproduction process.

Although all individuals e in the general branching process can be charac-

terized by the pairs (λe, ξe), which are iid copies of (λ, ξ(.)) defined above, the
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popularity of this model is due to a third process joined to these two. This stochas-

tic process, often denoted by φ(.), is called a random characteristic. It somehow

takes the history of an individual into consideration. In most cases it is assumed

that φ(t) = 0 if t ≤ 0, and φ(t) ≡ φ(λ) whenever t ≥ λ, but it is not necessarily

required.

Complete the previously defined pairs with iid copies of the random charac-

teristic and denote the birth time of edge e by σe. Then, summing up φe(t− σe)
over all edges, namely, taking the sum

Zφ(t) =
∑
e

φe(t− σe),

only those individuals are counted who are alive and possess the property mea-

sured by φ(·) at the given moment. Accordingly, the process (Zφ(t))t≥0 is called

a (time-dependent) branching process counted by a random characteristic. To en-

lighten this notion, consider the random characteristic φ(t) = 1{0≤t<λ} as an

example. Then the branching process (Zφ(t))t≥0 counted by this characteristic is

nothing else than the number of living individuals at time t.

Using the notations introduced above, it is obvious that edge e is deleted at

time σe+λe. It is possible that our graph process dies out, i.e., eventually all the

edges get erased. Furthermore, it is well-known (see [9]), that the reproduction

mean Eξ(∞) plays crucial role in the characterization of extinction (similarly to

the discrete-time Galton–Watson processes). Indeed, if this mean is less than

or equal to 1 (subcritical and critical regimes), then the process dies out almost

surely. On the other hand, when Eξ(∞) > 1 (supercritical case), the extinction

probability is strictly less than 1. From now on, we only deal with the latter case,

restricting ourselves to the event where the process does not get extinct.

In the continuous model the underlying branching process grows exponen-

tially fast on the event of non-extinction, and the growth rate is characterized by

the Malthusian parameter, denoted by α. This is the only positive solution of the

equation ∫ ∞
0

e−αt µ(dt) = 1, (1)

where µ is the so-called intensity measure, defined by µ(t) = Eξ(t). With these

concepts and notations, we have everything needed to cite the theorem proved by

Nerman in [13], which shows the asymptotic properties of a general branching

process counted by a random characteristic. Since we do not need the most general

form, here we only cite the form stated in [11].



Random cherry graphs 99

Theorem 2.3. Suppose the random characteristic φ satisfies the following

conditions:

(i) φ(t) ≥ 0,

(ii) the trajectories of φ belong to the Skorokhod D-space, that is, they do not

have discontinuities of the second kind,

(iii) E[supt φ(t)] <∞.

Furthermore, with the definition

αξ(t) =

∫ t

0

e−αs ξ(ds),

we have αξ(∞) ∈ L log+ L. Then

lim
t→∞

e−αtZφ(t) = Y∞m
φ
∞ (2)

almost surely, where

mφ
∞ =

∫∞
0
e−αtEφ(t) dt∫∞

0
t e−αtµ(dt)

, (3)

Y∞ is a nonnegative random variable, which is positive on the event of non-

extinction, it has expectation 1, and it does not depend on the choice of φ.

In addition, if the random characteristics φ and ψ are both satisfying the

conditions above, then, almost everywhere on the event of non-extinction,

lim
t→∞

Zφ(t)

Zψ(t)
=

∫∞
0
e−αtEφ(t) dt∫∞

0
e−αtEψ(t) dt

(4)

holds.

Using the statements of this theorem, we will be able to rigorously formulate

the connection between the discrete and the continuous models. Then, it will

be relatively easy – again with the help of Theorem 2.3 – to describe certain

properties of the discrete time graph, by proving results for the continuous one.

3. Properties

The section is organized as follows. First of all, we show how the growth

rate in the discrete modell is connected to that of the continuous one. After

that, taking only the latter model into consideration, we can deduce results on
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the original random cherry tree. This upcoming collection of propositions will

include the probability of extinction, the asymptotic number of vertices, and

other properties.

Before examinig the two models’ connection, let us make some remarks.

In Theorem 2.3 we introduced the intensity measure µ. By definition, µ(t) is the

mean reproduction at time t. By applying Wald’s identity, we can express it in

terms of the lifespan’s survival function:

µ(t) = Eξ(t) = E(ε)E(λ ∧ t) = E(ε)

∫ t

0

S(u) du.

Thus, the equation for the Malthusian parameter takes the following shape:

E(ε)

∫ ∞
0

e−αtS(t) dt = 1. (5)

The idea of the present random cherry tree model comes from the continuous-

time random graph model considered in [12]. Though there we “did not fix how

many new edges should be added to the graph, or how the subgraph they form

should look like”, some important properties could be proved without further

specification. Here we cite them merged into one theorem.

Theorem 3.1 ([12, Corollaries 3.1, 3.2 and 3.3]).

Survival function: The survival function of the lifespan satisfies

S(t) = P (λ > t) = exp

{
− (1 + b)t+

1

c

∫ 1

e−ct

gε(v)

v
dv

}
. (6)

Supercriticality: The random cherry tree is supercritical (Eξ(∞) > 1) if and

only if
E(ε)

c

∫ 1

0

u
1+b
c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du > 1. (7)

Malthusian parameter: The Malthusian parameter α of the continuous-time

random cherry tree is determined by the equation

E(ε)

c

∫ 1

0

u
α+1+b

c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du = 1. (8)

3.1. From discrete to continuous. As mentioned before, the original random

cherry tree model is embedded into the continuous one. Indeed, if one takes

‘snapshots’ of the continuous random cherry tree at the moments of events (which



Random cherry graphs 101

can be birth or death) and looks at these photographs one by one in chronological

order, then the resulted process is just the discrete-time cherry tree process.

As a consequence, it is obvious that the probability of extinction is the same

for both processes. However, so as to transfer the asymptotic results that will be

obtained for the continuous case, we need to compare the growth rates of the two

processes. In order to do so, as a first step, we will calculate the asymptotics of

the number of edges in the continuous model.

Recall the definition

αξ(t) =

∫ t

0

e−αs ξ(ds),

where α is the Malthusian-parameter, and (ξ(t))t≥0 is the biological age process

of an edge.

Proposition 3.2.

E
[
αξ

2(∞)
]
<∞,

and hence the condition αξ(∞) ∈ L log+ L is statisfied.

Proof. By definition we have

αξ(∞) =

∫ ∞
0

e−αt ξ(dt) =
∑
τi<λ

εie
−ατi ≤

∞∑
i=1

εie
−ατi .

Note that the random variables εi and τi are independent for every i = 1, 2, . . . .

Hence, for the L2 norm we get

‖αξ(∞)′‖2 ≤
∞∑
i=1

‖εie−ατi‖2 = ‖ε‖2
∞∑
i=1

1

(1 + 2α)i/2
<∞,

using the fact that in a homogeneous Poisson process with unit density, the birth

times τi are distributed as Γ(i, 1). �

Proposition 3.3. Denote the number of living edges in the continuous model

at time t by E(t). Then

lim
t→∞

e−αtE(t) =
[
E2(ε)

∫ ∞
0

t e−αtS(t) dt
]−1

Y∞

almost surely, where Y∞ is the same as in Theorem 2.3.
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Proof. Since E(t) = Zφ(t) with the random characteristic φ(t) = 1{0≤t<λ},

it is plausible to use Theorem 2.3. Hence the proof of the statement is conducted

by showing that all assumptions imposed on (φ(t))t≥0 hold, and then calculating

the constant mφ
∞. However, since this random characteristic is just an indica-

tor, the conditions are trivially satisfied, so it is enough to determine the con-

stant, which, by the definitions and the previous remark on the intensity measure,

is equal to

mφ
∞=

∫∞
0
e−αtEφ(t) dt∫∞

0
t e−αtµ(dt)

=

∫∞
0
e−αtS(t) dt

E(ε)
∫∞
0
t e−αtS(t) dt

=

[
E2(ε)

∫ ∞
0

t e−αtS(t) dt

]−1
. �

In order to transfer this result to the original discrete time cherry tree,

we have to deal with the asymptotic growth rate of the number of events in

the continuous time model.

Theorem 3.4. Introduce the notation H(t) for the number of events (birth

or death) up to time t. Then, on the event of non-extinction,

lim
t→∞

H(t)

E(t)
=

E(ε) + 1− α
α

almost everywhere.

Proof. We want to use (4) from Theorem 2.3. Since the asymptotics of

E(t) is known from Proposition 3.3, it is enough to find an adequate random

characteristic ψ(t) for which H(t) = Zψ(t) holds. It is obvious that ψ(t) =

π(t ∧ λ) + 1{λ≤t} will do (note that π(t) = 0 for negative t).

To compute the numerator of (4), recall that (π(t))t≥0 is a Poisson process

with unit intensity, hence

E(π(t ∧ λ)) = E(t ∧ λ) =

∫ t

0

S(u) du.

Reversing the order of integrations, we get∫ ∞
0

e−αtE(t ∧ λ) =

∫ ∞
0

∫ ∞
u

e−αt dt S(u) du =
1

α

∫ ∞
0

e−αuS(u) du. (9)

This, by (5) and (1), implies that∫ ∞
0

e−αtE(ψ(t)) dt =
1

α

∫ ∞
0

e−αtS(t) dt+

∫ ∞
0

e−αt(1− S(t)) dt =
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=

∫ ∞
0

e−αt dt+
( 1

α
− 1
)∫ ∞

0

e−αtS(t) dt

=
1

α
+
( 1

α
− 1
) 1

E(ε)

∫ ∞
0

e−αt µ(dt) =
1

α
+
( 1

α
− 1
) 1

E(ε)

holds. Plugging this, and the result of Proposition 3.3 into (4), we get

∫∞
0
e−αtE

[
1{λ≤t} + π(t ∧ λ)

]
dt∫∞

0
e−αtE

[
1{0≤t<λ}

]
dt

=

1
α +

(
1
α − 1

)
1

E(ε)∫∞
0
e−αtS(t) dt

=
E(ε) + 1− α

α
,

as needed. �

It is evident that we can obtain results on the original discrete time cherry

tree if we normalize a quantity of the continuous one with the number of events

H(t). For example, Theorem 3.4 immediately yields the following asymptotic

property of the number En of living edges in the discrete time cherry tree.

Corollary 3.5. Almost everywhere on the event of non-extinction,

lim
n→∞

En
n

= lim
t→∞

E(t)

H(t)
=

α

E(ε) + 1− α
,

where En = |En| denotes the number of edges after the n-th step. �

3.2. Probability of extinction. Inequality (7) contains a necessary and suffi-

cient condition for our evolving graph process to be supercritical. In this case,

the probability of extinction (when all edges die out) is strictly less than 1. Since

there is an embedded Galton–Watson process with offspring size ξ(∞) = ξ(λ) in

every general branching process, this probability can be obtained as the smallest

nonnegative solution of the equation gξ(λ)(z) = z, where

gξ(λ)(z) = E
(
zξ(λ)

)
.

Hence, for the extinction probability, we need to compute this probability gen-

erating function. In the next lemma we derive a general formula, from which

the requested generating function can easily be obtained. To that end, we first

introduce the process (π′(t))t≥0 that counts the number of vertices added to the

graph by an edge up to and including its physical age t. This is a compound

Poisson process having jumps exactly when so does π(t). The jump sizes are κi
(iid copies of κ).
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Lemma 3.6. Define the joint probability generating function of π′(λ) and

ξ(λ) as

f(x, y) = E
(
xπ
′(λ)yξ(λ)

)
=

∞∑
i=0

2i∑
j=i

P(π′(λ) = i, ξ(λ) = j)xiyj .

Then

f(x, y) = 1− 1− gκ,ε(x, y)

m

∫ 1

0

u
1+a
m −1 exp

{∫ 1

u

gκ,ε(x, sy) ds

}
du,

where gκ,ε(x, y) = E
(
xκyε

)
is the joint probability generating function of (κ, ε).

Remark 3.7. Using the well-known formula for the generating function of the

binomial distribution and the connection between κ and ε, we obtain

gκ,ε(x, y) = E
(
xκ E(yε|κ)

)
= E(xκ(py2 + (1− p)y)κ) = gκ

(
xy(py + (1− p))

)
for the joint probability generating function of (κ, ε).

Proof of Lemma 3.6. First, consider the generating function

G(x, y) =

∞∑
i=0

i∑
j=0

P(∃ t < λ : π′(t) = i, ξ(t) = i+ j)

1 + b+ c(i+ j)
xiyj .

Since π′(t) ≤ ξ(t) ≤ 2π′(t), it seems reasonable to deal with events of the form

{∃ t < λ : π′(t) = i, ξ(t) = i + j}. For the sake of convenience, denote the

coefficient of xiyj by vi,i+j . Note that vi,i+j = 0 for j > i. By the definition of

our process v0,0 = 1
b+1 and v0,j = 0 (j ≥ 1). Since

P(∃t < λ : π′(t) = i, ξ(t) = i+ j)

=

i∑
`=1

j∑
k=0

P(∃t < λ : π′(t)= i− `, ξ(t)= i− `+ j − k)× P(κ = `, ε = `+ k)

1 + b+ c(i− `+ j − k)
,

with the notation introduced above we have the following recursion:

(1 + b+ c(i+ j))vi,i+j =

i∑
`=1

j∑
k=0

vi−`,(i−`)+(j−k)P(κ = `, ε = `+ k).

Multiply both sides by xiyj and add up for i ≥ 1, 0 ≤ j ≤ i to get
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(1 + b)

[
G(x, y)− 1

1 + b

]
+ c(x ∂xG(x, y) + y ∂yG(x, y))

=

∞∑
i=1

i∑
j=0

i∑
`=1

j∑
k=0

vi−`,(i−`)+(j−k)P(κ = `, ε = `+ k)xiyj

=

∞∑
`=1

∑̀
k=0

P(κ = `, ε = `+ k)x`yk
∞∑
i=`

i∑
j=k

vi−`,(i−`)+(j−k)x
i−`yj−k

= gκ,ε
(
x
y , y

)
G(x, y).

After rearrangement, we obtain the following partial differential equation:
[
1 + b− gκ,ε

(
x
y , y

)]
G(x, y) + c(x ∂xG(x, y) + y ∂yG(x, y)) = 1;

G(0, y) = 1
1+b .

To solve this equation, we introduce the function h(t) = G(tx, ty), which

then satisfies the following linear ODE:
[
1 + b− gκ,ε

(
x
y , ty

)]
h(t) + cth′(t) = 1;

h(0) = 1
1+b .

Such an ODE is a routine problem to solve, and its solution is

h(t) =
1

c
t−

1+b
c

∫ t

0

u
1+b
c −1 exp

{∫ t

u

gκ,ε
(
x
y , sy

)
ds

}
du.

The correspondence between h(t) and G(x, y) yields

G(x, y) = h(1) =
1

c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
(
x
y , sy

)
ds

}
du.

Let us turn to the bivariate generating function f we are interested in.

Clearly,

f
(x
y
, y
)

=

∞∑
i=0

i∑
j=0

P(π′(λ) = i, ξ(λ) = i+ j)xiyj .

The probability that an edge of biological age j dies before the next reproduction

event is
b+ cj

1 + b+ cj
,
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therefore

P(π′(λ) = i, ξ(λ) = i+ j)

= P(∃ t < λ : π′(t) = i, ξ(t) = i+ j)
b+ c(i+ j)

1 + b+ c(i+ j)
= [b+ c(i+ j)]vi,i+j .

Consequently,

f

(
x

y
, y

)
=

∞∑
i=0

i∑
j=0

[b+c(i+j)]vi,i+jx
iyj=bG(x, y)+c

(
x ∂xG(x, y)+y ∂yG(x, y)

)
.

As we have already seen,

c
(
x ∂xG(x, y) + y ∂yG(x, y)

)
= 1−

[
1 + b− gκ,ε

(
x
y , y

)]
G(x, y),

which implies

f
(x
y
, y
)

= 1−
[
1− gκ,ε

(
x
y , y

)]
G(x, y).

Finally, so as to get the generating function f(x, y), we simply have to replace x

with xy. Then we conclude with

f(x, y) = 1− [1− gκ,ε(x, y)]G(xy, y). �

Substituting 1 for x, we get the generating function of ξ(λ). Note that

gκ,ε(1, y) = gε(y).

Corollary 3.8. The probability generating function of ξ(λ) is

gξ(λ)(z) = 1− 1− gε(z)
c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gε(sy) ds

}
du. �

Turning back to the theory of general branching proesses, we can determine

the probability that our random cherry tree eventually dies out when the repro-

duction mean E(ξ(λ)) is greater than 1.

Corollary 3.9. Assume that (7) holds. Then the probability that the ran-

dom cherry tree process becomes extinct is equal to the smallest nonnegative root

of the equation

1− gε(z)
c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gε(sy) ds

}
du = 1− z.

Proof. The probability of extinction is the smallest nonnegative root of the

fixpoint equation gξ(λ)(z) = z. �
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3.3. Asymptotics of vertices. This section focuses on the vertices in the cherry

tree. First we consider the number of vertices, then turn our attention to how

the degree of a fixed vertex changes in time. We deal with the former question in

a similar way as in the proof of Proposition 3.3, meanwhile the latter one needs

a slightly more work.

Proposition 3.10. Let Vn = |Vn|. Almost everywhere on the event of non-

extinction,

lim
n→∞

Vn
n

=
E(κ)

E(ε) + 1− α
.

Proof. It is obvious that

lim
n→∞

Vn
n

= lim
t→∞

V (t)

H(t)

holds. Furthermore, from the proof of Theorem 3.4 we know that H(t) = Zφ(t),

where

φ(t) = π(t ∧ λ) + 1{0≤t<λ},

for which ∫ ∞
0

e−αt Eφ(t) dt =
1

α
+

(
1

α
− 1

)
1

E(ε)
=

E(ε) + 1− α
αE(ε)

.

Hence, we only need to find a characteristic ψ that counts the vertices in the graph

and then compute the corresponding integral
∫∞
0
e−αt Eψ(t) dt. Set ψ(t)=π′(λ∧t)

(the compound Poisson process π′(·) was introduced in Subsection 3.2), then

Zψ(t) is less than V (t) by the two initial nodes, whose significance asymptotically

vanishes. Now we get

Eψ(t) = E(κ)Eπ(t ∧ λ) = E(κ)

∫ t

0

S(u) du,

and consequently,∫ ∞
0

e−αtEψ(t) dt =
E(κ)

α

∫ ∞
0

e−αtS(t) dt =
1

α(1 + p)
,

using (1). Applying that E(ε) = (1 + p)E(κ), by Theorem 2.3 we obtain

lim
t→∞

V (t)

H(t)
=

E(κ)

E(ε) + 1− α
,

as requested. �
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It is obvious (or, using the random characteristic ξ(t)− π′(t), easy to check)

that the asymptotic proportion of vertices born with two edges is equal to p.

In this way, we can get the asymptotic number of triangles ever created in the

graph. However, if we wanted to examine the number of living triangles only,

the resulting formula would be much more complicated.

Next, let us turn to the behaviour of the degree process of a fixed vertex.

To handle this problem, we need to define a new branching process, closely related

to the original one constructed on the edges, which only takes the edges joined to

the given vertex into consideration. To this end, suppose that the fixed vertex is

born with a single initial edge and introduce the following notations.

Whenever an edge, joined to the vertex under consideration, gives birth to κ

cherries and semi-cherries, each can increase the degree of the monitored vertex

by 1; namely, a cherry will always increase, but a semi-cherry only with probability

1/2. Let φi be equal to 2 if the contribution of the i-th new vertex is a cherry,

and 1, if it is a semi-cherry. Let γ1, γ2, . . . be iid with conditional distribution

P (γi = 1|ϕi = 2) = 1; P (γi = 1|ϕi = 1).

Then the increase of the degree at a birth event is

δ =

κ∑
i=1

γi.

Introduce the notation

∆n =

n∑
i=1

δi,

where the random variables δi are iid copies of δ. Then the reproduction process

of the monitored vertex’s degree is η(t) = ∆π(t∧λ), where (π(t))t≥0 and λ are the

same as before. Note that the biological age of an edge still grows by every birth,

even though it is not considered in the degree process.

In order to find the condition of supercriticality and formulate the equation

for the Malthusian parameter, we can argue as follows. By the definition, E(γ) =

E(φ)/2, E(δ) = E(ε)/2, and as a consequence we have

Eη(λ) = E(∆π(λ)) = E(δ)E(λ) =
1

2
E(ε)E(λ) =

1

2
Eξ(∞).

Referring to (7), one can immediately see that the degree process is supercritical

if Eη(∞) = Eξ(∞)/2 > 1, that is,

E(ε)

c

∫ 1

0

u
1+b
c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du > 2.
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Similarly, the intensity measure of the degree process of a fixed vertex is just

the half of the edge process’ intensity measure, from which it follows that the

Malthusian parameter β > 0 of the former one satisfies the equation

E(ε)

c

∫ 1

0

u
β+1+b
c −1 exp

{
1

c

∫ 1

u

gε(v)

v
dv

}
du = 2.

It is clear that β < α.

For the probability that the vertex becomes isolated, i.e., the corresponding

degree process extincts, we need to compute the probability generating function

of η(∞), for which we can use Lemma 3.6. In fact, this is only valid in the case

when the initial degree of the vertex is 1. When the initial degree of the observed

vertex is 2, its degree process is the superposition of two independent copies of

(η(·), λ).

Proposition 3.11. The probability generating function of η(λ) is

1−
1− gκ,ε

( (1+z)2
4z , 2z

1+z

)
c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du.

Hence, if Eη(λ) > 1, the probability that a fixed vertex eventually gets isolated

is equal to pz2 + (1− p)z, where z is the smallest positive root of the equation

1− gκ,ε
( (1+z)2

4z , 2z
1+z

)
c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du = 1− z.

Proof. By the law of total expectation,

gη(λ)(z) = E
(
zη(λ)

)
= E

[
E
(
zη(λ)

∣∣π′(λ), ξ(λ)
)]
,

therefore it is sufficient to deal with the conditional expectation

E
(
zη(∞)

∣∣π′(λ) = `, ξ(λ) = k
)

where 0 ≤ ` ≤ k ≤ 2`. Clearly, if k new edges are added with ` new vertices, then

the increment is composed of k − ` cherries and 2` − k semi-cherries. Thus the

conditional distribution of η(λ)− (k − `) is Binomial(2`− k, 1/2). Hence,

E
(
zη(λ)

∣∣π′(λ) = `, ξ(λ) = k
)

= zk−l
(

1 + z

2

)2`−k

.

Consequently, by Lemma 3.6 we get

gη(λ)(z) = E
[
zξ(λ)−π

′(λ)
(1 + z

2

)2π′(λ)−ξ(λ)]
= f

(
(1 + z)2

4z
,

2z

1 + z

)

= 1−
1− gκ,ε

( (1+z)2
4z , 2z

1+z

)
c

∫ 1

0

u
1+b
c −1 exp

{∫ 1

u

gκ,ε
( (1+z)2

4z , 2sz
1+z

)
ds

}
du,

completing the proof. �
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3.4. Further properties. The first proposition of the section is about the

asymptotic proportion of living edges without any descendants.

Proposition 3.12. Let us denote the number of childless edges after n steps

by On, then

lim
n→∞

On
En

=
E(ε)

1 + b+ α

almost everywhere on the event of non-extinction.

Proof. Similarly to what we did in the proofs of previous results, we will

introduce the notation O(t) for the number of living childless edges at time t in

the continuous time model, and since

lim
t→∞

On
En

= lim
n→∞

O(t)

E(t)

holds, we can rely on Proposition 3.3 and Theorem 2.3 with the appropriate

random characteristic. It is easy to see that the right choice is

φ(t) = 1{0≤t<τ1∧λ},

where τ1 is the first birth time in the Poisson process (π(t))t≥0.

To calculate the corresponding limit fraction, we first need to compute the

mean Eφ(t) = P(τ1 ∧ λ > t). The distribution of τ1 is exponential with mean 1,

and up to τ1, the hazard rate of the edge lifetime is constant b, that is, λ behaves

like an exponential random variable, which is independent of τ1. Therefore τ1 ∧λ
is exponentially distributed with parameter 1 + b, thus Eφ(t) = e−(1+b)t.

By Theorem 2.3 we have

lim
t→∞

O(t)

E(t)
=

∫∞
0
e−αte−(1+b)t dt∫∞

0
e−αtS(t) dt

=
E(ε)

1 + b+ α
. �

So far we could easily utilize the direct connection between the discrete and

the continuous models. The next example will show a case where the transfer of

results is not so straightforward.

Consider the continuous cherry tree and define

T (t) =
∣∣{e : σe ≤ t}

∣∣;
this is the number of edges born up to time t, irrespectively that they are still

present or already deleted. Moreover, let

J(t) =

∫ t

0

E(s) ds,
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where E(s) is the number of living edges at time s. Clearly,

J(t) =

∫ t

0

∑
e

1{σe≤s<σe+λe} ds =
∑
e

∫ t

0

1{σe≤s<σe+λe} ds =
∑
e

(t− σe)+ ∧ λe,

thus J(t) is the sum of the lengths of time the edges spent in the graph up to

time t. In the statistical analysis of survival data, this quantity is called the

total time on test. The summands can also be considered a censored sample from

the lifetime distribution λ, hence the mean lifetime E(λ) can be estimated by

λ̂1(t) = J(t)/T (t). As a result of censoring, this estimation is underbiased. One

might reduce the bias by leaving censored observations out of consideration. This

leads to the estimator λ̂2(t) = J̃(t)/T̃ (t), where

J̃(t) =
∑

e :σe+λe≤t

λe, T̃ (t) =
∣∣{e : σe + λe ≤ t}

∣∣.
We should remark that this second estimator is still underbiased, because the

exponential growth of the continuous cherry tree imples that a non-negligible

proportion of the edges born so far entered the graph in the recent past, and they

are only counted if died at an unusally young age.

Let us compute their limits as t→∞.

Proposition 3.13. Almost everywhere on the event of non-extinction,

lim
t→∞

λ̂1(t) =
1

E(ε)
, lim

t→∞
λ̂2(t) =

1− αE(ε)
∫∞
0
t e−αtS(t) dt)

E(ε)− 1
.

Proof. All four quantities can be expressed as Zφ(t) by the help of suitable

random characteristics φ as Table 1 shows.

J(t) φ1(t) = (t ∧ λ)1{t≥0}

T (t) φ2(t) = 1{t≥0}

J̃(t) φ3(t) = λ1{λ≤t}

T̃ (t) φ4(t) = 1{λ≤t}

Table 1. Statistics and the corresponding random characteristics

First, we have to compute Eφi(t), i = 1, 2, 3, 4, t ≥ 0.
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Eφ1(t) = E(t ∧ λ) =

∫ t

0

S(s) ds, Eφ2(t) = 1,

Eφ3(t) = E(λ1{λ≤t}) =

∫ t

0

[S(s)− S(t)] ds, Eφ4(t) = 1− S(t).

Therefore, by (9) and (5) we have∫ ∞
0

e−αtEφ1(t) dt =
1

α

∫ ∞
0

e−αtS(t) dt =
1

αE(ε)
.

Obviously, ∫ ∞
0

e−αtEφ2(t) dt =
1

α
,∫ ∞

0

e−αtEφ4(t) dt =

∫ ∞
0

e−αt(1− S(t)) dt =
1

α
− 1

αE(ε)
,

and∫ ∞
0

e−αtEφ3(t) dt =

∫ ∞
0

e−αt
∫ t

0

[S(s)− S(t)] ds dt

=

∫ ∞
0

e−αtEφ1(t) dt−
∫ ∞
0

t e−αtS(t) dt

=
1

αE(ε)
−
∫ ∞
0

t e−αtS(t) dt=
1

αE(ε)

(
1−α

∫ ∞
0

t e−αtµ(dt)

)
,

using that E(ε)S(t) dt = µ(dt). Application of Theorem 2.3 will complete

the proof. �

Remark 3.14. Unfortunately, the last integral cannot be transformed into

a closed form, but we find the following connection between T (t) and J̃(t):

lim
t→∞

e−αtT (t) = Y∞ + E(ε) lim
t→∞

e−αtJ̃(t)

almost everywhere on the event of non-extinction.

Next, let us turn to the discrete time cherry tree. Though the number Tn
of edges born up to time t is of order n, the total time on test statistic Jn =

E0 + E1 + · · · + En exhibits a completely different behaviour. By Corollary 3.5

we have

Jn ∼
α

E(ε) + 1− α

n∑
i=0

i ∼ αn2

2(E(ε) + 1− α)
, (10)
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thus Jn/Tn tends to infinity on the event of non-extinction. This is not at all

surprising, because the correspondence of the discrete and continuous time models

is based on a time transform, by which the discrete time model is a slowed down

version of the continuous one. The later an edge is born, the longer its life will

last. If we want to infer from a continuous counterpart, time has to be measured

by the number of events; that is, instead of J(t) we should use
∫ t
0
E(s) dH(s).

Using Corollary 3.5 and integrating by parts, we get∫ t

0

E(s) dH(s) ∼
∫ t

0

e−α(t−s)E(t) dH(s)

= E(t)

([
e−α(t−s)H(s)

]t
s=0
−
∫ t

0

αe−α(t−s)H(s) ds

)
∼ E(t)

(
H(t)−

∫ t

0

αe−2α(t−s)H(t) ds

)
∼ 1

2E(t)H(t),

which already corresponds to (10).

In the discrete model it seems more adequate to measure an edge’s lifetime

by the number of birth events, which is not affected by time transformations.

The mean number of litters during the life of an edge can be estimated by the

statistic Bn/Tn, where Bn is the number of reproduction events in the first n

steps. The corresponding quantity in the continuous model can be counted by

the random characteristic φ(t) = π(t ∧ λ). Hence,

lim
n→∞

Bn
Tn

= lim
t→∞

∫ t
0
e−αtE(t ∧ λ) dt∫∞

0
e−αt dt

=
1

E(ε)
;

this coincides with the limit of λ̂1(t).
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[2] Á. Backhausz and T. F. Móri, Weights and degrees in a random graph model based on
3-interactions, Acta Math. Hungar. 143 (2014), 23–43.
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