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Introduction
In 1976, TIIDEMAN [T] showed that the so-called Catalan equation

2P —yl =1

has only finitely many rational integer solutions x,y,p,q¢ > 1 and by using
Baker’s method an effectively computable upper bound for max{x,y, p, ¢}
can be given. Later, VAN DER POORTEN [vdP] proved the p-adic analogue
of the above result, and BRINDzA, GYORY and TIJIDEMAN [BGy&T] ex-
tended Tijdeman’s theorem to the case of algebraic number fields, that is,
x and y are algebraic integers in an arbitrary but fixed algebraic number
field. A further generalization when x and y are S—integers in an algebraic
number field was proved by BRINDzA [B1] (see Lemma 2).

The purpose of this note is to give a further generalization of these
results. After certain auxiliary steps the proof will be surprisingly simple.

Let G be a finitely generated extension of the rational number field
Q. Then G can be written as

G=Q(z1,...,2ru), (r>0)

where {z1,..., 2.} is a transcendence basis of G over Q and wu is integral
over the polynomial ring Z[z1,...,2.|. Any element o of G has a unique
representation (up to sign) in the form

0 W Dot Prudt 4 Pyqud!
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where ¢ is the degree of u over Q(z1,...,2,) and Py, ..., Ps € Z[z1,..., 2]
are relatively prime polynomials. Adopting the concepts and notation of
GYORY [Gy2] we define the size of a non-zero polynomial P € Z[z1, ..., 2]
as

s(P) = max{log H(P),1 + max deg, P},

where H(P) is the usual height of P, i.e. the maximum of the absolute

values of its coeflicients. The size a non-zero o« € G written in the form
(1) (with respect to the generating set {z1, ..., 2., u}) is defined by

s(a) = max {s(F)}.
It is clear that there are only finitely many elements in G with bounded
size, and s(«) depends on the generating set. Let
R="7Z[w,...,w]
be a finitely generated subring of G. Then we have
Theorem. All the solutions of the equation
(2) al —y?=1

in rational integers p,q and r,y € R withp > 1, ¢ > 1, pg > 4 and z,y
are not a root of unity, satisfy

max{p, q,s(x),s(y)} < C,

where C' is an effectively computable constant depending only on G and
R.

It is easy to see that the conditions made on p, ¢, x and y are necessary.

Preliminaries

For fixed exponents p and ¢ equation (2) can be considered as a spe-
cial hyperelliptic equation. We may assume that G is a subfield of C. Let
f(X) € G[X] be a polynomial having zeros aq, ..., a; € C with multiplic-

ities r1,..., g, respectively. Moreover, let m > 1 be a rational integer and
put
m
ti=———, 1=1,... k.
(ma Ti)
Lemma 1. (BRINDzA [B2]) Suppose that {ti,...,t;} is not a permu-

tation of the k—tuples
{t,1,...,1}, t>1; {2,2,1,...,1}.
Then all the solutions of the equation

fl@)=y™ inzyeR
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satisfy
max{s(z),s(y)} < C1,

where Cy is an effectively computable constant depending only on the
generating set of G, R, f and m.

At this stage it may turn out to be useful to remark that R is not a
Dedekind ring, generally, and hyperelliptic equations (over (G) cannot be
reduced to Thue-equations. The proof of Lemma 1 is based on Gyory’s
specialization method. In [B2] it is assumed that f splits into linear fac-
tors over (G, however, this technical assumption can be avoided; one can
repeat the whole argument in the splitting field of f, which has the same
transcendence degree, instead of G.

The following lemma corresponds to that special case of the Theorem,
when r = 0, that is when G is an algebraic number field.

Let K be an algebraic number field, and S a finite set of (additive)
valuations of K. An element o € K is said be S—integral if v(a) > 0 for
all valuations v ¢ S.These elements of K form a ring which is denoted by
Ok s. By the height H(a) of an algebraic number a we mean, as usual,
the height of its minimal defining polynomial (over Z).

Lemma 2. (BRINDzA [B1]) All the solutions of equation (2) in ratio-
nal integers p,q and z,y € Ok, s withp > 1,q > 1,pq > 4 and x,y are not
a root of unity, satisfy

maX{p7 q, H(Z’), H(y)} < 027

where Cs is an effectively computable constant depending only on K and

S.

Let k be an algebraically closed field of characteristic zero and L be
a finite algebraic extension of the rational function field k(t) with genus
g(L). For a non-zero element a € L, the (additive) height Hy, () of a is
defined by

Hy () = Y max{0,v(a)}

where v runs through the (additive) valuations of L/k with value group
Z. It is easy to see that Hy,/,(a) > 0 and Hy, i (o) = 0 if an only if a € k.
Furthermore, we have

Hy k(") = [n|Hy k() , n€Z.

Lemma 3. (MASON [M]) Let S = {v1,...,vs} be a finite set of val-
uations of L/k containing all the infinite valuations and let v1,72,73 be
non-zero elements of L such that

M +r2+v3=0
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and that v(y1) = v(y2) = v(y3) =0 for all v ¢ S. Then either vy /v2 € k
or
Hy, i (71/72) < s +2g9(L) — 2.

We remark that a similar inequality had been proved by GYORY [Gyl1]
with larger constants.

Proof of the Theorem

Let z, y, p, ¢ be an arbitrary solution to equation (2). We may assume
that » > 0, for otherwise Lemma 2 implies the Theorem. Put

Ti:{zl,...,zr}\{zi} and I{JZ:Q(TZ), izl,...,T.
For a field k let k denote its algebraic closure and write
M; = Ei(z) D, .. u®), i=1,...r

where v, ..., u(® are the conjugates of u over Q(z1,-.-,2-). We show
that

®) Nk=a

To do so we need the following simple observation. If F} C F; are fields
and u, v € Fy algebraically independent over Fj, then

Fl(,u) N Fl(V) = Fl

Indeed, let 7 be an element of Fy(u) N Fy(v) and suppose that 7 ¢ F.
Then 7 satisfies a polynomial relation

fm8 4+ i+ fo=0

with f; € Fi[u], : = 0,...,s and at least one f;, ¢ > 0, is not a constant
in . Hence p satisfies a similar non-trivial relation with coefficients from
Fy[7], that is u € Fy(7) and the same argument gives v € F;(7) which is a
contradiction, since p and v are algebraically independent over Fy. After
this we have

NF=NEE) =N QTN D)

and one can obtain relation (3) by induction on the transcendence degree.
We may assume that there exist an i € {1,...,7} such that = ¢ k;, for
otherwise x € k; and y € k;, i = 1,...,7; hence z,y belong to the algebraic
number field Q N G and by applying Lemma 2 we have the Theorem.
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If 2 ¢ k; for some 4, then y ¢ k; and
min{HMi/kj(a:), HMi/k—i(y)} > 1.

Let S denote the subset of valuations v of M; /k_z containing all the infinite
valuations, for which either v(w;) < 0 holds for at least one j € {1,...,t},
or max{v(z),v(y)} > 0. Then we get v(z) =v(y) =0 for all v ¢ S and

t
SI<> > 1+ > 14+ > 1<
J=1v(w;)<0 v(z)>0 v(y)>0
t

<> Hy g (wp) + Hyy (@) + Hyy ().
j=1

Now, we can consider equation (2) as an S-unit equation. Since z? ¢ k;
and y? ¢ k;, Lemma 3 yields

p—2+q-2<(p—-2)Hy, () +(¢—2)Hy, 5:(y) <

t
<23 Hy go(w;) +4g(M; k) — 4

Jj=1

and the genus of M;/k; can be estimated by the defining polynomial of u
(cf. [Sch]).

Therefore, p and ¢ are bounded and Lemma 1 completes the proof.
O
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