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Moments of additive statistics with respect to
the Ewens sampling formula

By EUGENIJUS MANSTAVIČIUS (Vilnius) and VYTAUTAS STEPAS (Vilnius)

Abstract. The additive semigroup of vectors with non-negative integer coordi-

nates endowed with the Ewens probability measure plays an important role as a prob-

abilistic space for many statistical models. In the present paper, we obtain upper esti-

mates of the power moments of additive statistics defined on the semigroup. The statis-

tics are sums of dependent random variables; however, our results have the form of the

Rosenthal and von Bahr–Esseen inequalities. The arguments perfected in probabilistic

number theory are adopted in the proofs.

1. Introduction

Let N, R and C be the sets of natural, real and complex numbers, respectively,

N0 = N ∪ {0}, and n ∈ N. Denote by Ω := Nn0 the additive semigroup of vectors

s̄ := (s1, . . . , sn), where sj ∈ N0 and 1 ≤ j ≤ n and 0̄ = (0, . . . , 0) is the zero

vector. The partial order defined by s̄ = (s1, . . . , sn) ≤ t̄ = (t1, . . . , tn), meaning

that sj ≤ tj for each 1 ≤ j ≤ n, will be essential throughout the paper. Moreover,

we say that s̄, t̄ ∈ Ω are orthogonal, denoted by s̄ ⊥ t̄, if s1t1 + · · · + sntn = 0.

Afterwards, we shall use the notation t̄ ‖ s̄ to express that t̄ exactly enters s̄.

Formally, then t̄ ≤ s̄ and t̄ ⊥ s̄ − t̄. Using the notation when dealing with

functions defined on Ω, we come closer to probabilistic number theory which has

been developed on the multiplicative semigroup N (see [12] and [4]), in which the

partial order is defined by division, and the orthogonality of m,n ∈ N means that

their greatest common divisor equals 1. The semigroup structures and the partial
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orders in Ω and N could have played a greater role in developing parallel theories.

The advantage of applying this approach has been discussed in the first author’s

joint talk [11] and in some papers referred to then. The present paper further

demonstrates the number-theoretic ideas adopted when estimating moments of

functions defined on Ω.

For a probability measure, we take that one proposed by Ewens [6] in mathe-

matical genetics. It continues to serve in various statistical models and probabilis-

tic combinatorics (see, for example, [10], [1] or [7]). To present it, we introduce

the mapping ` : Ω → N0 by `(s̄) = 1s1 + · · · + nsn and denote Ωn := `−1(n) ={
s̄ ∈ Ω : `(s̄) = n

}
. Set also

Θ(n) :=

(
θ + n− 1

n

)
= [zn]

1

(1− z)θ
=
nθ−1

Γ(θ)

(
1 +O

(
1

n

))
(1)

if n ≥ 1. Here and throughout the paper, θ > 0 is a fixed parameter, Γ(z) is

the Gamma function, and, as usual, [zn]g(z) stands for the n-th coefficient of the

power series g(z) if n ∈ N0. Then the celebrated Ewens sampling formula defines

the probability

Pn({s̄}) := 1{`(s̄) = n}Θ(n)−1
n∏
j=1

(
θ

j

)sj 1

sj !
=: 1{`(s̄) = n}Θ(n)−1P (s̄) (2)

ascribed for each s̄ ∈ Ω. Here 1{·} is the indicator function. Now every mapping

G : Ω→ C becomes a complex-valued r.v., and

Mn(G) := Θ(n)−1
∑
s̄∈Ωn

G(s̄)P (s̄) (3)

is its mean value. Let M0(G) = G(0̄) for every G : Ω→ C.

It is worth recalling the following property of (2). If ξj , 1 ≤ j ≤ n, are

mutually independent Poisson random variables (r.vs) with parameters θ/j given

on some probability space and ξ̄ := (ξ1, . . . , ξn), then

Pn({s̄}) = Pr
(
ξ̄ = s̄ | `(ξ̄) = n

)
, s̄ ∈ Ω.

This clearly shows the dependence of coordinates sj , 1 ≤ j ≤ n, under the

probability measure Pn. Despite this, some recent results on the asymptotic

behavior as n → ∞ of distributions of the linear statistics an1s1 + · · · + annsn,

where anj ∈ R and 1 ≤ j ≤ n, give general conditions for weak convergence

or sharp estimates of the convergence rates. They are mainly formulated in the
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terminology of the theory of random permutations; therefore, we now present the

connections to the latter.

Let Sn denote the symmetric group of permutations σ acting on n ≥ 1 letters.

Each σ ∈ Sn has a unique representation (up to the order) by the product of

independent cycles κi:
σ = κ1 · · ·κw, (4)

where w = w(σ) denotes the number of cycles. Denote by kj(σ) ≥ 0 the number

of cycles in (4) of length j for 1 ≤ j ≤ n and k̄(σ) := (k1(σ), . . . , kn(σ)). The latter

is called a cycle vector of the permutation σ. The Ewens probability measure νn,θ
on Sn is defined by

νn,θ
(
{σ}

)
:= θw(σ)/

(
θ(θ + 1) · · · (θ + n− 1)

)
, σ ∈ Sn,

where θ > 0 is a parameter. Then the case θ = 1 corresponds to uniformly

sampled permutations. An easy combinatorial argument (see [1]) gives the dis-

tribution of the cycle vector and the coincidence:

νn,θ
(
k̄(σ) = s̄

)
= Pn({s̄})

if s̄ ∈ Ωn. Thus, when dealing with statistics of random permutations expressed

via k̄(σ), we may examine corresponding statistics of random vectors s̄ ∈ Ωn
taken with probabilities (2).

The linear statistics a1nk1(σ) + · · ·+ annkn(σ) and, in particular, w(σ) have

attracted much attention in the recent investigations. However, so far, the ad-

vance in probabilistic number theory has not been adequately followed by the

corresponding results in probabilistic combinatorics. For instance, the results

exposed in [1, Section 8.5] did not reach the level of their analogs in N (com-

pare with [4]). In the recent papers [16] and [3] (see also the references therein),

the first author attempted to fill up this gap.

Let us continue by introducing more definitions. A mapping F : Ω → C,

F (0̄) = 1, is called a multiplicative function if F (s̄+ t̄) = F (s̄)F (t̄) holds for every

pair s̄, t̄ ∈ Nn0 such that s̄ ⊥ t̄. Denote a generic vector ēj := (0, . . . , 1, . . . , 0),

where the only 1 stands at the j-th place. Then the multiplicative function F has

the decomposition

F (k̄) =
∏
j≤n

F (kj ēj) =:
∏
j≤n

fj(kj). (5)

Conversely, given a complex two-dimensional array {fj(k)}, 1 ≤ j ≤ n and

k ∈ N0, satisfying the condition fj(0) ≡ 1, by the last equality, we can define
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a multiplicative function. If fj(k) = fj(1) =: fj for all k ∈ N and j ≤ n,

the function F is called strongly multiplicative and, similarly, if fj(k) = fkj and

00 := 1, then F is called completely multiplicative. By definition, F may de-

pend on n; moreover, dealing with its values attained on Ωn, the values fj(k) are

irrelevant if jk > n. We treat them arbitrarily to make the appearing expres-

sions well and conveniently defined. Denote respectively by M, Ms, and Mc the

sets of just introduced multiplicative functions. We stress that P (s̄) ∈ M and

P (kēj) = (θ/j)k/k! =: pj(k) if k ∈ N0 and 1 ≤ j ≤ n.

Similarly, the condition H(s̄ + t̄) = H(s̄) + H(t̄), holding for every pair

s̄, t̄ ∈ Nn0 such that s̄ ⊥ t̄, defines an additive function H : Ω→ C. Let us also set

hj(k) := H(kēj) where hj(0) := 0. Now condition hj(k) = khj(1), k ∈ N0 and

1 ≤ j ≤ n, implies completely additive functions. The function H is also allowed

to depend on n.

The purpose of the present paper is to establish power moment inequalities

for a complex-valued additive function H(s̄). The tail probability estimates for

additive functions proposed in [13] and refined in [2], together with a subsequent

use of relevant results for sums of independent r.vs, provide an indirect approach

to deal with the problem if θ ≥ 1. The experience (see [14] and [15]) acquired

by the first author in using this approach when deriving inequalities for the case

θ = 1 makes us to believe that the direct proof, as exposed below, gives sharper

results. This has been evidenced by the authors of [18] and [19] when dealing

with the second moment of additive functions defined on general decomposable

structures, including permutations sampled according to the Ewens probability.

In the second moment estimates, there have been a few attempts to find the

optimal constants (see [20] and the references therein).

Denote

An :=
∑
jk≤n

hj(k)pj(k)
Θ(n− jk)

Θ(n)
,

Bn(α) := Bn(α;H) =
∑
jk≤n

|hj(k)|αpj(k)
Θ(n− jk)

Θ(n)
,

where α > 0. Here and in the sequel, Σjk≤n means summation over j, k ∈ N such

that the product jk ≤ n. Afterwards, � is an analogue of the symbol O(·) with

a constant in it depending at most on θ and α.

Theorem 1. Let θ ≥ 1 be fixed, and H be an additive function, possibly

depending on n. Then
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Mn

(
|H(s̄)−An|α

)
�

{
Bn(2)α/2 +Bn(α) if α ≥ 2,

Bn(2)α/2 if 0 ≤ α ≤ 2,

uniformly for all n ≥ 1.

The formulas of moments Mn(Hi), i = 1, 2, can be found in [18, page 308].

Comparing, we observe that An = Mn(H)+O
(
Bn(2)1/2

)
. Moreover, Bn(2) differs

from the sum of variances of the summands in H by a negligible term. The latter

has been witnessed in estimate (4) of the same paper [18] for completely additive

functions. This motivates our choice of An and Bn(α). In many cases, they can

be further simplified by taking the main asymptotic terms. Relation (1) is also at

our disposition to implement this. For example, for the number W (s̄) of different

nonzero coordinates of a vector s̄, Theorem 1 reduces to the following estimate:

Mn

(
|W (s̄)− θ log n|α

)
� logα/2 n, α ≥ 0, n ≥ 2. (6)

The details are given at the end of the paper.

The inequalities in Theorem 1 have the form of the classical Rosenthal’s and

von Bahr–Esseen’s results in the case of independent summands. The dependence

present in our case involves some new facts. For the completely additive function

`(s̄), which equals n on Ωn, Theorem 1 gives only a trivial estimate. To avoid

the trivialities, one can first split H(s̄) into the sum of λ`(s̄) and the remaining

additive function Hλ(s̄), choosing λ ∈ C so that minλBn(α;Hλ) is attained. Then

the first function can be eliminated using the inequality |a+ b|α ≤ 2α(|a|α+ |b|α),

and Theorem 1 can be applied for Hλ(s̄).

The authors frankly confess that they have failed to extend the result to

the case 0 < θ < 1 when the essential inequality Θ(m) ≤ Θ(n) if m ≤ n is

reversed. In the proof, we adopt Elliott’s [5] argument. The main task is the

analysis of the mean value of ezH(s̄), which is a multiplicative function depending

on a complex parameter z. The needed technique is developed in the next section.

The theorem will be proved at the end of the paper.

2. Mean values of multiplicative functions

This section is devoted to estimates of the mean values Mn(F ) of mappings

F : Ω → R+ belonging to more specialized classes. Afterwards,
∑
`(s̄)=n means

the summation over the set of vectors s̄ ∈ Ωn. If F ∈ M, then (3) and (5) give
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the following expressions:

Θ(n)Mn(F ) =
∑
`(s̄)=n

∏
j≤n

pj(sj)fj(sj) = [xn]
∏
j≥1

(
1 +

∞∑
k=1

pj(k)fj(k)xjk

)

=: [xn]
∏
j≥1

χj(x;F ) =: [xn]Z(x;F ). (7)

Actually, the values fj(k) if jk > n, which do not appear in the quantity on the

left-hand side, can be chosen in a convenient way, say, equal to zeros or ones.

Here and in the sequel, j, k ∈ N. On the other hand, if F ∈ Mc, that is, for

fj(k) = fj(1)k, j, k ≥ 1, there is no need to do so.

Set Π0(F ) := 1, and

Πm(F ) :=
∏
j≤m

(
1 +

∞∑
k=1

pj(k)fj(k)

)
, 1 ≤ m ≤ n.

From the definitions, one directly obtains the inequality

Σn(F ) :=
∑

0≤m<n

Mm(F )Θ(m) ≤ Πn−1(F ) (8)

if F is a non-negative multiplicative function and n ∈ N.

We begin with a convenient identity. Introduce a function P (j) ∈ M such

that p
(j)
i (k) = pi(k) if i 6= j, and p

(j)
i (k) = 0 if i = j and k ∈ N. Let

Θ(j)(n) :=
∑
`(s̄)=n

P (j)(s̄) = [zn]e−θz
j/j(1− z)−θ.

Define the following conditional mean value:

M (j)
n (F ) :=

1

Θ(j)(n)

∑
`(s̄)=n

∏
i≤n

p
(j)
i (si)fi(si) =

1

Θ(j)(n)

∑
`(s̄)=n

P (j)(s̄)F (s̄).

Lemma 1. Let F : Ω→ C be a multiplicative function, then

nΘ(n)Mn(F ) =
∑
jk≤n

jkfj(k)pj(k)Θ(j)(n− jk)M
(j)
n−jk(F ).

In particular, if F ∈Mc, then

nΘ(n)Mn(F ) = θ
∑
j≤n

fj(1)Θ(n− j)Mn−j(F ).
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Proof. This is just the identity

[xn]
(
xZ ′(x;F )

)
= [xn]

x∑
j≥1

χ′j(x;F )
∏

i≥1,i6=j

χi(x;F )

 ;

nevertheless, we provide an elementary proof exposing the idea used in the sequel.

The decomposition of s̄ ∈ Ωn into a sum of orthogonal vectors, namely,

s̄ = kēj + t̄, 1 ≤ k ≤ n/j, ēj ⊥ t̄,

is essential in it. Check that kēj ‖ s̄ and tj = 0 in this case. Now

`(s̄) =
∑
kēj‖s̄

`(kēj) =
∑
jk≤n,
kēj‖s̄

jk = n

and

nΘ(n)Mn(F ) =
∑
`(s̄)=n

F (s̄)P (s̄)
∑
jk≤n,
kēj‖s̄

jk.

Applying the decomposition and changing the summation order, we obtain

nΘ(n)Mn(F ) =
∑
jk≤n

jkfj(k)pj(k)
∑
t̄,tj=0

`(t̄)=n−jk

F (t̄)P (t̄)

=
∑
jk≤n

jkfj(k)pj(k)Θ(j)(n− jk)M
(j)
n−jk(F ).

The lemma is proved. �

Corollary 1. If θ > 0 and F ≥ 0 is a multiplicative function, then

nΘ(n)Mn(F ) ≤
∑
jk≤n

jkfj(k)pj(k)Θ(n− jk)Mn−jk(F ).

Proof. By the definitions above, Θ(j)(m)M
(j)
m (F ) ≤ Θ(m)Mm(F ) for each

1 ≤ j ≤ m ≤ n. �

Lemma 2. If θ > 0 and F ∈M is such that 0 ≤ fj(k) ≤ K for k, j ≤ n and

n ≥ 1, then

nΘ(n)Mn(F ) ≤ θKΣn(F )

(
1 +O

(
K log(n+ 1) + 1

n

))
.
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Proof. By Corollary 1,

nΘ(n)Mn(F ) ≤ K
∑

1≤m≤n

mΘ(n−m)Mn−m(F )
∑
jk=m

pj(k)

= θK
∑

0≤m<n

Θ(m)Mm(F )

+K
∑

1≤m≤n

Θ(n−m)Mn−m(F )

m ∑
jk=m

pj(k)− θ

 . (9)

The first sum is just Σn(F ). In the second, the term corresponding to m = 1 is

zero. For m ≥ 2, we observe that

0 ≤ m
∑
jk=m

pj(k)− θ =
θm

(m− 1)!
+
θ2

m

∑
jk=m,
j,k≥2

(
θ

j

)k−2
k

(k − 1)!

≤ θ
(

3θ

m− 1

)m−1

+
2θ2

m

∑
2≤k≤m/2

(
θk

m

)k−2
1

(k − 2)!

≤ θ

m

(
max
m≥2

{
m

(
3θ

m− 1

)m−1
}

+ 2θeθ/2

)
=:

θC(θ)

m
,

where C(θ) > 0 is a constant depending only on θ. Plugging this into (9),

we obtain

nΘ(n)Mn(F ) ≤ θK
∑

0≤m<n

Θ(m)Mm(F )

(
1 +

C(θ)

n−m

)
. (10)

This also yields a rough estimate mΘ(m)Mm(F )� KΣm(F ), 1 ≤ m ≤ n, needed

below. Observe that ∑
1≤m≤n/2

+
∑

n/2≤m<n

 Θ(m)Mm(F )

n−m
� Σn(F )

n
+K

∑
n/2≤m<n

1

m(n−m)
Σm(F )

� 1 +K log(n+ 1)

n
Σn(F ).

Inserting this into (10), we complete the proof. �

In the sequel, we will apply the just proved result in a more convenient form.
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Corollary 2. If θ > 0 and F ∈ M is such that 0 ≤ fj(k) ≤ 1 for k, j ≤ n

and n ≥ 1, then

Mn(F )� exp

θ∑
j≤n

fj(1)− 1

j

 .

Proof. It suffices to apply (1) and the well-known asymptotic formula∑
j≤n

1

j
= log n+ γ +O

(
1

n

)
,

where γ denotes the Euler–Mascheroni constant. Indeed, using Lemma 2 and (8),

we see that

Mn(F ) ≤ Γ(θ + 1)n−θΠn−1(F )

(
1 +O

(
log(n+ 1)

n

))

≤ Γ(θ + 1) exp

θγ + θ
∑
j≤n

fj(1)− 1

j


(

1 +O

(
log(n+ 1)

n

))

×
∏
j≤n

e−θfj(1)/j

(
1 +

∞∑
k=1

(
θ

j

)k
fj(k)

k!

)
. (11)

Applying the inequality

|ex − 1− x| ≤ |x|2e|x| (12)

if x ∈ R, we easily estimate the last product:

∏
j≤n

e−θfj(1)/j

(
1 +

θfj(1)

j
+

∞∑
k=2

(
θ

j

)k
fj(k)

k!

)

≤
∏
j≤n

e−θfj(1)/j

(
1 +

θfj(1)

j
+ eθ/j − 1− θ

j

)

≤
∏
j≤n

e−θfj(1)/j

(
eθfj(1)/j +

(
θ

j

)2

eθ/j

)
≤
∏
j≤n

(
1 +

(
θ

j

)2

eθ/j

)
� 1.

This and (11) complete the proof of the corollary. �

Observing that Θ(n−j)
Θ(n) ≤ 1 if θ ≥ 1 for all j ≤ n, we also have

Mn(F )� exp

θ∑
j≤n

fj(1)− 1

j

Θ(n− j)
Θ(n)

 . (13)
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Remarks. We first stress the parallelism with Hall’s [9] paper exploring

number-theoretic submultiplicative functions. Inequality (11) also holds for a sub-

multiplicative function G : Ω → R which by definition satisfies the inequality

G(s̄ + t̄) ≤ G(s̄)G(t̄) for all s̄, t̄ ∈ Ω if s̄ ⊥ t̄. For example, such is the statistics

G(s̄) = l.c.m.{j : sj ≥ 1}, related to the group-theoretical order of a permutation

in the group Sn. Here the letters l.c.m. stand for the least common multiplier

of the indicated natural numbers. This more general case can be dealt with by

a repetition of the used argument or by a direct application of Lemma 2. Indeed,

given a submultiplicative function G : Ω→ [0, 1], we have

G(k̄) ≤
∏
j≤n

G(kj ēj) =:
∏
j≤n

gj(kj).

Further, one can define F ∈M so that fj(k) = gj(k) to obtain G(k̄) ≤ F (k̄) and

a subsequent ability to apply Corollary 2 for the function F .

Secondly, if θ = 1 and F is a multiplicative function satisfying the conditions

in Corollary 2 and the values fj(1) for εn < j ≤ n, where 0 < ε < 1, are close

to 1, one can substitute eγ in (11) by a smaller quantity (see [17]). Constructing

appropriate indicator functions and using Lemma 2 or (11), one can obtain sharp

estimates of the probabilities of vectors with a forbidden pattern. Note that the

lower estimates have been discussed in [11].

In the next step, we will need some facts about the algebraic structure (G, ∗),
where G := {G : Ω→ C} and ∗ is the convolution defined as follows:

F ∗G(t̄) :=
∑
s̄≤t̄

F (s̄)G(t̄− s̄), s̄, t̄ ∈ Ω.

Let I(t̄) ≡ 1 and E(t̄) = 1{t̄ = 0̄} be the indicator function of the subset {0̄}.
It is straightforward to check that (G, ∗) is an Abelian group in which E serves as

the neutral element. The inverse of I in the group is an analogue of the Möbius

function. Let us leave the notation µ for it. The latter is a multiplicative function

such that µ(ēj) = −1, and µ(rēj) = 0 if r ≥ 2, where 1 ≤ j ≤ n. It is easy to

check that the relations F = I ∗G and G = µ∗F are equivalent. Finally, we stress

that M is a subgroup in G.

Lemma 3. Let θ ≥ 1 and F ∈ M be such that fj(1) ≥ 1 for each j ≤ n.

Then

Mn(F ) ≤ exp

∑
jk≤n

fj(k)pj(k)
Θ(n− jk)

Θ(n)
−
∑
j≤n

pj(1)
Θ(n− j)

Θ(n)

 (14)

for all n ≥ 1.
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Proof. Let F be as in the lemma. Define a function G = F ∗ µ. Then

gj(1) = fj(1)− 1 ≥ 0, and hence G(t̄)µ2(t̄) ≥ 0. Moreover, if µ2(t̄+ s̄) 6= 0, then

t̄ ⊥ s̄. If s̄ ∈ Ω, we have

Mm(Fµ2)

= Θ(m)−1
∑

`(k̄)=m

F (k̄)µ2(k̄)P (k̄) = Θ(m)−1
∑

`(s̄+t̄)=m
t̄⊥s̄

G(t̄)µ2(s̄+ t̄)P (s̄+ t̄)

≤ Θ(m)−1
∑

`(t̄)≤m

G(t̄)µ2(t̄)P (t̄)
∑

`(s̄)=m−`(t̄)

P (s̄)

=
∑

`(t̄)≤m

G(t̄)µ2(t̄)P (t̄)
Θ
(
m− `(t̄)

)
Θ(m)

≤
∏
j≤m

(
1 + (fj(1)− 1)P (ēj)

Θ(m− j)
Θ(m)

)
.

In the last step, we used the inequality

Θ(n− `(s̄))
Θ(n)

≤
∏
j≤n

Θ(n− jsj)
Θ(n)

valid for all n ≥ 1, `(s̄) ≤ n and θ ≥ 1. The latter implies

Mm(Fµ2) ≤ exp

∑
j≤m

(fj(1)− 1)pj(1)
Θ(m− j)

Θ(m)


if 0 ≤ m ≤ n.

In the general case, we reorganize the expression of Mn(F ). We first uniquely

split k̄ = t̄ + s̄ with t̄ ⊥ s̄, where s̄ ∈
(
N0 \ {1}

)n
, t̄ ∈ {0, 1}n, and tj = 1 if and

only if kj = 1. Then, keeping this agreement in the summation carried out in the

next few lines, we proceed as follows:

Mn(F ) = Θ(n)−1
∑

`(t̄+s̄)=n
t̄⊥s̄

F (t̄)P (t̄)µ2(t̄)F (s̄)P (s̄)

≤
∑
`(s̄)≤n

F (s̄)P (s̄)
Θ(n− `(s̄))

Θ(n)
Θ(n− `(s̄))−1

∑
`(t̄)=n−`(s̄)

F (t̄)µ2(t̄)P (t̄).

The inner sum was just estimated. Since

∑
`(s̄)≤r

F (s̄)P (s̄)
Θ(r − `(s̄))

Θ(r)
≤
∏
j≤r

1 +
∑

2≤k≤r/j

fj(k)pj(k)
Θ(r − jk)

Θ(r)


≤ exp


∑
jk≤r
k≥2

fj(k)pj(k)
Θ(r − jk)

Θ(r)


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for 0 ≤ r ≤ n, we further obtain

Mn(F ) ≤ exp


∑
j≤n

(fj(1)− 1)pj(1)
Θ(n− j)

Θ(n)
+
∑
jk≤n
k≥2

fj(k)pj(k)
Θ(n− jk)

Θ(n)


= exp

∑
jk≤n

fj(k)pj(k)
Θ(n− jk)

Θ(n)
−
∑
j≤n

pj(1)
Θ(n− j)

Θ(n)

 .

The lemma is proved.

�

3. Moments of an additive function

We now embark on the power moments of a complex-valued additive func-

tion H(s̄). Throughout the section, we assume θ ≥ 1 and allow dependence on θ

of the constants in � and of c, c1, . . . , C, C1, . . . introduced afterwards. Their

dependence on other parameters will be additionally indicated. Let A := An and

B := (Bn(2))1/2 be the quantities defined in the Introduction. Define the multi-

plicative function F (s̄) = ezH(s̄)/B , where z ∈ C, and set ϕn(z) = e−zA/BMn(F ).

Afterwards, we adopt Elliott’s [5] argument.

Lemma 4. Assume that 0 ≤ hj(k) ≤ δB holds for some δ > 0 and all

products jk ≤ n. Then there is a positive constant c(δ) such that |ϕn(z)| ≤ c(δ)

uniformly in z if |z| ≤ 1 and n ≥ 1.

Proof. Inequality (12) gives us

∑
jk≤n
k≥2

pj(k)
Θ(n− jk)

Θ(n)

≤
∑
jk≤n
k≥2

pj(k) ≤
∑
j≤n

∑
k≥2

(
θ

j

)k
1

k!
=
∑
j≤n

(
eθ/j − 1− θ

j

)
� C. (15)

Applying this and the Cauchy–Schwarz inequality, we have

∣∣∣∣A−∑
j≤n

hj(1)pj(1)
Θ(n− j)

Θ(n)

∣∣∣∣ ≤ B
∑

jk≤n
k≥2

pj(k)
Θ(n− jk)

Θ(n)


1/2

� B.
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In the case −1 ≤ z = r ≤ 0, we have 0 ≤ F (s̄) ≤ 1. Thus, (13), the inequality

above and |e−x − 1 + x| ≤ x2 if x ≥ 0 yield the estimate

ϕn(r)� exp

∑
j≤n

(
erhj(1)/B − 1

)
pj(1)

Θ(n− j)
Θ(n)

− rA

B


� exp

∑
j≤n

(
erhj(1)/B − 1− rhj(1)

B

)
pj(1)

Θ(n− j)
Θ(n)


≤ exp

∑
j≤n

∣∣∣∣rhj(1)

B

∣∣∣∣2pj(1)
Θ(n− j)

Θ(n)

 ≤ exp
{
r2
}
≤ e.

In other words, ϕn(r) ≤ C1 for −1 ≤ z = r ≤ 0.

If 0 ≤ z = r ≤ 1, then F (s̄) ≥ 1. Arguing as in Lemma 3, we obtain

ϕn(r) ≤ exp

∑
jk≤n

erhj(k)/Bpj(k)
Θ(n− jk)

Θ(n)
−
∑
j≤n

pj(1)
Θ(n− j)

Θ(n)
− rA

B


= exp

∑
jk≤n

pj(k)
Θ(n− jk)

Θ(n)

(
erhj(k)/B − 1− rhj(k)

B

)

+
∑
jk≤n

pj(k)
Θ(n− jk)

Θ(n)
−
∑
j≤n

pj(1)
Θ(n− j)

Θ(n)


≤ exp

r
2erδ

B2

∑
jk≤n

hj(k)2pj(k)
Θ(n− jk)

Θ(n)
+
∑
jk≤n
k≥2

pj(k)
Θ(n− jk)

Θ(n)


� exp

{
r2erδ

}
.

Hence ϕn(r) ≤ C2(δ) if 0 ≤ z = r ≤ 1.

In the general case when r = <z and |z| ≤ 1, we have

|ϕn(z)| ≤ Θ(n)−1
∑
`(s̄)=n

P (s̄)

∣∣∣∣ez(H(s̄)−A)/B

∣∣∣∣ ≤ ϕn(r) ≤ max{C1, C2(δ)}. �

Lemma 5. Assume H(s̄) is a complex-valued additive function such that

|hj(k)| ≤ δB holds for some δ > 0 and all products jk ≤ n. Then for each α > 0,

there is a positive constant c1(α, δ) so that the inequality

Mn

(
|H(s̄)−A|α

)
≤ c1(α, δ)Bα (16)

holds for all n ≥ 1.
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Proof. Since the weighted power means

(
Mn(|H(s̄)−A|α)

)1/α
do not decrease as α increases, it will suffice to prove inequality (16) for integer

values of α.

By considering real and imaginary parts separately, we see that there is no

loss in generality in assuming that H(s̄) takes only real values, and, indeed, only

non-negative real values. For example, we can define additive functions Hi(s̄),

i = 1, 2, by

h1,j(k) :=

{
hj(k) if hj(k) > 0,

0 otherwise,
h2,j(k) :=

{
−hj(k) if hj(k) < 0,

0 otherwise,

and

Ain :=
∑
jk≤n

hi,j(k)pj(k)
Θ(n− jk)

Θ(n)
, i = 1, 2.

Then

|H(s̄)−A|α ≤ 2α
2∑
i=1

|Hi(s̄)−Ain|α.

Summing over the vectors s̄ such that `(s̄) = n justifies our assertion.

For every positive integer l, we calculate the l-th derivative of ϕn(z) evaluated

at z = 0. Namely,

ϕ(l)
n (0) =

Θ(n)−1

Bl

∑
`(s̄)=n

P (s̄)
(
H(s̄)−A

)l
=
Mn((H(s̄)−A)l)

Bl
.

By Cauchy’s integral representation theorem,

ϕ(l)
n (0) =

l!

2πi

∫
|z|=1

z−l−1ϕn(z)dz,

and by Lemma 4,

|ϕ(l)
n (0)| ≤ l!

2π
2πmax
|z|=1

|z−l−1ϕn(z)| ≤ l!c(δ).

This completes the proof of Lemma 5. �
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Let us remark that those j, k, jk ≤ n, for which |hj(k)| > δB holds, satisfy

∑
jk≤n

|hj(k)|>δB

pj(k)
Θ(n− jk)

Θ(n)
≤
∑
jk≤n

pj(k)
Θ(n− jk)

Θ(n)

∣∣∣∣hj(k)

δB

∣∣∣∣2 = δ−2, (17)

and are in this sense few.

Lemma 6. Suppose J ⊂ {1, 2, . . . , n} and define

L := L(n) =
∑
j∈J

pj(1)
Θ(n− j)

Θ(n)
.

Let ω(s̄) denote the number of nonzero coordinates sj such that j ∈ J or sj ≥ 2

and α ≥ 0. Then there is a positive constant c2(α) such that the inequality

Mm

(
ω(s̄)α

)
≤ c2(α)(L+ 1)α (18)

holds uniformly for all n,m if 1 ≤ m ≤ n.

Proof. As we have remarked in the proof of Lemma 5, it will suffice to

prove inequality (18) for all integers α = l ≥ 0.

We argue inductively on l. For l = 0 inequality (18) is trivially valid. Assume

that it holds for l = 0, 1, . . . , v − 1, v ≥ 1. Then

Mm(ω(s̄)v) = Θ(m)−1
∑

`(s̄)=m

P (s̄)ω(s̄)v = Θ(m)−1
∑

`(s̄)=m

P (s̄)ω(s̄)v−1
∗∑

kēj ||s̄

1

= Θ(m)−1
∗∑

jk≤m

∑
`(s̄)=m
sj=k

P (s̄)ω(s̄)v−1.

Here and further on, the asterisk means that in the case k = 1 the summation is

taken only over j ∈ J . If sj = k, say s̄ = kēj+ t̄ where ēj ⊥ t̄, then `(t̄) = `(s̄)−jk
and ω(s̄) ≤ 1 + ω(t̄). According to our induction hypothesis, the inner sum∑

`(t̄)=m−jk
ēj⊥t̄

P (t̄+ kēj)ω(t̄+ kēj)
v−1 ≤ P (kēj)

∑
`(t̄)=m−jk

P (t̄)(1 + ω(t̄))v−1

= pj(k)
∑

`(t̄)=m−jk

P (t̄)

v−1∑
i=0

(
v − 1

i

)
ω(t̄)i ≤
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≤ Θ(m− jk)pj(k)

v−1∑
i=0

(
v − 1

i

)
c2(i)(L+ 1)i

≤ Θ(m− jk)pj(k) max
0≤i≤v−1

c2(i)(L+ 1 + 1)v−1

≤ C3(v)Θ(m− jk)pj(k)(L+ 1)v−1.

Hence, by (15),

Mm(ω(s̄)v) ≤ C3(v)(L+ 1)v−1
∗∑

jk≤m

Θ(m− jk)

Θ(m)
pj(k)

≤ C3(v)(L+ 1)v−1(C + L) ≤ C4(v)(L+ 1)v.

Setting c2(v) = C4(v), we complete the proof of Lemma 6. �

Lemma 7. Let a complex-valued additive function H(s̄) and δ > 0 be such

that either |hj(k)| > δB or hj(k) = 0 is true for each of the products jk ≤ n.

Then for each α ≥ 1, there is a positive constant c3(α, δ) so that the inequality

Mn

(
|H(s̄)−A|α

)
≤ c3(α, δ)Bn(α) (19)

holds for all n ≥ 1.

Proof. Let J be the set of indices j ≤ n such that hj(1) 6= 0, and let L, ω(s̄)

be as in Lemma 6.

By Hölder’s inequality, we see that∣∣H(s̄)
∣∣α ≤ ω(s̄)α−1

∑
kēj ||s̄

|hj(k)|α.

Hence ∑
`(s̄)=n

P (s̄)|H(s̄)|α ≤
∑
jk≤n

|hj(k)|α
∑
`(s̄)=n
sj=k

P (s̄)ω(s̄)α−1. (20)

Since

L ≤
∑
jk≤n

|hj(k)|>δB

pj(k)
Θ(n− jk)

Θ(n)
≤ δ−2

due to (17), the inner sum on the right-hand side of (20) is by Lemma 6 no more

than

c2(α)Θ(n− jk)pj(k)(L+ 1)α ≤ C5(α, δ)Θ(n− jk)pj(k). (21)
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Inequalities (20) and (21) show that

Θ(n)−1
∑
`(s̄)=n

P (s̄)|H(s̄)|α≤C5(α, δ)
∑
jk≤n

|hj(k)|αpj(k)
Θ(n−jk)

Θ(n)
=C5(α, δ)Bn(α).

Moreover, Hölder’s inequality and (17) show that

|A|α ≤

 ∑
jk≤n

|hj(k)|>δB

pj(k)
Θ(n− jk)

Θ(n)


α−1

Bn(α) ≤ δ2(1−α)Bn(α).

Collecting the last two inequalities and using Hölder’s inequality once again,

we finish the proof of Lemma 7. �

4. Proof of Theorem 1

We define additive functions H(i)(s̄), i = 1, 2, by

h
(1)
j (k) :=

{
hj(k) if |hj(k)| ≤ B,
0 otherwise,

h
(2)
j (k) :=

{
hj(k) if |hj(k)| > B,

0 otherwise,

and

A(i)
n :=

∑
jk≤n

h
(i)
j (k)pj(k)

Θ(n− jk)

Θ(n)
, i = 1, 2.

Since, for A := An defined in the Introduction,

|H(s̄)−A|α ≤ 2α
2∑
i=1

|H(i)(s̄)−A(i)
n |α,

the desired inequality of Theorem 1 in the case α ≥ 2 follows from Lemma 5

applied to the function H(1)(s̄) with δ = 1, together with Lemma 7 applied to

the function H(2)(s̄) with δ = 1.

If 0 ≤ α ≤ 2, then

Mn

(
|H(s̄)−A|α

)1/α ≤Mn

(
|H(s̄)−A|2

)1/2
,

and the result follows from the just established inequality.

Theorem 1 is proved. �
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Let us apply it to the additive function

H(s̄) = W (s̄) :=
∑
j≤n

1{sj ≥ 1}

and verify (6). Now hj(k) = wj(k) = 1{k ≥ 1} if j ≤ n; therefore, the corre-

sponding An and Bn(α) can be simplified. To see this, applying the singularity

analysis (see [8, Chapter VI]), we obtain

∑
2≤k≤n/j

pj(k)
Θ(n− jk)

Θ(n)
=

1

Θ(n)
[zn]

eθz
j/j − 1− θzj/j

(1− z)θ

=
(
eθ/j − 1− θ

j

)(
1 + o(1)

)
� 1

j2

uniformly in j ≤ n. Hence, by virtue of (1) and (1−x)θ−1−1� x if 0 < x ≤ 1/2,

An = Bn(α) = θ
∑
j≤n

1

j

(
1− j

n

)θ−1

+O(1) = θ
∑
j≤n

1

j
+O(1) = θ log n+O(1).

Consequently, Theorem 1 implies the desired estimate (6).
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[20] E. Manstavičius and Ž. Žilinskas, On a variance related to the Ewens sampling formula,
Nonlinear Anal. Model. Control 16 (2011), 453–466.

EUGENIJUS MANSTAVIČIUS
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