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Moments of additive statistics with respect to
the Ewens sampling formula

By EUGENLJUS MANSTAVICIUS (Vilnius) and VYTAUTAS STEPAS (Vilnius)

Abstract. The additive semigroup of vectors with non-negative integer coordi-
nates endowed with the Ewens probability measure plays an important role as a prob-
abilistic space for many statistical models. In the present paper, we obtain upper esti-
mates of the power moments of additive statistics defined on the semigroup. The statis-
tics are sums of dependent random variables; however, our results have the form of the
Rosenthal and von Bahr—Esseen inequalities. The arguments perfected in probabilistic
number theory are adopted in the proofs.

1. Introduction

Let N, R and C be the sets of natural, real and complex numbers, respectively,
Ny = NU {0}, and n € N. Denote by §2 := N the additive semigroup of vectors
5 := (S1,...,8p), where s; € Ny and 1 < j < n and 0 = (0,...,0) is the zero
vector. The partial order defined by § = (s1,...,8,) <t = (t1,...,t,), meaning
that s; < t; for each 1 < j < n, will be essential throughout the paper. Moreover,
we say that 5,t € Q are orthogonal, denoted by § L ¢, if s1t1 + -+ + Sptn, = 0.
Afterwards, we shall use the notation ¢ || 5 to express that ¢ ezactly enters 5.
Formally, then £ < 5 and ¢ 1. 5 —¢. Using the notation when dealing with
functions defined on €2, we come closer to probabilistic number theory which has
been developed on the multiplicative semigroup N (see [12] and [4]), in which the
partial order is defined by division, and the orthogonality of m,n € N means that
their greatest common divisor equals 1. The semigroup structures and the partial
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orders in €2 and N could have played a greater role in developing parallel theories.
The advantage of applying this approach has been discussed in the first author’s
joint talk [11] and in some papers referred to then. The present paper further
demonstrates the number-theoretic ideas adopted when estimating moments of
functions defined on €.

For a probability measure, we take that one proposed by EWENS [6] in mathe-
matical genetics. It continues to serve in various statistical models and probabilis-
tic combinatorics (see, for example, [10], [1] or [7]). To present it, we introduce
the mapping £ : Q — Ny by 4(5) = 1s; + - -+ + ns, and denote Q,, := £~1(n) =
{s€Q: £(5) =n}. Set also

oo (47 b (o (D)o

if n > 1. Here and throughout the paper, § > 0 is a fixed parameter, I'(z) is
the Gamma function, and, as usual, [z"]g(z) stands for the n-th coefficient of the
power series g(z) if n € Ny. Then the celebrated Ewens sampling formula defines
the probability

- ~ B n 9 Sj 1 B B B
Pt =106 = o) T (£) 7 = 14666 = me p(o) 2
j=1 7
ascribed for each § € Q. Here 1{-} is the indicator function. Now every mapping
G : Q — C becomes a complex-valued r.v., and

Mo (G) :=0m) ™" 3 G(5)P(s) (3)

5€Q,

is its mean value. Let My(G) = G(0) for every G : Q — C.

It is worth recalling the following property of (2). If §;, 1 < j < n, are
mutually independent Poisson random variables (r.vs) with parameters 6/ given
on some probability space and £ := (£1,...,&,), then

P.({s}) = Pr(€=5] L&) =n), seq.

This clearly shows the dependence of coordinates s;, 1 < j < n, under the
probability measure P,. Despite this, some recent results on the asymptotic
behavior as n — oo of distributions of the linear statistics a,181 + -+ + GnnSn,
where a,; € R and 1 < j < n, give general conditions for weak convergence
or sharp estimates of the convergence rates. They are mainly formulated in the
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terminology of the theory of random permutations; therefore, we now present the
connections to the latter.

Let S,, denote the symmetric group of permutations o acting on n > 1 letters.
Each o € S,, has a unique representation (up to the order) by the product of
independent cycles ;:

0= 1" My, (4)

where w = w(o) denotes the number of cycles. Denote by k;(o) > 0 the number
of cycles in (4) of length j for 1 < j < nand k(o) := (k1(0),...,kn(0)). The latter
is called a cycle vector of the permutation o. The Ewens probability measure vy, g
on S, is defined by

Uno({0}) == 0" /(000 +1)--- (0 +n—1)), o€Sy,

where # > 0 is a parameter. Then the case § = 1 corresponds to uniformly
sampled permutations. An easy combinatorial argument (see [1]) gives the dis-
tribution of the cycle vector and the coincidence:

Vo (k(0) = 5) = Pu({5})

if 5 € Q,,. Thus, when dealing with statistics of random permutations expressed
via k(o), we may examine corresponding statistics of random vectors 5 € Q,
taken with probabilities (2).

The linear statistics a1,k1(0) + -+ - + annkn (o) and, in particular, w(o) have
attracted much attention in the recent investigations. However, so far, the ad-
vance in probabilistic number theory has not been adequately followed by the
corresponding results in probabilistic combinatorics. For instance, the results
exposed in [1, Section 8.5] did not reach the level of their analogs in N (com-
pare with [4]). In the recent papers [16] and [3] (see also the references therein),
the first author attempted to fill up this gap.

Let us continue by introducing more definitions. A mapping F' :  — C,
F(0) = 1, is called a multiplicative function if F(5+t) = F(5)F(t) holds for every
pair §,t € N such that § L ¢. Denote a generic vector €; := (0,...,1,...,0),
where the only 1 stands at the j-th place. Then the multiplicative function F' has
the decomposition

F(k) =[] Fkje;) = I £i (%)) (5)

Jj<n Jj<n
Conversely, given a complex two-dimensional array {f;(k)}, 1 < j < n and
k € Ny, satisfying the condition f;(0) = 1, by the last equality, we can define
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a multiplicative function. If f;(k) = f;(1) =: f; for all k € N and j < n,
the function F' is called strongly multiplicative and, similarly, if f;(k) = ff and
0% := 1, then F is called completely multiplicative. By definition, F' may de-
pend on n; moreover, dealing with its values attained on £2,,, the values f;(k) are
irrelevant if jk > n. We treat them arbitrarily to make the appearing expres-
sions well and conveniently defined. Denote respectively by 9, M, and M. the
sets of just introduced multiplicative functions. We stress that P(3) € 9 and
P(kej) = (0/4)%/k! =:p;(k) if k € Ng and 1 < j < n.

Similarly, the condition H(5 + t) = H(5) + H(¢), holding for every pair
5,t € N such that § L ¢, defines an additive function H : @ — C. Let us also set
hj(k) := H(ke;) where h;(0) := 0. Now condition h;(k) = kh;(1), k € Ny and
1 < j < n, implies completely additive functions. The function H is also allowed
to depend on n.

The purpose of the present paper is to establish power moment inequalities
for a complex-valued additive function H(5). The tail probability estimates for
additive functions proposed in [13] and refined in [2], together with a subsequent
use of relevant results for sums of independent r.vs, provide an indirect approach
to deal with the problem if # > 1. The experience (see [14] and [15]) acquired
by the first author in using this approach when deriving inequalities for the case
0 = 1 makes us to believe that the direct proof, as exposed below, gives sharper
results. This has been evidenced by the authors of [18] and [19] when dealing
with the second moment of additive functions defined on general decomposable
structures, including permutations sampled according to the Ewens probability.
In the second moment estimates, there have been a few attempts to find the
optimal constants (see [20] and the references therein).

Denote C) ik
A, = Z hj(k)pj(k)(g(;)])’
jk<n
Bn(a) i= Bu(o; H) = ) |hi(k)apj(k)®(g(;)]k)’
Jjk<n

where a > 0. Here and in the sequel, 3;;<, means summation over j, k € N such
that the product jk < n. Afterwards, < is an analogue of the symbol O(-) with
a constant in it depending at most on 8 and «.

Theorem 1. Let § > 1 be fixed, and H be an additive function, possibly
depending on n. Then
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B,(2)? + B,(a) ifa>2,

M, (|H(5) — A,|Y) <
(| () | ) {Bn(Q)a/Z ijSOKSQ,

uniformly for all n > 1.

The formulas of moments M, (H?), i = 1,2, can be found in [18, page 308].
Comparing, we observe that A,, = M, (H)+O(B,(2)/?). Moreover, B,,(2) differs
from the sum of variances of the summands in H by a negligible term. The latter
has been witnessed in estimate (4) of the same paper [18] for completely additive
functions. This motivates our choice of A, and B,(«). In many cases, they can
be further simplified by taking the main asymptotic terms. Relation (1) is also at
our disposition to implement this. For example, for the number W (s) of different
nonzero coordinates of a vector §, Theorem 1 reduces to the following estimate:

M, (W (5) — flogn|*) < log®?n, a>0,n>2. (6)

The details are given at the end of the paper.

The inequalities in Theorem 1 have the form of the classical Rosenthal’s and
von Bahr—Esseen’s results in the case of independent summands. The dependence
present in our case involves some new facts. For the completely additive function
£(3), which equals n on €, Theorem 1 gives only a trivial estimate. To avoid
the trivialities, one can first split H(3) into the sum of M(5) and the remaining
additive function Hy(5), choosing A € C so that miny By, («; H) is attained. Then
the first function can be eliminated using the inequality |a+b|* < 2%(|a|* + |b|*),
and Theorem 1 can be applied for H)(3).

The authors frankly confess that they have failed to extend the result to
the case 0 < # < 1 when the essential inequality ©(m) < O(n) if m < n is
reversed. In the proof, we adopt ELLIOTT’s [5] argument. The main task is the
analysis of the mean value of e*(®) which is a multiplicative function depending
on a complex parameter z. The needed technique is developed in the next section.
The theorem will be proved at the end of the paper.

2. Mean values of multiplicative functions

This section is devoted to estimates of the mean values M, (F') of mappings
F : Q — RT belonging to more specialized classes. Afterwards, Z£(§):n means
the summation over the set of vectors § € Q,,. If F € M, then (3) and (5) give
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the following expressions:

Om)Mu(F) = Y [[ri(si)fi(sj) = H(HZm ’“)

£(5)=nj<n ji>1
=: [z"] H x;(z; F) =: [2")Z(z; F). (7)

Actually, the values f;(k) if jk& > n, which do not appear in the quantity on the
left-hand side, can be chosen in a convenient way, say, equal to zeros or ones.
Here and in the sequel, j,k € N. On the other hand, if ' € 9., that is, for
fi(k) = f;(1)k, 4,k > 1, there is no need to do so.

Set ITy(F') := 1, and

— H <1+ij(k)fj(k)) , 1<m<n.

From the definitions, one directly obtains the inequality

Sa(F)i= S My (F)O(m) < T, 1 (F) (8)

o<m<n

if F' is a non-negative multiplicative function and n € N.
We begin with a convenient identity. Introduce a function PU) € 9 such
that pl(.J)(k) = p;(k) if i # j, and p(])(k) =0ifi=jand k € N. Let

0 (n Z PU(5) = ["]e /I (1 — 2)7°.
L(5)=n

Define the following conditional mean value:

@(J) Z le Si fz Z @(])( ) Z P(J)(E)F(E)

é(s =ni<n 2(5)=n

MY(F) =

Lemma 1. Let F' : Q — C be a multiplicative function, then

nO(n = 3"kt (R)p; (k)OO (n — jK)MY (F).
jk<n

In particular, if F' € 9., then

nO(n) =0y f1 My (F).

i<n
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PrRoOOF. This is just the identity

[2"](2Z (2; F)) = [2"] xZX;(m,F) H Xi(z; F) | 5

j>1 i>1,i#]

nevertheless, we provide an elementary proof exposing the idea used in the sequel.
The decomposition of 5 € €2, into a sum of orthogonal vectors, namely,

s=ke;j+t, 1<k<n/j e Lt

is essential in it. Check that ké; || § and t; = 0 in this case. Now

Us)= > Llkej)= > jk=n

e jk<n,
ke lls

and

nOn)M,(F)= > F(5)P(5) Y jk.

o=n 5
Applying the decomposition and changing the summation order, we obtain
n@(n)M,(F) = Y jkfi(k)p;(k) Y F(OP()
jk<n £,t;=0
L(t)y=n—jk
= 3" Gkt (k)p; (k)0 (n — jk)MY . (F).
Jk<n

The lemma is proved. |

Corollary 1. If 0 > 0 and F > 0 is a multiplicative function, then

nO(n)M,(F) < > jkf;(k)p;(k)O(n — jk)M,_j(F).
jk<n

PROOF. By the definitions above, G)(j)(m)Mﬁf)(F) < O(m)M,,(F) for each
1<73<m<n. [l

Lemma 2. If > 0 and F' € M is such that 0 < f;(k) < K for k,j <n and
n > 1, then

n

nO(n) M, (F) < 0K, (F) (1 +0 (Klog(” D+ 1)) .
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Proor. By Corollary 1,

nOM)Mu(F) < K > mO(n —m)My_m(F) Y p;(k)

1<m<n jk=m

=0K Y O(m)M,(F)

o<m<n

+K Y On—m)My_m(F) (m > pik)—0]. (9)

1<m<n Jjk=m

The first sum is just X, (F). In the second, the term corresponding to m = 1 is
zero. For m > 2, we observe that

o 02 N2 g
0sm ), pik) 0=y + 0 D () (k—1)!

jk=m jk=m,
g k>2

30\ 202 L\*?2 1
<0 il il
- <m—1) - m Z (m) (k—2)!

2<k<m/2

m—1
< i (max {m (36 ) } + 2960/2> =: 790(6)7
m \ m>2 m—1 m

where C'(6) > 0 is a constant depending only on 6. Plugging this into (9),
we obtain

nO(n) M, (F) < 0K Y ©(m)M,(F) <1+ co) > (10)

n—m
0<m<n

This also yields a rough estimate mO(m)M,,(F) < KX,,(F), 1 < m < n, needed
below. Observe that

Z " Z ©(m)M,,(F) < Z"(F)+K Z 1 S (F)

n—m n m(n—m) "
1<m<n/2 n/2<m<n n/2<m<n
1+ Klog(n+1
n
Inserting this into (10), we complete the proof. O

In the sequel, we will apply the just proved result in a more convenient form.
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Corollary 2. If § > 0 and F € 9 is such that 0 < fj(k:) <1fork,j<n
and n > 1, then

(1) —1
M, (F) < exp GZ L
Jj<n
PROOF. It suffices to apply (1) and the well-known asymptotic formula
1 1
Zf, =logn+~v+0 () ,
: ] n
Jj<n

where v denotes the Euler-Mascheroni constant. Indeed, using Lemma 2 and (8),
we see that

M, (F) <T(0+1)n *IL,_1(F) (1 +0 (“g(”n“)»

n

<T(0+1)exp 97+9ij(1])~_1 (HO(W»

j<n
of.(1)/3 = 0N\ £k
% jlle 0f;(1)/3 (1 _,_; (]) k')> ) (11)

Applying the inequality
e — 1 — 2| < |z]%el”! (12)

if x € R, we easily estimate the last product:

o081/ 05;(1) | <~ (0\" fik)
I (1203 (5) 4)

j<n

< [Je W/ (1 L) i 9)
j j

jsn

, ‘ o2 . oNZ
B 1 SO e () ) < TT (14 () RARY
=11 i) )= G

Jj<n i<n

This and (11) complete the proof of the corollary. O

O(n—j)

Observing that o0

<1if 8 >1 for all j <n, we also have

—109(n—j)
o(n)

M, (F) < exp 92 fj(l).

js<n
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Remarks. We first stress the parallelism with HALL’s [9] paper exploring
number-theoretic submultiplicative functions. Inequality (11) also holds for a sub-
multiplicative function G : £ — R which by definition satisfies the inequality
G(5+1) < G(5)G(1) for all 5,1t € Qif 5 L ¢. For example, such is the statistics
G(5) =l.em.{j: s; > 1}, related to the group-theoretical order of a permutation
in the group S,. Here the letters l.c.m. stand for the least common multiplier
of the indicated natural numbers. This more general case can be dealt with by
a repetition of the used argument or by a direct application of Lemma 2. Indeed,
given a submultiplicative function G : Q — [0, 1], we have

G(k) < [ G(kje;) =: T 95(k))-
Jj<n ji<n
Further, one can define F' € 9 so that f;(k) = g;(k) to obtain G(k) < F(k) and
a subsequent ability to apply Corollary 2 for the function F'.

Secondly, if # = 1 and F' is a multiplicative function satisfying the conditions
in Corollary 2 and the values f;(1) for en < j < n, where 0 < € < 1, are close
to 1, one can substitute €7 in (11) by a smaller quantity (see [17]). Constructing
appropriate indicator functions and using Lemma 2 or (11), one can obtain sharp
estimates of the probabilities of vectors with a forbidden pattern. Note that the
lower estimates have been discussed in [11].

In the next step, we will need some facts about the algebraic structure (&, ),
where & := {G : Q — C} and * is the convolution defined as follows:

FxG(t):=)Y F(5)G(E-35), steq.
s<t

Let I(t) = 1 and E(t) = 1{t = 0} be the indicator function of the subset {0}.
It is straightforward to check that (&, x) is an Abelian group in which E serves as
the neutral element. The inverse of I in the group is an analogue of the Mobius
function. Let us leave the notation p for it. The latter is a multiplicative function
such that pu(e;) = —1, and p(re;) = 0if r > 2, where 1 < j < n. It is easy to
check that the relations F' = I +*G and G = pux F' are equivalent. Finally, we stress
that 91 is a subgroup in &.

Lemma 3. Let § > 1 and F' € 9 be such that f;(1) > 1 for each j < n.
Then

Mo(F) < expd 3 fj<k>pj<k>(w S e hod ) (14)

Jk<n ) i<n

for all n > 1.
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PROOF. Let F be as in the lemma. Define a function G = F * p. Then
g;(1) = f;(1) =1 >0, and hence G(f)p?(t) > 0. Moreover, if u?(f + §) # 0, then
t 15 If 5€Q, we have

My (Fp?)
=0e(m)™ Y FR)p’(k)P(k) = 6(m)" G5+ PG 4D
"
S G ®P@ Y PE)
£(H)<m 0(5)=m—t (D)
= 6(m — (D)) o)
2z cow DPO = g0m <1l (14 (0 - 0Py O

In the last step, we used the inequality

O(n —£(5)) O(n — js;)
om = L —om

Jj<n

valid for all n > 1, ¢(5) < n and 6 > 1. The latter implies

My (Fp?) < exp { > (i) - )p](l)ggz";)j)}

Jj<m
ifo<m<n.

In the general case, we reorganize the expression of M, (F'). We first uniquely
split k =+ 5 with £ L 5, where 5 € (No \ {1})", f € {0,1}", and t; = 1 if and
only if k; = 1. Then, keeping this agreement in the summation carried out in the
next few lines, we proceed as follows:

M (F)=0(n)~"" Y FEPEROF(E)P(S)

2(t+3)=n
tls

< ¥ rore 2% ep w2 Y Fowmro.
£(5)<n 6(71) £(t)=n—L(3)

The inner sum was just estimated. Since

3 F(E)P()e <H(1+ S 5k (@(f’“))

L(5)<r j<r 2<k<r/j

<expd S fﬁk)m(k)e(g(?j"”

Jjk<r
k>2



270 Eugenijus Manstavic¢ius and Vytautas Stepas

for 0 < r < n, we further obtain

M, (F) < exp Z(f](l) —1)p;(1) + Z fi(k (g(_n)jk)

i<n jk<n
K>2

= exp Z f] ij (n) )

jk<n

The lemma is proved.

3. Moments of an additive function

We now embark on the power moments of a complex-valued additive func-
tion H(5). Throughout the section, we assume 6 > 1 and allow dependence on 6
of the constants in < and of ¢,cq,...,C,Cq,... introduced afterwards. Their
dependence on other parameters will be additionally indicated. Let A := A,, and
B := (B,(2))"/? be the quantities defined in the Introduction. Define the multi-
plicative function F(5) = e*#()/B swhere z € C, and set o, (2) = e *4/B M, (F).
Afterwards, we adopt Elliott’s [5] argument.

Lemma 4. Assume that 0 < h;(k) < dB holds for some § > 0 and all
products jk < n. Then there is a positive constant ¢(d) such that |@,(2)| < ¢(d)
uniformly in z if |z <1 and n > 1.

PROOF. Inequality (12) gives us

ij n*]k)

jk<n )
k>2

<> pi(k) ZZ( ) Z(eg/j—1—§><<0. (15)

jlic>§2n i<nk>2 i<n

Applying this and the Cauchy—Schwarz inequality, we have

1/2

‘ =3 my(1) (n)j)‘gB 3 pik) "_Jk) < B.

i<n jk<n
k>2
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In the case —1 < z = r < 0, we have 0 < F(5) < 1. Thus, (13), the inequality
above and |e™® — 1 + x| < 22 if 2 > 0 yield the estimate

Jj<n

< exp Z (erhj(l)/B _1— Thj(l)) pj(l)@(n —7)

j<n

2 .
pi() 2 } <exp{r’) <e.

In other words, ¢, (r) < Cq for —1 < z=7 <0.
If0<z=r <1, then F(5) > 1. Arguing as in Lemma 3, we obtain

rhs O(n — jk n—]) rA
(Pn(r) < exp{ Z e hJ(k)/Bpj(k ij B}

Jk<n i<n

< exp{z

j<n

(n —jk v rh;(k
— exp Z p;(k )J ) (erhj(k)/B _1_ g ))
Jjk<n

+ Z p;(k Ol ~ ]k ij n_)J)}

Jjk<n
r2em? 9 O(n — jk O(n — jk)
< exp B Zhj(k) p;(k) + Z 7)
jk<n jk<n

kE>2
< exp {rQer‘s}.
Hence ¢, (r) < Co(d) if 0 < z=1r < 1.
In the general case when r = Rz and |z| < 1, we have

len(z)l <Om)~" Y P(3)|e
£(3)=n
Lemma 5. Assume H(S) is a complex-valued additive function such that

|hj(k)| < 6B holds for some § > 0 and all products jk < n. Then for each o > 0,
there is a positive constant ¢q(«, ) so that the inequality

M, (|H(s) — A|*) < ¢1(a, 5) B (16)

z(H(5)—A)/B < pn(r) <max{C,C2(8)}. O

holds for all n > 1.
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PROOF. Since the weighted power means
_ ay) 1/
(M (|H(5) - A]"))

do not decrease as « increases, it will suffice to prove inequality (16) for integer
values of a.

By considering real and imaginary parts separately, we see that there is no
loss in generality in assuming that H(5) takes only real values, and, indeed, only
non-negative real values. For example, we can define additive functions H;(5),
i=1,2, by

hy (k) = {hj(k) if h; (k) >0, oy () {—hj(k) if h; (k) <0,

0 otherwise, 0 otherwise,
and ( )
O(n — jk .
Ay = Z hi,j(k)pj(k)Wa i=1,2.
Jk<n
Then
2
|H(5) — A|* <2 " |Hi(5) — Ain|*.
i=1

Summing over the vectors § such that £(5) = n justifies our assertion.
For every positive integer [, we calculate the I-th derivative of ¢, (z) evaluated
at z = 0. Namely,

00 =2 S pEHE - a) = U
£(38)=n

By Cauchy’s integral representation theorem,

I
oi(0) = 7/ 2 o (2)dz,
j2=1

27

and by Lemma 4,

I -
le(0)] < 527”%1'1)%\2 lon(z)] < 1e(d).

This completes the proof of Lemma 5. O
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Let us remark that those j, k, jk < n, for which |h;(k)| > 0B holds, satisfy

. o
I R T il IS
hy 0] =55 jk<n

and are in this sense few.

Lemma 6. Suppose J C {1,2,...,n} and define

L= 1) = S 2

jeJ )

Let w(5) denote the number of nonzero coordinates s; such that j € J or s; > 2
and « > 0. Then there is a positive constant ca(«) such that the inequality

My (w(5)%) < co(@)(L+ 1) (18)

holds uniformly for all n,m if 1 < m < n.

PROOF. As we have remarked in the proof of Lemma 5, it will suffice to
prove inequality (18) for all integers o =1 > 0.

We argue inductively on [. For ! = 0 inequality (18) is trivially valid. Assume
that it holds for { =0,1,...,v —1,v > 1. Then

My (w(3)") = O(m) ™! P(5)w(5)" = O©(m)~" P(s)w(s) " 1
£(5)=m £(5)=m kej;l|s
—om ™ Y Y P
jk<m 5(5‘):=]:n

Here and further on, the asterisk means that in the case k = 1 the summation is
taken only over j € J. If s; = k, say § = ke;+t where &; L ¢, then ((t) = ((5)— jk
and w(5) < 1+ w(t). According to our induction hypothesis, the inner sum

> P(+kew(+ke) " < Pke;) > PO +w(®)

0(F)=m—jk —m—
EijJ L(t)=m—jk

Y POy ( f 1)w<f>i 5

(D=m—ijk =0
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<6m-itpm Y ("] ey
=0
< O(m — jk)p;(k) onax co(i)(L+ 14 1)1

< Cs(v)0(m — jk)p; (k)(L +1)"~".

Hence, by (15),

O(m — jk)

M (w(5)") £ Co()(L+ 1) 3 =

jk<m

< C3(v)(L+1)""HC + L) < Cy(v)(L +1)".

p;j(k)

Setting co(v) = Cy(v), we complete the proof of Lemma 6. O

Lemma 7. Let a complex-valued additive function H(5) and § > 0 be such
that either |h;(k)| > 6B or h;(k) = 0 is true for each of the products jk < n.
Then for each v > 1, there is a positive constant c3(a, 0) so that the inequality

M, (|H(3) — A]*) < cs(a, 6)Bn(a) (19)

holds for all n > 1.

PROOF. Let J be the set of indices j < n such that h;(1) # 0, and let L, w(5)
be as in Lemma 6.
By Holder’s inequality, we see that

[HE)|" <w ) Y bkl

ke;lls
Hence
STPEHG) < Y k) S P)w(s) (20)
L(3)=n jk<n #)=n
Since o "
n—j 72
= jkz:n Dy (k) @(n> <9
Ihj(k)[>6B

due to (17), the inner sum on the right-hand side of (20) is by Lemma 6 no more
than
co()O(n — jk)p; (k) (L + 1) < C5(a, 8)O(n — jk)p; (k). (21)
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Inequalities (20) and (21) show that

o) Y PEIHEI <Calad) 3 0103 (02§ =Cotar0) B

£(5)=n jk<n
Moreover, Holder’s inequality and (17) show that

a—1

|A]~ < 3 pj(k)w By(a) < 820-9)B, (a).
et S(n)
Ihj(k)[>6B

Collecting the last two inequalities and using Holder’s inequality once again,
we finish the proof of Lemma 7. O

4. Proof of Theorem 1

We define additive functions H®(3), i = 1,2, by

h;(k) if |h;(k)| < B, h;(k) if |h;(k)| > B,
hgl)(k) = J( ) 1 | ]( )| — h§2)(k) = J( ) 1 | ]( )|
0 otherwise, 0 otherwise,
and o )
(i) .— ) (1Y n=J =

jk<n

Since, for A := A,, defined in the Introduction,

2
[H(s) - A]* <20y |HD(5) - AD|°,
i=1
the desired inequality of Theorem 1 in the case a > 2 follows from Lemma 5
applied to the function H™")(5) with § = 1, together with Lemma 7 applied to
the function H?)(5) with § = 1.
If 0 < a <2, then

M, (JH(3) — A1) < M, (|H(3) - A2),

and the result follows from the just established inequality.
Theorem 1 is proved. |
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Let us apply it to the additive function

H(s) = W(5) = 1{s; > 1}

jsn

and verify (6). Now h;(k) = wj(k) = 1{k > 1} if j < n; therefore, the corre-
sponding A, and B, («) can be simplified. To see this, applying the singularity
analysis (see [8, Chapter VI|), we obtain
O(n — jk) 1, 607/ 1 —92/5
> pik)

= z

O(n) O(n) (1-2)°

2<k<n/j

. 0 1
_ (ee/J —1- 3)(1 +0(1)) < 72

uniformly in j < n. Hence, by virtue of (1) and (1—z)?" ' -1 < 2 if 0 < x < 1/2,

Ay = By(a) :92%(1 - %)9_1 +0(1) = 9Z%+0(1) = 0logn + O(1).

j<n i<n

Consequently, Theorem 1 implies the desired estimate (6).
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