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Geodesics and geodesic circles in a geodesically convex surface:
a sub-mixing property

By NOBUHIRO INNAMI (Niigata) and TOSHIKI KONDO (Niigata)

Abstract. Let M be an orientable finitely connected and geodesically convex

Finsler surface with genus g ≥ 1. We prove that if all geodesics in M are reversible,

then for any number ε > 0 and for any points p, q ∈ M , there exists a number R > 0

such that any geodesic circle with center p and radius t meets the ε-ball with center q

for any t > R. Most of the proofs do not use the reversibility assumption for geodesics.

1. Introduction

In a connected smooth Finsler manifold M , a geodesic is by definition a so-

lution of the Euler–Lagrange equation of the length function of piecewise smooth

curves. A geodesic sphere SM (p, t) with center p and radius t is by definition

the set of all terminal points of geodesics emanating from p with length t. A dis-

tance sphere SdM (p, t) with center p and radius t is by definition the set of all

terminal points of minimal geodesics emanating from p with length t. Obviously,

SdM (p, t) ⊂ SM (p, t) and, generally, SdM (p, t) ̸= SM (p, t).

Light has the nature behaving like both a particle and a wave. Mathemati-

cally, the geodesics describe the trajectories as the behavior of the particles, and

the geodesic spheres describe the behavior of wave fronts which spread according

to Huygens’ principle. The indicatrix of a Finsler metric describes the shape of

an infinitesimal wave front (cf. [25, (1.17)]).
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These facts suggest that the geometry of geodesics in a Finsler manifold is

useful to study the global behavior of wave fronts. In fact, the triangle inequality

of the intrinsic distance d(·, ·) induced by the Finsler metric is almost equivalent to

Huygens’ principle when we consider the geodesic spheres as wave fronts. Namely,

for any point p1 in a minimal geodesic from p to q, SdM (p1, d(p1, q)) is inscribed

in SdM (p, d(p, q)) at the point q if and only if, for any point q1 in SdM (p1, d(p1, q)),

we have d(p, q1) ≤ d(p, p1) + d(p1, q1), where the equality holds ⇔ q1 = q.

We have studied the behavior of geodesics and the asymptotic behavior of

geodesic circles in a 2-torus equipped with a Riemannian metric in [18], and

have proved ε-density of geodesic circles with sufficiently large radii, based on the

following facts: the universal covering space of a torus is topologically a plane R2,

which has a nice property such as the Jordan curve theorem, and the covering

transformation group is isomorphic to Z2, where Z is the set of all integers.

In this paper, we study the same properties for surfaces with Finsler metrics

and with genus ≥ 1. We make their special covering spaces in which Jordan curve

theorem is true and on which Z2 acts, and work in them.

The length of a minimal geodesic from p to q equals the distance from p to q.

However, a shortest curve may not be a geodesic if, for example, an interior point

of it touches the boundary of M and it is not smooth at the point of contact.

We say thatM is geodesically convex if there exists a minimal geodesic from p to q

in M for any points p, q ∈ M . All forward complete Finsler manifolds without

boundary are geodesically convex because of the Hopf–Rinow theorem (cf. [25]).

We say that a geodesic c : [a, b] → M is reversible if the reverse curve

c−1 : [a, b] →M , c−1(t) = c(a+b−t), is a geodesic as a point set. If F is reversible,

i.e., F (x, y) = F (x,−y) for all y ∈ TxM , then all geodesics are reversible. Here

TxM denotes the tangent space of M at x. It is well known that all geodesics

are reversible in (M,F ) if F = α + β is a Randers metric, where α is the norm

induced by a Riemannian metric and β is a closed 1-form with ∥β∥α < 1 (cf. [10],

[16], [25]).

We say that a surface M is finitely connected if there exist a compact sur-

face S, with or without boundary, and finitely many points p1, . . . , pk ∈ S such

that M is homeomorphic to S ∖ {p1, . . . , pk} (cf. [26, p. 41]).

The main theorem and corollaries are the following.

Theorem 1.1. Let (M,F ) be an orientable finitely connected and geodesi-

cally convex smooth Finsler surface with genus g ≥ 1. Assume that all geodesics

are reversible. Then, for any number ε > 0 and any points p, q ∈M , there exists

a number R > 0 such that the geodesic circle SM (p, t) with center p and radius t

meets the ε-ball B(q, ε) with center q for any t > R.
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Here SM (p, t) ∩ B(q, ε) consists of many subarcs of SM (p, t) (see Figure 1),

although we do not count the number of those subarcs (see Corollary 1.5 below).

In the process of the proof of Theorem 1.1, we know the movement of subarcs

of SM (p, t) in B(q, ε): There exists a geodesic circle SM (p, t0) passing through q

while a subarc of SM (p, t) gets into B(q, ε) and leaves.

p

Mq

S
M
(p,t)

B(q,")

q

@M

S
M
(p,t)

Figure 1. The propagation of geodesic circles.

Remark 1.2. If a Finsler surface (M,F ) is not orientable, then M has an ori-

entable double covering surface π :M1 →M . If a Finsler metric F1 of M1 is the

pullback of F by π, i.e., F1 = π∗F , then the image of any geodesic in (M1, F1)

by π is a geodesic in (M,F ) with the same length. Hence, (M1, F1) satisfies the

assumption of Theorem 1.1. Assume that the genus ofM1 is greater than or equal

to one. Choosing p1, q1 ∈ M1 such that π(p1) = p and π(q1) = q, and applying

Theorem 1.1 to p1 and q1 inM1, we have the same conclusion for p and q through

the projection π.

The following corollary is a direct consequence, but the situation may often

arise when (M,F ) is complete.

Corollary 1.3. Let (M,F ) be an orientable Finsler surface such that all

geodesics are reversible and p, q ∈ M . Assume that there exists a surface M1

embedded in M containing p and q and with genus g ≥ 1 such that M1 is finitely

connected and geodesically convex. Then for any ε > 0, there exists a number

R > 0 satisfying the same property in Theorem 1.1.

Let E : Ωp,q → R be the energy function on the path space Ωp,q from p to q.

The critical points of E are geodesics from p to q in M (cf. [22], [25]).

Corollary 1.4. Let (M,F ) be as in Theorem 1.1. For any number ε > 0

and any points p, q ∈M , there exists a number R > 0 such that the set of critical

values of E is ε-dense in [R,∞).
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To clarify the role of the geodesic reversibility assumption, we study geodesics

and geodesic circles under more general settings. Hereafter, let (M,F ) be an ori-

entable finitely connected and geodesically convex smooth Finsler surface with

genus g ≥ 1. From the assumption on the genus of M , there exist g simple closed

curves c1, . . . , cg in M such that they are disjoint and M ∖ ∪gi=1ci is connected.

We assume that g − 1 curves of them, say c1, . . . , cg−1, are reversible geodesics.

This assumption is automatically satisfied if all geodesics are reversible in the

Finsler surface. We study geodesics in M ∖ ∪g−1
i=1 ci and the asymptotic behavior

of geodesic circles. Namely, we develop geometry of geodesics inM , using no geo-

desic which intersects c1, . . . , cg−1. The set M ∖∪g−1
i=1 ci and its covering space N

are geodesically convex when c1, . . . , cg−1 are reversible geodesics. In fact, if the

distance d1(p, q) from a point p to a point q in M ∖ ∪g−1
i=1 ci is defined as the

infimum of the lengths of all piecewise smooth curves from p to q in M ∖∪g−1
i=1 ci,

then M ∖ ∪g−1
i=1 ci is geodesically convex with respect to d1. The distances of M

and M ∖ ∪g−1
i=1 ci induced by F are different, but a geodesic in M ∖ ∪g−1

i=1 ci re-

mains a geodesic in M . We make use of those geodesics which do not intersect

c1, . . . , cg−1 in M to obtain the properties mentioned in Theorem 1.1.

The following corollary is a rough estimate of the number of critical points

and sufficiently large critical values of E. In the following corollary we use

the phrase ‘a pencil of geodesics’, which is a set of geodesics converging to or

narrowly diverging from a point.

Corollary 1.5. Let (M,F ) be as mentioned above. Let n be any positive

integer. For any number ε > 0 and any points p, q ∈ M ∖ ∪g−1
i=1 ci, there exists

a number R > 0 such that at least n pencils of geodesics emanating from p with

length t intersect the ε-ball with center q for any t > R where the sequences of the

lifts of these n pencils of geodesics into N converge to rays with different slopes

as t→ ∞.

Here, the covering space N of M ∖ ∪g−1
i=1 ci is defined in Section 2, and the

notion of slopes for rays is defined in Subsection 4.2. We work in the covering

space N where the covering transformation group Φ is isomorphic to Z2. Such

a covering space can be constructed because M ∖ ∪g−1
i=1 ci is considered to be

a subset in a 2-torus. Hence we find and use many analogous results on the

behavior of geodesics on 2-tori. Working in N , we prove Theorem 2.3, which is

sufficient for Theorem 1.1.

The geodesics on 2-tori of revolution embedded in the Euclid space E3 have

been studied byBliss[4] andKimball[20]. Recently,Gravesen, Markvorsen,

Sinclair and Tanaka [9] have studied the cut locus in a 2-torus of revolution.
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Innami [14] has studied geodesics in a 2-torus having poles. Morse [23] and

Hedlund [11] studied the geodesics on arbitrary Riemannian tori whose lifts

into the universal covering space are straight lines. Busemann and Peder-

sen [6] have determined how the straight lines behave in the universal covering

planes of 2-tori with one-parameter groups of motions. Their methods are uni-

fied by Bangert [3] with those of Mather [21] and Aubry-Le Daeron [2] to

study a monotone twist map of the annulus and the discrete Frenkel–Kontrova

model (cf. [19]). The method of finding straight lines by displacement functions

can be applied in more general situations. Indeed, in [3], we can see the com-

plete classification of straight lines in the universal covering plane of an arbitrary

2-torus, as an application. Recently, Schröder [24] has generalized those results

for non-symmetric distance cases. We modify the methods in [6] to have analo-

gous results for studying the asymptotic behavior of geodesic circles. In the light

of the classification of straight lines, we can study the limit circles which are the

level sets of Busemann functions.

Let Gt : SX → SX be the geodesic flow of a unit tangent bundle SX

of a complete Finsler manifold X without boundary. It follows from Poincaré’s

recurrence theorem that for almost all y ∈ SX, there exists a sequence of numbers

tn such that tn → ∞ and Gtn(y) → y as n → ∞ if the volume of X is finite.

We can estimate the averages of the return time for almost all y ∈ SX by using the

Birkhoff ergodic theorem (cf. [1]). In comparison with these results, Theorem 1.1

states that some terminal points of geodesics emanating from p and with length

t > R always exist near q. An event occurs at a point p, its influence spreads

according to Huygens’ principle, and after the time R, at the point q, it is affected

every time less than ε.

We say that Gt is topologically mixing if for any two open sets U and V of the

unit tangent bundle SX, there exists a number R > 0 such that Gt(U) ∩ V ̸= ∅
for all t with |t| > R. Eberlein [8] has proved that the geodesic flow Gt is

topologically mixing on SX if the Riemannian manifold X is a compact visibility

manifold of non-positive curvature. We are interested in the existence of wave

fronts more than the directions of trajectories, so it is important to study the

asymptotic behavior of geodesic spheres related to the property of topological

mixing in the underlying manifold, since the geodesic circles spread according to

Huygens’ principle.

We say that the geodesic flow Gt is topologically sub-mixing if for any open

sets U and V of X, there exists a number R > 0 such that geodesic circles

ρ(Gt(SqX)) = expq(tSqX) intersect V for some point q ∈ U and for all t > R,

i.e., Gt(ρ−1(U)) ∩ ρ−1(V ) ̸= ∅, where ρ : SX → X is the natural projection,
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and expq : TqX → X is the exponential map at q. Here we note that SX(q, t) =

expq(tSqX) is the geodesic sphere with center q and radius t. The geodesic flow

of a flat n-torus, n ≥ 2, is topologically sub-mixing, but not mixing. Sierpinski

(in 1906) (cf. [12]) has estimated the asymptotic difference between the area πt2

of the circle S(t) with radius t and the number N(t) of lattice points contained

in S(t) in the Euclidean plane, proving that |πt2 −N(t)| ≤ O(t2/3), which means

that N(t+ε)−N(t) = π(t+ε)2−πt2+O(t2/3) = 2πεt+O(t2/3) → ∞ as t→ ∞.

We find the similar estimate for a flat n-torus Tn in [7], where the error term is

O(tα), 0 ≤ α < n−1. These properties prove the topological sub-mixing property

of Tn. In the previous paper [15], we have investigated the asymptotic behavior

of geodesic circles in a 2-torus of revolution and proved that the geodesic flow

of a 2-torus of revolution is topologically sub-mixing. In [18], we have proved

the geodesic flow of any 2-torus is topologically sub-mixing. Theorem 1.1 states

that the sub-mixing property of a geodesic flow is true for a much wider class of

surfaces.

2. A surface cut along simple closed geodesics

2.1. Cutting and opening M along simple closed geodesics. We cut and

open M along simple closed geodesics c1, . . . , cg−1.

c
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Figure 2. The case of genus 2.

We construct an orientable finitely connected Finsler surface (M0, F0) with

boundary and with genus one (see Figure 2), satisfying the following properties:

There exists a map I :M0 →M such that

(1) the interior Int(M0) of M0 is isometric to M ∖ ∪g−1
i=1 ci, i.e., the restric-

tion I : Int(M0) → M ∖ ∪g−1
i=1 ci is a diffeomorphism such that F0(x, y) =

F (I(x), dIx(y)) for all x ∈ Int(M0) and y ∈ TxM0.
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(2) for any point x ∈ ∪g−1
i=1 ci, I

−1(x) consists of exactly two points in the bound-

ary ∂M0 of M0. When those two points are identified, the quotient space

M0/I is naturally thought as M by the quotient map M0/I →M .

The boundary ∂M0 of M0 consists of I−1(∪g−1
i=1 ci) and I−1(∂M) (the orig-

inal boundary of M) as surfaces. Hence ∂M0 has at least 2(g − 1) connected

components. The set {p1, . . . , pk} is contained in the boundary ∂M of M =

S ∖ {p1, . . . , pk} as a topological sub-space in a certain compact surface S, but

we think no point in ∂M0 is sent to p1, . . . , pk by I.

The finitely connected Finsler surface M0 with genus one defined as above

is geodesically convex, since M is geodesically convex and all ci, i = 1, . . . , g − 1,

are reversible geodesics. The boundary of M0 is not empty if g > 1.

Notice that c is a geodesic in the interior Int(M0) of M0 if and only if I(c) is

a geodesic inM∖∪g−1
i=1 ci. It should be noted that there exists no geodesic touching

∂M0 any place other than its endpoints, because all curves ci and reverse curves

ci
−1 are geodesics for i = 1, . . . , g − 1, and the geodesic is uniquely determined

from the initial condition. Namely, any geodesic c whose end points are in Int(M0)

satisfies that I(c) ⊂ M ∖ ∪g−1
i=1 ci. We define a distance d0(p, q) for p, q ∈ M0 as

usual; d0(p, q) is the infimum of the lengths of piecewise smooth curves from p to

q in M0. Then a shortest curve from p to q in Int(M0) is a minimal geodesic c in

Int(M0), i.e., d0(p, q) is the length of c.

Minimal geodesic
Minimal geodesic

MM
0

I

p

q

I(p)

I(q)

Figure 3. Minimal geodesics in M0 and M .

Obviously, d0(p, q) ≥ d(I(p), I(q)) for any p, q ∈ M0, where d(·, ·) is the

distance on M induced by F . In fact, if a minimal geodesic γ from I(p) to I(q)

in M crosses ci for some i = 1, . . . , g − 1, then the minimal geodesics from p to q

in M0 are longer than γ (see Figure 3).

2.2. Another geodesically convex surface M0 with genus one. Assume

in this subsection that all geodesics in M are reversible. Since M ∖ ∪g−1
i=1 ci is
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a geodesically convex set, we have g−1 simple closed geodesics di, i = 1, . . . , g−1,

such that

(1) ci ∩ di is a single point for each i = 1, . . . , g − 1;

(2) ci ∪ di, i = 1, . . . , g − 1, are mutually disjoint.

Then there exists an open neighborhood Ui of ci ∪ di such that Ui ∖ ci ∪ di is

homeomorphic to an open cylinder S1 × (0, 1) for each i = 1, . . . , g − 1. As was

seen before, we make an orientable finitely connected and geodesically convex

Finsler surface (M0, F0), M0 =M∖∪g−1
i=1 ci∪di, with boundary and with genus 1,

such that there exists a map I :M0 →M satisfying the same property as above.

In this construction, the boundary ∂M0 is the union of I−1(∪g−1
i=1 ci ∪ di) and

I−1(∂M). Each connected component of I−1(∪g−1
i=1 ci ∪ di) is a broken geodesic,

but not a (smooth) geodesic.

2.3. The geodesic circles in M0. Let M1 be a finitely connected and geodesi-

cally convex Finsler surface. For a point p ∈M1 and a unit vector v ∈ SpM1, let

γv : (−a(v), b(v)) → M1 be a unit speed geodesic such that γ̇v(0) = v, possibly

a(v) = ∞, b(v) = ∞. Here the interval (−a(v), b(v)) is supposed to be maximal,

i.e., there exists no proper extension of γv in M1. If M1 is complete and without

boundary, then a(v) = ∞ and b(v) = ∞ for all v ∈ SM1.

For a number t ∈ (−∞,∞), let SM1(t) be the set of all v ∈ SM1 such that

t ∈ (−a(v), b(v)). Then a map Gt : SM1(t) → SM1 is defined by Gt(v) = γ̇v(t) for

any v ∈ SM1(t). Let ρ : SM1 → M1 be a natural projection of the unit tangent

bundle of M1. Then SM1(p, t) := ρ(Gt(SpM1 ∩ SM1(t))) = {γv(t) | v ∈ SpM1(t)}
is called a geodesic circle with center p and radius t in M1 for any point p and

any t > 0. If M1 is complete and without boundary, then SM1(t) = SM1 for all

t ∈ (−∞,∞) and Gt is called the geodesic flow on SM1 (cf. [1]).

Hereafter, let M0 denote a surface constructed in Subsection 2.1 from M .

We emphasize that I(SM0(p, t)) ⊂ SM (I(p), t) for all t > 0 and any p ∈ M0.

This inclusion relation is not true for the distance spheres, i.e., I(SdM0
(p, t)) ̸⊂

SdM (I(p), t), in general. Here SdM0
(p, t) := {q ∈M0 | dM0(p, q) = t}.

2.4. A covering surface and its transformation group. We make a sur-

face S0 from S ( ⊃ M) in the same way as M0 from M . Then we think

M0 = S0 ∖ {p1, . . . , pk}. Let k′ be the number of the connected components of

the boundary ∂M ofM . Recall that the genus ofM0 is one, ∂M0 has 2(g−1)+k′

connected components and k points p1, . . . , pk are removed. If 2(g− 1)+ k′ disks

Ki, i = 1, . . . , 2(g − 1) + k′, are glued along the boundary ∂M0 and k points
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pj , j = 1, . . . , k, are plugged up at the original location in S0, then this opera-

tion turns S0 into a 2-torus topologically. Hence, its universal covering surface is

topologically a plane R2, and the covering transformation group Φ is isomorphic

to Z2. We define a surface N by

N = R2 ∖ Φ(∪2(g−1)+k′

i=1 Int(K̃i) ∪ {p̃1, . . . , p̃k}),

where K̃i (resp., p̃j) is a lift ofKi (resp., pj) into R2 for each i = 1, . . . , 2(g−1)+k′

(resp., j = 1, . . . , k). Then N is a covering surface of M0 with a natural covering

map π : N →M0.

Lemma 2.1 (Jordan curve theorem). Let C be a simple closed curve in

Int(N). Then N ∖ C consists of two connected components.

Proof. Since C ⊂ N ⊂ R2, the Jordan curve theorem for R2 implies that

R2 ∖ C consists of two connected components X1 and X2. Then X1 ∩ N and

X2 ∩N are the connected components of N ∖ C. □

If we define a Finsler metric F̃ on N by F̃ (x, y) = F0(π(x), dπ(y)) for any

x ∈ N and any y ∈ TxN , then Φ acts on N as an isometry group isomorphic

to Z2 such that M0 = N/Φ. From the definitions of geodesic circles and distance

circles, we have the following lemma.

Lemma 2.2. Let (M,F ) be as mentioned above. Then there exist an iso-

metric surface I : Int(M0) → M ∖ ∪g−1
i=1 ci and its covering surface π : N → M0

such that M0 = N/Φ, where Φ is a covering transformation group isomorphic

to Z2, satisfying that

I(π(SdN (p, t))) ⊂ I(SM0(π(p), t)) = I(π(SN (p, t)))

⊂ SM (I(π(p)), t) = ρ(Gt(SI(π(p))M ∩ SM(t)))

for any p ∈ N and any t > 0.

From Lemma 2.2, it suffices to prove Theorem 2.3 in order to obtain Theo-

rem 1.1.

Theorem 2.3. Let N be a covering surface of M0 constructed as above.

Let p, q ∈ N . Given ε > 0, there exists a number R > 0 such that SdN (p, t) ∩
Φ(B(q, ε)) ̸= ∅, equivalently, Φ(SdN (p, t)) ∩ Φ(B(q, ε)) ̸= ∅ for all t > R.

Thanks to Lemmas 2.1 and 2.2, the process of the proof for Theorem 2.3 is

the same as in [18], although N is not homeomorphic to a plane and the distance

is not symmetric. However, from the next section up to Proof of Theorem 1.1 in

Section 7, we progress the study parallel to ones in [6] and [18]. It makes this

paper self-contained. The arguments here include some improvements.
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3. Axial straight lines

Let N be a surface constructed in Section 2. Then N is topologically a plane,

from which many open disks and points are removed, and geometrically a geodesi-

cally convex Finsler surface on which the isometry group Φ isomorphic to Z2 acts

so that M0 = N/Φ. Therefore, N has many properties which a plane has: A sim-

ple closed curve and a simple curve diverging both directions as a curve in R2

divides N into two connected components, etc. Let d(·, ·) be the distance on N

induced by F̃ = π∗F0. Since we do not assume that F is reversible, we have

d(p, q) ̸= d(q, p) for points p, q ∈ N , in general. For τ ∈ Φ, let dτ : N → R de-

note the displacement function of τ which is defined by dτ (p) = d(p, τ(p)) for all

p ∈ N . We say that a minimal geodesic T is a straight line in N if T is unbounded

in both directions as a curve in R2 where N lies. Note that if M0 contains two

unbounded tubes, then there exists a minimal geodesic defined on R in N which

is not a straight line. There exists a parametrization γ : (−∞,∞) → N of T such

that d(γ(s), γ(t)) = t− s for any s, t ∈ (−∞,∞) with s < t. The unboundedness

of T in R2 implies that any half part of T does not stay in a fundamental domain

in N over S0 = M0 ∪ {p1, . . . , pk} and is not contained in any tube of N . The

reverse curve T−1 of T may not be a geodesic. We have seen in [16], [17] and [18]

what phenomenon happens on geodesics in Finsler 2-tori, in comparison with the

case of a Riemannian surface.

Proposition 3.1 (cf. [6]). Let τ ∈ Φ, τ ̸= id. Then dτ takes a positive

minimum. If p ∈ N is a minimum point of dτ , then there exists a unique straight

line γ : (−∞,∞) → N such that γ(0) = p and τ(γ(t)) = γ(t + c) for all t ∈
(−∞,∞), where c = min dτ > 0.

We call a straight line γ as in Proposition 3.1 an axis of τ .

Remark 3.2. It follows that τ−1(γ(t)) = γ(t− c) for all t ∈ (−∞,∞) for an

axis γ of τ . However, the reverse curve γ−(t) = γ(−t) for t ∈ (−∞,∞) is neither

axis of τ−1 nor geodesic, in general (cf. [16]).

Proposition 3.1 is certified by the following Lemmas 3.3 to 3.5.

Lemma 3.3. For all τ ∈ Φ, τ ̸= id., the displacement function dτ takes the

positive minimum on N . The set of all minimum points of dτ is contained in

Int(N) and invariant under Φ.

Proof. Since Φ is abelian, we have dτ (σ(q)) = dτ (q) for all q ∈ N and all

σ ∈ Φ. Hence, the set of all minimum points of dτ is invariant under Φ.
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Since Φ is a covering transformation group and τ ∈ Φ, we have m :=

inf{dτ (q) | q ∈ N} > 0. We prove that the set of minimum points of dτ is not

empty, and if dτ (q) = min dτ for a point q ∈ N , then q ∈ Int(N). Let qj ∈ N

be a sequence of points in a fundamental domain M̃0 for M0 such that dτ (qj)

converges to m as j → ∞. We suppose for an indirect proof that qj converges

to a point q ∈ ∂N or q = p̃i ∈ R2 for some i = 1, . . . , k, where π(p̃i) = pi ∈ S0.

In case q = p̃i, M0 is bounded around pi with respect to the distance d0, since

qj and τ(qj) belong to different fundamental domains. This is not the case when

M is geodesically complete. Then the minimal geodesics T (qj , τ(qj)) from qj to

τ(qj) in N satisfy T (qj , τ(qj)) ∖ {qj , τ(qj)} ⊂ Int(N), since N is geodesically

convex and any connected component of ∂N cannot contain both qj and τ(qj).

In particular, the midpoint rj ∈ T (qj , τ(qj)) is contained in Int(N). We assume

that rj converges to a point r as well. Then we have r ∈ Int(N), because r is

an interior point of a minimal geodesic. Further, T (q, τ(q)) ∪ τ(T (q, τ(q))) is the
union of minimal geodesics broken at τ(q). Since N is geodesically convex and

r ∈ Int(N), a minimal geodesic T (r, τ(r)) is contained in Int(N). Hence, we have

that dτ (r) < d(r, τ(q))+d(τ(q), τ(r)) = d(r, τ(q))+d(q, r) = limj→∞ dτ (qj) = m,

a contradiction. Therefore, we have q ∈ Int(N). □

Lemma 3.4. Let τ ∈ Φ, τ ̸= id. If p ∈ N is a minimum point of dτ , then

Tτ (p) :=
∞∪

n=−∞
T (τn(p), τn+1(p))

is a unique τ -invariant and simple geodesic through p in N .

Proof. We first prove that Tτ (p) is a geodesic in N . Let q ∈ T (p, τ(p)) be

a point between p and τ(p), i.e., q ∈ T (p, τ(p))∖ {p, τ(p)}. We then have

d(p, τ(p)) ≤ d(q, τ(q)) ≤ d(q, τ(p)) + d(τ(p), τ(q))

= d(p, q) + d(q, τ(p)) = d(p, τ(p)).

Therefore, we have d(p, τ(p)) = d(q, τ(q)) = d(q, τ(p)) + d(τ(p), τ(q)), meaning

that T (p, τ(p)) and T (τ(p), τ2(p)) are smoothly joined at τ(p) to make a geodesic

segment T (p, τ(p))∪ T (τ(p), τ2(p)) in N . In particular, we note that there exists

a unique minimal geodesic segment T (p, τ(p)) from p to τ(p), because τ preserves

the orientation of N . In fact, if there exist two minimal geodesics T1 and T2 from

p to τ(p), then both T1 ∪ τ(T1) and T2 ∪ τ(T2) are smooth geodesics having the

same end points p and τ2(p) and crossing at τ(p). However, two simple closed

curves T1 ∪ T2−1 and τ(T1 ∪ T2−1) = τ(T1)∪ τ(T2)−1 have different orientations,
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a contradiction. From the uniqueness of the minimal geodesic from p to τ(p), the

joined geodesics Tτ (p) form a unique τ -invariant geodesic passing through p.

Since {τn(p) |n ∈ Z} is unbounded, Tτ (p) is not a closed geodesic in N .

We next prove that Tτ (p) is simple. Suppose for an indirect proof that

τn(T (p, τ(p))) ∩ τm(T (p, τ(p))) ̸= ∅ for some integers n and m, n ̸= m. Since

Tτ (p) is not a closed geodesic, τn(T (p, τ(p))) ∩ τm(T (p, τ(p))) consists of a sin-

gle point q. However, it is impossible, because τn(T (p, τ(p))) and τm(T (p, τ(p)))

contain a sub-segment of T (q, τ(q)) in common. □

The straightness of Tτ (p) in N can be proved by the same way as in [6].

We then use Lemma 2.1 (Jordan curve theorem) for N .

Lemma 3.5. Let τ ∈ Φ, τ ̸= id. If p ∈ N is a minimum point of dτ , then

Tτ (p) is a straight line in N invariant under τ .

Proof. Suppose for an indirect proof that Tτ (p) is not minimal in N . There

exists a minimum integer k such that Tτ (p)
k := ∪k−1

n=0T (τ
n(p), τn+1(p)) is not

a minimal geodesic segment in N . We then have k ≥ 2 and d(p, τk(p)) < kmin dτ .

Since Tτ (p)
k is not minimal, a minimal geodesic T (p, τk(p)) from p to τk(p)

is different from Tτ (p)
k. In fact, T (p, τk(p)) ∩ Tτ (p)k = {p, τk(p)}, because both

T (p, τk−1(p)) and T (τk−1(p), τk(p)) are minimal. Since τ is an orientation pre-

serving isometry of N and Tτ (p) is invariant under τ , we see from Lemma 2.1 that

T (p, τk(p)) intersects τ(T (p, τk(p))) = T (τ(p), τk+1(p)) at one point q. Further,

we have T (τ(p), τk+1(p)) ∩ T (τ2(p), τk+2(p)) ∋ τ(q).

Since

kmin dτ > d(p, τk(p)) = d(τ(p), τk+1(p))

= d(τ(p), q) + d(q, τ(q)) + d(τ(q), τk+1(p))

= d(τ(p), q) + d(q, τ(q)) + d(q, τk(p))

≥ d(τ(p), τk(p)) + d(q, τ(q)) = (k − 1)min dτ + d(q, τ(q)),

we have min dτ > d(q, τ(q)), a contradiction. □

Any point in Tτ (p) is a minimum point of dτ . Hence the parametrization

γ : (−∞,∞) → N of Tτ (p) satisfies the property τ(γ(t)) = γ(t+ c) as in Proposi-

tion 3.1. There are some phenomena which do not happen in the case of reversible

geodesics.
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Remark 3.6. The following are true:

(1) Let τ ∈ Φ, τ ̸= id. If p, q ∈ N are minimum points of dτ , then either

Tτ (p) = Tτ (q) or Tτ (p)∩Tτ (q) = ∅ is true. Further, τ−1(Tτ (p)) = Tτ (p), but

the reverse curve Tτ (p)
−1 may be neither an axis of τ−1 nor a straight line

(cf. [16]).

(2) Let τ, σ ∈ Φ, τ, σ ̸= id, τ ̸= σ. Assume that an axis γ : (−∞,∞) → N

of τ intersects an axis α : (−∞,∞) → N of σ at p = γ(0) = α(0). Then

γ((0,∞)) ∩ α((0,∞)) = ∅ and γ((−∞, 0)) ∩ α((−∞, 0)) = ∅ are true. How-

ever, γ((0,∞))∩α((−∞, 0)) ̸= ∅ and γ((−∞, 0))∩α((0,∞)) ̸= ∅ may happen

(cf. [16]).

A straight line γ : (−∞,∞) → N divides N into two connected components.

We call them the right side E(γ) and the left side W (γ) of γ.

In conjunction with Proposition 3.1, we have the following Proposition 3.7,

using the same argument as in [5].

Proposition 3.7. Let γ : (−∞,∞) → N be a straight line in N . If γ is

positively invariant under τ ∈ Φ, i.e., τ(γ(t)) = γ(t + c) for some c > 0, then

c = min dτ and γ is an axis of τ . Hence all points p ∈ γ((−∞,∞)) are minimum

points of dτ and γ((−∞,∞)) = Tτ (p). Moreover, there exists τ0 ∈ Φ such that,

if τ ∈ Φ leaves γ invariant, then τ = τ0
k for some k ∈ Z. If τ0 = φm ◦ ψn, then

m and n are relatively prime, where φ and ψ are the generators of Φ.

Proof. Let p = γ(t) for a number t ∈ (−∞,∞) and q ∈ N . From the

assumption, we then have c = dτ (p) and

nd(p, τ(p)) = d(p, τn(p)) ≤ d(p, q) +
n∑
k=1

d(τk−1(q), τk(q)) + d(τn(q), τn(p))

= d(p, q) + nd(q, τ(q)) + d(q, p).

Hence, we have

d(p, τ(p)) ≤ d(q, τ(q)) +
d(p, q) + d(q, p)

n
.

As n → ∞, we conclude that c = dτ (p) ≤ dτ (q), meaning that p is a minimum

point of dτ .

Let Φ1 = {τ ∈ Φ | τ(γ(t)) = γ(t + min dτ ) for all t ∈ (−∞,∞) } and c =

inf{min dτ | τ ∈ Φ1, τ ̸= id.}. Since Φ is properly discontinuous, there exists

τ0 ∈ Φ1 such that min dτ0 = c > 0. Let τ ∈ Φ1 and d = min dτ . If d = c, then
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τ = τ0. Let d = kc + e for some k ∈ Z with k ≥ 0 and some number e with

0 ≤ e < c. We prove e = 0. In fact, τ1 = τ0
−k ◦ τ satisfies that τ1 ∈ Φ1 and

e = min dτ1 , contradicting the choice of c if e ̸= 0. Since e = 0, we have τ1 = id.

Hence τ = τ0
k with k > 0. This implies that if γ is positively invariant under

τ ∈ Φ, we then have τ = τ0
k for some k > 0.

In case there exists a number c > 0 such that τ(γ(t)) = γ(t − c) for all

t ∈ (−∞,∞), we have τ−1 = τ0
k for some k > 0, since τ−1(t) = γ(t + c) for all

t ∈ (−∞,∞). Then τ = τ−k0 .

Suppose for an indirect proof that m and n is not relatively prime, i.e.,

m = km1 and n = kn1 for some integers k > 1, m1 and n1. Let τ1 = φm1 ◦ ψn1 .

From the choice of c, we have τ1(γ(−∞,∞)) ∩ γ((−∞,∞)) = ∅, because both

τ1 ◦ γ and γ are axes of τ0 (see Remark 3.6). Since τ1 preserves the orientation

of N , if τ1 ◦ γ is contained in E(γ) (resp., W (γ)), then τ1
k ◦ γ is also contained in

E(γ) (resp., W (γ)). This contradicts that τ1
k ◦γ((−∞,∞)) = τ0 ◦γ((−∞,∞)) =

γ(−∞,∞). □

4. Straight lines and slopes

4.1. Busemann functions and limit circles. Let γ : (−∞,∞) → N be

a straight line. We define the Busemann function Bγ : N → R of γ by

Bγ(p) = lim
t→−∞

d(γ(t), p) + t

for all p ∈ N . It follows that

−d(p, q) ≤ Bγ(p)−Bγ(q) ≤ d(q, p)

for all p, q ∈ N . Hence, Bγ is differentiable on a full measure set in N . The

structure of the level sets of a Busemann function has been studied in [18] and [27].

We say that a ray α : (−∞, 0] → N is a co-ray to γ− : (−∞, 0] → N , γ−(t) = γ(t),

ending at p = α(0) if there exist a sequence of numbers tj → −∞ and a sequence of

points pj ∈ N such that a sequence of minimal geodesics αj : [−d(γ(tj), pj), 0]→N

converges to α as j → ∞, where αj(−d(γ(tj), pj)) = γ(tj) and pj = αj(0).

From [5], we see that a curve α : (−∞, 0] → N is a co-ray to γ− ending at α(0)

if and only if Bγ(α(t)) = t + Bγ(α(0)) for all t ≤ 0. We call the end point of

a maximal co-ray to γ− a co-point to γ−. Let C(γ−) denote the set of all co-points

to γ−. Then Bγ is of class C1 on N ∖ C(γ−) and the gradient vector of Bγ at

p ̸∈ C(γ−) is α̇(0) where α : (−∞, 0] → N is a unique co-ray to γ− ending at
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p = α(0) (cf. [13]). We say that a straight line α : (−∞,∞) → N is an asymptote

to γ− if Bγ(α(t)) = t+Bγ(α(0)) for all t ∈ (−∞,∞). In addition, if a restriction

α : [a,∞) → N is a co-ray to γ, i.e., there exists a sequence of minimal geodesics

αj from pj = αj(a) to γ(tj) = αj(d(pj , γ(tj)) such that αj converges to α and

tj → ∞ as j → ∞, we call α a parallel to γ. The Busemann functions on the

universal covering spaces of Finsler 2-tori are studied in [17] and [18].

For a function f on N , let [f = a] := {p ∈ N | f(p) = a}, [f ≤ a] := {p ∈
N | f(p) ≤ a}, and so on. When γ is a straight line, it follows from (22.14) in

[5, p. 133], that [Bγ = a] = limt→−∞ SdN (γ(t), a − t) for all a ∈ R. We call

[Bγ = a] a limit circle with central ray γ−.

Lemma 4.1 (cf. [5, Theorem (32.4)]). Let τ ∈ Φ, τ ̸= id. Then all axes of τ

are parallels to each other.

Proof. Let c = min dτ , and let γ and α be two axes of τ . We prove that

α|(−∞,s] is a co-ray to γ− for any s ∈ (−∞,∞). Since

Bγ(α(s− c)) = Bγ(τ
−1(α(s))) = lim

t→−∞
d(γ(t), τ−1(α(s))) + t

= lim
t→−∞

d(τ−1(γ(t+ c)), τ−1(α(s))) + t

= lim
t→−∞

d(γ(t+ c), α(s)) + t = Bγ(α(s))− c,

α(s− c) is a foot of α(s) on [Bγ = Bγ(α(s))− c]. From (22.17) and (22.18) in [5],

we conclude that α is an asymptote to γ−. The similar argument proves that

α|[s,∞) is a co-ray to γ. □

4.2. Fundamental domains over M0 and slopes of straight lines. Assume

that Φ is generated by two motions {φ,ψ}. Let µ : (−∞,∞) → N be an axis

of φ. Then ψ ◦ µ is an axis of φ also. We may assume that ψ ◦ µ ∈ W (µ).

We take a simple curve c : [0, 1] → N in the strip bounded by µ((−∞,∞))

and ψ ◦ µ((−∞,∞)) such that c(0) ∈ µ((−∞,∞)) and c(1) = ψ(c(0)). Let

ν : (−∞,∞) → N be a parametrization of a curve ∪∞
i=−∞ψ

i(c([0, 1])) such that

ν(t) = ψi(c(s)) if t = i + s, 0 ≤ s < 1, for some integer i. We use this ν instead

of any axis of ψ because of the fact (2) in Remark 3.6. The domain bounded by

µ, ψ ◦ µ, ν and φ ◦ ν is denoted by N(0, 0). Obviously, N(0, 0) covers M0, i.e.,

π(N(0, 0)) =M0. If we set N(i, j) = φi ◦ ψj(N(0, 0)), then N = ∪(i,j)∈Z2N(i, j).

Using this notation, if γ : (−∞,∞) → N is a straight line and γ(t) ∈
N(i(t), j(t)) for t ∈ (−∞,∞), we then have |i(t)| → ∞ or |j(t)| → ∞ as t→ ±∞.

Hereafter, we use the word “ray” in the following sense: a minimal geodesic

γ : [0,∞) → N (resp., (−∞, 0] → N) such that γ(t) ∈ N(i(t), j(t)) for all t is
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a ray if |i(t)| or |j(t)| goes to ∞ as t → ∞ (resp., −∞). The half parts of axes

and their co-rays are rays.

Let γ : (−∞, 0] → N be a ray. We define the slope A(γ) of γ by

A(γ) = lim inf
t→−∞

{
j(t)

i(t)

∣∣∣∣ γ(t) ∈ N(i(t), j(t))

}
.

We prove that “lim inf” is replaced by “lim” in Lemma 4.3.

Lemma 4.2. If γ : (−∞,∞) → N is an axis of τ = φm ◦ ψn ∈ Φ, τ ̸= id.,

we then have A(γ) = n/m if m ̸= 0, and A(γ) = ∞ if m = 0.

Proof. Assume that p = γ(0) ∈ N(m0, n0) is a minimum point of dτ and

c = min dτ . Let L be the maximum of those numbers |m0 − i| and |n0 − j| where
N(i, j) intersects a c-ball with center p with respect to d(·, p). If t = kc + r for

some integer k and some number r with 0 ≤ r < c, then γ(t) ∈ N(m0 + km +

m1, n0 + kn + n1) for some m1 and n1 with 0 ≤ |m1| < L and 0 ≤ |n1| < L.

Hence we have

A(γ) = lim
t→−∞

n0 + kn+ n1
m0 + km+m1

=
n

m
. □

All axes of τ and τ−1 have the same slope.

Lemma 4.3. Let γ : (−∞, 0] → N be a ray. We then have

A(γ) = lim
t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Furthermore, for a straight line γ : (−∞,∞) → N , we have

A(γ) = lim
t→±∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Proof. Suppose for an indirect proof that there exists a rational number

n/m such that

lim inf
t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
<

n

m
< lim sup

t→−∞

{
j

i

∣∣∣∣ γ(t) ∈ N(i, j)

}
.

Then there exists an axis of τ = φm ◦ ψn such that it intersects γ many times.

Since the axis and ray γ are minimal, this is impossible, proving this lemma.

The second statement is proved in the same way. □
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Under a slightly different definition of slopes or rotation numbers, we see the

complete structure of all sets of all straight lines with slope h ∈ R when N is the

universal covering plane of a 2-torus with Riemannian or reversible Finsler metric

(cf. [3], [24]).

Instead of classifying the straight lines in N , we pay our attention to a re-

stricted set of straight lines with slope h ∈ R. Let Xh denote a set of straight

lines for h ∈ R:
(1) If h = n/m is a rational number, then Xh is the set of all axes of τ = φm ◦ψn

in N for some (m,n) ∈ Z2 with m > 0.

(2) If h is an irrational number, then Xh is the set of all straight lines α such

that there exists a sequence of axes in Xℓ converging to α as ℓ→ h−0, where

ℓ are rational numbers.

For two straight lines γ and α, we write γ > α when α is contained in E(γ).

The relation “>” is a partial order on the set of all straight lines in N . Because

all straight lines in Xh are mutually disjoint, the following lemma is obvious.

Lemma 4.4. All geodesics in Xh are straight lines with slope h ∈ R and

Xh is Φ-invariant, i.e., τ ◦ γ ∈ Xh for any γ ∈ Xh and any τ ∈ Φ. The set Xh

is a totally ordered set. If α , γ ∈ Xh such that α < γ, then α is an asymptote

to γ−.

5. Level sets of Busemann functions

Let γ : (−∞,∞) → N be a straight line. Note that the boundary of [Bγ > a]

possibly contains sub-arcs of the boundary ofN , and that [Bγ = a] may be divided

by a removed point if M is not complete.

Lemma 5.1. For all a ∈ R, there exists the unique connected component of

[Bγ > a] whose boundary is unbounded in N .

Proof. Since γ([a+1,∞)) ⊂ [Bγ > a], there exists at least one unbounded

connected component W1 of [Bγ > a]. Because of the topological structure of N

and Theorem 2.1 (Jordan curve theorem), the boundary of W1 is unbounded.

Suppose for an indirect proof that there exists another unbounded connected

component W2 of [Bγ > a] such that the boundary of W2 is unbounded. Then

we have a compact set K in N such that N ∖ W1 ∪ W2 ∪ K has at least two

unbounded connected components one of which contains γ((−∞, a− 1]). If pk is

a boundary point ofW2 contained in another unbounded connected component of
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N∖W1∪W2∪K such that Bγ(pk) = a, then we have a co-ray αk : (−∞, ak] → N

from pk = αk(ak) to γ− such that αk(0) ∈ K. As pk goes to ∞, choosing

a subsequence of αk converging a straight line α, we have an asymptote α to

γ−. However, this is impossible, because Bγ(α(t)) is bounded above by a. □

Let Yγ(a) denote the boundary of the unbounded connected component of

[Bγ > a] containing γ([a + 1,∞]) for each a ∈ R in N . Obviously, [Bγ = a]0 :=

Yγ(a) ∖ ∂N ⊂ [Bγ = a]. Furthermore, Yγ(a) divides N into two connected

components N+ and N− such that γ((a,∞)) ⊂ N+ and γ((−∞, a)) ⊂ N−.

If p ∈ N+, then p ∈ [Bγ > a]. If p ∈ [Bγ < a], then p ∈ N−. In general, it follows

that [Bγ > a] ∩N− ̸= ∅. The parameterized curve Yγ(a)(t), t ∈ R, is assumed to

cross the co-rays to γ− from left to right.

Let γ ∈ Xh, and let Xh(γ) denote a subset of Xh consisting of all straight

lines contained in E(γ). Then all straight lines α ∈ Xh(γ) are asymptotes to γ−

because of the definition of Xh (see Lemma 4.4). We use a parametrization of

α ∈ Xh such that Bγ(α(t)) = t for all t ∈ (−∞,∞) if α < γ, and Bα(γ(t)) = t

for all t ∈ (−∞,∞) if α > γ.

Lemma 5.2. If α ∈ Xh(γ), then Bα = Bγ on E(α).

Proof. If β is a co-ray from p ∈ E(α) to γ−, then β is a co-ray to α− as well,

since α is an asymptote to γ−. Conversely, a co-ray β to α− in E(α) is a co-ray

to γ−. Hence, Bγ − Bα is constant on E(α), because the distribution of co-rays

of γ− and α− in E(α) are identified. In particular, the gradient vectors of Bγ and

Bα are equal almost everywhere (see Subsection 4.1). We have Bγ(p)−Bα(p) =

Bγ(α(0))−Bα(α(0)) = 0. □

From this lemma, we can define a function Bh : N → R by Bh(p) = Bα(p)

for all p ∈ N where α is a straight line in Xh such that p ∈ E(α).

Lemma 5.3. Let h, k ∈ R with h ̸= k. If Yh(a)(t0) = Yk(b)(t1) =: p, then

Yh(a)((t0,∞)) ∩ Yk(b)((t1,∞))∖ ∂N = ∅.

Proof. We may assume that h < k. Suppose for an indirect proof that

there exist numbers s0 > t0 and s1 > t1 such that Yh(a)((t0, s0)) ∩ [Bh = a] ∩
Yk(b)((t1, s1))∩[Bk = b] = ∅ and Yh(a)(s0) = Yk(b)(s1) =: q ∈ [Bh = a]∩[Bk = b].

Let α : (−∞,∞) → N (resp., β : (−∞,∞) → N) be a straight line in Xh

(resp., Xk) such that p, q ∈ E(α) (resp., p, q ∈ E(β)). We may assume that the

sequences of minimal geodesics T (α(t), p), T (β(t), p), T (α(t), q) and T (β(t), q)

converge to α1, β1, α2 and β2, respectively. Then α1 and β1 (resp., α2 and β2)

are co-rays from p to α− and β−, respectively, (resp., from q to α− and β−,
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respectively). Since h < k, the co-ray β1 intersects the co-ray α2 at some point

r ∈ N . This means that

lim inf
t→−∞

(d(α(t), q) + d(β(t), p)− d(α(t), p)− d(β(t), q)) > 0,

since there exists a number δ > 0 such that

d(α(t), q) + d(β(t), p) = d(α(t), rt) + d(rt, q) + d(β(t), rt) + d(rt, p)

> d(α(t), p) + d(β(t), q) + δ

for any t < 0 with sufficiently large |t| and rt → r as t → −∞ where rt =

T (α(t), q) ∩ T (β(t), p). This contradicts the following equality.

0 = (Bh(q)−Bh(p))− (Bk(q)−Bk(p))

= lim
t→−∞

(d(α(t), q) + d(β(t), p)− d(α(t), p)− d(β(t), q)) . □

Lemma 5.4. Let τ ∈ Φ. Then the function fh(τ) = Bh ◦ τ −Bh is constant

on N . Moreover, fh : Φ → R is a homomorphism, i.e., fh(τ ◦ σ) = fh(τ) + fh(σ)

for all τ, σ ∈ Φ. In particular, if τ = φm ◦ ψn ∈ Φ, we then have fh(τ) =

mfh(φ) + nfh(ψ).

Proof. For any points p, q ∈ N , let γ ∈ Xh be a straight line such that

p and q are in the right side of γ and τ−1 ◦ γ, i.e., p, q ∈ E(γ) ∩ E(τ−1 ◦ γ).
We then have

Bh(τ(p))−Bh(τ(q)) = lim
t→−∞

d(γ(t), τ(p))− d(γ(t), τ(q))

= lim
t→−∞

d(τ−1 ◦ γ(t), p)− d(τ−1 ◦ γ(t), q) = Bh(p)−Bh(q).

From this we conclude that fh(τ) is constant on N .

Since

fh(τ ◦ σ)(p) = Bh(τ(σ(p)))−Bh(p)

= (Bh(τ(σ(p)))−Bh(σ(p))) + (Bh(σ(p))−Bh(p))

= fh(τ)(σ(p)) + fh(σ)(p)

for all p ∈ N , we have fh(τ ◦ σ) = fh(τ) + fh(σ). □
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Let Φ0(h) = Ker(fh) = {τ | fh(τ) = 0} for each slope h ∈ R. If τ ∈ Φ0(h),

then τ(Yh(a)) = Yh(a) for all a ∈ R. There exists τ0 ∈ Φ0(h) such that τ = τ0
k

for any τ ∈ Φ0(h) and some k ∈ Z, as was seen in the proof of Proposition 3.7.

In fact, if c(t), t ∈ (−∞,∞), is a parametrization of Yh(0) such that c(0) =

γ(0) and c((0,∞)) is in the right side of γ in N and t(τ) are the numbers such

that τ(c(0)) = c(t(τ)) for any τ ∈ Φ0(h), then τ0 or τ0
−1 satisfies that t(τ0) =

min{t(τ) > 0 | τ ∈ Φ0(h)∖ {id.}}.

Lemma 5.5. Let Φ0(h) be generated by τ0 = φm0 ◦ ψn0 ̸= id. Then,

m0 and n0 are relatively prime and fh(ψ)/fh(φ) = −m0/n0 if fh(φ) ̸= 0, and

fh(φ)/fh(ψ) = −n0/m0 if fh(ψ) ̸= 0.

Proof. Suppose for an indirect proof that m0 = km1 and n0 = kn1 for

some k ∈ Z with k ̸= 1. Hence, if τ1 = φm1 ◦ψn1 , then τ1(γ(0)) ̸∈ Yh(0), implying

that fh(τ1) ̸= 0. Then we get a contradiction: 0 = fh(τ0) = kfh(τ1) ̸= 0.

The second part of the theorem immediately follows from 0 = fh(τ0) =

m0fh(φ) + n0fh(ψ). □

Lemma 5.6. Let τ ∈ Φ0(h). If a straight line γ ∈ ∪k∈RXk is not any axis

of τ , then γ((−∞,∞)) intersects Yh(a) for all a ∈ R.

Proof. We first assume that γ ∈ Xk for some rational number k ∈ R such

that it is an axis of τ1 ∈ Φ with fh(τ1) ̸= 0. Then |fh(τ1n)| = |nfh(τ1)| goes to ∞
as n→ ±∞. This implies that |Bh(γ(t))| goes to ∞ as t→ ±∞.

If the slope k of γ is irrational, then there exist a sequence of rational numbers

kj with kj < k converging to k and a sequence of axes γj with slopes kj converging

to γ. Since all axes γj intersect Yh(a), γ intersects Yh(a) for all a ∈ R. □

Let ℓh = inf{fh(τ) | τ ∈ Φ∖ Φ0(h) such that fh(τ) > 0}. Since

ℓh = inf{|mfh(φ) + nfh(ψ)| | (m,n) ∈ Z2 such that fh(φ
m ◦ ψn) ̸= 0},

if fh(ψ)/fh(φ) or fh(φ)/fh(ψ) is an irrational number, we then have ℓh = 0

(cf. [1], [19]). Assume that fh(ψ)/fh(φ) = i/j, where i and j are relatively prime

integers. Then we have

fh(φ
m ◦ ψn) = mj + ni

j
fh(φ).

Since i and j are relatively prime integers, there exist integers m and n such that

mi+ nj = 1. Therefore, we see that

ℓh = min

{∣∣∣∣fh(φ)j

∣∣∣∣ , ∣∣∣∣fh(ψ)i

∣∣∣∣} .
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Note that |fh(φ)| ≤ min dφ and |fh(ψ)| ≤ min dψ. If one of the denominators i

and j in the above estimate of ℓh is greater than Q := max{min dφ,min dψ}/ε for
a number ε > 0, we then have ℓh < ε

Lemma 5.7. For any ε > 0, the number of slopes h ∈ R such that ℓh > ε is

finite.

Proof. Assume that ℓh>ε. Then there exists a τ1∈Φ such that fh(τ1)=ℓh.

Here we write τ1 = φm1 ◦ ψn1 . Since fh(Φ) is a subgroup generated by ℓh,

there exists an integer k1 such that fh(φ) = k1fh(τ1). Hence, we then have

(k1m1 − 1)fh(φ) + k1n1fh(ψ) = 0. We assume that k1m1 − 1 = km0 and k1n1 =

kn0 for some integer k where the integers m0 and n0 are relatively prime. Set

τ0 = φm0 ◦ ψn0 . Then τ0 is a generator of Φ0(h). It follows from the argument

just before Lemmas 5.7 and 5.5 that both |m0| and |n0| are less than Q. Thus

we have at most finitely many τ0 = φm0 ◦ ψn0 such that fh(τ0) = 0 even if there

exist infinitely many τ1 ∈ Φ such that fh(τ1) = ℓh. Furthermore, how to choose

m0 and n0 depends only on Q, which does not depend on the slope h. From

Lemma 5.3, there exists at most one slope h ∈ R such that fh(τ0) = 0 for each τ0.

This implies that the number of the slopes h with ℓh > ε is finite. □

6. A domain consisting of slices covering M0

Let h ∈ R be a slope and γ : (−∞,∞) → N a straight line in N such that

γ ∈ Xh. Take a τ ∈ Φ such that τ ◦ γ ̸= γ. Let □(i, j;u, v) denote the rectangle

bounded by Yγ(−ifh(τ)), Yγ(−jfh(τ)), τu ◦ γ and τv ◦ γ.

Lemma 6.1. Under the notation above, we have

τs(□(i, j;u, v)) = □(i− s, j − s;u+ s, v + s).

Proof. This lemma follows from the fact that τs ◦ Yγ(a) = Yγ(a+ sfh(τ))

and τs ◦ τu = τ s+u. □

Let Φ(τ) denote the infinite cyclic subgroup of Φ generated by τ . Then N1 =

N/Φ(τ) is topologically a cylinder with disks and points removed. If ρ1 : N → N1

is the quotient map, then ρ1◦γ may not be a minimal geodesic in N1. By the way,

ρ1(Yγ(0)) is a curve like a helix contained in N1 with pitch |fh(τ)| if |fh(τ)| ̸= 0.

In particular, we note that ρ1(Yγ(0)) is not a level set of the Busemann function

Bρ1◦γ in N1 even if ρ1 ◦ γ is a straight line in N1.



300 Nobuhiro Innami and Toshiki Kondo

We may assume that min{Bh(x) |x ∈ N(0, 0)} = 0 (see Subsection 4.2 for the

definition of N(i, j)). Let b > max{a ∈ R |Yγ(a) ∩N(0, 0) ̸= ∅}. Hence, N(0, 0)

is contained in the strip bounded by Yγ(0) and Yγ(b). It does not imply that

Bh(x) ≤ b for all x ∈ N(0, 0), although 0 ≤ Bh(x) are true for all x ∈ N(0, 0).

Further, when fh(τ) < 0, we may assume that the domain bounded by γ, Yγ(0),

τ◦γ and Yγ(b) containsN(0, 0), i.e., N(0, 0) ⊂ E(γ) andN(0, 0) ⊂W (τ◦γ). If b >
|fh(τ)|, we have an integer k such that k|fh(τ)| ≥ b, i.e., N(0, 0) ⊂ □(0, k; 0, 1).

In particular, M0 = π(□(0, k; 0, 1)), where π : N →M0 is the covering map.

Lemma 6.2. Assume that fh(τ) < 0 and b > |fh(τ)|. Let k be an integer

such that k|fh(τ)| > b. We then have □(0, k; 0, 1) ⊂ ∪k−1
i=0 □(i, i+1;−i, k− i) and

π(□(i, i+ 1;−i, k − i)) =M0 for each i = 0, . . . , k − 1.

Proof. The first part of the statement follows from the definition.

We prove the second part. Since τ−i(□(0, 1; i, i + 1)) = □(i, i + 1; 0, 1),

we have

□(0, k; 0, 1) = ∪k−1
i=0 □(i, i+ 1; 0, 1) = ∪k−1

i=0 τ
−i(□(0, 1; i, i+ 1)).

Therefore, we have

π((□(0, 1; 0, k)) = π(∪k−1
i=0 □(0, 1; i, i+ 1) = π(∪k−1

i=0 τ
−i(□(0, 1; i, i+ 1)))

= π(□(0, k; 0, 1)) =M0.

Since □(i, i+ 1;−i, k − i) = τ−i(□(0, 1; 0, k)), we have

π(□(i, i+ 1;−i, k − i)) = π(□(0, 1; 0, k)) =M0. □

γ(t)

τ(γ(t))

τ-1(γ(t))

D

γ(0)

τ(γ(0))

τ2(γ(0))

Y (0)γ

|f
h
(τ)|

τ-2(γ(t))

τ3(γ(t))

τ2(γ(t))

τ-3(γ(t))

τ4(γ(t))

τ3(γ(0))

τ4(γ(0))

τ5(γ(t))

Figure 4. Domain which covers M0.
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7. The asymptotic behavior of distance circles

We start preparing the notations which are used in the proof of Theorem 2.3.

For any ε > 0, we choose a slope h ∈ R and a straight line γ ∈ Xh such that

N(0, 0) lies between Yγ(0) and Yγ(b), ℓh < ε, and then choose an isometry τ ∈ Φ

such that −ε < fh(τ) < 0. The integer k1 is defined to satisfy k1|fh(τ)| ≥ b.

Let γ1 ∈ Xh be a straight line, and let α be a ψ-invariant curve such that

α intersects γ1 and ψ ◦ γ1 exactly once, respectively. Then the domains Q(j)

bounded by φj ◦ α, φj+1 ◦ α, γ1 and ψ ◦ γ1 cover M0 for all integers j ∈ Z.
Therefore, for any point p ∈ N , there exists a sequence of points pj ∈ Q(j) such

that π(pj) = π(p), i.e., τj(p) = pj for some τj ∈ Φ. Since −∞ < h < ∞ and

the perimeters of ψi(Q(j)) equal for all i, j ∈ Z, there exists a number K1 such

that d(pj , pj+1) < K1 for all j ∈ Z (as was seen in the proof of Lemma 7.1 in [18,

p. 356]). Let L be a number such that L > max{b,K1}, and k, k2 be integers

such that k|fh(τ)| > L, k = k1 + k2. We change the parameterization of γ such

that γ̃(s) = γ(s+ (k2 − 1)fh(τ)).

After those preparations, using γ̃, we construct a domain D = ∪k−1
i=0 □(i, i+

1;−i+k2, k−i) each of whose slices coversM0, i.e., π(□(i, i+1;−i+k2, k−i)) =M0

for each i = 0, . . . , k − 1. We may assume that γ1 ∈ Xh satisfies D ⊂ E(γ1).

Lemma 7.1 (cf. [18, Assertion 7.2]). There exists an integer j1 such that

d(pj , γ1(0)) < d(pj+1, γ1(L))

for all integers j < j1.

Proof. The sequences of minimal geodesics T (pj , γ1(0)) and T (pj+1, γ1(L))

converge to sub-rays of γ1 as j → −∞, so there exists a sequence of points

rj+1 ∈ T (pj+1, γ1(L)) converging to γ1(0) as j → −∞. Therefore, there exists

an integer j1 such that

d(pj+1, γ1(L))− d(pj , γ1(0)) = d(pj+1, rj+1) + d(rj+1, γ1(L))− d(pj , γ1(0))

> −(d(pj , pj+1) + d(rj+1, γ1(0))) + d(rj+1, γ1(L))

> −K1 + L+ d(rj+1, γ1(0))− d(γ1(0), rj+1) > 0

for all j<j1, since d(pj , pj+1)<K1<L and d(rj+1, γ1(0))→0, d(γ1(0), rj+1)→0

as j → −∞. □

Let aj = d(pj , γ1(0)) and bj = d(pj , γ1(L)). Then, for any t ∈ [aj , bj ], there

exists a point xt ∈ γ1([0, L]) such that d(pj , xt) = t. Since d(pj , γ1(0)) → ∞
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as j → −∞, there exists an integer j0 with j0 < j1 such that aj < bj and

d(pj0 , γ1(0)) ≤ d(pj , γ1(0)) for all integers j < j0. Hence, when R1 := aj0 ,

we have R1 = min{aj | j ≤ j0}.

Lemma 7.2 (cf. [18, Assertion 7.3]). For any t > R1, there exist a point

xt ∈ γ1([0, L]) and an integer j < j0 such that d(pj , xt) = t.

Proof. Let Kj = ∪j0i=j [ai, bi] for j < j0. We prove that Kj is connected

for all j ≤ j0. Suppose for an indirect proof that Ki0 is connected but not

Ki0−1. From the definition of R1, we have Ki0 = [R1, bj2 ] for some j2 < j0.

Since Ki0−1 is not connected and R1 ≤ ai0−1, we have bj2 < ai0−1. On the

other hand, we have bi0 > ai0−1 because of Lemma 7.1. Since bi0 ≤ bj2 , we have

ai0−1 ≤ bj2 , a contradiction. Since d(pj , γ1(0)) → ∞ as j → −∞, we have

∪j0i>−∞[ai, bi] = [R1,∞).

For any t > R1, if we choose an integer j such that t ∈ [aj , bj ], then there

exists a point xt ∈ γ1([0, L]) such that d(pj , xt) = t. □

Lemma 7.3 (cf. [18, Lemma 6.1]). Let ε > 0, γ1, L, D, p ∈ N and pj ∈ Φ(p)

be as above. Then there exists an integer j0 = j0(D, ε) > 0 such that

Bh
−1(Bh(x)) ∩D ⊂ B(SdN (pj , d(pj , x)), ε)

for all points x ∈ γ1([0, L]) and all integers j < j0. In particular, for any point

q ∈ Bh
−1(Bh(x)) ∩D, we have B(q, ε) ∩ S(pj , d(pj , x)) ̸= ∅.

Proof. Since g(z, t) = d(γ1(t), z) + t is monotone increasing for t < 0 and

converges to Bh(z) uniformly on any compact set contained in D as t → −∞,

there exists a number T < 0 such that 0 ≤ g(z, t) − Bh(z) < ε/3 for all z ∈ D

and t < T .

If q ∈ Bh
−1(Bh(x)) ∩D for a point x ∈ γ1([0, L]), we then have

0 ≤ d(γ1(t), q)− d(γ1(t), x) < ε/3 (1)

for any number t < T , because

0 ≤ d(γ1(t), q)− d(γ1(t), x) = (d(γ1(t), q) + t)− (d(γ1(t), x) + t)

= g(q, t)−Bh(x) = g(q, t)−Bh(q) <
ε

3
.

Set A = (Bh
−1(Bh(x))∩D)∖B(x, ε/2). Since γ1 is an asymptote to (ψ◦γ1)−,

there exists a positive integer j0 = j0(D, ε) such that, for all integers j < j0,

a minimal geodesic segment T (pj , x) from pj to the point x ∈ γ1([0, L]) (resp.,
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any point q ∈ A) passes through B(γ1(T + 1), ε/3) (resp., intersects γ1 at γ1(tj)

with some tj < T ).

If p′ ∈ T (pj , x) satisfies max{d(p′, γ1(T +1)), d(γ1(T +1), p′)} < ε/3, we then

have, from (1) (see Figure 5),

0 < d(γ1(tj), q)− d(γ1(tj), x) = d(pj , q)− d(pj , γ1(tj))− d(γ1(tj), x)

≤ d(pj , q)− d(pj , x) ≤ d(p′, q) + d(pj , p
′)− d(pj , x) = d(p′, q)− d(p′, x)

< (d(γ1(T + 1), q) + ε/3)− (d(γ1(T + 1), x)− ε/3) < ε

for all q ∈ A. Therefore, we have

d(pj , x) < d(pj , q) < d(pj , x) + ε.

x

D

Sd
N
(p

j
,d(p

j
,x))

p
j

[B=B
h
(x)]

q

ψ(γ
1
(t))

γ
1
(t

j
)

γ
1
(T+1)

p’
γ

1
(t)

Figure 5. The asymptotic behavior of geodesics from pj .

If yj(q) is a point at which T (pj , q) and SdN (pj , d(pj , x)) intersect, we then

have q ∈ B(yj(q), ε), and therefore, q ∈ B(SdN (pj , d(pj , x)), ε).

For q ∈ (Bh
−1(Bh(x)) ∩D) ∩ B(x, ε/2), we have q ∈ B(SdN (pj , d(pj , x)), ε),

since x ∈ SdN (pj , d(pj , x)) and d(x, q) < ε/2. □

Lemma 7.3 states that we can find a distance sphere SdN (pj , d(pj , x)) meeting

the ε-ball B(q, ε) for any point q ∈ D with Bh(q) = Bh(x). From Lemma 7.2,

any point q ∈ (∪x∈γ1([0,L])Yγ1(Bh(x))∖∂N)∩D satisfies this condition. We have

to treat another case, q ̸∈ Yγ1(a) ∖ ∂N for any a ∈ R, in order to complete the

proof of Theorem 2.3.

Proofs of Theorem 1.1 and 2.3. We prove Theorem 2.3, which is suffi-

cient for Theorem 1.1. Let p, q and ε be as in Theorem 2.3. If q∈(Yγ1(0)∖ ∂N)∩D
for a suitable parametrization of γ1, then it follows from Lemmas 7.1, 7.2 and 7.3
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that for any t > R1, there exist sequences of points pj ∈ Φ(p) and qj ∈ D ∩ Φ(q)

such that SdN (pj , t) ∩B(qj , ε) ̸= ∅.
In case q ̸∈ Yγ1(a)∖∂N for any a ∈ R, we find a point q1 ∈ D∩Φ(q) in a strip

bounded by Yγ1(0) and Yγ1(|fh(τ)|). Assume that a sequence of minimal geodesics

from pj to q1 converges to a co-ray α : (−∞, 0] → N from q1 to γ1
− and r1 =

α(−d(Yγ1(0), q1)). Then the sequence of intersection points rj = T (pj , q1)∩Yγ1(0)
converges to r1 ∈ Yγ1(0) as j → −∞. This implies that for any t > R1+d(r1, q1),

we have SdN (pj , t) ∩B(qj , ε) ̸= ∅ for some pj ∈ Φ(p) and qj ∈ D ∩ Φ(q1). □

Remark 7.4. In the above argument, if pj=τj(p) and qj=τ
′
j(q) for τj , τ

′
j ∈Φ,

we then have SdN (p, t) ∩B(τj
−1 ◦ τ ′j(q), ε) = SdN (pj , t) ∩B(qj , ε) ̸= ∅.

For any ε > 0 and any points p, q ∈ M , let p̃ (resp., q̃k ∈ Φ(D)) be the lifts

of p (resp., q). Then it follows from the above consequence that the geodesic circle

with center p̃ meets the union of B(q̃k, ε)’s for any t > R on N . Combining with

Lemma 2.2, we can see the asymptotic behavior of the geodesic circles emanating

from p in M (see Figure 6).

p

D

~ q
k
~

Figure 6. The geodesic circle with center p̃ in N .

Proof of Corollary 1.5. We work in M0 instead of M . Let n > 0 be

an integer and ε > 0. Let p̃ ∈ N be chosen so that π(p̃) = p. From Lemma 5.7,

there exist slopes hi, i = 1, . . . n, such that hi ̸= hk for i ̸= k and ℓhi < ε for

all i. As was seen in the proof of Theorem 1.1, for each slope hi, we can find

domains Di and numbers Ri satisfying the following: for any t > Ri, there exist

sequences of points pij ∈ N and qij ∈ Di such that π(pij) = p, π(qij) = q and

SM0(pij , t)∩B(qij , ε) ̸= ∅. Let τij ∈ Φ be such that τij(pij) = p̃. The sequence of

minimal geodesics T (p̃, τij(qij)) from p̃ to τij(qij) converges to a ray with slope

hi as j → −∞ for each i = 1, . . . , n. □
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