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Geodesics and geodesic circles in a geodesically convex surface:
a sub-mixing property

By NOBUHIRO INNAMI (Niigata) and TOSHIKI KONDO (Niigata)

Abstract. Let M be an orientable finitely connected and geodesically convex
Finsler surface with genus g > 1. We prove that if all geodesics in M are reversible,
then for any number € > 0 and for any points p,q € M, there exists a number R > 0
such that any geodesic circle with center p and radius ¢ meets the e-ball with center ¢
for any ¢ > R. Most of the proofs do not use the reversibility assumption for geodesics.

1. Introduction

In a connected smooth Finsler manifold M, a geodesic is by definition a so-
lution of the Euler-Lagrange equation of the length function of piecewise smooth
curves. A geodesic sphere Sp(p,t) with center p and radius t is by definition
the set of all terminal points of geodesics emanating from p with length ¢. A dis-
tance sphere S$,(p,t) with center p and radius t is by definition the set of all
terminal points of minimal geodesics emanating from p with length ¢. Obviously,
S?M (pa t) CSu (pa t) a’ndﬂ generaHY7 S?\/I (p7 t) 7é Sn (pa t)'

Light has the nature behaving like both a particle and a wave. Mathemati-
cally, the geodesics describe the trajectories as the behavior of the particles, and
the geodesic spheres describe the behavior of wave fronts which spread according
to Huygens’ principle. The indicatrix of a Finsler metric describes the shape of
an infinitesimal wave front (cf. [25, (1.17)]).
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These facts suggest that the geometry of geodesics in a Finsler manifold is
useful to study the global behavior of wave fronts. In fact, the triangle inequality
of the intrinsic distance d(-, -) induced by the Finsler metric is almost equivalent to
Huygens’ principle when we consider the geodesic spheres as wave fronts. Namely,
for any point p; in a minimal geodesic from p to g, S¢,(p1,d(p1,q)) is inscribed
in S¢,(p,d(p,q)) at the point g if and only if, for any point ¢; in S, (p1,d(p1,q)),
we have d(p,q1) < d(p,p1) + d(p1, q1), where the equality holds < ¢ = q.

We have studied the behavior of geodesics and the asymptotic behavior of
geodesic circles in a 2-torus equipped with a Riemannian metric in [18], and
have proved e-density of geodesic circles with sufficiently large radii, based on the
following facts: the universal covering space of a torus is topologically a plane R?,
which has a nice property such as the Jordan curve theorem, and the covering
transformation group is isomorphic to Z?2, where Z is the set of all integers.

In this paper, we study the same properties for surfaces with Finsler metrics
and with genus > 1. We make their special covering spaces in which Jordan curve
theorem is true and on which Z2 acts, and work in them.

The length of a minimal geodesic from p to g equals the distance from p to q.
However, a shortest curve may not be a geodesic if, for example, an interior point
of it touches the boundary of M and it is not smooth at the point of contact.
We say that M is geodesically convex if there exists a minimal geodesic from p to ¢
in M for any points p,q € M. All forward complete Finsler manifolds without
boundary are geodesically convex because of the Hopf~Rinow theorem (cf. [25]).

We say that a geodesic ¢ : [a,b] — M is reversible if the reverse curve
c~tifa,b] = M, ¢ 1(t) = c(a+b—t), is a geodesic as a point set. If F is reversible,
ie., F(z,y) = F(x,—y) for all y € T, M, then all geodesics are reversible. Here
T, M denotes the tangent space of M at z. It is well known that all geodesics
are reversible in (M, F) if F' = o+ (8 is a Randers metric, where a is the norm
induced by a Riemannian metric and S is a closed 1-form with ||3]|o < 1 (cf. [10],
1161, [25).

We say that a surface M is finitely connected if there exist a compact sur-
face S, with or without boundary, and finitely many points pi,...,px € S such
that M is homeomorphic to S\ {p1,...,pr} (cf. [26, p. 41]).

The main theorem and corollaries are the following.

Theorem 1.1. Let (M, F) be an orientable finitely connected and geodesi-
cally convex smooth Finsler surface with genus g > 1. Assume that all geodesics
are reversible. Then, for any number € > 0 and any points p,q € M, there exists
a number R > 0 such that the geodesic circle Sy;(p,t) with center p and radius t
meets the e-ball B(q,e) with center q for any t > R.
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Here Sy/(p,t) N B(g,e) consists of many subarcs of Sy/(p,t) (see Figure 1),
although we do not count the number of those subarcs (see Corollary 1.5 below).
In the process of the proof of Theorem 1.1, we know the movement of subarcs
of Sp(p,t) in B(gq,e): There exists a geodesic circle Sy (p,to) passing through ¢
while a subarc of Sys(p,t) gets into B(g,€) and leaves.

Figure 1. The propagation of geodesic circles.

Remark 1.2. If a Finsler surface (M, F') is not orientable, then M has an ori-
entable double covering surface 7w : M} — M. If a Finsler metric F} of M is the
pullback of F' by 7, i.e., F; = n*F, then the image of any geodesic in (M7, F})
by 7 is a geodesic in (M, F) with the same length. Hence, (M1, F}) satisfies the
assumption of Theorem 1.1. Assume that the genus of M; is greater than or equal
to one. Choosing p1,q1 € M such that 7(p1) = p and 7(¢1) = ¢, and applying
Theorem 1.1 to p; and ¢; in M7, we have the same conclusion for p and g through
the projection 7.

The following corollary is a direct consequence, but the situation may often
arise when (M, F) is complete.

Corollary 1.3. Let (M, F) be an orientable Finsler surface such that all
geodesics are reversible and p,q € M. Assume that there exists a surface M
embedded in M containing p and q and with genus g > 1 such that M; is finitely
connected and geodesically convex. Then for any € > 0, there exists a number
R > 0 satisfying the same property in Theorem 1.1.

Let £ : ©Q, , = R be the energy function on the path space Q, , from p to q.
The critical points of E are geodesics from p to ¢ in M (cf. [22], [25]).

Corollary 1.4. Let (M, F) be as in Theorem 1.1. For any number € > 0
and any points p,q € M, there exists a number R > 0 such that the set of critical
values of E is e-dense in [R, 00).
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To clarify the role of the geodesic reversibility assumption, we study geodesics
and geodesic circles under more general settings. Hereafter, let (M, F) be an ori-
entable finitely connected and geodesically convexr smooth Finsler surface with
genus g > 1. From the assumption on the genus of M, there exist g simple closed
curves cq,...,¢q in M such that they are disjoint and M ~\ U?_,¢; is connected.
We assume that g — 1 curves of them, say ci,...,cq—1, are reversible geodesics.
This assumption is automatically satisfied if all geodesics are reversible in the
Finsler surface. We study geodesics in M ~ Uf;ll ¢; and the asymptotic behavior
of geodesic circles. Namely, we develop geometry of geodesics in M, using no geo-
desic which intersects c1,...,c4—1. The set M Uf;ll ¢; and its covering space N
are geodesically convex when c1,...,c4—1 are reversible geodesics. In fact, if the
distance d;(p,q) from a point p to a point ¢ in M ~ Uf;llci is defined as the
infimum of the lengths of all piecewise smooth curves from p to g in M ~ Uf;llci,
then M ~ Uf;ll ¢; is geodesically convex with respect to di. The distances of M
and M ~ Uf;llci induced by F' are different, but a geodesic in M ~ Uf;ll c; re-
mains a geodesic in M. We make use of those geodesics which do not intersect
C1,...,Cg—1 in M to obtain the properties mentioned in Theorem 1.1.

The following corollary is a rough estimate of the number of critical points
and sufficiently large critical values of E. In the following corollary we use
the phrase ‘a pencil of geodesics’, which is a set of geodesics converging to or

narrowly diverging from a point.

Corollary 1.5. Let (M, F) be as mentioned above. Let n be any positive
integer. For any number € > 0 and any points p,q € M ~ Uf;llci, there exists
a number R > 0 such that at least n pencils of geodesics emanating from p with
length t intersect the e-ball with center q for any t > R where the sequences of the
lifts of these n pencils of geodesics into N converge to rays with different slopes
ast — oo.

Here, the covering space N of M ~ Uf;llci is defined in Section 2, and the
notion of slopes for rays is defined in Subsection 4.2. We work in the covering
space N where the covering transformation group & is isomorphic to Z2. Such
a covering space can be constructed because M ~ Uf;ll ¢; is considered to be
a subset in a 2-torus. Hence we find and use many analogous results on the
behavior of geodesics on 2-tori. Working in N, we prove Theorem 2.3, which is
sufficient for Theorem 1.1.

The geodesics on 2-tori of revolution embedded in the Euclid space E? have
been studied by BLiss[4] and KIMBALL[20]. Recently, GRAVESEN, MARKVORSEN,
SINCLAIR and TANAKA [9] have studied the cut locus in a 2-torus of revolution.
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INNAMI [14] has studied geodesics in a 2-torus having poles. MORSE [23] and
HEDLUND [11] studied the geodesics on arbitrary Riemannian tori whose lifts
into the universal covering space are straight lines. BUSEMANN and PEDER-
SEN [6] have determined how the straight lines behave in the universal covering
planes of 2-tori with one-parameter groups of motions. Their methods are uni-
fied by BANGERT [3] with those of MATHER [21] and AUBRY-LE DAERON [2] to
study a monotone twist map of the annulus and the discrete Frenkel-Kontrova
model (cf. [19]). The method of finding straight lines by displacement functions
can be applied in more general situations. Indeed, in [3], we can see the com-
plete classification of straight lines in the universal covering plane of an arbitrary
2-torus, as an application. Recently, SCHRODER [24] has generalized those results
for non-symmetric distance cases. We modify the methods in [6] to have analo-
gous results for studying the asymptotic behavior of geodesic circles. In the light
of the classification of straight lines, we can study the limit circles which are the
level sets of Busemann functions.

Let Gt : SX — SX be the geodesic flow of a unit tangent bundle SX
of a complete Finsler manifold X without boundary. It follows from Poincaré’s
recurrence theorem that for almost all y € SX, there exists a sequence of numbers
tn such that ¢, — oo and G'"(y) — y as n — oo if the volume of X is finite.
We can estimate the averages of the return time for almost all y € SX by using the
Birkhoff ergodic theorem (cf. [1]). In comparison with these results, Theorem 1.1
states that some terminal points of geodesics emanating from p and with length
t > R always exist near q. An event occurs at a point p, its influence spreads
according to Huygens’ principle, and after the time R, at the point g, it is affected
every time less than e.

We say that G! is topologically mizing if for any two open sets U and V of the
unit tangent bundle SX, there exists a number R > 0 such that G*(U) NV # ()
for all ¢ with |¢| > R. EBERLEIN [8] has proved that the geodesic flow G' is
topologically mixing on SX if the Riemannian manifold X is a compact visibility
manifold of non-positive curvature. We are interested in the existence of wave
fronts more than the directions of trajectories, so it is important to study the
asymptotic behavior of geodesic spheres related to the property of topological
mixing in the underlying manifold, since the geodesic circles spread according to
Huygens’ principle.

We say that the geodesic flow G? is topologically sub-mizing if for any open
sets U and V of X, there exists a number R > 0 such that geodesic circles
p(G*(SyX)) = exp,(tS,X) intersect V for some point ¢ € U and for all t > R,
ie., Gip~ (U)) N p~ (V) # 0, where p : SX — X is the natural projection,
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and exp, : T, X — X is the exponential map at ¢. Here we note that Sx (g, t) =
exp, (t5,X) is the geodesic sphere with center ¢ and radius ¢. The geodesic flow
of a flat n-torus, n > 2, is topologically sub-mixing, but not mixing. Sierpinski
(in 1906) (cf. [12]) has estimated the asymptotic difference between the area mt?
of the circle S(¢) with radius ¢ and the number N(t) of lattice points contained
in S(t) in the Euclidean plane, proving that |7t — N ()| < O(t?/3), which means
that N(t+¢) = N(t) = 7(t+¢)> —at> + O(t*/?) = 2met + O(t*/3) — 00 as t — oo.
We find the similar estimate for a flat n-torus 77 in [7], where the error term is
O(t*), 0 < a < n—1. These properties prove the topological sub-mixing property
of T™. In the previous paper [15], we have investigated the asymptotic behavior
of geodesic circles in a 2-torus of revolution and proved that the geodesic flow
of a 2-torus of revolution is topologically sub-mixing. In [18], we have proved
the geodesic flow of any 2-torus is topologically sub-mixing. Theorem 1.1 states
that the sub-mixing property of a geodesic flow is true for a much wider class of
surfaces.

2. A surface cut along simple closed geodesics

2.1. Cutting and opening M along simple closed geodesics. We cut and
open M along simple closed geodesics cq,...,cq—1.

Figure 2. The case of genus 2.

We construct an orientable finitely connected Finsler surface (My, Fy) with
boundary and with genus one (see Figure 2), satisfying the following properties:
There exists a map I : My — M such that
(1) the interior Int(Mp) of My is isometric to M ~ U~ [¢;, i.e., the restric-

tion I : Int(Mp) — M ~ Uf;llci is a diffeomorphism such that Fy(z,y) =

F(I(x),dI,(y)) for all z € Int(My) and y € T,, M.
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9= Ye;, I™'(z) consists of exactly two points in the bound-
ary OMy of My. When those two points are identified, the quotient space
My /I is naturally thought as M by the quotient map My/I — M.

The boundary My of My consists of I~1 (U9~ '¢;) and 1= (dM) (the orig-

inal boundary of M) as surfaces. Hence OM, has at least 2(g — 1) connected

(2) for any point x € U

components. The set {p1,...,pr} is contained in the boundary OM of M =
S~ {p1,...,pr} as a topological sub-space in a certain compact surface S, but
we think no point in My is sent to py,...,pg by I.

The finitely connected Finsler surface My with genus one defined as above
is geodesically convex, since M is geodesically convex and all ¢;, 1 =1,...,9 — 1,
are reversible geodesics. The boundary of Mj is not empty if g > 1.

Notice that ¢ is a geodesic in the interior Int(My) of My if and only if I(c) is
a geodesic in M \Uf’;ll ¢;. It should be noted that there exists no geodesic touching
OM, any place other than its endpoints, because all curves ¢; and reverse curves
¢; ! are geodesics for i = 1,...,g — 1, and the geodesic is uniquely determined
from the initial condition. Namely, any geodesic ¢ whose end points are in Int (M)
satisfies that I(c) C M ~ Uf;llci. We define a distance do(p, q) for p,q € My as
usual; do(p, q) is the infimum of the lengths of piecewise smooth curves from p to
g in Mp. Then a shortest curve from p to ¢ in Int(My) is a minimal geodesic ¢ in
Int(My), i.e., do(p, q) is the length of c.

Minimal geodesic
ya Minimal geodesic

P

Figure 3. Minimal geodesics in My and M.

Obviously, do(p,q) > d(I(p),I(q)) for any p,q € My, where d(-,-) is the
distance on M induced by F. In fact, if a minimal geodesic v from I(p) to I(q)
in M crosses ¢; for some i =1,...,g — 1, then the minimal geodesics from p to ¢
in My are longer than ~ (see Figure 3).

2.2. Another geodesically convex surface M, with genus one. Assume
in this subsection that all geodesics in M are reversible. Since M ~ UZ|'¢; is
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a geodesically convex set, we have g—1 simple closed geodesics d;, i =1,...,9—1,
such that

(1) ¢;Nd; is a single point for each i =1,...,9 — 1;
(2) ¢;Ud;, i=1,...,9 — 1, are mutually disjoint.

Then there exists an open neighborhood U; of ¢; U d; such that U; \ ¢; U d; is
homeomorphic to an open cylinder S x (0,1) for each i = 1,...,g — 1. As was
seen before, we make an orientable finitely connected and geodesically convex
Finsler surface (My, Fy), Mo = M ~ Uf;llci Ud;, with boundary and with genus 1,
such that there exists a map I : My — M satisfying the same property as above.
In this construction, the boundary OMj is the union of I ’1(Uf;11 ¢; Ud;) and
I=(dM). Each connected component of I~*(U?"'¢; U d;) is a broken geodesic,
but not a (smooth) geodesic.

2.3. The geodesic circles in M. Let M; be a finitely connected and geodesi-
cally convex Finsler surface. For a point p € M; and a unit vector v € S, M, let
Yo ¢ (—a(v),b(v)) — M; be a unit speed geodesic such that 4,(0) = v, possibly
a(v) = 00,b(v) = co. Here the interval (—a(v),b(v)) is supposed to be maximal,
i.e., there exists no proper extension of v, in M;. If M; is complete and without
boundary, then a(v) = co and b(v) = oo for all v € SM;.

For a number ¢ € (—o0,00), let SM;(¢) be the set of all v € SM; such that
t € (—a(v),b(v)). Then amap G* : SM;(t) — SM; is defined by G*(v) = 4, () for
any v € SM;(t). Let p: SM; — M; be a natural projection of the unit tangent
bundle of M;. Then Sy, (p,t) := p(GH(Sp M1 N SMy(t))) = {1u(t) |v € SpMi(t)}
is called a geodesic circle with center p and radius ¢ in M, for any point p and
any t > 0. If M; is complete and without boundary, then SM;(t) = SM; for all
t € (—oo,00) and G* is called the geodesic flow on SM;y (cf. [1]).

Hereafter, let My denote a surface constructed in Subsection 2.1 from M.
We emphasize that I(Sy,(p,t)) C Sy(I(p),t) for all ¢ > 0 and any p € M.
This inclusion relation is not true for the distance spheres, i.e., I (Sj‘&o (p,t)) ¢
S3,(I(p),t), in general. Here S%; (p,t) := {q € Mo |du,(p,q) = t}.

2.4. A covering surface and its transformation group. We make a sur-
face Sp from S ( D M) in the same way as My from M. Then we think
My = So ~ {p1,...,pr}- Let k' be the number of the connected components of
the boundary OM of M. Recall that the genus of My is one, My has 2(g—1)+ %’
connected components and k points py,. .., pg are removed. If 2(g — 1) + &’ disks
K;,i=1,...,2(g — 1) + ¥/, are glued along the boundary 0M, and k points
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pj, j = 1,...,k, are plugged up at the original location in Sy, then this opera-
tion turns Sy into a 2-torus topologically. Hence, its universal covering surface is
topologically a plane R?, and the covering transformation group & is isomorphic
to Z2. We define a surface N by

N =R2 U2 Ing(K) U {p, ..., i }),

where K; (resp., p;) is a lift of K; (resp., p;) into R? for each i = 1,...,2(g—1)+k’
(resp., j =1,...,k). Then N is a covering surface of My with a natural covering
map 7 : N — M.

Lemma 2.1 (Jordan curve theorem). Let C' be a simple closed curve in
Int(N). Then N ~\ C consists of two connected components.

PROOF. Since C C N C RZ2, the Jordan curve theorem for R? implies that
R2 \. C consists of two connected components X; and X,. Then X; N N and
X5 N N are the connected components of N \ C. O

If we define a Finsler metric F on N by F(z,y) = Fy(n(z),dn(y)) for any
z € N and any y € T, N, then ® acts on N as an isometry group isomorphic
to Z? such that My = N/®. From the definitions of geodesic circles and distance
circles, we have the following lemma.

Lemma 2.2. Let (M, F) be as mentioned above. Then there exist an iso-
metric surface I : Int(Mg) — M ~ Uf;llci and its covering surface m : N — M
such that My = N/®, where ® is a covering transformation group isomorphic
to 72, satisfying that

I(n(S%(p,1))) C I(Saty (7(p), 1)) = I(m(Sn (p,1)))
C Su(I(n(p)),t) = p(G"(Si(m(p)M N SM(t)))
for any p € N and any t > 0.

From Lemma 2.2, it suffices to prove Theorem 2.3 in order to obtain Theo-
rem 1.1.

Theorem 2.3. Let N be a covering surface of My constructed as above.
Let p, ¢ € N. Given ¢ > 0, there exists a number R > 0 such that S%(p,t) N
®(B(q,¢€)) # 0, equivalently, ®(S% (p,t)) N ®(B(g,¢€)) # 0 for all t > R.

Thanks to Lemmas 2.1 and 2.2, the process of the proof for Theorem 2.3 is
the same as in [18], although N is not homeomorphic to a plane and the distance
is not symmetric. However, from the next section up to Proof of Theorem 1.1 in
Section 7, we progress the study parallel to ones in [6] and [18]. It makes this
paper self-contained. The arguments here include some improvements.
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3. Axial straight lines

Let N be a surface constructed in Section 2. Then N is topologically a plane,
from which many open disks and points are removed, and geometrically a geodesi-
cally convex Finsler surface on which the isometry group ® isomorphic to Z? acts
so that My = N/®. Therefore, N has many properties which a plane has: A sim-
ple closed curve and a simple curve diverging both directions as a curve in R?
divides N into two connected components, etc. Let d(-,-) be the distance on N
induced by F = 7*Fy. Since we do not assume that F' is reversible, we have
d(p,q) # d(q,p) for points p, ¢ € N, in general. For 7 € &, let d, : N — R de-
note the displacement function of T which is defined by d.(p) = d(p, 7(p)) for all
p € N. We say that a minimal geodesic T is a straight line in N if T is unbounded
in both directions as a curve in R? where N lies. Note that if My contains two
unbounded tubes, then there exists a minimal geodesic defined on R in N which
is not a straight line. There exists a parametrization v : (—oo, 00) = N of T such
that d(y(s),v(t)) =t — s for any s, t € (—00,00) with s < ¢t. The unboundedness
of T in R? implies that any half part of T' does not stay in a fundamental domain
in N over So = My U {p1,...,pr} and is not contained in any tube of N. The
reverse curve 7~ of T may not be a geodesic. We have seen in [16], [17] and [18]
what phenomenon happens on geodesics in Finsler 2-tori, in comparison with the
case of a Riemannian surface.

Proposition 3.1 (cf. [6]). Let 7 € ®, 7 # id. Then d, takes a positive
minimum. If p € N is a minimum point of d,, then there exists a unique straight
line v : (—o0,00) — N such that v(0) = p and 7(y(t)) = v(t + ¢) for all t €
(—o00,00), where ¢ = mind, > 0.

We call a straight line v as in Proposition 3.1 an azis of 7.

Remark 3.2. Tt follows that 7=1(vy(¢)) = y(t — ¢) for all t € (—00,00) for an
axis v of 7. However the reverse curve v~ (t) = y(—t) for ¢t € (—o0, 00) is neither

)
axis of 77! nor geodesic, in general (cf. [16]).
Proposition 3.1 is certified by the following Lemmas 3.3 to 3.5.

Lemma 3.3. For all 7 € ®, 7 # id., the displacement function d. takes the
positive minimum on N. The set of all minimum points of d. is contained in
Int(N) and invariant under ®.

PROOF. Since @ is abelian, we have d,(c(q)) = d-(¢) for all ¢ € N and all
o € ®. Hence, the set of all minimum points of d, is invariant under .
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Since ® is a covering transformation group and 7 € ®, we have m :=
inf{d,(¢)|¢ € N} > 0. We prove that the set of minimum points of d, is not
empty, and if d;(¢) = mind, for a point ¢ € N, then ¢ € Int(N). Let ¢; € N
be a sequence of points in a fundamental domain Mo for My such that d.(g;)
converges to m as j — oo. We suppose for an indirect proof that g; converges
to a point ¢ € ON or ¢ = p; € R? for some i = 1,...,k, where 7(p;) = p; € Sp.
In case ¢ = p;, My is bounded around p; with respect to the distance dgy, since
g; and 7(g;) belong to different fundamental domains. This is not the case when
M is geodesically complete. Then the minimal geodesics T'(¢j,7(g;)) from g; to
7(g;) in N satisfy T(g;,7(g;)) ~ {g;,7(g;)} C Int(N), since N is geodesically
convex and any connected component of N cannot contain both ¢; and 7(g;).
In particular, the midpoint r; € T(g;,7(g;)) is contained in Int(/N). We assume
that r; converges to a point r as well. Then we have r € Int(V), because r is
an interior point of a minimal geodesic. Further, T'(q, 7(q)) U T(T(¢,7(q))) is the
union of minimal geodesics broken at 7(¢q). Since N is geodesically convex and
r € Int(N), a minimal geodesic T'(r, 7(r)) is contained in Int(N). Hence, we have
that d.(r) < d(r,7(q))+d(7(q), 7(r)) = d(r,7(q)) +d(g,7) = lim; o d-(g;) = m,
a contradiction. Therefore, we have ¢ € Int(N). O

Lemma 3.4. Let 7 € ®, 7 #£id. If p € N is a minimum point of d, then

oo

T.(p):= |J TG"m), ™" ()

n=-—oo
is a unique T-invariant and simple geodesic through p in N.

ProOOF. We first prove that T, (p) is a geodesic in N. Let ¢ € T'(p, 7(p)) be
a point between p and 7(p), i.e., ¢ € T(p,7(p)) ~ {p,7(p)}. We then have

d(p,7(p)) < d(q,7(q)) < d(g,7(p)) + d(7(p), 7(q))
d(p,q) +d(q,7(p)) = d(p, 7(p))-

Therefore, we have d(p, 7(p)) = d(q,7(q)) = d(q,7(p)) + d(7(p), 7(¢)), meaning
that T'(p, 7(p)) and T'(7(p), 7%(p)) are smoothly joined at 7(p) to make a geodesic
segment T'(p, 7(p)) UT(7(p), 72(p)) in N. In particular, we note that there exists
a unique minimal geodesic segment T'(p, 7(p)) from p to 7(p), because T preserves
the orientation of V. In fact, if there exist two minimal geodesics T7 and 75 from
p to 7(p), then both 71 U 7(T1) and Ts U 7(T3) are smooth geodesics having the
same end points p and 72(p) and crossing at 7(p). However, two simple closed
curves Ty UTy =t and 7(Ty UTy ™) = 7(T1) UT(Ty) ! have different orientations,
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a contradiction. From the uniqueness of the minimal geodesic from p to 7(p), the
joined geodesics T (p) form a unique T-invariant geodesic passing through p.
Since {7"(p)|n € Z} is unbounded, T (p) is not a closed geodesic in N.
We next prove that T,(p) is simple. Suppose for an indirect proof that
(T (p, 7(p))) N T™(T(p,7(p))) # O for some integers n and m, n # m. Since
T-(p) is not a closed geodesic, 7" (T'(p, 7(p))) N 7™ (T (p, 7(p))) consists of a sin-
gle point g. However, it is impossible, because 7"(T(p, 7(p))) and 7™ (T (p, 7(p)))
contain a sub-segment of T'(¢,7(¢)) in common. O

The straightness of T, (p) in N can be proved by the same way as in [6].
We then use Lemma 2.1 (Jordan curve theorem) for N.

Lemma 3.5. Let 7 € &, 7 # id. If p € N is a minimum point of d,, then
T, (p) is a straight line in N invariant under T.

PROOF. Suppose for an indirect proof that T’ (p) is not minimal in N. There
exists a minimum integer k such that T (p)* := U2 T (7" (p), 771 (p)) is not
a minimal geodesic segment in N. We then have k > 2 and d(p, 7(p)) < kmin d,.

Since T (p)* is not minimal, a minimal geodesic T'(p, 7%(p)) from p to 7%(p)
is different from 7. (p)*. In fact, T'(p, 7™%(p)) N T\ (p)* = {p, 7*(p)}, because both
T(p, 7% (p)) and T(7%~'(p),7*(p)) are minimal. Since 7 is an orientation pre-
serving isometry of N and T (p) is invariant under 7, we see from Lemma 2.1 that
T(p, 7" (p)) intersects 7(T(p, 7™%(p))) = T(7(p), 7%+ 1(p)) at one point ¢. Further,
we have T'(7(p), 7" (p)) N T(7*(p), 7*3(p)) > 7(q)-

Since

we have mind, > d(g,7(q)), a contradiction. O

Any point in T (p) is a minimum point of d.. Hence the parametrization
v : (—00,00) = N of T, (p) satisfies the property 7(y(t)) = v(t+ ¢) as in Proposi-
tion 3.1. There are some phenomena which do not happen in the case of reversible
geodesics.
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Remark 3.6. The following are true:

(1) Let 7 € &, 7 # id. If p,¢g € N are minimum points of d,, then either
T, (p) = Ty (q) or Tr(p)NTy(q) = (0 is true. Further, 7= (T, (p)) = T-(p), but
the reverse curve T, (p)~! may be neither an axis of 77! nor a straight line
(cf. [16]).

(2) Let 1,0 € @, 7,0 # id, T # 0. Assume that an axis v : (—oc0,00) = N
of 7 intersects an axis o : (—o00,00) = N of ¢ at p = 4(0) = «(0). Then
~¥((0,00)) N a((0,00)) = 0 and v((—00,0)) N a((—0,0)) = O are true. How-
ever, ¥((0, 00))Na((—00,0)) # O and ((—o0,0))Na((0,00)) # ) may happen
(cf. [16]).

A straight line 7 : (—o0,00) — N divides N into two connected components.
We call them the right side E(v) and the left side W (~y) of 7.

In conjunction with Proposition 3.1, we have the following Proposition 3.7,
using the same argument as in [5].

Proposition 3.7. Let v : (—o0,00) — N be a straight line in N. If v is
positively invariant under 7 € ®, i.e., 7(y(t)) = v(t + ¢) for some ¢ > 0, then
¢ =mind, and vy is an axis of 7. Hence all points p € y((—o0,00)) are minimum
points of d, and y((—o0,00)) = T (p). Moreover, there exists 79 € ® such that,
if 7 € ® leaves vy invariant, then 7 = 10" for some k € Z. If 79 = ™ o™, then
m and n are relatively prime, where ¢ and 1 are the generators of ®.

PROOF. Let p = ~(t) for a number ¢t € (—00,00) and ¢ € N. From the
assumption, we then have ¢ = d,(p) and

nd(p,7(p)) = d(p,7"(p)) < d(p,q) + Y _ d(v*"(9), 7*(q)) + d(7"(q), 7" (p))
k
= d(p,q) +nd(q,7(q)) + d(q,p).
Hence, we have

d(p,q) +d(g,p)

d(p,7(p)) < d(q,7(q)) + -

As n — oo, we conclude that ¢ = d,(p) < d-(q), meaning that p is a minimum
point of d.

Let & = {7 € ®|7(v(t)) = v(t + mind,) for all t € (—o0,0) } and ¢ =
inf{mind, |7 € ®1,7 # id.}. Since ® is properly discontinuous, there exists
To € ®; such that mind,;, = ¢ > 0. Let 7 € ®; and d = mind,. If d = ¢, then
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T = T19. Let d = ke + e for some k € Z with £ > 0 and some number e with
k o 7 satisfies that 7 € ®; and
e = mind,,, contradicting the choice of ¢ if e # 0. Since e = 0, we have 7 = id.

0 <e<ec Weprove e =0. In fact, 7y = 79~

Hence 7 = 79% with & > 0. This implies that if ~ is positively invariant under
7 € ®, we then have 7 = 7" for some k > 0.

In case there exists a number ¢ > 0 such that 7(v(t)) = v(t — ¢) for all
t € (—00,00), we have 77! = ¥ for some k > 0, since 771(t) = y(t + ¢) for all
t € (—o00,00). Then 7 = 75"

Suppose for an indirect proof that m and n is not relatively prime, i.e.,
m = kmy and n = kn; for some integers k > 1, my and n;. Let 74 = ™! o p™1.
From the choice of ¢, we have 71 (y(—00,00)) N y((—o0,00)) = 0, because both
71 07 and 7 are axes of 79 (see Remark 3.6). Since 7 preserves the orientation
of N, if 71 o+ is contained in E(y) (resp., W(7)), then 71* o~ is also contained in
E(¥) (resp., W(7)). This contradicts that 7% o((—00, 00)) = 19 0v((—00,00)) =
~v(—00, 00). O

4. Straight lines and slopes

4.1. Busemann functions and limit circles. Let v : (—oo,00) — N be
a straight line. We define the Busemann function B, : N — R of v by

By(p) = lim _d(~(t),p) +1

t——o0

for all p € N. It follows that

—d(p,q) < B,(p) — By(q) < d(q,p)

for all p, ¢ € N. Hence, B, is differentiable on a full measure set in N. The
structure of the level sets of a Busemann function has been studied in [18] and [27].
We say that aray a : (—00,0] = N isa co-raytoy~ : (—00,0] = N, v~ (t) = ~(t),
ending at p = «(0) if there exist a sequence of numbers t; — —oo and a sequence of
points p; € N such that a sequence of minimal geodesics o : [—d(y(t;),p;),0] =N
converges to a as j — oo, where a;(—d(y(t;),p;)) = (t;) and p; = «;(0).
From [5], we see that a curve « : (—o00,0] — N is a co-ray to 7~ ending at a(0)
if and only if B,(a(t)) = t + B,(a(0)) for all t < 0. We call the end point of
a maximal co-ray to ¥~ a co-point to y~. Let C(y~) denote the set of all co-points
to v~. Then B, is of class C! on N \ C(y~) and the gradient vector of B, at
p & C(y7) is &(0) where a : (—00,0] — N is a unique co-ray to v~ ending at



Geodesics and geodesic circles 293

p = a(0) (cf. [13]). We say that a straight line a : (—o0,00) — N is an asymptote
to vy~ if By(a(t)) =t + B,(«(0)) for all ¢ € (—o0,00). In addition, if a restriction
a: [a,00) = N is a co-ray to 7, i.e., there exists a sequence of minimal geodesics
a; from p; = a;(a) to v(t;) = a;(d(pj,v(t;)) such that a; converges to o and
t; — 00 as j — oo, we call a a parallel to v. The Busemann functions on the
universal covering spaces of Finsler 2-tori are studied in [17] and [18].

For a function f on N, let [f =a]:={p e N|f(p) =a}, [f <a] ={p €
N|f(p) < a}, and so on. When + is a straight line, it follows from (22.14) in
[5, p. 133], that [B, = a] = lim;_oo SH(v(t),a — t) for all a € R. We call
[By = a] a limit circle with central ray v~ .

Lemma 4.1 (cf. [5, Theorem (32.4)]). Let 7 € ®, 7 # id. Then all axes of T
are parallels to each other.

PROOF. Let ¢ = mind,, and let v and a be two axes of 7. We prove that
@f(—oo,s] I8 a co-ray to vy~ for any s € (—o0,00). Since

By (ofs — ¢)) = By(r(a(s))) = lim_d(x(t), 7 (a(s))) +t
= lim_d(r (3t + ), 7 a(s)) + ¢
= lim_d(3(t+ ¢),a(s)) + 1 = By(als) .

t——o0
a(s —c) is a foot of a(s) on [B, = B (a(s)) —c|. From (22.17) and (22.18) in [5],
we conclude that « is an asymptote to v~. The similar argument proves that
@[s,00) 18 & co-ray to 7. a

4.2. Fundamental domains over M, and slopes of straight lines. Assume
that ® is generated by two motions {p,1}. Let u : (—00,00) — N be an axis
of . Then ¢ o u is an axis of ¢ also. We may assume that ¥ o p € W(p).
We take a simple curve ¢ : [0,1] — N in the strip bounded by pu((—o0,0))
and 1 o p((—o00,00)) such that ¢(0) € p((—oo0,00)) and ¢(1) = (c(0)). Let
v (—00,00) = N be a parametrization of a curve U2 ___1%(¢([0,1])) such that
v(t) = ¥i(c(s)) if t =i+ s, 0 < s < 1, for some integer i. We use this v instead
of any axis of ¢ because of the fact (2) in Remark 3.6. The domain bounded by
1, Yo pu, vand po v is denoted by N(0,0). Obviously, N(0,0) covers My, i.e.,
m(N(0,0)) = My. If we set N(i,5) = ¢' 0 4p7(N(0,0)), then N = U jyez2 N (4, 7).

Using this notation, if v : (—oo,00) — N is a straight line and ~(t) €
N(i(t),j(t)) for t € (—o0, 00), we then have |i(t)| — oo or |j(t)] — oo as t — Fo0.
Hereafter, we use the word “ray” in the following sense: a minimal geodesic
v :]0,00) = N (resp., (—00,0] — N) such that v(t) € N(i(t),j(t)) for all ¢ is
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a ray if |i(t)| or |j(t)| goes to oo as t — oo (resp., —o0). The half parts of axes
and their co-rays are rays.
Let v : (—00,0] = N be a ray. We define the slope A(7) of v by
R J(t) N
Aty =timint { 7950y e NGy, e b

t——o00 Z(t)
We prove that “liminf” is replaced by “lim” in Lemma 4.3.

Lemma 4.2. If v : (—oo,00) = N is an axis of 7 = ™ o)™ € ®, 7 # id.,
we then have A(y) =n/m if m # 0, and A(y) = oo if m = 0.

PROOF. Assume that p = y(0) € N(mo,np) is a minimum point of d, and
¢ =mind,. Let L be the maximum of those numbers |mg — i| and |ng — j| where
N(i,7) intersects a c-ball with center p with respect to d(-,p). If t = ke + r for
some integer k and some number r with 0 < r < ¢, then y(t) € N(mgo + km +
m,ng + kn + ny) for some my and ny with 0 < |my| < L and 0 < |nq] < L.

Hence we have
k
A(y)= lm 0 ThRtm o n -
t——o0 mg + km + mq m

All axes of 7 and 77! have the same slope.

Lemma 4.3. Let y: (—00,0] = N be a ray. We then have

t——o0 7

A(y) =, lim {j

vweN@ﬁ}

Furthermore, for a straight line v : (—o0,00) — N, we have

A = i {2

t—+oo I3

V@GN@ﬁ}

PROOF. Suppose for an indirect proof that there exists a rational number
n/m such that

)€ Nip) p < 2 <tmsup { 2| 20 € M) |

lim inf { l
to—occ | 4 ts—oco | 1
Then there exists an axis of 7 = ¢ o ¢™ such that it intersects v many times.
Since the axis and ray -« are minimal, this is impossible, proving this lemma.
The second statement is proved in the same way. O
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Under a slightly different definition of slopes or rotation numbers, we see the
complete structure of all sets of all straight lines with slope i € R when N is the
universal covering plane of a 2-torus with Riemannian or reversible Finsler metric
(cf. [3], [24]).

Instead of classifying the straight lines in N, we pay our attention to a re-
stricted set of straight lines with slope h € R. Let X} denote a set of straight
lines for h € R:

(1) If h = n/m is a rational number, then X}, is the set of all axes of 7 = ™o)™
in N for some (m,n) € Z* with m > 0.

(2) If h is an irrational number, then X}, is the set of all straight lines a such
that there exists a sequence of axes in X, converging to « as £ — h—0, where
¢ are rational numbers.

For two straight lines v and «, we write v > o when « is contained in E (7).
The relation “>" is a partial order on the set of all straight lines in N. Because
all straight lines in X} are mutually disjoint, the following lemma is obvious.

Lemma 4.4. All geodesics in X, are straight lines with slope h € R and
X}, is ®-invariant, ie., T oy € Xy, for any v € Xy, and any 7 € ®. The set X,
is a totally ordered set. If o , v € X}, such that o < -y, then « is an asymptote
toy~.

5. Level sets of Busemann functions

Let 7y : (—00,00) = N be a straight line. Note that the boundary of [B, > ]
possibly contains sub-arcs of the boundary of N, and that [B, = a| may be divided
by a removed point if M is not complete.

Lemma 5.1. For all a € R, there exists the unique connected component of
[B, > a] whose boundary is unbounded in N.

PrOOF. Since y([a+1,00)) C [B, > a], there exists at least one unbounded
connected component Wy of [B, > a]. Because of the topological structure of N
and Theorem 2.1 (Jordan curve theorem), the boundary of W is unbounded.
Suppose for an indirect proof that there exists another unbounded connected
component Ws of [B, > a] such that the boundary of W5 is unbounded. Then
we have a compact set K in N such that N ~ W; U W5 U K has at least two
unbounded connected components one of which contains y((—oo,a — 1]). If py, is
a boundary point of W5 contained in another unbounded connected component of
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N\ W,UW,UK such that B, (px) = a, then we have a co-ray oy, : (—00, ax] = N
from pr = ag(ar) to v~ such that ar(0) € K. As pp goes to oo, choosing
a subsequence of «j converging a straight line «, we have an asymptote a to
7~ . However, this is impossible, because B, (a(t)) is bounded above by a. O

Let Y, (a) denote the boundary of the unbounded connected component of
[By > a] containing y([a + 1, 00]) for each a € R in N. Obviously, [B, = d]p :=
Y,(a) ~ ON C [B, = a]. Furthermore, Y,(a) divides N into two connected
components NT and N~ such that y((a,0)) € Nt and v((—o00,a)) C N™.
Ifpe N*,thenp € [B, >a]. If p € [By < a], then p € N™. In general, it follows
that [By > a] NN~ # (. The parameterized curve Y, (a)(t), t € R, is assumed to
cross the co-rays to v~ from left to right.

Let v € X}, and let X} () denote a subset of X}, consisting of all straight
lines contained in E(v). Then all straight lines o € X, () are asymptotes to v~
because of the definition of X} (see Lemma 4.4). We use a parametrization of
a € Xp, such that B, (a(t)) =t for all t € (—o0,00) if & < 7y, and Ba(y(t)) =t
for all ¢ € (—o0,00) if @ > 7.

Lemma 5.2. If « € X},(7), then B, = By on E(a).

PROOF. If 8 is a co-ray from p € E(«) to vy, then § is a co-ray to ™ as well,
since « is an asymptote to 7. Conversely, a co-ray 8 to a~ in E(«) is a co-ray
to v~. Hence, B, — B, is constant on E(«), because the distribution of co-rays
of v~ and o~ in E(«) are identified. In particular, the gradient vectors of B., and
B, are equal almost everywhere (see Subsection 4.1). We have B, (p) — Ba(p) =
B, (a(0)) — Ba(a(0)) = 0. O

From this lemma, we can define a function By, : N — R by B (p) = Ba(p)
for all p € N where « is a straight line in X} such that p € E(«).

Lemma 5.3. Let h,k € R with h # k. If Yy (a)(to) = Yi(b)(t1) =: p, then
Y3 (0)((to, 00)) N Ya(8) (11, 50)) ~ ON = 0.

PrROOF. We may assume that h < k. Suppose for an indirect proof that
there exist numbers so > tp and s; > t; such that Y}, (a)((to,50)) N [Br = a] N
Y5 (b)((t1,51))N[Br = b] = 0 and Yy, (a)(so) = Yi(b)(s1) =: ¢ € [Br, = a]N[By = b].

Let a : (—00,00) = N (resp., 8 : (—o0,00) — N) be a straight line in X,
(resp., Xi) such that p,q € E(a) (resp., p,q € E(B)). We may assume that the
sequences of minimal geodesics T'(«(t),p), T(B(t),p), T(a(t),q) and T(5(t),q)
converge to aq, 1, as and fa, respectively. Then «; and 31 (resp., as and f2)
are co-rays from p to o~ and 7, respectively, (resp., from ¢ to a~ and 87,
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respectively). Since h < k, the co-ray [ intersects the co-ray as at some point
r € N. This means that

lim inf (d(a(t),q) + d(B(t), p) — d(a(t),p) — d(5(t),q)) > 0,

t——o0

since there exists a number § > 0 such that

d(a(t),q) + d(B(t),p) = d(a(t),re) + d(re, q) + d(B(t),re) + d(re, p)
> d(e(t), p) +d(B(t),q) + 6

for any ¢ < 0 with sufficiently large |¢| and r; — r as t — —oo where r, =
T(a(t),q) NT(B(t),p). This contradicts the following equality.

0= (Bn(q) — Br(p)) — (Bk(q) — Bk(p))
= lim (d(a(t),q) +d(B(t),p) — d(a(t),p) — d(B(1),q)) - O

t——o0

Lemma 5.4. Let 7 € ®. Then the function f,(1) = By oT — By, is constant
on N. Moreover, f, : ® — R is a homomorphism, i.e., fy(700) = fr(7) + fr(o)
for all T,0 € ®. In particular, if T = ¢™ o)™ € ®, we then have fr(1) =

mfn(e) + nfu(¥).
PrROOF. For any points p, ¢ € N, let 7 € X}, be a straight line such that
p and ¢ are in the right side of v and 7=t o, ie., p, ¢ € E(y) N E(t7 ! o).
We then have
Bu(7(p)) = Br(7(q)) = lim d(v(t),7(p)) — d(+(t),7(q))
= lim_d(r~"o(t),p) —d(r~" 0(t),q) = Bi(p) — Bu(q).

From this we conclude that f;,(7) is constant on N.
Since

fu(roo)(p) = Bu(r(a(p))) — Bu(p)
= (Bn(1(a(p))) — Br(o(p))) + (Br(o(p)) — Bu(p))
= fu(T)(a(p)) + fn(o)(p)

for all p € N, we have fi(700) = fr(r) + fun(o). O
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Let ®¢(h) = Ker(fr) = {7| fu(7) = 0} for each slope h € R. If 7 € ®y(h),
then 7(Yy(a)) = Yi(a) for all a € R. There exists 79 € ®o(h) such that 7 = 7"
for any 7 € ®¢(h) and some k € Z, as was seen in the proof of Proposition 3.7.
In fact, if ¢(t), t € (—o00,00), is a parametrization of Y, (0) such that ¢(0) =
~(0) and ¢((0,00)) is in the right side of v in N and ¢(7) are the numbers such
that 7(c(0)) = c(t(r)) for any 7 € ®¢(h), then 15 or 7o~ ! satisfies that t(rp) =
min{¢(7) > 0|7 € ®g(h) \ {id.}}.

Lemma 5.5. Let ®g(h) be generated by 19 = ¢™° o 4™ # id. Then,

mgo and ng are relatively prime and fn(v)/frn(¢) = —mo/no if fr(p) # 0, and
Tn(@) ) fn () = —ng/mq if fr() # 0.

PROOF. Suppose for an indirect proof that mo = km; and ng = kn; for
some k € Z with k # 1. Hence, if 71 = o™ 0™ | then 71(7(0)) & Y3 (0), implying
that f(71) # 0. Then we get a contradiction: 0 = fr,(79) = kfr(m1) # 0.

The second part of the theorem immediately follows from 0 = f,(79) =

mo fr(¢) + nofu(i). U

Lemma 5.6. Let 7 € ®g(h). If a straight line v € Ugcr Xy is not any axis
of T, then y((—o00,00)) intersects Yy (a) for all a € R.

ProOOF. We first assume that v € X}, for some rational number k£ € R such
that it is an axis of 7 € ® with f,(71) # 0. Then |fr(1™)| = |nfrn(71)| goes to oo
as n — o0o. This implies that | By (v(t))| goes to oo as t — +o0.

If the slope k of «y is irrational, then there exist a sequence of rational numbers
k; with k; < k converging to k and a sequence of axes y; with slopes k; converging
to 7. Since all axes +; intersect Y3 (a), v intersects Y (a) for all a € R. O

Let ¢, = inf{fr(7) | 7 € ® \ ®¢(h) such that f,(7) > 0}. Since

Cn = inf{[mfu () + nfa(@)|| (m,n) € Z? such that fi (o™ o ™) # 0},

it fn(¥)/fu(p) or frn(e)/frn(?) is an irrational number, we then have ¢, = 0

(cf. [1], [19]). Assume that f(¢))/fr(p) =1i/j, where i and j are relatively prime

integers. Then we have

mj + ni
J

fu(@™ o) = In(p).

Since i and j are relatively prime integers, there exist integers m and n such that
mi +nj = 1. Therefore, we see that

fnlp)
J

P -
7

by, = min{

fn(¥) ‘} _



Geodesics and geodesic circles 299

Note that |f4(¢)| < mind, and |fn ()] < mindy. If one of the denominators 4
and j in the above estimate of £}, is greater than @) := max{mind,, mindy} /e for
a number € > 0, we then have ¢, < ¢

Lemma 5.7. For any € > 0, the number of slopes h € R such that £, > ¢ is
finite.

PROOF. Assume that ¢, >¢. Then there exists a 71 € ® such that f,(71)=4¢,.
Here we write 74 = ¢™ o 9™. Since f,(®) is a subgroup generated by ¢,
there exists an integer k; such that f,(¢) = ki fn(m1). Hence, we then have
(kimy — 1) fr(e) + kinq frn(v) = 0. We assume that kymq — 1 = kmg and king =
kng for some integer & where the integers my and ng are relatively prime. Set
To = @™ o ™. Then 79 is a generator of ®g(h). It follows from the argument
just before Lemmas 5.7 and 5.5 that both |mg| and |ng| are less than Q. Thus
we have at most finitely many 79 = ¢™0 o0 9™ such that f;(79) = 0 even if there
exist infinitely many 71 € ® such that f,(r1) = ¢;. Furthermore, how to choose
mgo and ng depends only on ), which does not depend on the slope h. From
Lemma 5.3, there exists at most one slope h € R such that f,,(m9) = 0 for each 7g.
This implies that the number of the slopes h with ¢}, > ¢ is finite. (]

6. A domain consisting of slices covering M,

Let h € R be a slope and 7 : (—00,00) — N a straight line in N such that
v € Xp. Take a 7 € ® such that 7o~y # ~. Let 0(4, j; u,v) denote the rectangle
bounded by Y, (—ifx(7)), Yy (—jfu(7)), 7% 0y and 7% 0 7.

Lemma 6.1. Under the notation above, we have
TS(D(i7j;u,U)) = D(Z - 57j —SUu + S,V + S)'

ProOF. This lemma follows from the fact that 7% o Y, (a) = Y, (a + sfn(7))
and 7% o 7% = 75T, O

Let ®(7) denote the infinite cyclic subgroup of ® generated by 7. Then Ny =
N/®(7) is topologically a cylinder with disks and points removed. If p; : N — Ny
is the quotient map, then p; oy may not be a minimal geodesic in N7. By the way,
p1(Y5(0)) is a curve like a helix contained in N7 with pitch | fp,(7)] if | f5(7)] # 0.
In particular, we note that p(Y5(0)) is not a level set of the Busemann function
B, oy in Ny even if py oy is a straight line in Nj.
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We may assume that min{Bp(z) |« € N(0,0)} = 0 (see Subsection 4.2 for the
definition of N(i,7)). Let b > max{a € R|Y,(a) N N(0,0) # 0}. Hence, N(0,0)
is contained in the strip bounded by Y, (0) and Y,(b). It does not imply that
Bp(z) < b for all x € N(0,0), although 0 < Bj(x) are true for all x € N(0,0).
Further, when f,(7) < 0, we may assume that the domain bounded by =, Y5(0),
Tory and Y, (b) contains N (0,0), i.e., N(0,0) C E(y) and N(0,0) C W(roy). Ifb >
| fn(7)|, we have an integer k such that k|fn(7)| > b, i.e., N(0,0) C 0J(0, k;0,1).
In particular, My = 7(0(0, k; 0,1)), where 7 : N — Mj is the covering map.

Lemma 6.2. Assume that f,(7) < 0 and b > |f5(7)|. Let k be an integer
such that k| f,(1)| > b. We then have 0)(0, k;0,1) € U= 0(i,i + 1; —i, k — i) and
m(0(i,0 + 1; —i,k —i)) = My for eachi=0,...,k— 1.

PROOF. The first part of the statement follows from the definition.
We prove the second part. Since 774((J(0,1;4,i + 1)) = O(i,4 + 1;0,1),
we have

0(0,k;0,1) = U1 0(i,4 + 1;0,1) = UFl7=4(0(0, 154, + 1)).

(3
Therefore, we have

7((0(0, 150, k) = m(UZg 00, 154, + 1) = (U Zg 7~ (0(0, 1;4,4 + 1)))
= W(D(O, k; 0, 1)) = Mo.

Since 04,4 + 1; —i,k — ) = 7—*(J(0,1;0, k)), we have

(03, i+ 1;—i,k —4)) = 7(3(0,1;0,k)) = M. O

14,2
AN

Ty (1) D
T2(7 (v)

| (7 ()

7 (04 7 (t)

Y’Y(O)

7 (7(0) T (7 (t)

(7 (0) 3 o7 ()

(7 (0)) - ECA0)

w7 (@) . T 47 (©)
P (7 (1)

Figure 4. Domain which covers M.
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7. The asymptotic behavior of distance circles

We start preparing the notations which are used in the proof of Theorem 2.3.
For any € > 0, we choose a slope h € R and a straight line v € X}, such that
N(0,0) lies between Y, (0) and Y, (b), £), < €, and then choose an isometry 7 € ®
such that —e < fj,(7) < 0. The integer k; is defined to satisfy k1| fn(7)| > b.

Let v1 € X}, be a straight line, and let « be a t-invariant curve such that
a intersects 1 and 1 o v; exactly once, respectively. Then the domains Q(j)
bounded by @7 o a, /T o, 4, and ¥ o4y cover My for all integers j € Z.
Therefore, for any point p € N, there exists a sequence of points p; € Q(j) such
that w(p;) = n(p), i.e., 7;(p) = p; for some 7; € &. Since —oo < h < oo and
the perimeters of 1/?(Q(j)) equal for all i,j € Z, there exists a number K; such
that d(pj;, pj+1) < K; for all j € Z (as was seen in the proof of Lemma 7.1 in [18,
p. 356]). Let L be a number such that L > max{b, K1}, and k, ko be integers
such that k|fn(7)| > L, k = k1 + k2. We change the parameterization of v such
that y(s) = v(s + (k2 — 1) fu(7)).

After those preparations, using 7, we construct a domain D = Uf;olD(i,i +
1; —i+ks, k—1) each of whose slices covers My, i.e., (04, i4+1; —i+ko, k—i)) = My
for each i = 0,...,k — 1. We may assume that v; € X, satisfies D C E(y1).

Lemma 7.1 (cf. [18, Assertion 7.2]). There exists an integer ji such that

d(pj,71(0)) < d(pjt1,7(L))

for all integers 7 < ji.

PROOF. The sequences of minimal geodesics T'(p;,v1(0)) and T'(pj4+1,71(L))
converge to sub-rays of 71 as j — —o0, so there exists a sequence of points
rit+1 € T(pj+1,71(L)) converging to v1(0) as j — —oo. Therefore, there exists
an integer j; such that

d(pj+1,7(L)) — d(p;j,71(0)) = d(pjt1,mj+1) + d(rjz1,71(L)) — d(p;, 11(0))
> —(d(pj,pj+1) +d(rj41,71(0))) + d(rj1, 71 (L))
> =K1+ L+d(rj+1,71(0)) = d(71(0),7j41) > 0
for all j < j1, since d(p;,pj+1) <Ki <L and d(r;41, 71(0)) =0, d(71(0),7j41) =0
as j — —oo. (Il

Let a; = d(p;,71(0)) and b; = d(p;,v1(L)). Then, for any ¢ € [a;, b;], there
exists a point z; € ([0, L]) such that d(p;,z;) = t. Since d(p;,71(0)) = oo
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as j — —oo, there exists an integer jo with jo < ji such that a; < b; and
d(pipy11(0)) < d(pg, 71 (0)) for all integers j < jo. Hence, when Ry = aj,.
we have R; = min{a; | j < jo}.

Lemma 7.2 (cf. [18, Assertion 7.3]). For any t > Ry, there exist a point
x¢ € 11([0, L]) and an integer j < jo such that d(p;,z:) = t.

PROOF. Let K; = U{‘):j la;, b;] for j < jo. We prove that K is connected
for all j < jo. Suppose for an indirect proof that K;, is connected but not
K;,—1. From the definition of Ry, we have K;, = [R1,bj;,] for some j, < jo.
Since Kj;,—1 is not connected and R; < a;,—1, we have bj, < aj,—1. On the
other hand, we have b;, > a;,—1 because of Lemma 7.1. Since b;, < b;,, we have
aj,—1 < bj,, a contradiction. Since d(pj,71(0)) — oo as j — —oo, we have

UL _olai, bi] = [Ry, 00).
For any t > Ry, if we choose an integer j such that ¢ € [a;,b;], then there
exists a point z; € v1([0, L]) such that d(p;, z:) = t. O

Lemma 7.3 (cf. [18, Lemma 6.1]). Lete > 0,71, L, D, p € N and p; € ®(p)
be as above. Then there exists an integer jo = jo(D,e) > 0 such that

By~ H(Bu(x)) N D C B(S§(pj, d(pj,x)),¢)
for all points © € v1([0, L]) and all integers j < jo. In particular, for any point
q € By, (By(x)) N D, we have B(q,¢) N S(p;,d(pj,x)) # 0.

PRrROOF. Since g(z,t) = d(v1(t), 2) + t is monotone increasing for ¢ < 0 and
converges to Bjp(z) uniformly on any compact set contained in D as t — —o0,
there exists a number 7" < 0 such that 0 < g(z,t) — Bp(z) < ¢/3 for all z € D
and t < T.

If ¢ € B, Y (Bp(x)) N D for a point x € 71([0, L]), we then have

0 < d(m(t),q) —dn(t) =) <e/3 (1)
for any number ¢ < T', because

0 <d(mn(t),q) —dn(t),z) = (dn(t),q) + 1) = (d(n(t),z) +1)
=M%ﬂ—BM@=g@ﬂ—BM®<§~
Set A = (B, Y(Bn(z))ND)~B(x,g/2). Since 7 is an asymptote to (poy;)~,

there exists a positive integer jo = jo(D, &) such that, for all integers j < jo,
a minimal geodesic segment T'(p;, x) from p; to the point x € ~1([0, L]) (resp.,
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any point ¢ € A) passes through B(y1(T + 1),e/3) (resp., intersects v; at v1(t;)
with some t; < T).

If p" € T(pj, x) satisfies max{d(p’,v1(T+1)),d(y (T +1),p")} < e/3, we then
have, from (1) (see Figure 5),

(n(tj),q) — d((ts),z) = d(pj,q) — d(pj, 11 (t;)) — d(71(t;), )
(pj>q) — d(pj, =) < d(p',q) + d(py ") = d(pj,x) = dp',q) —d(p', x)
< (d(T+1),q) +¢/3) = (dn(T+1),2) —¢/3) <e

for all ¢ € A. Therefore, we have

P, — hﬁ(t))

xr
7,(t)

=

[B=B,(x)]

S (p,,d(p )

Figure 5. The asymptotic behavior of geodesics from pj.

If y;(g) is a point at which T(p;,q) and S%(p;,d(p;,=)) intersect, we then
have ¢ € B(y;(q),¢), and therefore, ¢ € B(S%(p;, d(pj,x)),€).

For q € (B, Y(Bp(z)) N D) N B(z,£/2), we have ¢ € B(S%(p;,d(p;,)),€),
since x € S%(p;, d(pj,x)) and d(z,q) < £/2. O

Lemma 7.3 states that we can find a distance sphere S% (p;, d(p;, z)) meeting
the e-ball B(g,¢) for any point ¢ € D with By(q) = By(z). From Lemma 7.2,
any point ¢ € (Uge, (0,2]) Y. (Br(x)) ~ ON)N D satisfies this condition. We have
to treat another case, ¢ ¢ Y, (a) \ ON for any a € R, in order to complete the
proof of Theorem 2.3.

PrRoOOFS OF THEOREM 1.1 AND 2.3. We prove Theorem 2.3, which is suffi-
cient for Theorem 1.1. Let p, ¢ and € be as in Theorem 2.3. If g€ (Y, (0)~ ON)ND
for a suitable parametrization of 1, then it follows from Lemmas 7.1, 7.2 and 7.3
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that for any ¢t > Ry, there exist sequences of points p; € ®(p) and ¢; € D N P(q)
such that S%(p;,t) N B(g;,e) # 0.

In case ¢ ¢ Y, (a) \ON for any a € R, we find a point ¢; € DN®(q) in a strip
bounded by Y, (0) and Y, (| f»(7)]). Assume that a sequence of minimal geodesics
from p; to g1 converges to a co-ray a : (—00,0] — N from ¢; to 1~ and r; =
a(—d(Y;,(0),q1)). Then the sequence of intersection points r; = T'(p;, q1)NY5, (0)
converges to r1 € Y5, (0) as j — —oo. This implies that for any ¢ > Ry +d(r1,¢1),
we have S%(pj,t) N B(g;,€) # 0 for some p; € ®(p) and g; € D N D(qy). O

Remark 7.4. In the above argument, if p; =7;(p) and ¢; =7';(q) for 7, 7'; € @,
we then have S (p,t) N B(r; 7 o 7/(q),€) = S&(p;,t) N B(gj,e) # 0.

For any ¢ > 0 and any points p,q € M, let p (resp., ¢x € (D)) be the lifts
of p (resp., ¢). Then it follows from the above consequence that the geodesic circle
with center p meets the union of B(gy,€)’s for any ¢ > R on N. Combining with
Lemma 2.2, we can see the asymptotic behavior of the geodesic circles emanating

L
i

Figure 6. The geodesic circle with center p in N.

from p in M (see Figure 6).

Y

PrROOF OF COROLLARY 1.5. We work in Mj instead of M. Let n > 0 be
an integer and € > 0. Let p € N be chosen so that 7(p) = p. From Lemma 5.7,
there exist slopes h;, ¢ = 1,...n, such that h; # hy for i # k and {5, < ¢ for
all . As was seen in the proof of Theorem 1.1, for each slope h;, we can find
domains D; and numbers R; satisfying the following: for any ¢ > R;, there exist
sequences of points p;; € N and ¢;; € D; such that 7(p;;) = p, 7(¢i;;) = ¢ and
Sy (pij. t) N B(gij,e) # 0. Let 7,5 € ® be such that 7;;(p;;) = p. The sequence of
minimal geodesics T'(p, 74;(gi;)) from p to 7;;(g;;) converges to a ray with slope
h;as j — —oco foreachi=1,...,n. O
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