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Some recurrent normal Jacobi operators on real hypersurfaces
in complex two-plane Grassmannians

By YANING WANG (Xinxiang)

Abstract. In this paper, we prove that there are no Hopf hypersurfaces in complex
two-plane Grassmannians G2 (C™1?) such that the normal Jacobi operator is generalized
§-recurrent, where § = span{&,&1,&2,83}. We also prove that there are no Hopf real
hypersurfaces in G (C™?2) such that the normal Jacobi operator is ®*-recurrent and the
Hopf principal curvature is invariant along the Reeb flow, where ®+ = span{¢1, &2, &3}

1. Introduction

A complex two-plane Grassmannian Go(C™%2) is defined as the set of all
two-dimensional linear subspaces in C™*2? which is identified with the homoge-
neous space SU(m + 2)/S(U(2) x U(m)). It is known as a compact irreducible
Hermitian symmetric space of rank two equipped with both a Kahler structure J
and a quaternionic Kahler structure J with a canonical basis {.J1, J2, J3} which
does not contain J (see [2]). When m = 1, Go(C?) can be identified with the com-
plex projective plane CP? with constant holomorphic sectional curvature eight,
and when m = 2, G»(C*) is isometric to the real Grassmannian manifold G (R%)
of oriented two-dimensional linear subspace in R®. In this paper, m is assumed
to be m > 3.

Let M be a real hypersurface in Go(C™*2), with N and A a unit normal
vector field and the shape operator, respectively. Let g and V be the induced
metric from the ambient space and the corresponding Levi-Civita connection,
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respectively. The vector field ¢ := —JN for the Kéhler structure J and the
normal vector field N is said to be the Reeb vector field. The almost contact
metric 3-structure vector fields &, are defined by &, = —J, N for v € {1,2,3}.
We denote by D+ the distribution defined by D+ = span{¢;, £, &3}, and by D
its orthogonal complement distribution satisfying T, M = ©, @ ’Dj; at each point
p € M. A real hypersurface in Go(C™%2) is said to be Hopf if ¢ is an eigenvector
field of the shape operator, i.e., A& = &, and a = g(AE, €) is said to be the Hopf
principal curvature.

One of the most known classification results for Hopf real hypersurfaces in
G2(C™*?) was obtained by BERNDT and SUH [3].

Theorem 1.1 ([3]). Let M be a real hypersurface in Go(C™*?), m > 3.
Then both span{¢} and D1 are invariant under the shape operator if and only if

(A) M is an open part of a tube around a totally geodesic Go(C™*1) in Go(C™+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally
geodesic quaternionic projective space HP™ in Go(C™+2).

Following Theorem 1.1, many characterizations and non-existence results for
Hopf real hypersurface in G5(C™*2) were obtained. Among others, one of the
most mentioned conditions in this framework is the so-called normal Jacobi op-
erator Ry associated to the normal vector field N. BERNDT [1] introduced the
notion of normal Jacobi operator for real hypersurfaces in quaternionic projec-
tive space HP™ and quaternionic hyperbolic space HHH™, respectively. Later,
such notion was considered in [20] for real hypersurfaces in Go(C™%2) which is
defined by

Ry =R(-,N)N € End(T,M), pe M, (1)

where R denotes the Riemannian curvature tensor of Go(C™%2).

JEONG, LEE and SUH in [9] proved that there do not exist Hopf real hyper-
surfaces in G(C™*2) with Lie parallel normal Jacobi operator, i.e., Lx Ry = 0
for any vector field X, if the integral curves of ® and ©' components of the
Reeb vector field are totally geodesic. Actually, such result generalized those
in [12] under a weaker condition, namely the normal Jacobi operator is Lie &-
parallel, i.e., Le Ry = 0. The normal Jacobi operator is said to be parallel if it
satisfies Vx Ry = 0 for any vector field X. Under such condition and applying
Theorem 1.1, JEONG, KiM and SUH proved that following

Theorem 1.2 ([7]). There exist no Hopf real hypersurfaces in Go(C™%2)
such that the normal Jacobi operator is parallel.
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Theorem 1.2 shows that parallelism of the normal Jacobi operator is a rather
strong condition for Hopf hypersurfaces. Therefore, many authors tried to weaken
such a condition and generalize Theorem 1.2. MACHADO, PEREZ, JEONG and
SUH in [18] proved that there does not exist any Hopf hypersurface in Go(C™*2)
whose normal Jacobi operator is of Codazzi type, i.e., (VxRyN)Y = (VyRy)X
for any vector fields X,Y, if the distribution ® or ®+ components of the Reeb
vector field are invariant under the shape operator. PANAGIOTIDOU and TRIPATHI
in [22] proved that there do not exist Hopf hypersurfaces in Go(C™*2) such that
the normal Jacobi operator is semi-parallel, i.e., R(X,Y)RxZ = Rn(R(X,Y)Z)
for any vector fields X, Y, Z, and o # 0 and © or ©~+ component of the Reeb vector
field is invariant under the shape operator. Recently, such result was improved
by HUANG, LEE and SUH in [6] by removing the restriction o # 0. Also, DE and
Loo in [5] proved that there does not exist any real hypersurface with pseudo-
parallel normal Jacobi operator. MACHADO, PEREZ, JEONG and SUH in [19]
proved that there do not exist Hopf hypersurfaces in G5 (C™%2) with D-parallel
normal Jacobi operator, i.e., VxRy = 0 for any vector field X belonging to D,
if the distribution ® or ®+ component of the Reeb vector field is invariant under
the shape operator.

Throughout this paper, we denote by § the distribution span{¢, &;,&2,&3} =
span{¢} + D+. The normal Jacobi operator on a real hypersurface in Ga(C™*+2)
is said to be generalized §-recurrent if it satisfies

VxRy =p®&+w(X)Ry (2)

for any vector field X belonging to §, where both p and w are 1-forms. Obviously,
when p = w = 0, then the generalized §-recurrence condition reduces to the §-
parallelism (see [13]). When w = 0, structure Jacobi operator satisfying (2) for
X = ¢ was considered in [25] for real hypersurfaces in CP? and CH?. When
p = 0, (2) becomes F-recurrent condition. In the present paper, we generalize
Theorem 1.2 by considering (2), and prove

Theorem 1.3. There are no Hopf real hypersurfaces in Go(C™%2) if the
normal Jacobi operator is generalized §-recurrent.

It follows from Theorem 1.3 directly that

Corollary 1.4. There are no Hopf real hypersurfaces in Go(C™%2) if the
normal Jacobi operator is §-recurrent.

A real hypersurface in Go(C™*?) is said to be with recurrent normal Jacobi
operator if VxRy = w(X)Ry for any vector field X and certain one-form w.
It is clear that when p = 0, Theorem 1.3 extends the following
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Corollary 1.5 ([11]). There does not exist Hopf hypersurface in Go(C™+2)
with recurrent normal Jacobi operator.

Moreover, when p = w = 0, Theorem 1.3 reduces to the following

Corollary 1.6 ([13]). There does not exist Hopf hypersurface in Go(C™*2)
with §-parallel normal Jacobi operator.

The normal Jacobi operator Ry on a real hypersurface in G5(C™+?) is said
to be D+-recurrent if it satisfies

VxﬁN = w(X)RN (3)

for any vector field X belonging to ®~, where w is an 1-form. If considering some
other restrictions and the above definition, we obtain the following generalization
of Corollaries 1.4, 1.5 and 1.6.

Theorem 1.7. There are no Hopf real hypersurfaces in Go(C™%2) if the nor-
mal Jacobi operator is ®-recurrent and the Hopf principal curvature is invariant
along the Reeb vector field.

In particular, if w = 0, ®-recurrence for normal Jacobi operator becomes
D~ -parallelism, and in this case Theorem 1.7 reduces to

Corollary 1.8 ([24]). There does not exist Hopf hypersurface in Go(C™+?2)
with ®1-parallel normal Jacobi operator if the distribution ® or ®+ component
of the Reeb vector field is invariant under the shape operator.

At the end of this paper, we also discuss Reeb parallelism of the normal
Jacobi operator for hypersurfaces in Ga(C™+2).

2. Preliminaries

In this section, we collect some fundamental formulas shown in [2], [3], [4].
Let M be a real hypersurface in Go(C™*2) with real codimension one, and N be
a unit normal vector field. On M there exists an almost contact metric structure
(¢,&,m, g) induced from the Kéhler structure J of Go(C™%2). In this paper we put

JX =X +n(X)N,  J,X =6, X + n,(X)N )
for any vector field X. From the first term of (4), it follows that

PP =—idtneE @) =1 ¢¢=0, n(X)=g(X,¢), ()
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where the Reeb vector field ¢ is determined by & := —JN. Let {J1, J2, J5} be
a canonical local basis of quaternionic Kihler structure J of G2(C™*2). Then,
from the condition J,J,11 = J,12 = —J,11J,, we have an almost contact metric
3-structure (¢,,&,,m,,9) as the following:

¢y =—id+n, @&, (&) =1, @& =0,
Gu€ut1 =Evt2,  Pui1& = —Evi2,
GvPu1 = Put2 + M1 &y,
Pv10y = =iz + 0y @ Euprs (6)

where the index is taken modulo three. According to condition J,J = JJ,,
the relationships between two almost contact metric structures are given by

PPy =GP+ 10 DE—N® &, O =08, m(9:) =n(gy). (7)

Since J is parallel with respect to the Riemannian connection of Go(C™%2),
we have

(Vx@)Y =n(Y)AX —g(AX,Y)§,  Vx&{=9AX (8)

for any vector fields X, Y, where we have used the Guass and Weingarten formulas.
Similarly, since J,, is a quaternionic Kihler structure of Go(C™*2), we have

Vx& = quia(X)&g1 — @ui1(X)Ei2 + ¢, AX,
Vxo, = qui2(X)pvr1 — qui1(X)bui2 + 1 @ AX — g(AX, )€, 9)

for any vector field X.
The Riemannian curvature tensor R of G(C™*?) is given by (see [3])

R(X,Y)Z =g(Y,2)X—g(X, 2)Y +g(JY, Z)IX —g(JX, Z)JY —2g(JX,Y)J Z

3
+ 3 {9(LY. 2)1,X — g(J, X, 2)1,Y —29(J,X,Y)J, Z}
v=1
3
+ > {91 JY, 2)],JX — g(J,JX, Z)J,JY} (10)

v=1

for any vector fields X,Y, Z.
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3. Proofs of the main results

According to (10), the normal Jacobi operator is given by

3
RN(X) = R(XvN)N: X+377<X)€+3Z77V(X)£V

3
= {m () (36X —n(X)&) —n(6X)b,} (1)

for any vector field X. Taking the covariant derivative of (11) and making use of
formulas in Section 2, we obtain

3
(VxBN)Y = 3g(¢AX,Y)E+3n(Y)PAX +3> {g(¢vAX,Y)E, +nu(Y)h, AX }

v=1

3
> {20 (8AX) (¢ 0Y — n(Y)E) — g(¢uAX, 6Y )&

- U(Y)Uu (AX)d)Vf - UV(QSY) (¢V¢AX - g(AX’ g)gv)} (12)

for any vector fields X, Y.
Using the Codazzi equation and A = a&, we have (see [3])

Lemma 3.1. If M is a orientable Hopf real hypersurface in Go(C™*%2), then

3
grada = §(@)6 +4) (), (13)

v=1
where grad is the gradient operator.

Lemma 3.2. If M is a Hopf real hypersurface in Go(C™*2) such that the
normal Jacobi operator is generalized §-recurrent, then either £ € ® or £ € D+ .

PROOF. Let us suppose that £ = n(Xo)Xo + n(£1)6 with Xy a unit vector
field orthogonal to ®+. If either n(Xy) = 0 or (&) = 0, then the lemma is
verified. In what follows, we suppose that 17(Xg)n(&1) # 0. Because the normal
Jacobi operator is generalized §-recurrent, from (2) we have

(VeRN)SE = p(§)€ +w(§)Rn (8)- (14)
With the aid of (11), (12) and A& = a&, (14) can be written as the following;:

dan(&)¢1€ = p(§)§ + 4w (&) (€ + n(&)ér). (15)
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Taking the inner product of (15) with ¢, gives 4an(&1)g(p1€, $1€) = 0, and
hence ag($1&, $1&) = 0 because of 11(£) # 0. We assume that o # 0 and hence
we get g(91€, ¢1€) = 0, which is also equivalent to n?(¢) — 1 = 0. Without loss
of generality, let us consider 71(§) = 1, and this reduces to £ = n(X)Xo + &;.
It follows directly that 1 = g(&,&) = g(n(Xo)Xo+&1,1m(Xo)Xo+&1) = n*(Xo) + 1,
and this implies a contradiction. Then, our assumption is wrong, and we must
have a = 0. In this case, (13) becomes ¢1& = 0 because of 11(£) # 0. Applying
this, the action of ¢1 on & = n(Xo)Xo + n(&1)& implies @1 Xg = 0 because of
n(Xo) # 0. However, it is easy to check that 0 = g(¢$1 X0, $1X0) = 9(Xo, Xo) —
n3(Xo) = 1, a contradiction. O

Lemma 3.3. Let M be a Hopf hypersurface in Go(C™*?2) such that the
normal Jacobi operator is generalized §-recurrent. If ¢ € ©*, then the normal
Jacobi operator is §-parallel.

ProoF. If ¢ € D1, it follows that JN € JN. We assume that J; is the
almost Hermitian structure of J such that JN = J;N. Then we have

g = 617 ¢£2 = _537 ¢£3 = §2a ¢© co. (16)

Because M is Hopf, using (6), ¢2& = —&3 and ¢3& = & in (12), we obtain
(VeRy)(Y) = 0. Since the normal Jacobi operator is assumed to be generalized
§-recurrent, applying the previous relation in (2), we obtain

3 3
p(Y)e+w(©)(Y +4n(Y)E+3 n(Y)E — ¢18Y + > m(6Y)g,€) =0 (17)
v=1

v=1
for any vector field Y, where we used relations (11). Replacing Y in (17) by &
and applying (16), we obtain p(£2)€ + 4w(§)&2 = 0, which is equivalent to

p(&2) = w(&) = 0. (18)

In view of the second term of the above relations, (17) becomes

3 3 3
—40 Y " (BY)E +30 Y 0, (V)€ + o> g(6u€, Y )h€ — p(Y)E=0 (19)
v=1 v=1 v=1
for any vector field Y.

Taking the inner product of (19) with £ and applying (16), we obtain p = 0.
In this context, the generalized §-recurrence condition for the normal Jacobi
operator becomes §-recurrence, i.e.,

(VxRN)Y = w(X)Ry(Y) (20)
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for any vector field X belonging to § and any vector field Y on M. Replacing X
by & in (20) and applying (11), (12), (16) and A€ = o, we get

3
39(p AL, YV)E +3n(Y)pAL + 3> {9(dy A, V)& + 0y (V) Aba}

v=1

3
= > {20,(9A&) (G @Y —n(Y)E) — g(br Ao, Y )b

v=1

= (Y )1 (A&2) P — M (dY )Py AL}

3
= w(&)(Y +3n(Y)E+3) n (V)6
v=1

3
= (O (¢udY — n(Y)E) — 1 (6Y ) E}) (21)

for any vector field Y. Substituting ¥ = ¢ into (21), with the aid of (16),
it follows that

3QALy + 31 A + 69( A2, £3)E2 — 69(AL2, £2)E3 = 8w(&2)E. (22)

In view of assumption £ = £, taking the inner product of equation (22) with &,
we obtain w(&) = 0.

Similarly, replacing X by &3 in (20) and applying relations (11), (12) and
(16), we get

3
39(GAEs, Y)E +30(Y)DAEs + 33 {g(6, AL, V)&, + 1, (V)b AL}

v=1

3
= {200 (8AL) (6 0Y — n(Y)E) — gy ALs, 6Y )€
v=1
- W(Y)UV(A&)%E - nu(¢y)¢u¢A€3}

3
= w(&)(Y +30(Y)E+3Y_ n(Y)&,

3
= {n (@Y —n(Y)&) — mu(Y)uE}) (23)
v=1

for any vector field Y. Substituting ¥ = £ into (23), with the help of (16),
we obtain

39 AL + 31 A3 — 69( A2, £3)E3 + 69(AL3,§3)Ee = 8w(&3)E. (24)
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In view of £ = &;, the inner product of (24) with £ implies w(&3) = 0.
Taking into account w(§) = w(&2) = w(&) = 0 and p = 0, we observe
from (20) that the normal Jacobi operator is §-parallel when & € D+. (]

Before giving proofs of our main results, we also need the following two
results.

Lemma 3.4 ([17]). Let M be a connected orientable Hopf real hypersurface
in Go(C™*2). Then £ € D if and only if AD C ® and M is locally congruent
to an open part of a tube around a totally geodesic HP™ in Go(C™%2), where
m = 2n.

Proposition 3.5 ([3]). Let M be a connected orientable Hopf hypersurface
in Go(C™*?) with AD C © and ¢ € ©. Then the quaternionic dimension m
of Go(C™*2) is even, say m = 2n, and M has five distinct constant principal
curvatures

a=—2tan(2r), B=2cot(2r), y=0, A=cot(r), u=—tan(r),

us

with some r € (0, §

). The corresponding multiplicities are
m(a) =1, m(B)=m(y) =3, m(A)=m(p)=4n—4,
and the corresponding eigenspaces are

T, = R¢ = span{¢},
Tﬁ = GJg = Span{§17 527 €3}a
T’Y = 35 = Span{¢l§7 ¢2€7 ¢3§}3 T)\& T,uv

where T\ ®&T,, = (HCf)J‘, JT =T, JTM = T#, JT\ = Tﬂ.

PRrROOF OF THEOREM 1.3. According to Lemma 3.2, we consider only two
cases. When ¢ € ©1, by Lemma 3.3, the normal Jacobi operator is §-parallel.
JEONG and SuH in [13] proved that there are no Hopf real hypersurfaces in
G2(C™*+?) with F-parallel normal Jacobi operator. On the other hand, when
& € ®, according to Lemma 3.4, M is locally congruent to an open part of a tube
around a totally geodesic HP™ in Go(C™%2). Next, we show that on such hyper-
surfaces the normal Jacobi operator cannot be generalized §-recurrent.

If the normal Jacobi operator is generalized §-recurrent, we have

(VxRN)Y = p(Y)é +w(X)Rn(Y)
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for any vector field X € § and any vector field Y. Replacing X and Y by &
and ¢, respectively, and applying (11), (12) and Proposition 3.5, we obtain

4B$1€ = p(&1)€ + dw(&r)E.

The inner product of the above relation with ¢1& gives 48g(¢1€, $1€) = 46 = 0.
However, by Proposition 3.5, 8 cannot be zero, and we arrive at a contradiction.
This completes the proof. O

Lemma 3.6 ([10], [16]). Let M be a Hopf real hypersurface in G(C™*2).
Then the Hopf principal curvature is invariant along the Reeb vector field if and
only if the ® and ®*-components of the Reeb vector field are invariant under the
shape operator.

The proof of our second result depends on the following lemma.

Lemma 3.7. Let M be a Hopf hypersurface in Go(C™%2) such that the nor-
mal Jacobi operator is ®1-recurrent. If the Hopf principal curvature is invariant
along the Reeb vector field, then either £ € ® or £ € D+ .

PRroOF. Following the proof of Lemma 3.2, let us suppose that £ = n(Xo) Xo+
n(&1)&1, with Xg a unit vector field orthogonal to D+ and 7(X¢)n(£;) # 0. Since
the normal Jacobi operator is ®1-recurrent, we have

(VxRy)Y = w(X)Bx(Y)

for any vector field X belonging to § and any vector field Y. Replacing X and Y
by & and &, respectively, in the previous equation and recalling (11), (12) imply

3
30AL +3  g(¢ AL, )&, + 3n(61)d1AG
v=1

+23 m(PAL)EG + D m(A) b€ = dw(&)(E +n(6)&),  (25)

v=1 v=1
where we applied A¢ = af. Moreover, applying Lemma 3.6, we know the dis-
tributions © or D+ component of the Reeb vector field are invariant under the
shape operator. The action of A on & = n(Xo)Xo + n(£1)&1 gives

AXo = aXo, A& = aby. (26)
Substituting the second term of (26) into the previous relation implies

agéy = w(&1) (€ +m(§ér). (27)

Taking the inner product of the above equation with ¢&; gives ag(¢é1, ¢&1) = 0.
The remaining proof has been already shown in that of Lemma 3.2. (]
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Proor oF THEOREM 1.7. Following Lemma 3.7, next we consider only two
cases. When ¢ € D1, as shown in Lemma 3.3, we may put £ = &1, and then
the inner product of (25) with £ gives w(&1) = 0. On the other hand, proceeding
similar with the proof of Lemma 3.3, we obtain directly w(&2) = w(&3) = 0.
In this context, we see that the ®+-recurrent normal Jacobi operator is in fact
D-~+-parallel. Therefore, the non-existence proof for such case follows immediately
from SUH and JEONG [24, Theorem 1] and Lemma 3.6.

When £ € ©, we omit the proof for this case, because it is very similar with
that of Theorem 1.3. |

Comparing the first two main theorems in the Introduction, we observe that
Theorem 1.3 does not require the additional condition &(a) = 0, but its assump-
tion (i.e., §-recurrence) is stronger than that of Theorem 1.7 (i.e., ®+-recurrence).
On the other hand, Hopf hypersurfaces can be classified under the conditions of
Reeb parallel structure Jacobi operator Ve Re = 0 and £(o)=0 with o # 0 (see [8]),
or Reeb parallel shape operator VA = 0 (see [15]), even Reeb parallel Ricci oper-
ator with non-vanishing geodesic Reeb flow, but not Reeb parallel normal Jacobi
operator V¢ Ry = 0, due to the following

Theorem 3.8. Let M be a Hopf real hypersurface in G2(C™*?) such that
¢ € 1. Then the normal Jacobi operator is Reeb parallel.

PROOF. As seen in proof of Lemma 3.3, we may put £ = & because of
¢ € ®1. Substituting X = ¢ into (12) and using A¢ = a& implies

3 3 3
(VeRN)Y =30 g(du&,Y)E +30 Y n(V)pué +a D g(hu€, oY) €
v=1 v=1 v=1
3 3
—an(¥V) Y m(©)dvE —ad n(eY)E, (28)
v=1 v=1

for any vector field Y. The application of (16) in (28) implies (V¢Ry)Y = 0 for
any vector field Y. O

However, the above conclusion is not true for Hopf hypersurface in G (C™*2)
with & € D, because by applying Lemma 3.4 and Proposition 3.5 in (27) for
Y = &, we have (V¢Ry)& = dagi€ # 0.

PAK and PEREZ in [21] proved that the normal Jacobi operator in Go(C™*+2)
is Reeb parallel with respect to the generalized Tanaka—Webster connection.
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In view of Theorem 3.8, one observes that the classification for Hopf real hy-
persurfaces in Go(C™%2) needs some additional restrictions. In fact, such situa-
tion has been considered by JEONG and SUH in [14], who classified Hopf hypersur-
faces in Go(C™*2) with Reeb parallel normal Jacobi operator and g(AD,D1) = 0.
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