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Some recurrent normal Jacobi operators on real hypersurfaces
in complex two-plane Grassmannians

By YANING WANG (Xinxiang)

Abstract. In this paper, we prove that there are no Hopf hypersurfaces in complex

two-plane Grassmannians G2(Cm+2) such that the normal Jacobi operator is generalized

F-recurrent, where F = span{ξ, ξ1, ξ2, ξ3}. We also prove that there are no Hopf real

hypersurfaces inG2(Cm+2) such that the normal Jacobi operator is D⊥-recurrent and the

Hopf principal curvature is invariant along the Reeb flow, where D⊥ = span{ξ1, ξ2, ξ3}.

1. Introduction

A complex two-plane Grassmannian G2(Cm+2) is defined as the set of all

two-dimensional linear subspaces in Cm+2 which is identified with the homoge-

neous space SU(m + 2)/S(U(2) × U(m)). It is known as a compact irreducible

Hermitian symmetric space of rank two equipped with both a Kähler structure J

and a quaternionic Kähler structure J with a canonical basis {J1, J2, J3} which

does not contain J (see [2]). When m = 1, G2(C3) can be identified with the com-

plex projective plane CP 2 with constant holomorphic sectional curvature eight,

and when m = 2, G2(C4) is isometric to the real Grassmannian manifold G+
2 (R6)

of oriented two-dimensional linear subspace in R6. In this paper, m is assumed

to be m ≥ 3.

Let M be a real hypersurface in G2(Cm+2), with N and A a unit normal

vector field and the shape operator, respectively. Let g and ∇ be the induced

metric from the ambient space and the corresponding Levi-Civita connection,
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respectively. The vector field ξ := −JN for the Kähler structure J and the

normal vector field N is said to be the Reeb vector field. The almost contact

metric 3-structure vector fields ξν are defined by ξν = −JνN for ν ∈ {1, 2, 3}.
We denote by D⊥ the distribution defined by D⊥ = span{ξ1, ξ2, ξ3}, and by D

its orthogonal complement distribution satisfying TpM = Dp⊕D⊥
p at each point

p ∈M . A real hypersurface in G2(Cm+2) is said to be Hopf if ξ is an eigenvector

field of the shape operator, i.e., Aξ = αξ, and α = g(Aξ, ξ) is said to be the Hopf

principal curvature.

One of the most known classification results for Hopf real hypersurfaces in

G2(Cm+2) was obtained by Berndt and Suh [3].

Theorem 1.1 ([3]). Let M be a real hypersurface in G2(Cm+2), m ≥ 3.

Then both span{ξ} and D⊥ are invariant under the shape operator if and only if

(A) M is an open part of a tube around a totally geodesicG2(Cm+1) inG2(Cm+2),

or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally

geodesic quaternionic projective space HPm in G2(Cm+2).

Following Theorem 1.1, many characterizations and non-existence results for

Hopf real hypersurface in G2(Cm+2) were obtained. Among others, one of the

most mentioned conditions in this framework is the so-called normal Jacobi op-

erator RN associated to the normal vector field N . Berndt [1] introduced the

notion of normal Jacobi operator for real hypersurfaces in quaternionic projec-

tive space HPm and quaternionic hyperbolic space HHm, respectively. Later,

such notion was considered in [20] for real hypersurfaces in G2(Cm+2) which is

defined by

RN = R(· , N)N ∈ End(TpM), p ∈M, (1)

where R denotes the Riemannian curvature tensor of G2(Cm+2).

Jeong, Lee and Suh in [9] proved that there do not exist Hopf real hyper-

surfaces in G2(Cm+2) with Lie parallel normal Jacobi operator, i.e., LXRN = 0

for any vector field X, if the integral curves of D and D⊥ components of the

Reeb vector field are totally geodesic. Actually, such result generalized those

in [12] under a weaker condition, namely the normal Jacobi operator is Lie ξ-

parallel, i.e., LξRN = 0. The normal Jacobi operator is said to be parallel if it

satisfies ∇XRN = 0 for any vector field X. Under such condition and applying

Theorem 1.1, Jeong, Kim and Suh proved that following

Theorem 1.2 ([7]). There exist no Hopf real hypersurfaces in G2(Cm+2)

such that the normal Jacobi operator is parallel.
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Theorem 1.2 shows that parallelism of the normal Jacobi operator is a rather

strong condition for Hopf hypersurfaces. Therefore, many authors tried to weaken

such a condition and generalize Theorem 1.2. Machado, Pérez, Jeong and

Suh in [18] proved that there does not exist any Hopf hypersurface in G2(Cm+2)

whose normal Jacobi operator is of Codazzi type, i.e., (∇XRN )Y = (∇YRN )X

for any vector fields X,Y , if the distribution D or D⊥ components of the Reeb

vector field are invariant under the shape operator. Panagiotidou and Tripathi

in [22] proved that there do not exist Hopf hypersurfaces in G2(Cm+2) such that

the normal Jacobi operator is semi-parallel, i.e., R(X,Y )RNZ = RN (R(X,Y )Z)

for any vector fieldsX,Y, Z, and α 6= 0 and D or D⊥ component of the Reeb vector

field is invariant under the shape operator. Recently, such result was improved

by Huang, Lee and Suh in [6] by removing the restriction α 6= 0. Also, De and

Loo in [5] proved that there does not exist any real hypersurface with pseudo-

parallel normal Jacobi operator. Machado, Pérez, Jeong and Suh in [19]

proved that there do not exist Hopf hypersurfaces in G2(Cm+2) with D-parallel

normal Jacobi operator, i.e., ∇XRN = 0 for any vector field X belonging to D,

if the distribution D or D⊥ component of the Reeb vector field is invariant under

the shape operator.

Throughout this paper, we denote by F the distribution span{ξ, ξ1, ξ2, ξ3} =

span{ξ}+ D⊥. The normal Jacobi operator on a real hypersurface in G2(Cm+2)

is said to be generalized F-recurrent if it satisfies

∇XRN = ρ⊗ ξ + ω(X)RN (2)

for any vector field X belonging to F, where both ρ and ω are 1-forms. Obviously,

when ρ = ω = 0, then the generalized F-recurrence condition reduces to the F-

parallelism (see [13]). When ω = 0, structure Jacobi operator satisfying (2) for

X = ξ was considered in [25] for real hypersurfaces in CP 2 and CH2. When

ρ = 0, (2) becomes F-recurrent condition. In the present paper, we generalize

Theorem 1.2 by considering (2), and prove

Theorem 1.3. There are no Hopf real hypersurfaces in G2(Cm+2) if the

normal Jacobi operator is generalized F-recurrent.

It follows from Theorem 1.3 directly that

Corollary 1.4. There are no Hopf real hypersurfaces in G2(Cm+2) if the

normal Jacobi operator is F-recurrent.

A real hypersurface in G2(Cm+2) is said to be with recurrent normal Jacobi

operator if ∇XRN = ω(X)RN for any vector field X and certain one-form ω.

It is clear that when ρ = 0, Theorem 1.3 extends the following
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Corollary 1.5 ([11]). There does not exist Hopf hypersurface in G2(Cm+2)

with recurrent normal Jacobi operator.

Moreover, when ρ = ω = 0, Theorem 1.3 reduces to the following

Corollary 1.6 ([13]). There does not exist Hopf hypersurface in G2(Cm+2)

with F-parallel normal Jacobi operator.

The normal Jacobi operator RN on a real hypersurface in G2(Cm+2) is said

to be D⊥-recurrent if it satisfies

∇XRN = ω(X)RN (3)

for any vector field X belonging to D⊥, where ω is an 1-form. If considering some

other restrictions and the above definition, we obtain the following generalization

of Corollaries 1.4, 1.5 and 1.6.

Theorem 1.7. There are no Hopf real hypersurfaces in G2(Cm+2) if the nor-

mal Jacobi operator is D⊥-recurrent and the Hopf principal curvature is invariant

along the Reeb vector field.

In particular, if ω = 0, D⊥-recurrence for normal Jacobi operator becomes

D⊥-parallelism, and in this case Theorem 1.7 reduces to

Corollary 1.8 ([24]). There does not exist Hopf hypersurface in G2(Cm+2)

with D⊥-parallel normal Jacobi operator if the distribution D or D⊥ component

of the Reeb vector field is invariant under the shape operator.

At the end of this paper, we also discuss Reeb parallelism of the normal

Jacobi operator for hypersurfaces in G2(Cm+2).

2. Preliminaries

In this section, we collect some fundamental formulas shown in [2], [3], [4].

Let M be a real hypersurface in G2(Cm+2) with real codimension one, and N be

a unit normal vector field. On M there exists an almost contact metric structure

(φ, ξ, η, g) induced from the Kähler structure J of G2(Cm+2). In this paper we put

JX = φX + η(X)N, JνX = φνX + ην(X)N (4)

for any vector field X. From the first term of (4), it follows that

φ2 = − id +η ⊗ ξ, η(ξ) = 1, φξ = 0, η(X) = g(X, ξ), (5)
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where the Reeb vector field ξ is determined by ξ := −JN . Let {J1, J2, J3} be

a canonical local basis of quaternionic Kähler structure J of G2(Cm+2). Then,

from the condition JνJν+1 = Jν+2 = −Jν+1Jν , we have an almost contact metric

3-structure (φν , ξν , ην , g) as the following:

φ2ν = − id +ην ⊗ ξν , ην(ξν) = 1, φνξν = 0,

φνξν+1 = ξν+2, φν+1ξν = −ξν+2,

φνφν+1 = φν+2 + ην+1 ⊗ ξν ,
φν+1φν = −φν+2 + ην ⊗ ξν+1, (6)

where the index is taken modulo three. According to condition JνJ = JJν ,

the relationships between two almost contact metric structures are given by

φφν = φνφ+ ην ⊗ ξ − η ⊗ ξν , φξν = φνξ, ην(φ ·) = η(φν ·). (7)

Since J is parallel with respect to the Riemannian connection of G2(Cm+2),

we have

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX (8)

for any vector fieldsX,Y , where we have used the Guass and Weingarten formulas.

Similarly, since Jν is a quaternionic Kähler structure of G2(Cm+2), we have

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX,

∇Xφν = qν+2(X)φν+1 − qν+1(X)φν+2 + ην ⊗AX − g(AX, ·)ξν (9)

for any vector field X.

The Riemannian curvature tensor R of G2(Cm+2) is given by (see [3])

R(X,Y )Z = g(Y, Z)X−g(X,Z)Y +g(JY, Z)JX−g(JX,Z)JY −2g(JX, Y )JZ

+

3∑
ν=1

{g(JνY, Z)JνX − g(JνX,Z)JνY − 2g(JνX,Y )JνZ}

+

3∑
ν=1

{g(JνJY, Z)JνJX − g(JνJX,Z)JνJY } (10)

for any vector fields X,Y, Z.
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3. Proofs of the main results

According to (10), the normal Jacobi operator is given by

RN (X) = R(X,N)N = X + 3η(X)ξ + 3

3∑
ν=1

ην(X)ξν

−
3∑

ν=1

{ην(ξ)(φvφX − η(X)ξν)− ην(φX)φνξ} (11)

for any vector field X. Taking the covariant derivative of (11) and making use of

formulas in Section 2, we obtain

(∇XRN )Y = 3g(φAX, Y )ξ + 3η(Y )φAX + 3

3∑
ν=1

{g(φνAX,Y )ξν + ην(Y )φνAX}

−
3∑

ν=1

{2ην(φAX)(φνφY − η(Y )ξν)− g(φνAX,φY )φνξ

− η(Y )ην(AX)φνξ − ην(φY )(φνφAX − g(AX, ξ)ξν)} (12)

for any vector fields X,Y .

Using the Codazzi equation and Aξ = αξ, we have (see [3])

Lemma 3.1. If M is a orientable Hopf real hypersurface in G2(Cm+2), then

gradα = ξ(α)ξ + 4

3∑
ν=1

ην(ξ)φνξ, (13)

where grad is the gradient operator.

Lemma 3.2. If M is a Hopf real hypersurface in G2(Cm+2) such that the

normal Jacobi operator is generalized F-recurrent, then either ξ ∈ D or ξ ∈ D⊥.

Proof. Let us suppose that ξ = η(X0)X0 + η(ξ1)ξ1 with X0 a unit vector

field orthogonal to D⊥. If either η(X0) = 0 or η(ξ1) = 0, then the lemma is

verified. In what follows, we suppose that η(X0)η(ξ1) 6= 0. Because the normal

Jacobi operator is generalized F-recurrent, from (2) we have

(∇ξRN )ξ = ρ(ξ)ξ + ω(ξ)RN (ξ). (14)

With the aid of (11), (12) and Aξ = αξ, (14) can be written as the following:

4αη(ξ1)φ1ξ = ρ(ξ)ξ + 4ω(ξ)(ξ + η(ξ1)ξ1). (15)
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Taking the inner product of (15) with φ1ξ gives 4αη(ξ1)g(φ1ξ, φ1ξ) = 0, and

hence αg(φ1ξ, φ1ξ) = 0 because of η1(ξ) 6= 0. We assume that α 6= 0 and hence

we get g(φ1ξ, φ1ξ) = 0, which is also equivalent to η21(ξ) − 1 = 0. Without loss

of generality, let us consider η1(ξ) = 1, and this reduces to ξ = η(X0)X0 + ξ1.

It follows directly that 1 = g(ξ, ξ) = g(η(X0)X0 +ξ1, η(X0)X0 +ξ1) = η2(X0)+1,

and this implies a contradiction. Then, our assumption is wrong, and we must

have α = 0. In this case, (13) becomes φ1ξ = 0 because of η1(ξ) 6= 0. Applying

this, the action of φ1 on ξ = η(X0)X0 + η(ξ1)ξ1 implies φ1X0 = 0 because of

η(X0) 6= 0. However, it is easy to check that 0 = g(φ1X0, φ1X0) = g(X0, X0) −
η21(X0) = 1, a contradiction. �

Lemma 3.3. Let M be a Hopf hypersurface in G2(Cm+2) such that the

normal Jacobi operator is generalized F-recurrent. If ξ ∈ D⊥, then the normal

Jacobi operator is F-parallel.

Proof. If ξ ∈ D⊥, it follows that JN ∈ JN . We assume that J1 is the

almost Hermitian structure of J such that JN = J1N . Then we have

ξ = ξ1, φξ2 = −ξ3, φξ3 = ξ2, φD ⊂ D. (16)

Because M is Hopf, using (6), φ2ξ = −ξ3 and φ3ξ = ξ2 in (12), we obtain

(∇ξRN )(Y ) = 0. Since the normal Jacobi operator is assumed to be generalized

F-recurrent, applying the previous relation in (2), we obtain

ρ(Y )ξ + ω(ξ)(Y + 4η(Y )ξ + 3

3∑
ν=1

ην(Y )ξν − φ1φY +

3∑
ν=1

ην(φY )φνξ) = 0 (17)

for any vector field Y , where we used relations (11). Replacing Y in (17) by ξ2
and applying (16), we obtain ρ(ξ2)ξ + 4ω(ξ)ξ2 = 0, which is equivalent to

ρ(ξ2) = ω(ξ) = 0. (18)

In view of the second term of the above relations, (17) becomes

−4α

3∑
ν=1

ην(φY )ξν + 3α

3∑
ν=1

ην(Y )φνξ + α

3∑
ν=1

g(φνξ, φY )φνξ − ρ(Y )ξ = 0 (19)

for any vector field Y .

Taking the inner product of (19) with ξ and applying (16), we obtain ρ = 0.

In this context, the generalized F-recurrence condition for the normal Jacobi

operator becomes F-recurrence, i.e.,

(∇XRN )Y = ω(X)RN (Y ) (20)
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for any vector field X belonging to F and any vector field Y on M . Replacing X

by ξ2 in (20) and applying (11), (12), (16) and Aξ = αξ, we get

3g(φAξ2, Y )ξ + 3η(Y )φAξ2 + 3

3∑
ν=1

{g(φνAξ2, Y )ξν + ην(Y )φνAξ2}

−
3∑

ν=1

{2ην(φAξ2)(φνφY − η(Y )ξν)− g(φνAξ2, φY )φνξ

− η(Y )ην(Aξ2)φνξ − ην(φY )φνφAξ2}

= ω(ξ2)(Y + 3η(Y )ξ + 3

3∑
ν=1

ην(Y )ξν

−
3∑

ν=1

{ην(ξ)(φvφY − η(Y )ξν)− ην(φY )φνξ}) (21)

for any vector field Y . Substituting Y = ξ into (21), with the aid of (16),

it follows that

3φAξ2 + 3φ1Aξ2 + 6g(Aξ2, ξ3)ξ2 − 6g(Aξ2, ξ2)ξ3 = 8ω(ξ2)ξ. (22)

In view of assumption ξ = ξ1, taking the inner product of equation (22) with ξ,

we obtain ω(ξ2) = 0.

Similarly, replacing X by ξ3 in (20) and applying relations (11), (12) and

(16), we get

3g(φAξ3, Y )ξ + 3η(Y )φAξ3 + 3

3∑
ν=1

{g(φνAξ3, Y )ξν + ην(Y )φνAξ3}

−
3∑

ν=1

{2ην(φAξ3)(φνφY − η(Y )ξν)− g(φνAξ3, φY )φνξ

− η(Y )ην(Aξ3)φνξ − ην(φY )φνφAξ3}

= ω(ξ3)(Y + 3η(Y )ξ + 3

3∑
ν=1

ην(Y )ξν

−
3∑

ν=1

{ην(ξ)(φvφY − η(Y )ξν)− ην(φY )φνξ}) (23)

for any vector field Y . Substituting Y = ξ into (23), with the help of (16),

we obtain

3φAξ3 + 3φ1Aξ3 − 6g(Aξ2, ξ3)ξ3 + 6g(Aξ3, ξ3)ξ2 = 8ω(ξ3)ξ. (24)
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In view of ξ = ξ1, the inner product of (24) with ξ implies ω(ξ3) = 0.

Taking into account ω(ξ) = ω(ξ2) = ω(ξ3) = 0 and ρ = 0, we observe

from (20) that the normal Jacobi operator is F-parallel when ξ ∈ D⊥. �

Before giving proofs of our main results, we also need the following two

results.

Lemma 3.4 ([17]). Let M be a connected orientable Hopf real hypersurface

in G2(Cm+2). Then ξ ∈ D if and only if AD ⊂ D and M is locally congruent

to an open part of a tube around a totally geodesic HPn in G2(Cm+2), where

m = 2n.

Proposition 3.5 ([3]). Let M be a connected orientable Hopf hypersurface

in G2(Cm+2) with AD ⊂ D and ξ ∈ D. Then the quaternionic dimension m

of G2(Cm+2) is even, say m = 2n, and M has five distinct constant principal

curvatures

α = −2 tan(2r), β = 2 cot(2r), γ = 0, λ = cot(r), µ = − tan(r),

with some r ∈ (0, π4 ). The corresponding multiplicities are

m(α) = 1, m(β) = m(γ) = 3, m(λ) = m(µ) = 4n− 4,

and the corresponding eigenspaces are

Tα = Rξ = span{ξ},
Tβ = JJξ = span{ξ1, ξ2, ξ3},
Tγ = Jξ = span{φ1ξ, φ2ξ, φ3ξ}, Tλ, Tµ,

where Tλ ⊕ Tµ = (HCξ)⊥, JTλ = Tλ, JTµ = Tµ, JTλ = Tµ.

Proof of Theorem 1.3. According to Lemma 3.2, we consider only two

cases. When ξ ∈ D⊥, by Lemma 3.3, the normal Jacobi operator is F-parallel.

Jeong and Suh in [13] proved that there are no Hopf real hypersurfaces in

G2(Cm+2) with F-parallel normal Jacobi operator. On the other hand, when

ξ ∈ D, according to Lemma 3.4, M is locally congruent to an open part of a tube

around a totally geodesic HPn in G2(Cm+2). Next, we show that on such hyper-

surfaces the normal Jacobi operator cannot be generalized F-recurrent.

If the normal Jacobi operator is generalized F-recurrent, we have

(∇XRN )Y = ρ(Y )ξ + ω(X)RN (Y )
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for any vector field X ∈ F and any vector field Y . Replacing X and Y by ξ1
and ξ, respectively, and applying (11), (12) and Proposition 3.5, we obtain

4βφ1ξ = ρ(ξ1)ξ + 4ω(ξ1)ξ.

The inner product of the above relation with φ1ξ gives 4βg(φ1ξ, φ1ξ) = 4β = 0.

However, by Proposition 3.5, β cannot be zero, and we arrive at a contradiction.

This completes the proof. �

Lemma 3.6 ([10], [16]). Let M be a Hopf real hypersurface in G2(Cm+2).

Then the Hopf principal curvature is invariant along the Reeb vector field if and

only if the D and D⊥-components of the Reeb vector field are invariant under the

shape operator.

The proof of our second result depends on the following lemma.

Lemma 3.7. Let M be a Hopf hypersurface in G2(Cm+2) such that the nor-

mal Jacobi operator is D⊥-recurrent. If the Hopf principal curvature is invariant

along the Reeb vector field, then either ξ ∈ D or ξ ∈ D⊥.

Proof. Following the proof of Lemma 3.2, let us suppose that ξ= η(X0)X0+

η(ξ1)ξ1, with X0 a unit vector field orthogonal to D⊥ and η(X0)η(ξ1) 6= 0. Since

the normal Jacobi operator is D⊥-recurrent, we have

(∇XRN )Y = ω(X)RN (Y )

for any vector field X belonging to F and any vector field Y . Replacing X and Y

by ξ1 and ξ, respectively, in the previous equation and recalling (11), (12) imply

3φAξ1 + 3
3∑

ν=1

g(φνAξ1, ξ)ξν + 3η(ξ1)φ1Aξ1

+ 2

3∑
ν=1

ην(φAξ1)ξν +

3∑
ν=1

ην(Aξ1)φνξ = 4ω(ξ1)(ξ + η(ξ1)ξ1), (25)

where we applied Aξ = αξ. Moreover, applying Lemma 3.6, we know the dis-

tributions D or D⊥ component of the Reeb vector field are invariant under the

shape operator. The action of A on ξ = η(X0)X0 + η(ξ1)ξ1 gives

AX0 = αX0, Aξ1 = αξ1. (26)

Substituting the second term of (26) into the previous relation implies

αφξ1 = ω(ξ1)(ξ + η1(ξ)ξ1). (27)

Taking the inner product of the above equation with φξ1 gives αg(φξ1, φξ1) = 0.

The remaining proof has been already shown in that of Lemma 3.2. �
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Proof of Theorem 1.7. Following Lemma 3.7, next we consider only two

cases. When ξ ∈ D⊥, as shown in Lemma 3.3, we may put ξ = ξ1, and then

the inner product of (25) with ξ gives ω(ξ1) = 0. On the other hand, proceeding

similar with the proof of Lemma 3.3, we obtain directly ω(ξ2) = ω(ξ3) = 0.

In this context, we see that the D⊥-recurrent normal Jacobi operator is in fact

D⊥-parallel. Therefore, the non-existence proof for such case follows immediately

from Suh and Jeong [24, Theorem 1] and Lemma 3.6.

When ξ ∈ D, we omit the proof for this case, because it is very similar with

that of Theorem 1.3. �

Comparing the first two main theorems in the Introduction, we observe that

Theorem 1.3 does not require the additional condition ξ(α) = 0, but its assump-

tion (i.e., F-recurrence) is stronger than that of Theorem 1.7 (i.e., D⊥-recurrence).

On the other hand, Hopf hypersurfaces can be classified under the conditions of

Reeb parallel structure Jacobi operator∇ξRξ = 0 and ξ(α)=0 with α 6= 0 (see [8]),

or Reeb parallel shape operator ∇ξA = 0 (see [15]), even Reeb parallel Ricci oper-

ator with non-vanishing geodesic Reeb flow, but not Reeb parallel normal Jacobi

operator ∇ξRN = 0, due to the following

Theorem 3.8. Let M be a Hopf real hypersurface in G2(Cm+2) such that

ξ ∈ D⊥. Then the normal Jacobi operator is Reeb parallel.

Proof. As seen in proof of Lemma 3.3, we may put ξ = ξ1 because of

ξ ∈ D⊥. Substituting X = ξ into (12) and using Aξ = αξ implies

(∇ξRN )Y = 3α

3∑
ν=1

g(φνξ, Y )ξν + 3α

3∑
ν=1

ην(Y )φνξ + α

3∑
ν=1

g(φνξ, φY )φνξ

− αη(Y )

3∑
ν=1

ην(ξ)φνξ − α
3∑

ν=1

ην(φY )ξν (28)

for any vector field Y . The application of (16) in (28) implies (∇ξRN )Y = 0 for

any vector field Y . �

However, the above conclusion is not true for Hopf hypersurface in G2(Cm+2)

with ξ ∈ D, because by applying Lemma 3.4 and Proposition 3.5 in (27) for

Y = ξ1, we have (∇ξRN )ξ1 = 4αφ1ξ 6= 0.

Pak and Pérez in [21] proved that the normal Jacobi operator in G2(Cm+2)

is Reeb parallel with respect to the generalized Tanaka–Webster connection.
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In view of Theorem 3.8, one observes that the classification for Hopf real hy-

persurfaces in G2(Cm+2) needs some additional restrictions. In fact, such situa-

tion has been considered by Jeong and Suh in [14], who classified Hopf hypersur-

faces in G2(Cm+2) with Reeb parallel normal Jacobi operator and g(AD,D⊥) = 0.
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(2009), 201–212.

[25] Th. Theofanidis, A complete classification of real hypersurfaces in CP 2 and CH2 with

generalized ξ-parallel Jacobi structure operator, Bull. Belg. Math. Soc. Simon Stevin 23
(2016), 103–113.

YANING WANG

SCHOOL OF MATHEMATICS AND

INFORMATION SCIENCES

HENAN NORMAL UNIVERSITY

XINXIANG, 453007

P. R. CHINA

E-mail: wyn051@163.com

(Received July 31, 2018; revised April 8, 2019)


