

Some recurrent normal Jacobi operators on real hypersurfaces in complex two-plane Grassmannians

By YANING WANG (Xinxiang)

Abstract. In this paper, we prove that there are no Hopf hypersurfaces in complex two-plane Grassmannians $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is generalized \mathfrak{F} -recurrent, where $\mathfrak{F} = \text{span}\{\xi, \xi_1, \xi_2, \xi_3\}$. We also prove that there are no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is \mathfrak{D}^\perp -recurrent and the Hopf principal curvature is invariant along the Reeb flow, where $\mathfrak{D}^\perp = \text{span}\{\xi_1, \xi_2, \xi_3\}$.

1. Introduction

A complex two-plane Grassmannian $G_2(\mathbb{C}^{m+2})$ is defined as the set of all two-dimensional linear subspaces in \mathbb{C}^{m+2} which is identified with the homogeneous space $SU(m+2)/S(U(2) \times U(m))$. It is known as a compact irreducible Hermitian symmetric space of rank two equipped with both a Kähler structure J and a quaternionic Kähler structure \mathfrak{J} with a canonical basis $\{J_1, J_2, J_3\}$ which does not contain J (see [2]). When $m = 1$, $G_2(\mathbb{C}^3)$ can be identified with the complex projective plane \mathbb{CP}^2 with constant holomorphic sectional curvature eight, and when $m = 2$, $G_2(\mathbb{C}^4)$ is isometric to the real Grassmannian manifold $G_2^+(\mathbb{R}^6)$ of oriented two-dimensional linear subspace in \mathbb{R}^6 . In this paper, m is assumed to be $m \geq 3$.

Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, with N and A a unit normal vector field and the shape operator, respectively. Let g and ∇ be the induced metric from the ambient space and the corresponding Levi-Civita connection,

Mathematics Subject Classification: 53C40; 53C15.

Key words and phrases: Hopf hypersurface, complex two-plane Grassmannians, generalized \mathfrak{F} -recurrent, \mathfrak{D}^\perp -recurrent, normal Jacobi operator.

respectively. The vector field $\xi := -JN$ for the Kähler structure J and the normal vector field N is said to be the Reeb vector field. The almost contact metric 3-structure vector fields ξ_ν are defined by $\xi_\nu = -J_\nu N$ for $\nu \in \{1, 2, 3\}$. We denote by \mathfrak{D}^\perp the distribution defined by $\mathfrak{D}^\perp = \text{span}\{\xi_1, \xi_2, \xi_3\}$, and by \mathfrak{D} its orthogonal complement distribution satisfying $T_p M = \mathfrak{D}_p \oplus \mathfrak{D}_p^\perp$ at each point $p \in M$. A real hypersurface in $G_2(\mathbb{C}^{m+2})$ is said to be Hopf if ξ is an eigenvector field of the shape operator, i.e., $A\xi = \alpha\xi$, and $\alpha = g(A\xi, \xi)$ is said to be the Hopf principal curvature.

One of the most known classification results for Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ was obtained by BERNDT and SUH [3].

Theorem 1.1 ([3]). *Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$, $m \geq 3$. Then both $\text{span}\{\xi\}$ and \mathfrak{D}^\perp are invariant under the shape operator if and only if*

- (A) *M is an open part of a tube around a totally geodesic $G_2(\mathbb{C}^{m+1})$ in $G_2(\mathbb{C}^{m+2})$, or*
- (B) *m is even, say $m = 2n$, and M is an open part of a tube around a totally geodesic quaternionic projective space $\mathbb{H}P^m$ in $G_2(\mathbb{C}^{m+2})$.*

Following Theorem 1.1, many characterizations and non-existence results for Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$ were obtained. Among others, one of the most mentioned conditions in this framework is the so-called normal Jacobi operator \bar{R}_N associated to the normal vector field N . BERNDT [1] introduced the notion of normal Jacobi operator for real hypersurfaces in quaternionic projective space $\mathbb{H}P^m$ and quaternionic hyperbolic space $\mathbb{H}H^m$, respectively. Later, such notion was considered in [20] for real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ which is defined by

$$\bar{R}_N = \bar{R}(\cdot, N)N \in \text{End}(T_p M), \quad p \in M, \quad (1)$$

where \bar{R} denotes the Riemannian curvature tensor of $G_2(\mathbb{C}^{m+2})$.

JEONG, LEE and SUH in [9] proved that there do not exist Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with Lie parallel normal Jacobi operator, i.e., $\mathcal{L}_X \bar{R}_N = 0$ for any vector field X , if the integral curves of \mathfrak{D} and \mathfrak{D}^\perp components of the Reeb vector field are totally geodesic. Actually, such result generalized those in [12] under a weaker condition, namely the normal Jacobi operator is Lie ξ -parallel, i.e., $\mathcal{L}_\xi \bar{R}_N = 0$. The normal Jacobi operator is said to be parallel if it satisfies $\nabla_X \bar{R}_N = 0$ for any vector field X . Under such condition and applying Theorem 1.1, JEONG, KIM and SUH proved that following

Theorem 1.2 ([7]). *There exist no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is parallel.*

Theorem 1.2 shows that parallelism of the normal Jacobi operator is a rather strong condition for Hopf hypersurfaces. Therefore, many authors tried to weaken such a condition and generalize Theorem 1.2. MACHADO, PÉREZ, JEONG and SUH in [18] proved that there does not exist any Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ whose normal Jacobi operator is of Codazzi type, i.e., $(\nabla_X \bar{R}_N)Y = (\nabla_Y \bar{R}_N)X$ for any vector fields X, Y , if the distribution \mathfrak{D} or \mathfrak{D}^\perp components of the Reeb vector field are invariant under the shape operator. PANAGIOTIDOU and TRIPATHI in [22] proved that there do not exist Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is semi-parallel, i.e., $R(X, Y)\bar{R}_N Z = \bar{R}_N(R(X, Y)Z)$ for any vector fields X, Y, Z , and $\alpha \neq 0$ and \mathfrak{D} or \mathfrak{D}^\perp component of the Reeb vector field is invariant under the shape operator. Recently, such result was improved by HUANG, LEE and SUH in [6] by removing the restriction $\alpha \neq 0$. Also, DE and LOO in [5] proved that there does not exist any real hypersurface with pseudo-parallel normal Jacobi operator. MACHADO, PÉREZ, JEONG and SUH in [19] proved that there do not exist Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with \mathfrak{D} -parallel normal Jacobi operator, i.e., $\nabla_X \bar{R}_N = 0$ for any vector field X belonging to \mathfrak{D} , if the distribution \mathfrak{D} or \mathfrak{D}^\perp component of the Reeb vector field is invariant under the shape operator.

Throughout this paper, we denote by \mathfrak{F} the distribution $\text{span}\{\xi, \xi_1, \xi_2, \xi_3\} = \text{span}\{\xi\} + \mathfrak{D}^\perp$. The normal Jacobi operator on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is said to be generalized \mathfrak{F} -recurrent if it satisfies

$$\nabla_X \bar{R}_N = \rho \otimes \xi + \omega(X) \bar{R}_N \quad (2)$$

for any vector field X belonging to \mathfrak{F} , where both ρ and ω are 1-forms. Obviously, when $\rho = \omega = 0$, then the generalized \mathfrak{F} -recurrence condition reduces to the \mathfrak{F} -parallelism (see [13]). When $\omega = 0$, structure Jacobi operator satisfying (2) for $X = \xi$ was considered in [25] for real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$. When $\rho = 0$, (2) becomes \mathfrak{F} -recurrent condition. In the present paper, we generalize Theorem 1.2 by considering (2), and prove

Theorem 1.3. *There are no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ if the normal Jacobi operator is generalized \mathfrak{F} -recurrent.*

It follows from Theorem 1.3 directly that

Corollary 1.4. *There are no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ if the normal Jacobi operator is \mathfrak{F} -recurrent.*

A real hypersurface in $G_2(\mathbb{C}^{m+2})$ is said to be with recurrent normal Jacobi operator if $\nabla_X \bar{R}_N = \omega(X) \bar{R}_N$ for any vector field X and certain one-form ω . It is clear that when $\rho = 0$, Theorem 1.3 extends the following

Corollary 1.5 ([11]). *There does not exist Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with recurrent normal Jacobi operator.*

Moreover, when $\rho = \omega = 0$, Theorem 1.3 reduces to the following

Corollary 1.6 ([13]). *There does not exist Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with \mathfrak{F} -parallel normal Jacobi operator.*

The normal Jacobi operator \bar{R}_N on a real hypersurface in $G_2(\mathbb{C}^{m+2})$ is said to be \mathfrak{D}^\perp -recurrent if it satisfies

$$\nabla_X \bar{R}_N = \omega(X) \bar{R}_N \quad (3)$$

for any vector field X belonging to \mathfrak{D}^\perp , where ω is an 1-form. If considering some other restrictions and the above definition, we obtain the following generalization of Corollaries 1.4, 1.5 and 1.6.

Theorem 1.7. *There are no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ if the normal Jacobi operator is \mathfrak{D}^\perp -recurrent and the Hopf principal curvature is invariant along the Reeb vector field.*

In particular, if $\omega = 0$, \mathfrak{D}^\perp -recurrence for normal Jacobi operator becomes \mathfrak{D}^\perp -parallelism, and in this case Theorem 1.7 reduces to

Corollary 1.8 ([24]). *There does not exist Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with \mathfrak{D}^\perp -parallel normal Jacobi operator if the distribution \mathfrak{D} or \mathfrak{D}^\perp component of the Reeb vector field is invariant under the shape operator.*

At the end of this paper, we also discuss Reeb parallelism of the normal Jacobi operator for hypersurfaces in $G_2(\mathbb{C}^{m+2})$.

2. Preliminaries

In this section, we collect some fundamental formulas shown in [2], [3], [4]. Let M be a real hypersurface in $G_2(\mathbb{C}^{m+2})$ with real codimension one, and N be a unit normal vector field. On M there exists an almost contact metric structure (ϕ, ξ, η, g) induced from the Kähler structure J of $G_2(\mathbb{C}^{m+2})$. In this paper we put

$$JX = \phi X + \eta(X)N, \quad J_\nu X = \phi_\nu X + \eta_\nu(X)N \quad (4)$$

for any vector field X . From the first term of (4), it follows that

$$\phi^2 = -\text{id} + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi\xi = 0, \quad \eta(X) = g(X, \xi), \quad (5)$$

where the Reeb vector field ξ is determined by $\xi := -JN$. Let $\{J_1, J_2, J_3\}$ be a canonical local basis of quaternionic Kähler structure \mathfrak{J} of $G_2(\mathbb{C}^{m+2})$. Then, from the condition $J_\nu J_{\nu+1} = J_{\nu+2} = -J_{\nu+1} J_\nu$, we have an almost contact metric 3-structure $(\phi_\nu, \xi_\nu, \eta_\nu, g)$ as the following:

$$\begin{aligned} \phi_\nu^2 &= -\text{id} + \eta_\nu \otimes \xi_\nu, \quad \eta_\nu(\xi_\nu) = 1, \quad \phi_\nu \xi_\nu = 0, \\ \phi_\nu \xi_{\nu+1} &= \xi_{\nu+2}, \quad \phi_{\nu+1} \xi_\nu = -\xi_{\nu+2}, \\ \phi_\nu \phi_{\nu+1} &= \phi_{\nu+2} + \eta_{\nu+1} \otimes \xi_\nu, \\ \phi_{\nu+1} \phi_\nu &= -\phi_{\nu+2} + \eta_\nu \otimes \xi_{\nu+1}, \end{aligned} \quad (6)$$

where the index is taken modulo three. According to condition $J_\nu J = J J_\nu$, the relationships between two almost contact metric structures are given by

$$\phi \phi_\nu = \phi_\nu \phi + \eta_\nu \otimes \xi - \eta \otimes \xi_\nu, \quad \phi \xi_\nu = \phi_\nu \xi, \quad \eta_\nu(\phi \cdot) = \eta(\phi_\nu \cdot). \quad (7)$$

Since J is parallel with respect to the Riemannian connection of $G_2(\mathbb{C}^{m+2})$, we have

$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi, \quad \nabla_X \xi = \phi AX \quad (8)$$

for any vector fields X, Y , where we have used the Guass and Weingarten formulas. Similarly, since J_ν is a quaternionic Kähler structure of $G_2(\mathbb{C}^{m+2})$, we have

$$\begin{aligned} \nabla_X \xi_\nu &= q_{\nu+2}(X)\xi_{\nu+1} - q_{\nu+1}(X)\xi_{\nu+2} + \phi_\nu AX, \\ \nabla_X \phi_\nu &= q_{\nu+2}(X)\phi_{\nu+1} - q_{\nu+1}(X)\phi_{\nu+2} + \eta_\nu \otimes AX - g(AX, \cdot)\xi_\nu \end{aligned} \quad (9)$$

for any vector field X .

The Riemannian curvature tensor \bar{R} of $G_2(\mathbb{C}^{m+2})$ is given by (see [3])

$$\begin{aligned} \bar{R}(X, Y)Z &= g(Y, Z)X - g(X, Z)Y + g(JY, Z)JX - g(JX, Z)JY - 2g(JX, Y)JZ \\ &+ \sum_{\nu=1}^3 \{g(J_\nu Y, Z)J_\nu X - g(J_\nu X, Z)J_\nu Y - 2g(J_\nu X, Y)J_\nu Z\} \\ &+ \sum_{\nu=1}^3 \{g(J_\nu JY, Z)J_\nu JX - g(J_\nu JX, Z)J_\nu JY\} \end{aligned} \quad (10)$$

for any vector fields X, Y, Z .

3. Proofs of the main results

According to (10), the normal Jacobi operator is given by

$$\begin{aligned} \bar{R}_N(X) &= \bar{R}(X, N)N = X + 3\eta(X)\xi + 3 \sum_{\nu=1}^3 \eta_\nu(X)\xi_\nu \\ &\quad - \sum_{\nu=1}^3 \{\eta_\nu(\xi)(\phi_\nu\phi X - \eta(X)\xi_\nu) - \eta_\nu(\phi X)\phi_\nu\xi\} \end{aligned} \quad (11)$$

for any vector field X . Taking the covariant derivative of (11) and making use of formulas in Section 2, we obtain

$$\begin{aligned} (\nabla_X \bar{R}_N)Y &= 3g(\phi AX, Y)\xi + 3\eta(Y)\phi AX + 3 \sum_{\nu=1}^3 \{g(\phi_\nu AX, Y)\xi_\nu + \eta_\nu(Y)\phi_\nu AX\} \\ &\quad - \sum_{\nu=1}^3 \{2\eta_\nu(\phi AX)(\phi_\nu\phi Y - \eta(Y)\xi_\nu) - g(\phi_\nu AX, \phi Y)\phi_\nu\xi \\ &\quad - \eta(Y)\eta_\nu(AX)\phi_\nu\xi - \eta_\nu(\phi Y)(\phi_\nu\phi AX - g(AX, \xi)\xi_\nu)\} \end{aligned} \quad (12)$$

for any vector fields X, Y .

Using the Codazzi equation and $A\xi = \alpha\xi$, we have (see [3])

Lemma 3.1. *If M is a orientable Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$, then*

$$\text{grad } \alpha = \xi(\alpha)\xi + 4 \sum_{\nu=1}^3 \eta_\nu(\xi)\phi_\nu\xi, \quad (13)$$

where *grad* is the gradient operator.

Lemma 3.2. *If M is a Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is generalized \mathfrak{F} -recurrent, then either $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^\perp$.*

PROOF. Let us suppose that $\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1$ with X_0 a unit vector field orthogonal to \mathfrak{D}^\perp . If either $\eta(X_0) = 0$ or $\eta(\xi_1) = 0$, then the lemma is verified. In what follows, we suppose that $\eta(X_0)\eta(\xi_1) \neq 0$. Because the normal Jacobi operator is generalized \mathfrak{F} -recurrent, from (2) we have

$$(\nabla_\xi \bar{R}_N)\xi = \rho(\xi)\xi + \omega(\xi)\bar{R}_N(\xi). \quad (14)$$

With the aid of (11), (12) and $A\xi = \alpha\xi$, (14) can be written as the following:

$$4\alpha\eta(\xi_1)\phi_1\xi = \rho(\xi)\xi + 4\omega(\xi)(\xi + \eta(\xi_1)\xi_1). \quad (15)$$

Taking the inner product of (15) with $\phi_1\xi$ gives $4\alpha\eta(\xi_1)g(\phi_1\xi, \phi_1\xi) = 0$, and hence $\alpha g(\phi_1\xi, \phi_1\xi) = 0$ because of $\eta_1(\xi) \neq 0$. We assume that $\alpha \neq 0$ and hence we get $g(\phi_1\xi, \phi_1\xi) = 0$, which is also equivalent to $\eta_1^2(\xi) - 1 = 0$. Without loss of generality, let us consider $\eta_1(\xi) = 1$, and this reduces to $\xi = \eta(X_0)X_0 + \xi_1$. It follows directly that $1 = g(\xi, \xi) = g(\eta(X_0)X_0 + \xi_1, \eta(X_0)X_0 + \xi_1) = \eta^2(X_0) + 1$, and this implies a contradiction. Then, our assumption is wrong, and we must have $\alpha = 0$. In this case, (13) becomes $\phi_1\xi = 0$ because of $\eta_1(\xi) \neq 0$. Applying this, the action of ϕ_1 on $\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1$ implies $\phi_1X_0 = 0$ because of $\eta(X_0) \neq 0$. However, it is easy to check that $0 = g(\phi_1X_0, \phi_1X_0) = g(X_0, X_0) - \eta_1^2(X_0) = 1$, a contradiction. \square

Lemma 3.3. *Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is generalized \mathfrak{F} -recurrent. If $\xi \in \mathfrak{D}^\perp$, then the normal Jacobi operator is \mathfrak{F} -parallel.*

PROOF. If $\xi \in \mathfrak{D}^\perp$, it follows that $JN \in \mathfrak{J}N$. We assume that J_1 is the almost Hermitian structure of \mathfrak{J} such that $JN = J_1N$. Then we have

$$\xi = \xi_1, \quad \phi\xi_2 = -\xi_3, \quad \phi\xi_3 = \xi_2, \quad \phi\mathfrak{D} \subset \mathfrak{D}. \quad (16)$$

Because M is Hopf, using (6), $\phi_2\xi = -\xi_3$ and $\phi_3\xi = \xi_2$ in (12), we obtain $(\nabla_\xi \bar{R}_N)(Y) = 0$. Since the normal Jacobi operator is assumed to be generalized \mathfrak{F} -recurrent, applying the previous relation in (2), we obtain

$$\rho(Y)\xi + \omega(\xi)(Y + 4\eta(Y)\xi + 3 \sum_{\nu=1}^3 \eta_\nu(Y)\xi_\nu - \phi_1\phi Y + \sum_{\nu=1}^3 \eta_\nu(\phi Y)\phi_\nu\xi) = 0 \quad (17)$$

for any vector field Y , where we used relations (11). Replacing Y in (17) by ξ_2 and applying (16), we obtain $\rho(\xi_2)\xi + 4\omega(\xi)\xi_2 = 0$, which is equivalent to

$$\rho(\xi_2) = \omega(\xi) = 0. \quad (18)$$

In view of the second term of the above relations, (17) becomes

$$-4\alpha \sum_{\nu=1}^3 \eta_\nu(\phi Y)\xi_\nu + 3\alpha \sum_{\nu=1}^3 \eta_\nu(Y)\phi_\nu\xi + \alpha \sum_{\nu=1}^3 g(\phi_\nu\xi, \phi Y)\phi_\nu\xi - \rho(Y)\xi = 0 \quad (19)$$

for any vector field Y .

Taking the inner product of (19) with ξ and applying (16), we obtain $\rho = 0$. In this context, the generalized \mathfrak{F} -recurrence condition for the normal Jacobi operator becomes \mathfrak{F} -recurrence, i.e.,

$$(\nabla_X \bar{R}_N)Y = \omega(X)\bar{R}_N(Y) \quad (20)$$

for any vector field X belonging to \mathfrak{F} and any vector field Y on M . Replacing X by ξ_2 in (20) and applying (11), (12), (16) and $A\xi = \alpha\xi$, we get

$$\begin{aligned}
& 3g(\phi A\xi_2, Y)\xi + 3\eta(Y)\phi A\xi_2 + 3 \sum_{\nu=1}^3 \{g(\phi_\nu A\xi_2, Y)\xi_\nu + \eta_\nu(Y)\phi_\nu A\xi_2\} \\
& - \sum_{\nu=1}^3 \{2\eta_\nu(\phi A\xi_2)(\phi_\nu\phi Y - \eta(Y)\xi_\nu) - g(\phi_\nu A\xi_2, \phi Y)\phi_\nu\xi \\
& - \eta(Y)\eta_\nu(A\xi_2)\phi_\nu\xi - \eta_\nu(\phi Y)\phi_\nu\phi A\xi_2\} \\
& = \omega(\xi_2)(Y + 3\eta(Y)\xi + 3 \sum_{\nu=1}^3 \eta_\nu(Y)\xi_\nu \\
& - \sum_{\nu=1}^3 \{\eta_\nu(\xi)(\phi_\nu\phi Y - \eta(Y)\xi_\nu) - \eta_\nu(\phi Y)\phi_\nu\xi\}) \tag{21}
\end{aligned}$$

for any vector field Y . Substituting $Y = \xi$ into (21), with the aid of (16), it follows that

$$3\phi A\xi_2 + 3\phi_1 A\xi_2 + 6g(A\xi_2, \xi_3)\xi_2 - 6g(A\xi_2, \xi_2)\xi_3 = 8\omega(\xi_2)\xi. \tag{22}$$

In view of assumption $\xi = \xi_1$, taking the inner product of equation (22) with ξ , we obtain $\omega(\xi_2) = 0$.

Similarly, replacing X by ξ_3 in (20) and applying relations (11), (12) and (16), we get

$$\begin{aligned}
& 3g(\phi A\xi_3, Y)\xi + 3\eta(Y)\phi A\xi_3 + 3 \sum_{\nu=1}^3 \{g(\phi_\nu A\xi_3, Y)\xi_\nu + \eta_\nu(Y)\phi_\nu A\xi_3\} \\
& - \sum_{\nu=1}^3 \{2\eta_\nu(\phi A\xi_3)(\phi_\nu\phi Y - \eta(Y)\xi_\nu) - g(\phi_\nu A\xi_3, \phi Y)\phi_\nu\xi \\
& - \eta(Y)\eta_\nu(A\xi_3)\phi_\nu\xi - \eta_\nu(\phi Y)\phi_\nu\phi A\xi_3\} \\
& = \omega(\xi_3)(Y + 3\eta(Y)\xi + 3 \sum_{\nu=1}^3 \eta_\nu(Y)\xi_\nu \\
& - \sum_{\nu=1}^3 \{\eta_\nu(\xi)(\phi_\nu\phi Y - \eta(Y)\xi_\nu) - \eta_\nu(\phi Y)\phi_\nu\xi\}) \tag{23}
\end{aligned}$$

for any vector field Y . Substituting $Y = \xi$ into (23), with the help of (16), we obtain

$$3\phi A\xi_3 + 3\phi_1 A\xi_3 - 6g(A\xi_2, \xi_3)\xi_3 + 6g(A\xi_3, \xi_3)\xi_2 = 8\omega(\xi_3)\xi. \tag{24}$$

In view of $\xi = \xi_1$, the inner product of (24) with ξ implies $\omega(\xi_3) = 0$.

Taking into account $\omega(\xi) = \omega(\xi_2) = \omega(\xi_3) = 0$ and $\rho = 0$, we observe from (20) that the normal Jacobi operator is \mathfrak{F} -parallel when $\xi \in \mathfrak{D}^\perp$. \square

Before giving proofs of our main results, we also need the following two results.

Lemma 3.4 ([17]). *Let M be a connected orientable Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$. Then $\xi \in \mathfrak{D}$ if and only if $A\mathfrak{D} \subset \mathfrak{D}$ and M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(\mathbb{C}^{m+2})$, where $m = 2n$.*

Proposition 3.5 ([3]). *Let M be a connected orientable Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with $A\mathfrak{D} \subset \mathfrak{D}$ and $\xi \in \mathfrak{D}$. Then the quaternionic dimension m of $G_2(\mathbb{C}^{m+2})$ is even, say $m = 2n$, and M has five distinct constant principal curvatures*

$$\alpha = -2 \tan(2r), \quad \beta = 2 \cot(2r), \quad \gamma = 0, \quad \lambda = \cot(r), \quad \mu = -\tan(r),$$

with some $r \in (0, \frac{\pi}{4})$. The corresponding multiplicities are

$$m(\alpha) = 1, \quad m(\beta) = m(\gamma) = 3, \quad m(\lambda) = m(\mu) = 4n - 4,$$

and the corresponding eigenspaces are

$$\begin{aligned} T_\alpha &= \mathbb{R}\xi = \text{span}\{\xi\}, \\ T_\beta &= \mathfrak{J}J\xi = \text{span}\{\xi_1, \xi_2, \xi_3\}, \\ T_\gamma &= \mathfrak{J}\xi = \text{span}\{\phi_1\xi, \phi_2\xi, \phi_3\xi\}, \quad T_\lambda, \quad T_\mu, \end{aligned}$$

where $T_\lambda \oplus T_\mu = (\mathbb{H}\mathbb{C}\xi)^\perp$, $\mathfrak{J}T_\lambda = T_\lambda$, $\mathfrak{J}T_\mu = T_\mu$, $JT_\lambda = T_\mu$.

PROOF OF THEOREM 1.3. According to Lemma 3.2, we consider only two cases. When $\xi \in \mathfrak{D}^\perp$, by Lemma 3.3, the normal Jacobi operator is \mathfrak{F} -parallel. JEONG and SUH in [13] proved that there are no Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with \mathfrak{F} -parallel normal Jacobi operator. On the other hand, when $\xi \in \mathfrak{D}$, according to Lemma 3.4, M is locally congruent to an open part of a tube around a totally geodesic $\mathbb{H}P^n$ in $G_2(\mathbb{C}^{m+2})$. Next, we show that on such hypersurfaces the normal Jacobi operator cannot be generalized \mathfrak{F} -recurrent.

If the normal Jacobi operator is generalized \mathfrak{F} -recurrent, we have

$$(\nabla_X \bar{R}_N)Y = \rho(Y)\xi + \omega(X)\bar{R}_N(Y)$$

for any vector field $X \in \mathfrak{F}$ and any vector field Y . Replacing X and Y by ξ_1 and ξ , respectively, and applying (11), (12) and Proposition 3.5, we obtain

$$4\beta\phi_1\xi = \rho(\xi_1)\xi + 4\omega(\xi_1)\xi.$$

The inner product of the above relation with $\phi_1\xi$ gives $4\beta g(\phi_1\xi, \phi_1\xi) = 4\beta = 0$. However, by Proposition 3.5, β cannot be zero, and we arrive at a contradiction. This completes the proof. \square

Lemma 3.6 ([10], [16]). *Let M be a Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$. Then the Hopf principal curvature is invariant along the Reeb vector field if and only if the \mathfrak{D} and \mathfrak{D}^\perp -components of the Reeb vector field are invariant under the shape operator.*

The proof of our second result depends on the following lemma.

Lemma 3.7. *Let M be a Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ such that the normal Jacobi operator is \mathfrak{D}^\perp -recurrent. If the Hopf principal curvature is invariant along the Reeb vector field, then either $\xi \in \mathfrak{D}$ or $\xi \in \mathfrak{D}^\perp$.*

PROOF. Following the proof of Lemma 3.2, let us suppose that $\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1$, with X_0 a unit vector field orthogonal to \mathfrak{D}^\perp and $\eta(X_0)\eta(\xi_1) \neq 0$. Since the normal Jacobi operator is \mathfrak{D}^\perp -recurrent, we have

$$(\nabla_X \bar{R}_N)Y = \omega(X)\bar{R}_N(Y)$$

for any vector field X belonging to \mathfrak{F} and any vector field Y . Replacing X and Y by ξ_1 and ξ , respectively, in the previous equation and recalling (11), (12) imply

$$\begin{aligned} & 3\phi A\xi_1 + 3 \sum_{\nu=1}^3 g(\phi_\nu A\xi_1, \xi)\xi_\nu + 3\eta(\xi_1)\phi_1 A\xi_1 \\ & + 2 \sum_{\nu=1}^3 \eta_\nu(\phi A\xi_1)\xi_\nu + \sum_{\nu=1}^3 \eta_\nu(A\xi_1)\phi_\nu\xi = 4\omega(\xi_1)(\xi + \eta(\xi_1)\xi_1), \end{aligned} \quad (25)$$

where we applied $A\xi = \alpha\xi$. Moreover, applying Lemma 3.6, we know the distributions \mathfrak{D} or \mathfrak{D}^\perp component of the Reeb vector field are invariant under the shape operator. The action of A on $\xi = \eta(X_0)X_0 + \eta(\xi_1)\xi_1$ gives

$$AX_0 = \alpha X_0, \quad A\xi_1 = \alpha\xi_1. \quad (26)$$

Substituting the second term of (26) into the previous relation implies

$$\alpha\phi\xi_1 = \omega(\xi_1)(\xi + \eta(\xi_1)\xi_1). \quad (27)$$

Taking the inner product of the above equation with $\phi\xi_1$ gives $\alpha g(\phi\xi_1, \phi\xi_1) = 0$. The remaining proof has been already shown in that of Lemma 3.2. \square

PROOF OF THEOREM 1.7. Following Lemma 3.7, next we consider only two cases. When $\xi \in \mathfrak{D}^\perp$, as shown in Lemma 3.3, we may put $\xi = \xi_1$, and then the inner product of (25) with ξ gives $\omega(\xi_1) = 0$. On the other hand, proceeding similar with the proof of Lemma 3.3, we obtain directly $\omega(\xi_2) = \omega(\xi_3) = 0$. In this context, we see that the \mathfrak{D}^\perp -recurrent normal Jacobi operator is in fact \mathfrak{D}^\perp -parallel. Therefore, the non-existence proof for such case follows immediately from SUH and JEONG [24, Theorem 1] and Lemma 3.6.

When $\xi \in \mathfrak{D}$, we omit the proof for this case, because it is very similar with that of Theorem 1.3. \square

Comparing the first two main theorems in the Introduction, we observe that Theorem 1.3 does not require the additional condition $\xi(\alpha) = 0$, but its assumption (i.e., \mathfrak{F} -recurrence) is stronger than that of Theorem 1.7 (i.e., \mathfrak{D}^\perp -recurrence). On the other hand, Hopf hypersurfaces can be classified under the conditions of Reeb parallel structure Jacobi operator $\nabla_\xi R_\xi = 0$ and $\xi(\alpha) = 0$ with $\alpha \neq 0$ (see [8]), or Reeb parallel shape operator $\nabla_\xi A = 0$ (see [15]), even Reeb parallel Ricci operator with non-vanishing geodesic Reeb flow, but not Reeb parallel normal Jacobi operator $\nabla_\xi \bar{R}_N = 0$, due to the following

Theorem 3.8. *Let M be a Hopf real hypersurface in $G_2(\mathbb{C}^{m+2})$ such that $\xi \in \mathfrak{D}^\perp$. Then the normal Jacobi operator is Reeb parallel.*

PROOF. As seen in proof of Lemma 3.3, we may put $\xi = \xi_1$ because of $\xi \in \mathfrak{D}^\perp$. Substituting $X = \xi$ into (12) and using $A\xi = \alpha\xi$ implies

$$\begin{aligned} (\nabla_\xi \bar{R}_N)Y &= 3\alpha \sum_{\nu=1}^3 g(\phi_\nu \xi, Y) \xi_\nu + 3\alpha \sum_{\nu=1}^3 \eta_\nu(Y) \phi_\nu \xi + \alpha \sum_{\nu=1}^3 g(\phi_\nu \xi, \phi Y) \phi_\nu \xi \\ &\quad - \alpha \eta(Y) \sum_{\nu=1}^3 \eta_\nu(\xi) \phi_\nu \xi - \alpha \sum_{\nu=1}^3 \eta_\nu(\phi Y) \xi_\nu \end{aligned} \quad (28)$$

for any vector field Y . The application of (16) in (28) implies $(\nabla_\xi \bar{R}_N)Y = 0$ for any vector field Y . \square

However, the above conclusion is not true for Hopf hypersurface in $G_2(\mathbb{C}^{m+2})$ with $\xi \in \mathfrak{D}$, because by applying Lemma 3.4 and Proposition 3.5 in (27) for $Y = \xi_1$, we have $(\nabla_\xi \bar{R}_N)\xi_1 = 4\alpha\phi_1\xi \neq 0$.

PAK and PÉREZ in [21] proved that the normal Jacobi operator in $G_2(\mathbb{C}^{m+2})$ is Reeb parallel with respect to the generalized Tanaka–Webster connection.

In view of Theorem 3.8, one observes that the classification for Hopf real hypersurfaces in $G_2(\mathbb{C}^{m+2})$ needs some additional restrictions. In fact, such situation has been considered by JEONG and SUH in [14], who classified Hopf hypersurfaces in $G_2(\mathbb{C}^{m+2})$ with Reeb parallel normal Jacobi operator and $g(A\mathfrak{D}, \mathfrak{D}^\perp) = 0$.

ACKNOWLEDGEMENTS. The author would like to thank the anonymous referee for his or her careful reading and useful suggestions.

References

- [1] J. BERNDT, Real hypersurfaces in quaternionic space forms, *J. Reine Angew. Math.* **419** (1991), 9–26.
- [2] J. BERNDT, Riemannian geometry of complex two-plane Grassmannians, *Rend. Sem. Mat. Univ. Politec. Torino* **55** (1997), 19–83.
- [3] J. BERNDT and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians, *Monatsh. Math.* **127** (1999), 1–14.
- [4] J. BERNDT and Y. J. SUH, Real hypersurfaces with isometric Reeb flow in complex two-plane Grassmannians, *Monatsh. Math.* **137** (2002), 87–98.
- [5] A. DE and T.-H. Loo, Real hypersurfaces with pseudo-parallel normal Jacobi operator in complex two-plane Grassmannians, *Filomat* **31** (2017), 3917–3923.
- [6] D. H. HWANG, H. LEE and C. WOO, Semi-parallel symmetric operators for Hopf hypersurfaces in complex two-plane Grassmannians, *Monatsh. Math.* **177** (2015), 539–550.
- [7] I. JEONG, H.-J. KIM and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with parallel normal Jacobi operator, *Publ. Math. Debrecen* **76** (2010), 203–218.
- [8] I. JEONG, S. KIM and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel structure Jacobi operator, *Canad. Math. Bull.* **57** (2014), 821–833.
- [9] I. JEONG, H. LEE and Y. J. SUH, Hopf hypersurfaces in complex two-plane Grassmannians with Lie parallel normal Jacobi operator, *Bull. Korean Math. Soc.* **48** (2011), 427–444.
- [10] I. JEONG, C. J. G. MACHADO, J. DE D. PÉREZ and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with \mathfrak{D}^\perp -parallel structure Jacobi operator, *Internat. J. Math.* **22** (2011), 655–673.
- [11] I. JEONG, J. DE D. PÉREZ and Y. J. SUH, Recurrent Jacobi operator of real hypersurfaces in complex two-plane Grassmannians, *Bull. Korean Math. Soc.* **50** (2013), 525–536.
- [12] I. JEONG and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with Lie ξ -parallel normal Jacobi operator, *J. Korean Math. Soc.* **45** (2008), 1113–1133.
- [13] I. JEONG and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with \mathfrak{F} -parallel normal Jacobi operator, *Kyungpook Math. J.* **51** (2011), 395–410.
- [14] I. JEONG and Y. J. SUH, Parallelism of normal Jacobi operator for real hypersurfaces in complex two-plane Grassmannians, *Publ. Math. Debrecen* **87** (2015), 307–317.
- [15] H. LEE, Y. S. CHOI and C. WOO, Hopf hypersurfaces in complex two-plane Grassmannians with Reeb parallel shape operator, *Bull. Malays. Math. Sci. Soc.* **38** (2015), 617–634.
- [16] H. LEE, S. KIM and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with certain commuting condition II, *Czechoslovak Math. J.* **64(139)** (2014), 133–148.

- [17] H. LEE and Y. J. SUH, Real hypersurfaces of type B in complex two-plane Grassmannians related to the Reeb vector, *Bull. Korean Math. Soc.* **47** (2010), 551–561.
- [18] C. J. G. MACHADO, J. DE D. PÉREZ, I. JEONG and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is of Codazzi type, *Cent. Eur. J. Math.* **9** (2011), 578–582.
- [19] C. J. G. MACHADO, J. DE D. PÉREZ, I. JEONG and Y. J. SUH, \mathfrak{D} -parallelism of normal and structure Jacobi operators for hypersurfaces in complex two-plane Grassmannians, *Ann. Mat. Pura Appl. (4)* **193** (2014), 591–608.
- [20] J. DE D. PÉREZ, I. JEONG and Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with commuting normal Jacobi operator, *Acta Math. Hungar.* **117** (2007), 201–217.
- [21] E. PAK, J. DE D. PÉREZ, C. J. G. MACHADO and C. Woo, Hopf hypersurfaces in complex two-plane Grassmannians with generalized Tanaka–Webster parallel normal Jacobi operator, *Czechoslovak Math. J.* **65(140)** (2015), 207–218.
- [22] K. PANAGIOTIDOU and M. M. TRIPATHI, Semi-parallelism of normal Jacobi operator for Hopf hypersurfaces in complex two-plane Grassmannians, *Monatsh. Math.* **172** (2013), 167–178.
- [23] Y. J. SUH, Real hypersurfaces in complex two-plane Grassmannians with Reeb parallel Ricci tensor, *J. Geom. Phys.* **64** (2013), 1–11.
- [24] Y. J. SUH and I. JEONG, Real hypersurfaces in complex two-plane Grassmannians whose normal Jacobi operator is \mathfrak{D}^\perp -parallel, In: Proceedings of the 13th International Workshop on Differential Geometry and Related Fields, *Natl. Inst. Math. Sci. (NIMS), Taejön* **13** (2009), 201–212.
- [25] TH. THEOFANIDIS, A complete classification of real hypersurfaces in $\mathbb{C}P^2$ and $\mathbb{C}H^2$ with generalized ξ -parallel Jacobi structure operator, *Bull. Belg. Math. Soc. Simon Stevin* **23** (2016), 103–113.

YANING WANG
 SCHOOL OF MATHEMATICS AND
 INFORMATION SCIENCES
 HENAN NORMAL UNIVERSITY
 XINXIANG, 453007
 P. R. CHINA

E-mail: wyn051@163.com

(Received July 31, 2018; revised April 8, 2019)