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Rings in which every element is the sum of
a left zero-divisor and an idempotent

By EBRAHIM GHASHGHAEI (Ahvaz) and MUHAMMET TAMER KOŞAN (Ankara)

Abstract. A ring R is called left zero-clean if every element is the sum of a left

zero-divisor and an idempotent. This class of rings is a natural generalization of O-rings

and nil-clean rings. We determine when a skew polynomial ring is a left zero-clean ring.

It is proved that a ring R is left zero-clean if and only if the upper triangular matrix ring

Tn(R) is left zero-clean. It is shown that a commutative ring R is zero-clean if and only if

the matrix ring Mn(R) is zero-clean for every positive integer n ≥ 1. We characterize the

zero-clean matrix rings over fields. We also determine when a 2×2 matrix A over a field

is left zero-clean. A ring is called uniquely left zero-clean if every element is uniquely

the sum of a left zero-divisor and an idempotent. We completely determine when a ring

is uniquely left zero-clean.

1. Introduction

Throughout this paper, R will be an associative ring with identity, U(R)

its group of units, J(R) its Jacobson radical, Idem(R) its set of idempotents, and

Nil(R) is the set of nilpotent elements of R. For x ∈ R, Annl(x)={a ∈ R : ax=0}
and Annr(x) = {a ∈ R : xa = 0} denote the left annihilator and the right anni-

hilator ideals of x in R, respectively. When Annr(x) 6= 0, we say x is a left

zero-divisor; otherwise it is a non-left zero-divisor. Let Zl(R) (resp., Z∗l (R)) de-

note the set of left zero-divisors (resp., non-left zero-divisors) of R. Similarly,

let Zr(R) (resp., Z∗r(R)) denote the set of right zero-divisors (resp., non-right
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zero-divisors) of R. A non-zero-divisor element is also known as a regular element,

see [2]. Thus, for a commutative ring R, we will write Zl(R) = Zr(R) = Z(R)

and Z∗l (R) = Z∗r(R) = reg(R), where reg(R) is the set of regular elements (i.e.,

non-zero-divisors) of R. We write Mn(R) and Tn(R) for the n × n matrix ring

and the n × n upper triangular matrix ring over R, respectively. Also, let A be

a matrix, we write tr(A) to denote the trace of A, and det(A) for the determinant

of A. Moreover, In denotes the n× n identity matrix.

In [6], Diesl defined a ring element a ∈ R to be nil-clean if it can be written

in the form t + e where t ∈ Nil(R) and e ∈ Idem(R). If every a ∈ R is nil-clean,

R is said to be a nil-clean ring. In this paper, we introduce a class of rings which

is a generalization of nil-clean rings. These rings, which will be called left zero-

clean rings, are defined as rings R in which for every a ∈ R there exist a left

zero-divisor z and an idempotent e such that a = z + e. Examples of such rings

include nil-clean rings and O-rings. We recall that Cohn [5] introduced the term

O-ring for commutative rings with 1, in which every element different from 1 is

a zero-divisor. Let us say a few words. Examples of O-rings are Boolean rings.

In fact, for a commutative ring R, R = Idem(R)
⋃

Z(R) if and only if R is an O-

ring. In [5], Cohn showed that there exist O-rings which are not Boolean. It was

conjectured by Anderson and Badawi that R = Idem(R)
⋃

Z(R) if and only if

R is a Boolean ring, see [1, p. 1022]. Indeed, Cohn’s example indicates that this

conjecture is false.

This article consists of 5 sections. Section 1 is the introduction. In Section 2,

we investigate some fundamental properties of this class. We show that an abelian

ring R is left zero-clean if and only if a − 1 ∈ Zl(R) for each a ∈ Z∗l (R). In this

section, we show that a commutative ring R is a zero-clean ring if and only if

reg(R) ⊆ 1 − Z(R). In Section 3, the behavior of zero-clean rings under some

classical ring constructions is studied. We determine when a skew polynomial

ring is a left zero-clean ring. Also, it is shown that a ring R is left zero-clean

if and only if Tn(R) is left zero-clean. The aim of Section 4 is to give some results

of matrix rings over commutative zero-clean rings. It is shown that a commutative

ring R is zero-clean if and only if Mn(R) is left zero-clean. We also determine

when a 2× 2 matrix A over a field is left zero-clean. In the last section, we define

and give some characterizations of uniquely left zero-clean rings. Let us recall that

a commutative ring R is weakly présimplifiable if and only if Z(R) ⊆ 1− reg(R),

see [2]. It is shown that a commutative ring R is uniquely zero-clean if and only

if Z(R) = 1− reg(R).
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2. Zero-clean rings

We begin with a formal definition of the central concept of the article.

Definition 2.1. An element a of a ring R is called left zero-clean if it can be

expressed as the sum of a left zero-divisor and an idempotent in R. Any equation

of the form a = z+e will be called a left zero-clean decomposition of a ∈ R, where

z ∈ Zl(R) and e ∈ Idem(R). A ring R is called left zero-clean if every element

of R is left zero-clean. Right zero-clean rings are defined similarly. A ring which

is both right and left zero-clean is called zero-clean.

Remark 2.2. It is clear that a left zero-divisor element and 1 are trivially left

zero-clean.

The following example shows that there exist left zero-clean rings which are

not right zero-clean.

Example 2.3. Let R be a Z2-algebra generated by xi, i ∈ N, with the relations

xixj = 0, for all i < j. It is easy to verify that R is a left zero-clean ring. On the

other hand, x1 has not a right zero-clean decomposition, and hence R is not right

zero-clean.

The following example shows that there exists a left zero-clean ring which is

neither an O-ring nor nil-clean.

Example 2.4. Let R = Z2×Z4×Z8×· · · . It is straightforward to check that

R is a zero-clean ring which is neither an O-ring nor a nil-clean ring.

The following example shows that the class of left zero-clean rings is not

hereditary on subrings.

Example 2.5. Let R be a Z2-algebra generated by xi, i ∈ Z, with the relations

xixj = 0, for all i < j. Now, let S be the subring of R generated by xk where

k ≤ −1. One can easily see S is not a left zero-clean ring.

A ring is called abelian if all its idempotents are central. Examples of abelian

rings are reduced rings (e.g., strongly regular rings), one-sided duo rings (e.g.,

commutative rings), and of course, all rings with only trivial idempotents {0, 1}.

Theorem 2.6. Let R be an abelian ring. The following statements are equiv-

alent:

(1) R is a left zero-clean ring.

(2) If a ∈ Z∗l (R), then a− 1 ∈ Zl(R).
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Proof. (1) ⇒ (2) Assume that R is a left zero-clean ring and a ∈ Z∗l (R).

Therefore, a has a left zero-clean decomposition, as a = z + e, where z ∈ Zl(R)

and 0 6= e ∈ Idem(R). If e = 1, then a− 1 = z ∈ Zl(R). Now, suppose that e 6= 1

and consider 0 6= z′ ∈ Annr(z). We have a(z′(e − 1)) = (z + e)(z′(e − 1)) = 0.

Since a is a non-left zero-divisor, z′(e− 1) = 0. Hence z′e = z′ 6= 0, and we infer

that a− 1 = z + e− 1. Now, we have (a− 1)(z′e) = (z + e− 1)(z′e) = 0, which

implies that a− 1 is a left zero-divisor.

(2) ⇒ (1) If a ∈ Z∗l (R), then (a − 1) + 1 is a left zero-clean decomposition

of a. �

Corollary 2.7. If R is an abelian left zero-clean ring, then J(R) ⊆ Zl(R).

Proof. Suppose that a ∈ J(R) \ Zl(R). Then 1 − a is a unit which has to

be a left-zero divisor by Theorem 2.6, a contradiction. �

The following is an easy consequence of Theorem 2.6.

Corollary 2.8. The only zero-clean domain is Z2.

Recall that a ring R is local if the sum of any two non-units is a non-unit,

or equivalently, if the ring has a unique maximal left ideal.

Proposition 2.9. Let R be a left zero-clean ring. Then Zl(R) ⊆ J(R) if and

only if R is local.

Proof. Suppose that Zl(R) ⊆ J(R). Since J(R) contains no non-trivial

idempotent, R has only trivial idempotents. Hence R is an abelian ring. Corol-

lary 2.7 shows that J(R) ⊆ Zl(R). Thus, Zl(R) = J(R) and this means that

Zl(R) is an ideal. Now, we claim that R \ J(R) = U(R). Suppose that r /∈ J(R).

By hypothesis, we infer that r is a non-left zero-divisor in R. Thus, there exists

j ∈ Zl(R) = J(R) where r = j + 1. This implies that r is a unit. Thus, we con-

clude that every non-left zero-divisor is a unit. Note that Zl(R) is an ideal, and

so the sum of any two non-units in R is a non-unit. This means that R is local.

The converse is clear. �

Remark 2.10. It is clear that Z6 is a zero-clean ring, but Z6/3Z6 is not

a zero-clean ring. Hence a homomorphic image of a left zero-clean ring need not

be left zero-clean. Also, a homomorphic image of a non-left zero-clean ring may

be left zero-clean. For example, Z is not a zero-clean ring, but Z4
∼= Z/4Z is

a zero-clean ring.

This next result needs no proof.
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Lemma 2.11. Let {Ri}i∈I be a family of rings. Then Z∗l (
∏

I Ri)=
∏

I Z∗l (Ri)

and Z∗r(
∏

I Ri) =
∏

I Z∗r(Ri). Also, Idem(
∏

I Ri) =
∏

I Idem(Ri).

The following seems interesting.

Proposition 2.12. A direct product of rings is left zero-clean if and only if

at least one factor is left zero-clean.

Proof. Let {Ri}i∈I be a family of rings and R =
∏

I Ri. First assume that,

for each i ∈ I, Ri is not a left zero-clean ring. Thus, for each i ∈ I, there exists ai ∈
Ri which is not a left zero-clean element. Take (ai)i∈I ∈ R. We claim that (ai)i∈I
is not a left zero-clean element of R. Suppose that (ai)i∈I = (zi)i∈I + (ei)i∈I ,

where (zi)i∈I ∈ Zl(R) and (ei)i∈I ∈ Idem(R). Lemma 2.11 shows that there

exists ik ∈ I such that zik ∈ Zl(Rik), and also, for each i ∈ I, ei ∈ Idem(Ri).

Therefore, we infer that aik = zik +eik , where zik ∈ Zl(Rik) and eik ∈ Idem(Rik),

is a left zero-clean decomposition for aik ∈ Rik . This is a contradiction.

Conversely, assume that R =
∏

I Ri is not a zero-clean ring. Thus, there

exists (ai)i∈I ∈ R which is not a left zero-clean element. Suppose that there

exists ik ∈ I such that Rik is a left zero-clean ring and we seek a contradiction.

This implies that for aik ∈ Rik , there exist zik ∈ Zl(Rik) and eik ∈ Idem(Rik)

such that aik = zik + eik . Define (pi)i∈I and (qi)i∈I as follows:

pik :=

{
zik if i = ik,

aij otherwise;
qik :=

{
eik if i = ik,

0 otherwise.

Lemma 2.11 shows that (pi)i∈I ∈ Zl(R), (qi)i∈I ∈ Idem(R) and (ai)i∈I =

(pi)i∈I + (qi)i∈I . Hence (ai)i∈I ∈ R is a left zero-clean element, which is a con-

tradiction. �

Lemma 2.13. Let R be a left zero-clean ring. Then 2 is a left zero-divisor.

Proof. Suppose that 2 is a non-left zero-divisor. Then there exist z ∈ Zl(R)

and 0, 1 6= e ∈ Idem(R) such that 2 = z + e. Therefore 1 − e = z − 1, and so

z − 1 is an idempotent. Thus (z − 1)2 = (z − 1), which implies (3 − z)z = 2,

a contradiction. �

Corollary 2.14. Zn is a zero-clean ring if and only if 2|n.

Proof. It follows from Lemma 2.13 and Proposition 2.12. �
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3. Zero-clean property under algebraic constructions

Let R be a ring, and σ be a ring endomorphism of R. Let R[x;σ] denote

the skew polynomial ring consisting of the polynomials in x with coefficients in R

written on the left, with multiplication defined by xr = σ(r)x for all r ∈ R.

R[[x;σ]] denotes the skew formal power series ring. It is clear that if we put

σ = 1R, then we have R[x] = R[x;σ] and R[[x]] = R[[x;σ]]. Next, we will

characterize when a skew polynomial ring is left zero-clean.

Theorem 3.1. Let R be a ring, and σ be a ring endomorphism of R.

(1) If σ is a ring automorphism of R, then R[x;σ], R[[x;σ]] are never left zero-

clean rings.

(2) If R is a domain, then R[x;σ] is never a left zero-clean ring.

(3) If R is not a domain, then the following statements are equivalent:

(a) R[x;σ] is a left zero-clean ring.

(b) (i) R is left zero-clean.

(ii) σ is not injective.

(iii) Every r ∈ R has a left zero-clean decomposition r = z + e where

z ∈ Zl(R), e ∈ Idem(R), and Annr(z)
⋂

Ker(σ) 6= 0.

Proof. (1) Suppose that x=z+e where z∈Zl(R[x;σ]) and e∈ Idem(R[x;σ])

= Idem(R). This implies that −e+x = z. Since σ is a ring automorphism, −e+x

is not a left zero-divisor, a contradiction. The proof is similar for R[[x;σ]].

(2) It is clear.

(3) (a)⇒ (b) It is clear that R is a left zero-clean ring, since Idem(R[x;σ]) =

Idem(R). If x is a non-left zero divisor, then there exist z ∈ Zl(R[x;σ]) and e ∈
Idem(R[x;σ]) = Idem(R) such that x−z = e ∈ Idem(R), which is a contradiction.

Hence x is a left zero-divisor and this means that σ is not injective. Now suppose

that r ∈ R, and consider the element r + x in R[x;σ]. Therefore, there exist z ∈
Zl(R[x;σ]) and e ∈ Idem(R) such that r+x = z+e. Hence z = (r−e)+x. Since

z = (r−e)+x is a left-zero-divisor in R[x;σ], there exists b ∈ Annr(r−e)
⋂

Ker(σ).

This means that r has a left zero-clean decomposition r = (r − e) + e such that

Annr(r − e)
⋂

Ker(σ) 6= 0.

(b)⇒ (a) Suppose that a0 + a1x+ a2x
2 + ...+ anx

n is an element of R[x;σ].

By our assumption, a0 has a left zero-clean decomposition a0 = z + e where

z ∈ Z 1(R), e ∈ Idem(R), and Annr(z)
⋂

Ker(σ) 6= 0. Hence a0 + a1x + a2x
2 +

· · ·+anx
n has the left zero-clean decomposition (z+a1x+a2x

2 + · · ·+anx
n) +e.

Thus R[x;σ] is a left zero-clean ring. �
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We now turn our attention to formal triangular matrix rings. Before stating

the next result, we recall the following lemma that is suitable for our purpose.

Lemma 3.2 ([7, Theorem 3.3]). Let A, B be rings, and M = AMB be

a bimodule. Suppose m 6= 0 and D =

[
a m

0 b

]
is an element of the formal

triangular matrix R =

[
A M

0 B

]
. Then the following statements are equivalent:

(1) D is a left zero-divisor.

(2) At least one of the following occurs:

(a) a ∈ Zl(A).

(b) a ∈ Z∗l (A), b ∈ Zl(B), and there exists 0 6= b′′ ∈ Annr(b) such that

mb′′ = 0.

(c) a ∈ Z∗l (A), b ∈ Z∗l (B), and there exists 0 6= m′′ ∈M such that am′′ = 0.

Theorem 3.3. Let A, B be rings, M = AMB be a bimodule, and M be

a torsion-free A-module. The formal triangular matrix ring R =

[
A M

0 B

]
is left

zero-clean if and only if either A or B is left zero-clean.

Proof. First assume that A is a left zero-clean ring, and C =

[
a m

0 b

]
is an arbitrary element of Z∗l (R). By Lemma 3.2, we infer that a ∈ Z∗l (A),

b ∈ Z∗l (B), and am′ 6= 0 for all 0 6= m′ ∈ M . Since A is a left zero-clean ring,

there exist z ∈ Zl(A) and e ∈ Idem(A) such that a = z + e. Take D =

[
z m

0 b

]

and E =

[
e 0

0 0

]
. It is easy to see that D ∈ Zl(R), E ∈ Idem(R) and C = D+E.

The proof for B is similar.

Conversely, assume that R is a left zero-clean ring, and A,B are not left

zero-clean rings simultaneously. There exist a ∈ A and b ∈ B such that they are

not left zero-clean elements. Now, consider the element C =

[
a 0

0 b

]
in R. Since

R is a zero-clean ring, there exist D =

[
c m

0 d

]
∈ Zl(R) and E =

[
f −m
0 g

]
∈

Idem(R) such that C = D + E. Since E is an idempotent, we have f ∈ Idem(A)

and g ∈ Idem(B). Also, since D is a left zero-divisor element, we infer that
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either c ∈ Zl(A) or d ∈ Zl(B) by Theorem 3.2 (note that M is a torsion-free

A-module). Thus, we conclude that either a or b is a left zero-clean element,

a contradiction. �

Using Theorem 3.3, an inductive argument gives immediately the following

observation.

Corollary 3.4. Let R be a ring and n ≥ 1. Then R is left zero-clean if and

only if Tn(R) is left zero-clean.

4. Matrix rings over commutative rings

In this section, we will focus our attention on matrix rings. We begin with

the following theorem.

Theorem 4.1. Let R be a commutative ring. If Mn(R) is left zero-clean,

then R is zero-clean.

Proof. Suppose that Mn(R) is left zero-clean. Consider an element a ∈ R.

By hypothesis, there is an idempotent matrix E such that a In−E is a left zero-

divisor. That means that there is a nonzero vector v inRnsuch that (a In−E)v=0.

In other words, Ev = av. Since E is idempotent, this means that E2v = Ev,

implying that a2v = av. Since v is not zero, it has at least one nonzero entry;

call it “y”. This means that (a2 − a)y = 0. But then this means that a2 − a is

a zero-divisor, which means that either a or a− 1 is a zero-divisor. Thus, a is left

zero-clean. �

Theorem 4.2. Let R be an abelian ring. If R is left zero-clean, then Mn(R)

is left zero-clean.

Proof. Let 0 6= A = [aij ]n×n be an arbitrary element in Mn(R). Consider

two different cases as follows.

Case 1. Suppose that a11 ∈ Z∗l (R). Define B := [bij ]n×n such that

bij :=


a11 − 1 if i = 1 and j = 1,

0 if i 6= 1 and j = 1,

aij if 1 ≤ i ≤ n and j 6= 1.

Note that a11 − 1 ∈ Zl(R) by Theorem 2.6. It is easy to see that B ∈ Zl(Mn(R))

and A−B ∈ Idem(Mn(R)). Hence A is a left zero-clean element.
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Case 2. Suppose that a11 ∈ Zl(R). Define C := [cij ]n×n such that

cij :=


1 if 2 ≤ i = j ≤ n,
aij if i 6= 1 and j = 1,

0 otherwise.

Clearly, C is an idempotent and A − C is a left zero-divisor. Thus A is a left

zero-clean element. �

The following combines Theorem 4.1 and the commutative case of Theo-

rem 4.2.

Corollary 4.3. Let R be a commutative ring and n ≥ 1. Then R is zero-

clean if and only if Mn(R) is zero-clean.

Breaz et al. [3, Theorem 3] have shown that Mn(F ), where F is a field,

is a nil-clean ring if and only if F ∼= Z2. Now we are in a position to give the

complete characterization of zero-clean matrix rings over fields. The following is

a consequence of Corollaries 2.8 and 4.3.

Corollary 4.4. Let F be a field. The following statements are equivalent:

(1) F ∼= Z2.

(2) For every positive integer n, the matrix ring Mn(F ) is zero-clean.

(3) There exists a positive integer n such that the matrix ring Mn(F ) is zero-

clean.

The above result motivates us to ask when a 2×2 matrix over a field F (6= Z2)

is a left zero-clean element. Before stating our result, we recall the following

lemmas, which are standard facts from linear algebra.

Lemma 4.5 ([4, Theorem 9.1]). Let R be a commutative ring and A ∈
Mn(R). Then A is a zero-divisor if and only if det(A) ∈ Z(R).

Lemma 4.6. Let F be a field. Then A ∈M2(F ) is a non-trivial idempotent

if and only if det(A) = 0 and tr(A) = 1.

First, we determine when a 2 × 2 diagonal matrix over a field F ( 6= Z2) is

a left zero-clean element.

Theorem 4.7. Let F ( 6= Z2) be a field and

[
a 0

0 d

]
∈ M2(F ). Then the

following statements are equivalent:
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(1)

[
a 0

0 d

]
is left zero-clean in M2(F ).

(2) Either a = d = 0, 1 or a 6= d.

Proof. (1) ⇒ (2) Suppose that A =

[
a 0

0 d

]
is a non-left zero-divisor.

If a = d = 1, then A = I, and hence A is a left zero-clean element. Now, suppose

that a 6= d. Let

D =

[
a− (1− (a− 1)d(a− d)−1) −1 + (a− 1)d(a− d)−1

−(a− 1)d(a− d)−1 d− (a− 1)d(a− d)−1

]
.

Clearly, det(A) = 0, and hence D ∈ Zl(M2(F )). Also, let

E =

[
1− (a− 1)d(a− d)−1 1− (a− 1)d(a− d)−1

(a− 1)d(a− d)−1 (a− 1)d(a− d)−1

]
.

Lemma 4.6 shows that E ∈ Idem(M2(F )). One can easily see that A = D + E,

and so A is a left zero-clean element.

(2) ⇒ (1) Suppose that A =

[
a 0

0 a

]
is left zero-clean. If a = 0, 1, then

A is a trivial idempotent, and we are done. Otherwise, suppose that a 6= 0, 1.

Then A is a non-left zero-divisor, and it has a left zero-clean decomposition.

Suppose that

[
a 0

0 a

]
=

[
b −c
−d e

]
+

[
f c

d k

]
whereM =

[
b −c
−d e

]
∈ Zl(M2(F ))

and N =

[
f c

d k

]
∈ Idem(M2(F )). If N is a trivial idempotent, then either

A or A − I is a left zero divisor, a contradiction. Hence N is not a trivial

idempotent. Thus tr(N) = 1 and det(N) = 0 by Lemma 4.6. Hence f = 1−k and

(1− k)k− cd = 0. Now, we conclude that M =

[
a− (1− k) −c
−d a− k

]
. Therefore,

we have det(M) = a2 − a + (1 − k)k − cd = 0, and hence det(M) = a2 − a = 0,

a contradiction. �

Next, we prove that every 2× 2 non-diagonal matrix over a field F (6= Z2) is

left zero-clean.

Theorem 4.8. Let F be a field and F ( 6= Z2).

(1) If c 6= 0, then

[
a b

c d

]
is left zero-clean in M2(F ).
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(2) If b 6= 0, then

[
a b

c d

]
is left zero-clean in M2(F ).

Proof. (1) Suppose that A =

[
a b

c d

]
is a non-left zero-divisor in M2(F )

and c 6= 0. Consider three different cases as follows:

Case 1. If (a − d + c − b) 6= 0, then take E =

[
1− f 1− f
f f

]
where f =

((a− 1) + (1− b)c)(a− d+ c− b)−1.

Case 2. If (a−d+c−b) = 0 and (a−d+b−c) 6= 0, then take E =

[
1− f f

1− f f

]
where f = ((a− 1) + (1− c)b)(a− d+ b− c)−1.

Case 3. If (a− d+ c− b) = (a− d+ b− c) = 0, then we conclude that a = d

and c = b. Therefore, take E =

[
0 0

f 1

]
where f = (c2 − a2 + a)c−1.

In each of the above cases, E is an idempotent by Lemma 4.6. Also, det(A−E)=0,

and so A − E is a left zero-divisor in M2(F ). Hence A = (A − E) + E is a left

zero-clean decomposition of A.

(2) The proof is similar to part (1). �

With Theorems 4.7 and 4.8 at our disposal, we are now ready to determine

when a 2× 2 matrix over a field is left zero-clean.

Corollary 4.9. Let F (6= Z2) be a field and A =

[
a b

c d

]
∈ M2(F ). Then

the following statements are equivalent:

(1) A is not a left zero-clean element.

(2) a = d 6= 1, 0 and c = b = 0.

5. Uniquely zero-clean rings

Definition 5.1. An element a in a ring R is called uniquely left zero-clean

if there is a unique idempotent e such that a − e is a left zero-divisor. We will

say that a ring is uniquely left zero-clean if each of its elements is uniquely left

zero-clean. Uniquely right zero-clean rings are defined similarly. A ring which is

both uniquely right and uniquely left zero-clean is called uniquely zero-clean.



332 Ebrahim Ghashghaei and Muhammet Tamer Koşan

Lemma 5.2. (1) A uniquely left zero-clean ring has only trivial idempo-

tents.

(2) If R is a uniquely left zero-clean ring, then J(R) ⊆ Zl(R).

Proof. (1) Let R be a uniquely left zero-clean ring and e ∈ Idem(R). Since

1 = (1− e) + e and 1 = 0 + 1 are two zero-clean decompositions of 1, we conclude

that e = 0 or e = 1. Therefore, a uniquely left zero-clean ring has only trivial

idempotents.

(2) It follows from Corollary 2.7. �

Corollary 5.3. Let R be a uniquely left zero-clean ring. Then

(1) z = z+0 is the uniquely left zero-clean decomposition of z for each z ∈ Zl(R).

(2) r = (r − 1) + 1 is the uniquely left zero-clean decomposition of r for each

r ∈ Z∗l (R).

Corollary 5.4. Zn is uniquely zero-clean if and only if n is a power of 2.

Proof. It follows from Corollary 2.14 and Lemma 5.2 (1). �

Proposition 5.5. Let R be a left zero-clean ring and J(R) = Zl(R). Then

R is a uniquely left zero-clean ring.

Proof. The assumption J(R) = Zl(R) implies that R has only trivial idem-

potents. Since R is a left zero-clean ring, r = (r − 1) + 1 is the unique left zero-

clean decomposition of r for each r ∈ Z∗l (R). Now suppose that z ∈ Zl(R) = J(R).

We claim that z = z + 0 is the unique left zero-clean decomposition of z. Oth-

erwise, z = (z − 1) + 1 is a left zero-clean decomposition of z where z − 1 ∈
Zl(R) = J(R). Thus 1 = z− (z− 1) ∈ J(R), which is a contradiction. Hence R is

a uniquely left zero-clean ring. �

In the preceding proposition, the condition J(R) = Zl(R) is not superfluous

as follows.

Example 5.6. It is clear that, for n ≥ 2, Tn(Z2) is a left zero-clean ring by

Corollary 3.4. Note that J(Tn(Z2)) ⊂ Zl(Tn(Z2)), but Tn(Z2) is not a uniquely

left zero-clean ring by Lemma 5.2 (1).

Remark 5.7. Following [6], a ring R is called uniquely nil-clean if, for any

a ∈ R, there exists a unique idempotent e ∈ R such that a−e ∈ R is nilpotent. It is

clear that every Boolean ring is uniquely nil-clean. Note that Z2×Z2 is a uniquely

nil-clean ring which is not uniquely zero-clean. On the other hand, suppose that

R is a Z2-algebra generated by xi, i ∈ N, with the relations xixj = 0, for all i < j.

Then R is a uniquely left zero-clean ring, but it is not uniquely nil-clean.
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We get the following characterizations for uniquely left zero-clean rings.

Theorem 5.8. Let R be a ring. The following statements are equivalent:

(1) R is a uniquely left zero-clean ring.

(2) (a) If z ∈ Zl(R), then z − 1 ∈ Z∗l (R).

(b) If r ∈ Z∗l (R), then r − 1 ∈ Zl(R).

(3) Zl(R) = 1− Z∗l (R).

Proof. (1)⇒ (2) (a) If z ∈ Zl(R), then z = (z−1)+1 is not a left zero-clean

decomposition z by Corollary 5.3. This means that z − 1 ∈ Z∗l (R).

(b) If r ∈ Z∗l (R), then r = (r − 1) + 1 is the unique left zero-clean decompo-

sition of r by Corollary 5.3. This means that r − 1 = z ∈ Zl(R).

(2)⇒ (1) First, we claim that R has only trivial idempotents. Suppose that

0, 1 6= e ∈ Idem(R). Since e ∈ Zl(R), we get e− 1 ∈ Z∗l (R), a contradiction. Thus

R has only trivial idempotents. Now, suppose that z ∈ Zl(R). Then z = (z−1)+1

is not a left zero-clean decomposition, because z − 1 ∈ Z∗l (R). This means that

z = z + 0 is the uniquely left zero-clean decomposition of z. It is also easy to see

that r = (r − 1) + 1 is the uniquely left zero-clean decomposition of r for each

r ∈ Z∗l (R). Hence R is a uniquely left zero-clean ring.

(2)⇔ (3) It is clear. �

Following [2], a commutative ring R is called weakly présimplifiable if, for

x, y ∈ R, x = xy implies x = 0 or y is regular (i.e., non-zero-divisor). Anderson

and Chun [2, Theorem 6] have shown that a commutative ring R is weakly

présimplifiable if and only if Z(R) ⊆ 1− reg(R). It is natural to ask: When does

the inclusion reg(R) ⊆ 1 − Z(R) hold? With the help of Theorem 2.6, we make

the following simplifying observation.

Corollary 5.9. Let R be a commutative ring. The following statements are

equivalent:

(1) R is a zero-clean ring.

(2) reg(R) ⊆ 1− Z(R).

The following is an immediate consequence of Theorem 5.8.

Corollary 5.10. Let R be a commutative ring. The following statements

are equivalent:

(1) R is a uniquely zero-clean ring.

(2) Z(R) = 1− reg(R).
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With Corollary 5.10, this proves that every commutative uniquely zero-clean

ring is weakly présimplifiable. However, the converse is false, by the following

example.

Example 5.11. Clearly, Z2 is a weakly présimplifiable ring. By [2, Theorem

18(2)], the polynomial ring Z2[x] is weakly présimplifiable, while Z2[x] is not

a uniquely zero-clean ring by Theorem 3.1(1).
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