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Rings in which every element is the sum of
a left zero-divisor and an idempotent

By EBRAHIM GHASHGHAEI (Ahvaz) and MUHAMMET TAMER KOSAN (Ankara)

Abstract. A ring R is called left zero-clean if every element is the sum of a left
zero-divisor and an idempotent. This class of rings is a natural generalization of O-rings
and nil-clean rings. We determine when a skew polynomial ring is a left zero-clean ring.
It is proved that a ring R is left zero-clean if and only if the upper triangular matrix ring
T, (R) is left zero-clean. It is shown that a commutative ring R is zero-clean if and only if
the matrix ring M, (R) is zero-clean for every positive integer n > 1. We characterize the
zero-clean matrix rings over fields. We also determine when a 2 x 2 matrix A over a field
is left zero-clean. A ring is called uniquely left zero-clean if every element is uniquely
the sum of a left zero-divisor and an idempotent. We completely determine when a ring
is uniquely left zero-clean.

1. Introduction

Throughout this paper, R will be an associative ring with identity, U(R)
its group of units, J(R) its Jacobson radical, Idem(R) its set of idempotents, and
Nil(R) is the set of nilpotent elements of R. For x € R, Ann;(z)={a € R : ax=0}
and Ann,.(z) = {a € R: za = 0} denote the left annihilator and the right anni-
hilator ideals of x in R, respectively. When Ann,(z) # 0, we say x is a left
zero-divisor; otherwise it is a non-left zero-divisor. Let Z;(R) (resp., Z; (R)) de-
note the set of left zero-divisors (resp., non-left zero-divisors) of R. Similarly,
let Z.(R) (resp., Zr(R)) denote the set of right zero-divisors (resp., non-right
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zero-divisors) of R. A non-zero-divisor element is also known as a regular element,
see [2]. Thus, for a commutative ring R, we will write Z;(R) = Z,(R) = Z(R)
and Zj (R) = Z;(R) = reg(R), where reg(R) is the set of regular elements (i.e.,
non-zero-divisors) of R. We write M, (R) and T, (R) for the n x n matrix ring
and the n x n upper triangular matrix ring over R, respectively. Also, let A be
a matrix, we write tr(A) to denote the trace of A, and det(A) for the determinant
of A. Moreover, I,, denotes the n x n identity matrix.

In [6], DIESL defined a ring element a € R to be nil-clean if it can be written
in the form t 4+ e where t € Nil(R) and e € Idem(R). If every a € R is nil-clean,
R is said to be a nil-clean ring. In this paper, we introduce a class of rings which
is a generalization of nil-clean rings. These rings, which will be called left zero-
clean rings, are defined as rings R in which for every a € R there exist a left
zero-divisor z and an idempotent e such that a = z 4+ e. Examples of such rings
include nil-clean rings and O-rings. We recall that COHN [5] introduced the term
O-ring for commutative rings with 1, in which every element different from 1 is
a zero-divisor. Let us say a few words. Examples of O-rings are Boolean rings.
In fact, for a commutative ring R, R = Idem(R) |JZ(R) if and only if R is an O-
ring. In [5], Cohn showed that there exist O-rings which are not Boolean. It was
conjectured by ANDERSON and BADAWI that R = Idem(R) |JZ(R) if and only if
R is a Boolean ring, see [1, p. 1022]. Indeed, Cohn’s example indicates that this
conjecture is false.

This article consists of 5 sections. Section 1 is the introduction. In Section 2,
we investigate some fundamental properties of this class. We show that an abelian
ring R is left zero-clean if and only if @ — 1 € Z;(R) for each a € Zj(R). In this
section, we show that a commutative ring R is a zero-clean ring if and only if
reg(R) C 1 — Z(R). In Section 3, the behavior of zero-clean rings under some
classical ring constructions is studied. We determine when a skew polynomial
ring is a left zero-clean ring. Also, it is shown that a ring R is left zero-clean
if and only if T, (R) is left zero-clean. The aim of Section 4 is to give some results
of matrix rings over commutative zero-clean rings. It is shown that a commutative
ring R is zero-clean if and only if M, (R) is left zero-clean. We also determine
when a 2 x 2 matrix A over a field is left zero-clean. In the last section, we define
and give some characterizations of uniquely left zero-clean rings. Let us recall that
a commutative ring R is weakly présimplifiable if and only if Z(R) C 1 — reg(R),
see [2]. Tt is shown that a commutative ring R is uniquely zero-clean if and only
if Z(R) =1 — reg(R).
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2. Zero-clean rings

We begin with a formal definition of the central concept of the article.

Definition 2.1. An element a of a ring R is called left zero-clean if it can be
expressed as the sum of a left zero-divisor and an idempotent in R. Any equation
of the form a = z+ e will be called a left zero-clean decomposition of a € R, where
z € Zi(R) and e € Idem(R). A ring R is called left zero-clean if every element
of R is left zero-clean. Right zero-clean rings are defined similarly. A ring which
is both right and left zero-clean is called zero-clean.

Remark 2.2. 1t is clear that a left zero-divisor element and 1 are trivially left
zero-clean.

The following example shows that there exist left zero-clean rings which are
not right zero-clean.

Ezample 2.53. Let R be a Zo-algebra generated by z;, ¢ € N, with the relations
z;x; = 0, for all # < j. It is easy to verify that R is a left zero-clean ring. On the
other hand, x; has not a right zero-clean decomposition, and hence R is not right
zero-clean.

The following example shows that there exists a left zero-clean ring which is
neither an O-ring nor nil-clean.

Example 2.4. Let R = Zo X Zy X Zg X - - - . It is straightforward to check that
R is a zero-clean ring which is neither an O-ring nor a nil-clean ring.

The following example shows that the class of left zero-clean rings is not
hereditary on subrings.

Ezxample 2.5. Let R be a Zs-algebra generated by x;, ¢ € Z, with the relations
xz;x; = 0, for all ¢ < j. Now, let S be the subring of R generated by x); where
k < —1. One can easily see S is not a left zero-clean ring.

A ring is called abelian if all its idempotents are central. Examples of abelian
rings are reduced rings (e.g., strongly regular rings), one-sided duo rings (e.g.,
commutative rings), and of course, all rings with only trivial idempotents {0, 1}.

Theorem 2.6. Let R be an abelian ring. The following statements are equiv-
alent:

(1) R is a left zero-clean ring.
(2) Ifa € Z;(R), then a — 1 € Zi(R).
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PROOF. (1) = (2) Assume that R is a left zero-clean ring and a € Zj (R).
Therefore, a has a left zero-clean decomposition, as a = z + e, where z € Z;(R)
and 0 # e € Idem(R). If e =1, then a — 1 = z € Z;(R). Now, suppose that e # 1
and consider 0 # 2z’ € Ann,(z). We have a(z'(e — 1)) = (z + e)(z'(e — 1)) = 0.
Since a is a non-left zero-divisor, z’(e — 1) = 0. Hence z’e = 2z’ # 0, and we infer
that a — 1 = z+ e — 1. Now, we have (a — 1)(z'e) = (z + e — 1)(2’e) = 0, which
implies that a — 1 is a left zero-divisor.

(2) = (1) If a € Z;(R), then (a — 1) + 1 is a left zero-clean decomposition
of a. O

Corollary 2.7. If R is an abelian left zero-clean ring, then J(R) C Z;(R).

PROOF. Suppose that a € J(R) \ Z;(R). Then 1 — a is a unit which has to
be a left-zero divisor by Theorem 2.6, a contradiction. O

The following is an easy consequence of Theorem 2.6.
Corollary 2.8. The only zero-clean domain is Zs.

Recall that a ring R is local if the sum of any two non-units is a non-unit,
or equivalently, if the ring has a unique maximal left ideal.

Proposition 2.9. Let R be a left zero-clean ring. Then Z;(R) C J(R) if and
only if R is local.

PRrROOF. Suppose that Z;(R) C J(R). Since J(R) contains no non-trivial
idempotent, R has only trivial idempotents. Hence R is an abelian ring. Corol-
lary 2.7 shows that J(R) C Z;(R). Thus, Z;(R) = J(R) and this means that
Zi(R) is an ideal. Now, we claim that R\ J(R) = U(R). Suppose that r ¢ J(R).
By hypothesis, we infer that r is a non-left zero-divisor in R. Thus, there exists
j € Z)(R) = J(R) where r = j + 1. This implies that r is a unit. Thus, we con-
clude that every non-left zero-divisor is a unit. Note that Z;(R) is an ideal, and
so the sum of any two non-units in R is a non-unit. This means that R is local.
The converse is clear. (]

Remark 2.10. Tt is clear that Zg is a zero-clean ring, but Zg/3Zg is not
a zero-clean ring. Hence a homomorphic image of a left zero-clean ring need not
be left zero-clean. Also, a homomorphic image of a non-left zero-clean ring may
be left zero-clean. For example, Z is not a zero-clean ring, but Zs = Z/47Z is
a zero-clean ring.

This next result needs no proof.



Zero-clean rings 325

Lemma 2.11. Let {R;};c; be a family of rings. ThenZ; (I]; R:)=11, Z; (R:)
and Z7([1; R:) = [1,; Z;(R;). Also, Idem(][; R;) = [[; Idem(R;).

The following seems interesting.

Proposition 2.12. A direct product of rings is left zero-clean if and only if
at least one factor is left zero-clean.

PRrROOF. Let {R;}icr be a family of rings and R = [[; R;. First assume that,
for each i € I, R; is not a left zero-clean ring. Thus, for each i € I, there exists a; €
R; which is not a left zero-clean element. Take (a;);c; € R. We claim that (a;);er
is not a left zero-clean element of R. Suppose that (a;)ic; = (2;)icr + (€i)icr,
where (z;)icr € Z;(R) and (e;)ier € Idem(R). Lemma 2.11 shows that there
exists iy € I such that z;, € Z;(R;,), and also, for each i € I, e; € Idem(R;).
Therefore, we infer that a;, = z;, +e€;,, where z;, € Z;(R;,) and e;, € Idem(R;,),
is a left zero-clean decomposition for a;, € R;,. This is a contradiction.

Conversely, assume that R = [[; R; is not a zero-clean ring. Thus, there
exists (a;)ier € R which is not a left zero-clean element. Suppose that there
exists iy, € I such that R;, is a left zero-clean ring and we seek a contradiction.
This implies that for a;, € R;,, there exist z;, € Z;(R;,) and e;, € Idem(R;,)
such that a;, = z;, + e;,. Define (p;)icr and (¢;)icr as follows:

. Ziy if ¢ = g, - €ip if ¢ = g,
it . ik " .
aj otherwise; 0 otherwise.

Lemma 2.11 shows that (p;)icr € Zi(R), (¢;)ier € Idem(R) and (a;)icr =
(pi)ier + (¢i)icr- Hence (a;);er € R is a left zero-clean element, which is a con-
tradiction. O

Lemma 2.13. Let R be a left zero-clean ring. Then 2 is a left zero-divisor.

PROOF. Suppose that 2 is a non-left zero-divisor. Then there exist z € Z;(R)
and 0,1 # e € Idem(R) such that 2 = z + e. Therefore 1 —e = z — 1, and so
z — 1 is an idempotent. Thus (2 — 1)2 = (z — 1), which implies (3 — 2)z = 2,
a contradiction. d

Corollary 2.14. Z,, is a zero-clean ring if and only if 2|n.

PRrOOF. It follows from Lemma 2.13 and Proposition 2.12. (I
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3. Zero-clean property under algebraic constructions

Let R be a ring, and o be a ring endomorphism of R. Let R[z;c]| denote
the skew polynomial ring consisting of the polynomials in x with coefficients in R
written on the left, with multiplication defined by zr = o(r)z for all r € R.
R|[z;0]] denotes the skew formal power series ring. It is clear that if we put
o = 1g, then we have R[x] = Rz;o] and R][[z]] = R[[z;0]]. Next, we will
characterize when a skew polynomial ring is left zero-clean.

Theorem 3.1. Let R be a ring, and o be a ring endomorphism of R.

(1) If o is a ring automorphism of R, then R[x;o], R[[x;c]] are never left zero-
clean rings.

(2) If R is a domain, then R[x;0] is never a left zero-clean ring.
(3) If R is not a domain, then the following statements are equivalent:
(a) R[z;o] is a left zero-clean ring.
(b) (i) R is left zero-clean.
(ii) o is not injective.

(i) Every r € R has a left zero-clean decomposition r = z + e where
z € Zi(R), e € Idem(R), and Ann,(z) (| Ker(o) # 0.

PROOF. (1) Suppose that x =z+e where z € Z;(R[z; 0]) and e €Idem(R[x; 0])
= Idem(R). This implies that —e4+ax = z. Since o is a ring automorphism, —e+x
is not a left zero-divisor, a contradiction. The proof is similar for R[[x;c]].

(2) It is clear.

(3) (a) = (b) It is clear that R is a left zero-clean ring, since Idem(R[z;0]) =
Idem(R). If z is a non-left zero divisor, then there exist z € Z;(R[z;0]) and e €
Idem(R][z; 0]) = Idem(R) such that z—z = e € Idem(R), which is a contradiction.
Hence x is a left zero-divisor and this means that ¢ is not injective. Now suppose
that r € R, and consider the element r + x in R[x;o]. Therefore, there exist z €
Zi(R[z;0]) and e € Idem(R) such that r+x = z+e. Hence z = (r —e) +z. Since
z = (r—e)+u is a left-zero-divisor in R[z; o], there exists b € Ann, (r—e) (| Ker(o).
This means that r has a left zero-clean decomposition r = (r — e) + e such that
Ann,(r — e)(Ker(o) # 0.

(b) = (a) Suppose that ag + a1x + azx? + ... + a,z" is an element of R[z;0].
By our assumption, ag has a left zero-clean decomposition ag = z + e where
z € Z1(R), e € Idem(R), and Ann,.(z) [ Ker(c) # 0. Hence ag + a1x + agz? +
-+« +apx™ has the left zero-clean decomposition (z + a1z + Aoz -+ anx™) +e.
Thus R[z; 0] is a left zero-clean ring. O
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We now turn our attention to formal triangular matrix rings. Before stating
the next result, we recall the following lemma that is suitable for our purpose.

Lemma 3.2 ([7, Theorem 3.3]). Let A, B be rings, and M = sMpg be

a bimodule. Suppose m # 0 and D = lg TZ is an element of the formal

A

o Bl Then the following statements are equivalent:

triangular matrix R =

(1) D is a left zero-divisor.
(2) At least one of the following occurs:
(a) a € Z;(A).
(b) a € Z;(A), b € Z;(B), and there exists 0 # b’ € Ann,(b) such that
mb” = 0.
(c) a€Zj(A),be Z](B), and there exists 0 # m” € M such that am’ = 0.

Theorem 3.3. Let A, B be rings, M = sMpg be a bimodule, and M be

M
a torsion-free A-module. The formal triangular matrix ring R = B is left
zero-clean if and only if either A or B is left zero-clean.
. . . -CL m-
PrOOF. First assume that A is a left zero-clean ring, and C' = 0 b

is an arbitrary element of Z;(R). By Lemma 3.2, we infer that a € Z(A),
b € Z;(B), and am’ # 0 for all 0 # m’ € M. Since A is a left zero-clean ring,

Z m

there exist z € Z;(A) and e € Idem(A) such that a = z + e. Take D = 0 b

and F = 8 8 . It is easy to see that D € Z;(R), E € Idem(R) and C = D+ E.

The proof for B is similar.
Conversely, assume that R is a left zero-clean ring, and A,B are not left
zero-clean rings simultaneously. There exist a € A and b € B such that they are

not left zero-clean elements. Now, consider the element C' = g 2 in R. Since
. . . c m f —-m
R is a zero-clean ring, there exist D = o dl € Zi(R) and E = 0 €
g

Idem(R) such that C = D + E. Since E is an idempotent, we have f € Idem(A)
and g € Idem(B). Also, since D is a left zero-divisor element, we infer that
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either ¢ € Z;(A) or d € Z;(B) by Theorem 3.2 (note that M is a torsion-free
A-module). Thus, we conclude that either a or b is a left zero-clean element,
a contradiction. (]

Using Theorem 3.3, an inductive argument gives immediately the following
observation.

Corollary 3.4. Let R be a ring and n > 1. Then R is left zero-clean if and
only if T, (R) is left zero-clean.

4. Matrix rings over commutative rings

In this section, we will focus our attention on matrix rings. We begin with
the following theorem.

Theorem 4.1. Let R be a commutative ring. If M, (R) is left zero-clean,
then R is zero-clean.

PROOF. Suppose that M, (R) is left zero-clean. Consider an element a € R.
By hypothesis, there is an idempotent matrix E such that al,, —F is a left zero-
divisor. That means that there is a nonzero vector v in R™such that (a I,,—E)v=0.
In other words, Ev = av. Since E is idempotent, this means that E?v = Fwv,
implying that a?v = av. Since v is not zero, it has at least one nonzero entry;
call it “y”. This means that (a®> — a)y = 0. But then this means that a® — a is
a zero-divisor, which means that either a or @ — 1 is a zero-divisor. Thus, «a is left
zero-clean. (]

Theorem 4.2. Let R be an abelian ring. If R is left zero-clean, then M, (R)
is left zero-clean.

PROOF. Let 0 # A = [a;j]nxn be an arbitrary element in M, (R). Consider
two different cases as follows.

Case 1. Suppose that a11 € Z;(R). Define B := [b;],x, such that
CL11—1 ifi:landj:l,

bij:i=4 0 ifi#1and j=1,
aij ifl<i<nandj#1.

Note that a;; — 1 € Z;(R) by Theorem 2.6. It is easy to see that B € Z;(M,,(R))
and A — B € Idem(M,,(R)). Hence A is a left zero-clean element.
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Case 2. Suppose that a11 € Z;(R). Define C' := [¢;;]nxn such that

1 if2<i=j<n,
Cij = Gij ifiAland j=1,
0 otherwise.

Clearly, C is an idempotent and A — C is a left zero-divisor. Thus A is a left
zero-clean element. (Il

The following combines Theorem 4.1 and the commutative case of Theo-
rem 4.2.

Corollary 4.3. Let R be a commutative ring and n > 1. Then R is zero-
clean if and only if M,,(R) is zero-clean.

BREAZ et al. [3, Theorem 3] have shown that M, (F'), where F' is a field,
is a nil-clean ring if and only if F = Zs. Now we are in a position to give the
complete characterization of zero-clean matrix rings over fields. The following is
a consequence of Corollaries 2.8 and 4.3.

Corollary 4.4. Let F be a field. The following statements are equivalent:
(1) F7Zs.
(2) For every positive integer n, the matrix ring M,,(F') is zero-clean.

(3) There exists a positive integer n such that the matrix ring M, (F') is zero-
clean.

The above result motivates us to ask when a 2 x 2 matrix over a field F'(# Zs)
is a left zero-clean element. Before stating our result, we recall the following
lemmas, which are standard facts from linear algebra.

Lemma 4.5 ([4, Theorem 9.1]). Let R be a commutative ring and A €
M,,(R). Then A is a zero-divisor if and only if det(A) € Z(R).

Lemma 4.6. Let F be a field. Then A € My(F) is a non-trivial idempotent
if and only if det(A) = 0 and tr(A) = 1.

First, we determine when a 2 x 2 diagonal matrix over a field F(# Zs) is
a left zero-clean element.

0

Theorem 4.7. Let F(# Z3) be a field and [g d

] € My(F). Then the

following statements are equivalent:
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(1) g 2] is left zero-clean in My (F).

(2) Eithera=d=0,1o0ra#d.

PrOOF. (1) = (2) Suppose that A = is a non-left zero-divisor.

a 0
0 d
Ifa=d=1, then A= 1, and hence A is a left zero-clean element. Now, suppose
that a # d. Let

D |®™ (1—(a—1d(a—d)™') —1+(a—1)d(a—d)~?
—(a—1)d(a —d)~* d—(a—1)d(a—d)~ !

Clearly, det(A) = 0, and hence D € Z;(Ma(F)). Also, let

g |1- (a—1)d(a—d)™t 1—(a—1)d(a—d)~?!
(a—1)d(a—d)~! (a—1Dd(a—d)~t |~

Lemma 4.6 shows that E € Idem(M3(F')). One can easily see that A = D + E,
and so A is a left zero-clean element.

(2) = (1) Suppose that A = g 0 is left zero-clean. If a = 0,1, then
a
A is a trivial idempotent, and we are done. Otherwise, suppose that a # 0, 1.

Then A is a non-left zero-divisor, and it has a left zero-clean decomposition.

a 0 b —c f c b —c
h = here M = 7y (M (F
Suppose that [O a] [d . + P k] where [d e] € Z;(Ma(F))
and N = 2 ; € Idem(My(F)). If N is a trivial idempotent, then either

A or A— 1 is a left zero divisor, a contradiction. Hence N is not a trivial
idempotent. Thus tr(N) = 1 and det(IN) = 0 by Lemma 4.6. Hence f = 1—k and

a—(1—-k) —c

(1—k)k—cd =0. Now, we conclude that M = d Kl Therefore,
— a—

we have det(M) = a? —a + (1 — k)k — c¢d = 0, and hence det(M) = a? —a = 0,

a contradiction. O

Next, we prove that every 2 x 2 non-diagonal matrix over a field F(# Zs) is
left zero-clean.

Theorem 4.8. Let F be a field and F(# Z3).

(1) If ¢ # 0, then la is left zero-clean in My (F).
¢
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¢
2) If b# 0, th
sl

b} is left zero-clean in My (F).

Z is a non-left zero-divisor in My (F')
and ¢ # 0. Consider three different cases as follows:

PROOF. (1) Suppose that A =

Case 1. If (a —d + ¢ —b) # 0, then take E = 1}f 1;]6] where [ =
((a—1)+ (1 —=b)e)a—d+c—b)~t
Case 2. If (a—d+c—b) = 0 and (a—d+b—c) # 0, then take E = 1 : ; ﬂ

where f = ((a—1)+ (1 —¢c)b)(a—d+b—c)~ L.
Case 3. If (a—d+c—0b) = (a—d+b—c) =0, then we conclude that a = d

and ¢ = b. Therefore, take E = where f = (¢ —a% +a)c™ L.

0 0
71
In each of the above cases, F is an idempotent by Lemma 4.6. Also, det(A—F)=0,
and so A — FE is a left zero-divisor in My(F'). Hence A = (A — E) + E is a left

zero-clean decomposition of A.

(2) The proof is similar to part (1). O

With Theorems 4.7 and 4.8 at our disposal, we are now ready to determine
when a 2 x 2 matrix over a field is left zero-clean.

Corollary 4.9. Let F(# Z2) be a field and A =

¢ Z] € My(F). Then

the following statements are equivalent:
(1) A is not a left zero-clean element.
(2) a=d#1,0and c=b=0.

5. Uniquely zero-clean rings

Definition 5.1. An element a in a ring R is called uniquely left zero-clean
if there is a unique idempotent e such that a — e is a left zero-divisor. We will
say that a ring is uniquely left zero-clean if each of its elements is uniquely left
zero-clean. Uniquely right zero-clean rings are defined similarly. A ring which is
both uniquely right and uniquely left zero-clean is called uniquely zero-clean.



332 Ebrahim Ghashghaei and Muhammet Tamer Kosan

Lemma 5.2. (1) A uniquely left zero-clean ring has only trivial idempo-
tents.

(2) If R is a uniquely left zero-clean ring, then J(R) C Z;(R).

PROOF. (1) Let R be a uniquely left zero-clean ring and e € Idem(R). Since
1=(1—e)+eand 1 =0+1 are two zero-clean decompositions of 1, we conclude
that e = 0 or e = 1. Therefore, a uniquely left zero-clean ring has only trivial
idempotents.

(2) It follows from Corollary 2.7. O

Corollary 5.3. Let R be a uniquely left zero-clean ring. Then
(1) z = 240 is the uniquely left zero-clean decomposition of z for each z € Z;(R).

(2) » = (r — 1) + 1 is the uniquely left zero-clean decomposition of r for each
r € Z;(R).

Corollary 5.4. Z, is uniquely zero-clean if and only if n is a power of 2.
ProOF. It follows from Corollary 2.14 and Lemma 5.2 (1). O

Proposition 5.5. Let R be a left zero-clean ring and J(R) = Z;(R). Then
R is a uniquely left zero-clean ring.

PROOF. The assumption J(R) = Z;(R) implies that R has only trivial idem-
potents. Since R is a left zero-clean ring, r = (r — 1) + 1 is the unique left zero-
clean decomposition of r for each r € Z; (R). Now suppose that z € Z;(R) = J(R).
We claim that z = z + 0 is the unique left zero-clean decomposition of z. Oth-
erwise, z = (z — 1) + 1 is a left zero-clean decomposition of z where z — 1 €
Z;(R) = J(R). Thus 1 = z — (# — 1) € J(R), which is a contradiction. Hence R is
a uniquely left zero-clean ring. O

In the preceding proposition, the condition J(R) = Z;(R) is not superfluous
as follows.

Ezample 5.6. Tt is clear that, for n > 2, T,,(Zs) is a left zero-clean ring by
Corollary 3.4. Note that J(T,(Z2)) C Zi(Ty(Z2)), but T, (Z2) is not a uniquely
left zero-clean ring by Lemma 5.2 (1).

Remark 5.7. Following [6], a ring R is called uniquely nil-clean if, for any
a € R, there exists a unique idempotent e € R such that a—e € R is nilpotent. It is
clear that every Boolean ring is uniquely nil-clean. Note that Zy X Zs is a uniquely
nil-clean ring which is not uniquely zero-clean. On the other hand, suppose that
R is a Zy-algebra generated by z;, ¢ € N, with the relations z;x; = 0, for all ¢ < j.
Then R is a uniquely left zero-clean ring, but it is not uniquely nil-clean.
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We get the following characterizations for uniquely left zero-clean rings.

Theorem 5.8. Let R be a ring. The following statements are equivalent:
(1) R is a uniquely left zero-clean ring.
(2) (a) If z € Z)(R), then z — 1 € Z (R).

(b) Ifr € Z{(R), then r — 1 € Z;(R).
(3) Zu(R) =1 -7 (R).

ProOOF. (1) = (2) (a) If z € Z;(R), then z = (2 —1)+1 is not a left zero-clean
decomposition z by Corollary 5.3. This means that z — 1 € Z; (R).

(b) If r € Z; (R), then 7 = (r — 1) 4+ 1 is the unique left zero-clean decompo-
sition of r by Corollary 5.3. This means that r — 1 = z € Z;(R).

(2) = (1) First, we claim that R has only trivial idempotents. Suppose that
0,1 # e € Idem(R). Since e € Z;(R), we get e —1 € Z(R), a contradiction. Thus
R has only trivial idempotents. Now, suppose that z € Z;(R). Then z = (z—1)+1
is not a left zero-clean decomposition, because z — 1 € Z;(R). This means that
z = z 4 0 is the uniquely left zero-clean decomposition of z. It is also easy to see
that r = (r — 1) + 1 is the uniquely left zero-clean decomposition of r for each
r € Z;(R). Hence R is a uniquely left zero-clean ring.

(2) & (3) It is clear. O

Following [2], a commutative ring R is called weakly présimplifiable if, for
x,y € R, x = xy implies = 0 or y is regular (i.e., non-zero-divisor). ANDERSON
and CHUN [2, Theorem 6] have shown that a commutative ring R is weakly
présimplifiable if and only if Z(R) C 1 —reg(R). It is natural to ask: When does
the inclusion reg(R) C 1 — Z(R) hold? With the help of Theorem 2.6, we make
the following simplifying observation.

Corollary 5.9. Let R be a commutative ring. The following statements are
equivalent:
(1) R is a zero-clean ring.

(2) reg(R) C1—Z(R).
The following is an immediate consequence of Theorem 5.8.

Corollary 5.10. Let R be a commutative ring. The following statements
are equivalent:
(1) R is a uniquely zero-clean ring.
(2) Z(R) =1 —reg(R).
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With Corollary 5.10, this proves that every commutative uniquely zero-clean
ring is weakly présimplifiable. However, the converse is false, by the following
example.

Ezample 5.11. Clearly, Z, is a weakly présimplifiable ring. By [2, Theorem
18(2)], the polynomial ring Zs[x] is weakly présimplifiable, while Zs[z] is not
a uniquely zero-clean ring by Theorem 3.1(1).
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