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An upper bound for the number of solutions of ternary purely
exponential Diophantine equations II

By YONGZHONG HU (Foshan) and MAOHUA LE (Zhanjiang)

Abstract. Let a,b,c be fixed pairwise coprime positive integers with min{a,b,c}> 1.
In this paper, by analyzing the gap rule for solutions of the ternary purely exponential
Diophantine equation a” + b¥ = ¢*, we prove that if max{a,b,c} > 10%, then the
equation has at most two positive integer solutions (z,y, z).

1. Introduction

Let Z, N be the sets of all integers and positive integers, respectively.
Let a, b, ¢ be fixed pairwise coprime positive integers with min{a,b,c} > 1.
In this paper, we discuss the number of solutions (z,y, z) of the ternary purely
exponential Diophantine equation

a®+b=c* w,y,z€N. (1.1)

In 1933, K. MAHLER [9] used his p-adic analogue of the Thue-Siegel method
to prove that (1.1) has only finitely many solutions (z,y,z). His method is in-
effective. Later, an effective result for solutions of (1.1) was given in [4] by
A. O. GEL'FOND. Let N(a,b,c) denote the number of solutions (z,y, z) of (1.1).
As a straightforward consequence of an upper bound for the number of solutions
of binary S-unit equations due to F. BEUKERS and H. P. SCHLICKEWEI [2],
we have N(a,b,c) < 236, In nearly two decades, many papers investigated the
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exact values of N(a,b,c). The known results showed that (1.1) has only a few
solutions for some special cases (see [8]).
Recently, Y.-Z. Hu and M.-H. LE [5], [6] successively proved that
(i) if a, b, ¢ satisfy certain divisibility conditions and max{a, b, ¢} is large enough,
then (1.1) has at most one solution (z,y, z) with min{z,y,z} > 1;
(ii) if max{a,b,c} > 5 x 10?7, then N(a,b,c) < 3.
R. ScoTT and R. STYER [12] proved that if 2 { ¢, then N (a, b, c) < 2. The proofs
of the first two results use the Gel’fond-Baker method with an elementary ap-
proach, and the proof of the last result uses some elementary algebraic number
theory methods. In this paper, by analyzing the gap rule for solutions of (1.1)
along the approach given in [6], we use another new idea dealing with the existence
of three distinct solutions to prove a general result as follows:

Theorem 1.1. If max{a,b,c} > 102, then N(a,b,c) < 2.

Notice that, for any positive integer k with k> 1, if (a, b, c) = (2,2 —1,2F+1),
then (1.1) has only two solutions (z,y,z) = (1,1,1) and (k + 2,2,2), see [10].
This implies that there exist infinitely many triples (a,b,c) with N(a,b,c) = 2.
Therefore, in general, N(a, b, ¢) < 2 should be the best upper bound for N(a, b, ¢),
except for the case (a,b,c) = (3,5,2), where the equation 3% 4+ 5% = 2% has only
three solutions (x,y,z) = (1,1,3),(1,3,7),(3,1,5), see [11].

2. Preliminaries

Lemma 2.1. Let t be a real number. If t > 10%2, then t > 6500°(logt)'®,
where log is used for natural logarithm.

Let a be a fixed positive irrational number, and let « = [ag, a1, ...] denote
the simple continued fraction expansion of «. For any nonnegative integer %, let
p;/qi be the i-th convergent of a. By [7, Chapter 10], we obtain the following two
lemmas immediately.

Lemma 2.2. (i) The convergents p;/q;(i = 0,1,...) satisfy

p—1=1, po=ao, Ppit1=ai1pi+pi-1,
-1=0, q@=1, ¢ =ain1¢+qg-1, =0
ii
( )po/QO <p2/q2 <+ < p2i/qei < prive/qive < <«
<o < p2ig3/qeivs < P2it1/qeir <o <p3/qs <pi/q, i>0.

(iii) 1/qi(qiv1 + @) < la—pi/ail <1/qiqiv1, 1> 0.
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Lemma 2.3. Let p and q be positive integers. If |o — p/q| < 1/(2¢?), then
(p/d)/(q/d) is a convergent of «, where d = ged(p, q).

Let u, v,k be fixed positive integers such that min{u, v, k}>1 and ged(u, v) =1.

Lemma 2.4 ([6, Lemma 4.3]). The equation
u' o™=k, I,meN (2.1)

has at most two solutions (I, m).

Lemma 2.5. Let (I3, m1) and (l2, ma) be two solutions of (2.1). Ifl; < lo,
then my > mo,

max{u/2~h M2} > (2.2)
and
T L I e T | (2.3)
for some t € N.
PRrROOF. Since
uh o™ =k, a2 o™ =k, (2.4)
we have
u = —v™ (mod k), u'? = —v™2  (mod k). (2.5)

If I; <l and m; < mg, then from (2.5) we get
w27l = M2 (mod k). (2.6)

Since ged(u,v) = 1 and min{u, v} > 1, we have u2=t £ y™m2=™1_ Hence, by (2.4)
and (2.6), we get

k> max{u'?,v™2} > max{ul2~" ym27mY > | (2.7
a contradiction. Therefore, if {1 < lo, then m; > my. Moreover, by (2.5), we get

ulz=liym™=m2 =1 (mod k) and (2.2).
On the other hand, by (2.4), we have

ult (ul2mh — 1) = pm2 (™2 1), (2.8)

Therefore, since ged(u,v) = 1, by (2.8), we get (2.3). The lemma is proved. O
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Lemma 2.6 ([1]). The equation
ut —v™ =k, I,meN (2.9)

has at most two solutions (I, m).

Lemma 2.7. Let (I3, m1) and (l2, ma) be two solutions of (2.9). Ifl; < lg,
then my < mo,

T o MR T I Ve A | (2.10)
for some t € N,
pmeTm s el S (2.11)
and
—— (2.12)
PROOF. Since
ul' — o™ =k, wlz o™ =k, (2.13)

if Iy < lg, then from (2.13) we get v™2 + k = w2 >yl = o™ 4+ k and my < mo.
Hence, by (2.13), we have

ult(ul2mh — 1) = ™M™ 1), (2.14)

whence we obtain (2.10), since ged(u,v) = 1. Further, by (2.10) and (2.13),
we have
pmemm gl — (gl My = gt (2.15)

Therefore, by (2.10) and (2.15), we obtain (2.11) and (2.12). The lemma is
proved. (I

Let r > 1, s > 2 be fixed coprime positive integers.

Lemma 2.8 ([3]). There exist positive integers n such that
r"=¢§ (mods), §e{l,—1}. (2.16)
Let ny be the least value of n with (2.16). Then we have r™* = ¢; (mod s) and
P o= sf+ 6, 6 €{l,—1} (2.17)

for some f € N.
A positive integer n satisfies (2.16) if and only if ny|n. Moreover, if ni|n,
then r™ — §1|r™ — .
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Obviously, for any fixed r and s, the corresponding ni, §; and f are uniquely
determined.

Lemma 2.9. Let t be a positive integer such that t > 1 and s is divisible by
every prime divisor of t. Let n' be a positive integer satisfying

r™ =¢§ (mod st), ¢ €{l,—1}. (2.18)

If s satisfies either 21 s or 4|s, then nq|n’ and

i —0 <m0dgcd<tm>. (2.19)

ProoOF. Notice that ged(r,s) = 1 and s is divisible by every prime divisor

3

3

of t. We have ged(r, st) = 1. Hence, by Lemma 2.8, there exist positive integers n’
satisfying (2.18). Further, since 7" = §' (mod s) by (2.18), we get ni|n’ and

n' =ning (2.20)

for some ny € N.
Since either 2t s or 4|s, we have

5> 2. (2.21)
By (2.17), (2.18) and (2.20), we get
P = ()™ = (sf 4 01)™ = 072 4 mad)? s f

ng

+3 ( i ) 57 (sf) =8 (mod st) (222
=2

T

We see from (2.22) that 672 = §’ (mod s). Hence, by (2.21), we get 672 = ¢,
and by (2.22),

f <n2 +i < "Z? ) (5lsf)“> =0 (modt). (2.23)

Further, by (2.23), we obtain

2 o) i-1 _ mo t
n2+;< ; )(515]”) 0< dgcd(t,f)>' (2.24)
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Let p be a prime divisor of ¢t/ ged(¢, f). Since p|t and s is divisible by every
prime divisor of ¢, we see from (2.24) that p|ng. Let

_t
ged(t, f)’

Then, «, 5 and ~ are positive integers. If p = 2, then 4|s and 8 > 2. Thus,
m; (i > 2) are nonnegative integers satisfying

polli,  i>2 (2.25)

p*||n2, P|]sf, P

5 < Jogi {ccgi—1<2(i—1)§6(z’—1), it p=2, (2.26)

“logp | <i—1, otherwise.

Hence, by (2.25) and (2.26), we have

( ’22 ) (515f)i"L = ny ( n2 1 ) )™ _ (mod p®*1)  (2.27)

i—1 1

for ¢ > 2.
By (2.25) and (2.27), we get

ny
pa||n2 + Z; ( niz ) (81sf) L (2.28)
Further, we see from (2.24), (2.25) and (2.28) that
o>y (2.29)

Therefore, letting p run through all prime divisors of ¢/ ged(t, f), by (2.20), (2.25)
and (2.29), we obtain (2.19). The lemma is proved. O

3. Further lemmas on the solutions of (1.1)

Lemma 3.1 ([6, Theorem 2.1]). All solutions (z,y,z) of (1.1) satisfy
max{z,y, 2} < 6500(log max{a, b, c})3.

Lemma 3.2. Let (z,y,2) be a solution of (1.1) with a®* < ¢*. If b > 3 and
¢ > 16, then y/z is a convergent of log ¢/ logb with

loge gy 2

0< (3.1)

logh =z  zc*/2logh’
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PROOF. Since min{b,c} > 1 and ged(b,c) = 1, logc/logb is a positive irra-
tional number. Let d = ged(y, z). Since a?* < ¢#, if d > 2, then from (1.1) we get

d—1
cz/2 S =% — b = (Cz/d _ by/d) Zc(d—l—i)z/dbiy/d > C(d—l)z/d > CZ/Q,

1=

a contradiction. So we have d = 1 and ged(y, z) = 1.
Since a® < ¢*/?, we have a® < b¥. Hence, by (1.1), we get

x x

_ y @ @
zlog e = log(b¥(1 + by)) < ylogh+ e (3.2)
Since a* < b¥, by (1.1), we have ¢* < 2b¥ and

a®  2a*  2c%/? 2

— = —. 3.3
w S e S e c*/? (3:3)
Hence, by (3.2) and (3.3), we get
2
0<zloge—ylogh < —= (3.4)

c?/2’

whence we obtain (3.1). On the other hand, since b > 3 and ¢ > 16, we have
2/(2¢*/?logb) < 1/(22%). This implies that 0 < logc/logh — y/z < 1/(22?)
by (3.4). Therefore, applying Lemma 2.3, y/z is a convergent of logc/logb.
Thus, the lemma is proved. O

Using the same method as in the proof of Lemma 3.2, we can obtain the
following lemma immediately.

Lemma 3.3. Let (z,y, z) be a solution of (1.1) with b*¥ < ¢*. If a > 102,
then x/z is a convergent of log ¢/ log a with

0<logc x 2

loga 2z  zc*/2loga’

Lemma 3.4. Let (x,y,2) and (z',y’,2’") be two solutions of (1.1) such that
x>2" and z < 2. If ¢ = max{a, b, c} > 10%2, then (y'/d)/(z'/d) is a convergent
of log ¢/ log b with

loge y'/d 2
logh z'/d ~ z'aclogh’

where d = ged(y/, 2').
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PROOF. Since z > 2’ and z < 2/, if a® > b, then we get 2a% > ¢ > ¢* >
a® > a® 1 > 2¢%" a contradiction. So we have a® < b¥" and

/ ’

! — Yy’ a® / e
z'log c = log(b¥ (1 + o ) <y'logb+ e (3.5)
Since 2b¥" > ¢*', we get
© 24" 2 v 2
2 7 < a/ = T af < —. (36)
by c* atTv T ¢ ac
Hence, by (3.5) and (3.6), we obtain
logc o 2
0< —=— =< ———. 3.7
logh 2’ = Z'aclogb (3.7)
If |logc/logh —y'/2'| > 1/(22"?), then from (3.7) we get
, o1
z > Zaclogb. (3.8)

Since ¢ = max{a, b, c}, by Lemma 3.1, we have 2’ < 6500(log c)3. Since alogb >
min{2log3,3log2} > 2, by (3.8), we get

13000(log ¢)® > c. (3.9)
But, since ¢ > 10%2, by Lemma 2.1, (3.9) is false. Therefore, we have

/

1
24027

loge y

logb 2/

(3.10)

Applying Lemma 2.3 to (3.10), we find that (y'/d)/(2'/d) is a convergent of
log ¢/ logb. Thus, the lemma is proved. [

Lemma 3.5. Let (x,y,2) and (2/,y’,2") be two solutions of (1.1) such that
y >y and z < 2. If a = max{a,b,c} > 10%2, then (2'/d)/(z'/d) is a convergent
of log ¢/ log a with
loge 2'/d 2

0< —
loga 2'/d = Z'aloga’

(3.11)

where d = ged(z', 2').
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PRrROOF. The proof of this lemma is similar to Lemma 3.4 . Since y > 3’ and

z < 2/, we see from
a® +b" =c*, a" +b =c° (3.12)

that
z <, (3.13)

a® > b and 2¢® > ¢* . Hence, by the second equality of (3.12), we have

, by/ by/
Z'loge=1log [ a® |1+ — <z'loga+ — (3.14)
a a
and , ,
by 2bY 2 by 2
_ oz 3.15
awl CZ/ by_ylczl_z Cz < by_y/czl_z ( )
By (3.12), we have b¥ = ¢* (mod a®) and b¥ = ¢ (mod a*'), whence,
by (3.13), we get
WY =1 (mod a®). (3.16)
Further, since y > 3/, we have b¥=¥'¢*' =% > 1. Hence, by (3.16), we get
WY P s 6 (3.17)
Therefore, by (3.14), (3.15) and (3.17), we obtain 0¥’ /a® < 2/a” and
loge 2’ 2
0 - —. 3.18
< loga 2/ < Z'a*log a ( )
Since a® > a = max{a, b, c} > 102, by Lemma 3.1, we can deduce that
2 1
(3.19)

< —.
Z'a®loga 222

Thus, by Lemma 2.3, we find from (3.18) and (3.19) that (z'/d)/(z'/d) is a con-
vergent of log ¢/ loga with (3.11). The lemma is proved. O

4. The equation AX + ABY = C?4
For any fixed triple (a, b, ¢), put

P(a,b,c) ={(a,b,c,1),(c,a,b,—1),(c,b,a,—1)}. (4.1)
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Let (A,B,C,\) be an element of P(a,b,c). Obviously, (1.1) has a solution
(z,vy, z), which is equivalent to saying that the equation

AX +\BY =C%, X,Y,ZeN (4.2)
has the solution
(x,y,2), if (A, B,C,A) =(a,b,c1),
(X,Y,Z) =1 (z,2,9), if(A,B,C,\) = (c,a,b,—1),
(Z,y,IE), if (A,B,C, >‘) = (Ca b7a771)'

This implies that, for any (A, B,C,\) € P(a,b,c), the numbers of solutions of
(1.1) and (4.2) are equal. Moreover, by Lemma 3.1, we have

Lemma 4.1. All the solutions (X,Y,Z) of (4.2) satisfy max{X,Y,Z} <
6500 (log max{a, b, c})3.

Here and below, we always assume that (1.1) has solutions (z,y, z). Then,
for any (A, B,C,\) € P(a,b,c), (4.2) has solutions (X,Y, Z).

For a fixed element (4, B,C,\) € P(a,b,c), (4.2) is sure to have a solution
(X1,Y7,77) such that Z; < Z, where Z runs through all solutions (X,Y, Z) of
(4.2) for this (4, B, C, A). Since ged(A, C) = 1 and min{ 4, C} > 1, by Lemma 2.8,
there exist positive integers n such that

A" =3 (mod C%), §e{l,—-1}. (4.3)
Let n; be the least value of n with (4.3), and let
A™ =46, (mod C%), & €{1,-1}. (4.4)
Then we have
A =C%f 46, feN (4.5)

Obviously, for any fixed triple (4, B,C,\) € P(a,b,c), the parameters Z1,n1, 01
and f are uniquely determined.

Lemma 4.2. (4.2) has at most two solutions (X, Y, Z) with the same value Z.
ProOOF. By Lemmas 2.4 and 2.6, we obtain the lemma immediately. (|

Lemma 4.3 ([5, Lemma 3.3]). Let (X,Y, Z) and (X', Y’,Z’) be two distinct
solutions of (4.2) with Z < Z'. Then we have XY’ — X'Y # 0 and AXY' ~X'Y| =
(=YY" (mod C?).
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Lemma 4.4. Let (X1,Y1,71) and (Xa,Ya, Z3) be two solutions of (4.2) such
that Zy < Zo and Zy < Z, where Z runs through all solutions (X,Y, Z) of (4.2)
for this (A, B,C,\). If C satisfies

24C or 407, (4.6)
then

ng(CZ27Z13 f)|Y27 (47)
where f is defined as in (4.5).

PrOOF. The proof of this lemma is similar to that of Lemma 2.9. Since
AX1 L ABYr = 0%, AX2 £ \BY?> = C?%2 and Z; < Z,, we have

Yo
Y- , .
AX1Y2 _ _)\ YQBY1Y2 CZI 2 _)\BYI Yg—?,cVZl(’L—l)7
I IOt
AKX = (N1 BYY2 (mod C%2).
Eliminating BY'Y? from the above two equations, we get

A\ AMIn{X1Y2,X5Y1} (A\xlyrxzyl\ _ (7)\)Y1+Y2>

Y2
= Y,BM 2 7NC% 1Y () ( e ) BY1(z=) ozt (mmod C72), (4.8)

, )
1=2

where X € {1,—-1}.
By Lemma 4.3, | X;Y> — XoY7| is a positive integer. Since Z; < Zs, using
Lemma 4.3 again, we have

A= XN = (Y2 (od 071, (4.9)
Therefore, by Lemma 2.8, we get from (4.4), (4.5) and (4.9) that

A™M — §1|A|X1Y2—X2Y1| _ (_)\)Yr‘rYz
and
A|X1Y2—X2Y1| _ (_)\)Y1+Y2 _ Czl fg (410)

for some g € N.
Substituting (4.10) into (4.8), we have

)\’Amin{X1Y2,X2Y1}fg

Y2
e ;R COV ( Yz ) BNzl (mod 072741, (4.11)

, 1
=2
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Let p be a prime divisor of ged(C?2~%1| f). Since p’C and ged(B,C) = 1,
we see from (4.11) that p|Y2. Let

p*||Ya, PP||CP, pY||ged(CP2 f), pT

i, 0> 2 (4.12)

Then, by (4.6), «, 8 and ~y are positive integers with 8 > 2 if p = 2 and m;(i > 2)
are nonnegative integers satisfying (2.26). By (2.26) and (4.12), we have

Y4 (Ya—i) (V21 (i—
( Y, >BY1(Y2—i)CZ1(i—1) =Y, < Y, —1 ) BY1(Y2 ).C 1(i—1)

) i—1 1
=0 (modp*™), i>2. (4.13)
Hence, by (4.12) and (4.13), we get
Y2 Y
a Y1 (Ya—1) )il 2 Y1 (Yo—i) ~Zy (i—1)
p*||Ya B0 +;( ) <i>312 cZ=1), (4.14)

Therefore, since gcd(CZz—Zl,f)‘f and gcd(C'Z2_Zl,f)|CZ"‘_Zl7 we find from
(4.11), (4.12) and (4.14) that « and +y satisfy (2.29). Thus, letting p run through
all prime divisors of ged(C%2=%1,f), by (2.29) and (4.12), we obtain (4.7).
The lemma is proved. ]

Lemma 4.5 ([6, Lemma 4.7]). Let (X,,Y;, Z;) (j = 1,2,3) be three distinct
solutions of (4.2) with Zy < Zy < Z3. If C = max{a,b,c}, then max{a,b,c} <
5 x 1027,

Lemma 4.6. Let (X;,Y;,Z;) (j = 1,2,3) be three distinct solutions of (4.2)
with 7y, < Zy < Z3. If C%*~%1 > (max{a,b,c})'/? and C satisfies (4.6), then
max{a, b, c} < 1052,

PROOF. Since Zs < Z3, by Lemma 4.3, we have XoY3 — X3Y5 # 0 and
AlX2Ya=XaYal = (V2 tYs (0 0%2). (4.15)

Further, since Z; < Z3 and C satisfies (4.6), by using Lemma 2.9 with r = A,
t=C0%"%5=C% andn' = |XoY3 — X3Ys|, we get from (4.4), (4.5) and (4.15)
that

CZQ—Zl

where f is defined as in (4.5). Recall that XoY35 — X3Y5 # 0. By (4.16), we have

|XoYs — X3Ys| ged(CZ2771 ) f) > C%2= %, (4.17)
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Furthermore, by Lemma 4.4, we have ged(C#2~%1, f) < Y. Hence, we get from
(4.17) that
Yo | XoYs — X3Ys| > €722, (4.18)

By Lemma 4.1, we have
Y3 | X5V — X3Ya| < Yo max{X,Y3, X3¥>} < (max{Xs, Vs, X3,V3})’
< 6500° (log max{a, b, c})”. (4.19)
Therefore, if C%2~%1 > (max{a,b,c})lm7 then from (4.18) and (4.19) we get
6500° (log max{a, b, c})"® > max{a, b, c}. (4.20)

Thus, applying Lemma 2.1 to (4.20), we obtain max{a,b,c} < 1052, The lemma
is proved. ([l

5. Proof of Theorem 1.1 for ¢ = max{a, b, c}

By [12], Theorem 1.1 holds for 2 { c. Therefore, we just have to consider the
case that
2|c. (5.1)

Since ged(ab, ¢) =1, by (5.1), we have
2ta, 2+1b. (5.2)

In this section, we will prove the theorem for the case that

¢ = max{a, b,c} > 1052 (5.3

~—

We now assume that (1.1) has three distinct solutions (z;,y;,2;)(j = 1,2,3)
with 21 < 2o < z3. Then, (4.2) has three solutions (X;,Y;, Z;) = (z;,y;,2;) (j =
1,2,3) for (4, B,C,\) = (a,b,¢,1) with Z; < Z5 < Z3. By Lemma 4.2, we can

remove the case z; = 23 = z3. Since C = ¢ = max{a, b,c} > 10°?, by Lemma 4.5,
we can remove the case z1 < zo < z3. So we have
21 = 29 < 23. (54)

Since z;1 = 2 and

a*t 4 b = a2 4 bV = o, (5.5)
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(2.1) has two solutions (I,m) = (z;,y;) (j = 1,2) for (u,v,k) = (a,b,c**). Since
(z1,y1) # (22,y2), we may therefore assume that

T1 < Ty (5.6)
Then, by Lemma 2.5, we have
Y1 > Y2, (57)
at I = By 41, BTV = gy + 1 (5-8)
for some t; € N, and
max{a.’rg—l‘17by1_y2} > 021/2. (5.9)

By the symmetry of a and b in (5.5), we may assume that
¥ > T2, (5.10)
Hence, by (5.3), (5.9) and (5.10), we have
a®> ™ > ¢#1/2 > /e = (max{a, b, c})l/Q. (5.11)

By (5.6), if 3 > x2, then (4.2) has three solutions (X;,Y;, Z;) = (25,95, x;)
(j=1,2,3) for (A, B,C,\) = (¢,b,a,—1) with Z; < Zy < Z3. Since C%2~%1 =
a®~" > (max{a,b, c})1/2 by (5.11), using Lemma 4.6, we get from (5.2) that
max{a, b, c} < 1092, which contradicts (5.3). Therefore, we have

r3 < T2. (512)

By (5.8) and (5.10), we get a®2~*1 > p¥17¥2 = ¢*1¢; + 1 > a**, and by (5.5),
c* > a® > ¢?*1. This implies that (v,y,2) = (21,y1,21) is a solution of (1.1)
with a?* < ¢*. Notice that b > 3 and ¢ > 16 by (5.2) and (5.3). Using Lemma 3.2,
y1/71 is a convergent of log ¢/ logb with
loge 1 2

L . (5.13)

0 .
< logb 2z zc*/2logh

On the other hand, by (5.4) and (5.12), (x2,y2, 22) and (x3,ys, z3) are two
solutions of (1.1) such that xo > x3 and 23 < z3. Since ¢ = max{a,b,c} > 10%2,
by Lemma 3.4, (y3/d)/(z3/d) is also a convergent of log ¢/ logb with

loge ys/d 2

0<
logh 23/d ~ zzaclogh’

(5.14)

where d = ged(ys, 23).
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By (5.4), (X1,Y1,721) = (21,y1,21) and (X3,Y3,Z3) = (23,93, 23) are two
distinct solutions of (4.2) for (A, B,C,\) = (¢,b,a,—1). Hence, by Lemma 4.3,
we have z1ys — z3y1 # 0. This implies that y1/21 and (ys/d)/(z3/d) are two
distinct convergents of logc/logb. Therefore, by (ii) of Lemma 2.2, we see from
(5.13) and (5.14) that

21 Qs z3/d B q2t
for some non-negative integers s, t with s # ¢.
If s < t, by (i) and (iii) of Lemma 2.2, then from (5.13) and (5.15) we get

s d
1 _ P2 ys/d _ px (5.15)

23 loge  pas|\ "
23 2 — =2t = (2542 = 0254292s+1 T Q25 = G2s+1 T Q25 > | Qos |7— —
d logh  qos
loge yi\\ ' 1 5 Ve
= - _ 2 > —¢* /2 logh > Y. 5.16
<Zl <logb z1 2¢ o8 2 (5.16)

Since ¢ = max{a,b,c}, by Lemma 3.1, we have z3 < 6500(logc)®. Therefore,
by (5.16), we get
130002 (log ¢)° > c. (5.17)

However, since ¢ > 10?2, by Lemma 2.1, (5.17) is false.
Similarly, if s > ¢, then from (5.14) and (5.15) we get

log ¢ -1
-1
z3 (loge  y3/d 1
~\d a saclogh > c. 5.18
(d(logb 23/d > jaclogh>c (5.18)

Further, by Lemma 3.1, we have z; < 6500(log ¢)®. Therefore, by (5.18), we get
6500 (log c)® > c. (5.19)

By Lemma 2.1, this inequality contradicts the assumption that ¢ > 10%2. Thus,
we have N(a,b,c) <2 for case (5.3).

6. Proof of Theorem 1.1 for ¢ # max{a,b, c}

In this section, we will prove Theorem 1.1 for the case that ¢ # max{a, b, c}.
Then, by the symmetry of @ and b in (1.1), we may assume that

a = max{a,b,c} > 10%% (6.1)
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For any solution (z,y,z) of (1.1), since a® > ¢* = a® + ¥ > a® > a by (6.1),
we have
2> (6.2)

Hence, by (5.1) and (6.2), we get
4|c*. (6.3)

We now assume that (1.1) has three solutions (x;,y;,2;) (j = 1,2,3) with
z1 < g < x3. Then, (4.2) has three solutions (X;,Y},Z;) = (2;,y;,2;) (J =
1,2,3) for (A,B,C,\) = (¢,b,a,—1) with Z; < Zy < Z3. By Lemma 4.2, we can
remove the case 11 = 2o = z3. Since C = a = max{a, b, c} > 1052, by Lemma 4.5,
we can remove the case r1 < xo < x3. So we have

r1 = T2 < T3. (64)
Since x1 = x9, we have
L — b = —bpY2 = "L, (6.5)

This implies that (2.9) has two solutions (I, m) = (2;,y;) (j = 1,2) for (u,v,k) =
(¢c,b,a™). Since (z1,y1) # (22, y2), we may assume that

21 < 29. (6.6)
Then, by Lemma 2.7, we get from (6.6) that

Y1 < Y2 (6.7)

and
BTV = Py 1, TR =0V 4 1 (6.8)

for some t9 € N.
By the first equality of (6.8), we have

bY2TYL > ¢*L > "L, (6.9)

If y3 > yo2, by (6.7), then (4.2) has three solutions (X;,Y;, Z;) = (2, x;,y;)
(j = 1,2,3) for (A4, B,C,\) = (¢,a,b,—1) with Z; < Zy < Zs. However, since
C = bis odd and C%2~%1 = p¥27%1 > g% > g = max{a,b,c} > 102 by (5.2),
(6.1) and (6.9), we have a contradiction to Lemma 4.6. Therefore, we obtain

Y3 < Y2 (6.10)
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Suppose that z3 > zo. By (6.6), then (4.2) has three solutions (X;,Y;, Z;) =

(zj,y5,2) (J = 1,2,3) for (4,B,C,\) = (a,b,¢,1) with Z; < Zy < Z3. Since
a = max{a, b, c} > 10%2, by Lemma 4.6, we obtain
C#=% = 2721 < (max{a,b, c})l/2 = a. (6.11)
Hence, by the second equality of (6.8) and (6.11), we have
W< bty + 1 =c2"% < \a < a™/? < /2 (6.12)

This implies that (x,y,2z) = (z1,y1,21) is a solution of (1.1) with b* < ¢
Therefore, by Lemma 3.3, 21/z1 is a convergent of log ¢/ log a with

loge 2

_—— 6.13
loga 21  z1c*1/%loga ( )

On the other hand, by (6.10),(1.1) has two solutions (z2, y2, 22) and (x3, ys3, 23)
such that yo > y3 and 2z < z3. Since a = max{a,b,c} > 10%2, by Lemma 3.5,
(x3/d)/(z3/d) is also a convergent of log ¢/ log a with

loge x3/d 2
0 - 6.14
< loga  23/d < zzaloga’ (6.14)
where d = ged(z3, 23). Further, by Lemma 4.3, 21/2, and (23/d)/(z3/d) are two
distinct convergents of log ¢/ log a. Hence, by (ii) of Lemma 2.2, we see from (6.13)
and (6.14) that

s d
T _pas  w3/d_ pu (6.15)
21 q2s z3/d q2t
for some non-negative integers s, t with s # ¢.
Since a = max{a,b,c}, by Lemmas 2.2 and 3.1, we get from (6.13), (6.14)

and (6.15) that

loge  pas[\ "
232 — =(q2t 2 q2s42 = G2s+1 T G2s > | Gos —
d loga q2s
loge a3 1o /2 .
=z - — > —c***loga, if s<t,
loga 2z 2
6500 (log a)® >
loge p -t
21 = Q25 2 Q2t+2 = Q2t+1 + ot > <Q2t ) 8¢ _ P )
oga gzt
-1
zg (loge x3/d 1 i
== — > —aloga, f s>t
(d (loga z3/d g 08 a e

1
> iﬁloga. (6.16)
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But, since a > 102, by Lemma 2.1, (6.16) is false. Therefore, we obtain
23 < 29. (6.17)
Finally, we can write the known results (6.4), (6.6), (6.7), (6.10) and (6.17) as
x1 =x3 <w3, ,max{yi,ys} <ys, max{zr,z3} < 22,

and complete the proof in the following four cases.

Case (i): y3 < y1 <y2 and 23 < 21 < 29.
In this case, since z3 > x1 = x5 and

A% = ¢* — pYs = F3 T A _ g I

we get
7 (@I 1) = Y (gTSTEIpITYS — 1), (6.18)

Since ged(b, ¢) = 1, by (6.18), we have
a®3TEIGNTYS = Py + 1 (6.19)

for some t3 € N.
Hence, we see from (6.19) that a®~71p¥17Y3 > ¢*3 = g8 4 p¥3 > @™ and

by1*y3 > a11 .

This implies that y3 < y1. Therefore, (4.2) has three solutions (X;,Y;,Z;) (j =
1,2,3) for (4,B,C,\) = (c,a,b,—1) such that (X1,Y1,71) = (z3,23,y3),
(X2,Y2,75) = (21,21,vy1), (X3,Y3,7Z3) = (22,21,y2) and Z1 < Zy < Z3. How-
ever, since 2 1 b = C and C%2~%1 = p1=% > g%t > g = max{a,b,c} > 10%2,
we have a contradiction to Lemma 4.6.

Case (ii): y3 < y1 < y2 and 21 < z3 < 29.

Since

= a" 4 bY3 = B TH Q" 4 BT (6.20)

we have
bys (CZS—Zlbyl—yfs _ 1) — afﬂl (aﬂﬁs—ih _ cz:s—zl)7

whence we get
CPTAPITYS — g1y 4 (6.21)

for some t4 € N.
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By (6.21), we have ¢*3~*1p¥17%3 > %1, This implies that
max{c® ™ b1V > ¢71/2 > \/a. (6.22)

If 377 > pv17¥ by (6.22), then ¢**~ % > /a. Notice that (4.2) has
three solutions (X;,Y;,Z;)(j = 1,2,3) for (4,B,C,\) = (a,b,c,1) such that
(X1,Y1,21) = (w1,91,21), (X2,Y2,Z2) = (23,¥3,23), (X3,Y3,23) = (22,92, 22)
and Z; < Zy < Zs3. However, because 4|CZ1 by (6.3), and C%2~%1 = ¢~ >
Va = (max{a,b,c})"/? with max{a,b,c} > 102, we have a contradiction to
Lemma 4.6.

Similarly, if ¢*37*1 < b¥17¥3 then y3 < y; and bY17¥ > /a. In this case,
(4.2) has three solutions (X;,Y;,Z;)(j = 1,2,3) for (4,B,C,\) = (¢,a,b,—1)
such that (XhYl,Zl) = (23,9337313)7 (X27}/2,ZQ) = (zl,xl,y1)7 (X3,YE;,Z§,) =
(22,22,92) and Z; < Zy < Zz. However, since 2 { b = C, C%2=%1 = py1=¥s >
Va = (max{a,b,c})'/? and max{a,b,c} > 1052 we have a contradiction to
Lemma 4.6.

Case (iti): y1 < ys < y2 and z3 < z1 < 29.

Since x3 > x1, we have

a-'L'l _|_ byl e Czl Z CZS o a-'L'S _|_ byS > a-'L'l _|_ byl’

a contradiction.

Case (w): y1 < ys < ys and z1 < 23 < 29.
By (6.20), we have

a*?! (CZS_ZI _ awa—ﬂh) = pyt (by3—y1 _ CZS_ZI). (623)
Since ged(a, b) = 1, we get from (6.23) that
bY3TYL — F3TA = Ty, (6.24)

where t5 € Z,t5 # 0.

If t5 > 0, then from (6.24) we get b¥2~¥1 > ¢* > a. In this case, (4.2) has
three solutions (X;,Y;,Z;)(j = 1,2,3) for (4,B,C,\) = (¢,a,b,—1) such that
(X1,Y1,71) = (21,71,91), (X2,Y2,Z2) = (23,23,¥3), (X3,Y3,73) = (22,%2,92)
and Z; < Zo < Zs. However, since 2 { b = C, C%27%1 = p¥~¥%1 > g =
max{a,b,c} > 10%2, we have a contradiction to Lemma 4.6.

Similarly, if t5 < 0, then from the second equality of (6.24), we get ¢*~*1 >
a® > a = max{a,b,c} > 10%. In this case, (4.2) has three solutions (X;,Y;, Z;)
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(j = 1,2,3) for (A4,B,C,\) = (a,b,c,1) such that (X1,Y1,71) = (21,91, 21),
(X27Y27Z2) = ($3,y3,2’3), (X3,Y3,Z3) = (1‘2,?;2,2’2) and 7, < Zs < Z3. How-
ever, since 4|¢* = CZ for any solutions (z,y,z) and (X,Y,Z) of (1.1) and (4.2),
respectively, and C%2=%1 = ¢*~%1 > max{a, b, c} > 102, we have a contradiction
to Lemma 4.6.

Thus, Theorem 1.1 holds for the case ¢ # max{a,b,c}. To sum up, the
theorem is proved. [
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