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An upper bound for the number of solutions of ternary purely
exponential Diophantine equations II

By YONGZHONG HU (Foshan) and MAOHUA LE (Zhanjiang)

Abstract. Let a,b,c be fixed pairwise coprime positive integers with min{a,b,c}>1.

In this paper, by analyzing the gap rule for solutions of the ternary purely exponential

Diophantine equation ax + by = cz, we prove that if max{a, b, c} ≥ 1062, then the

equation has at most two positive integer solutions (x, y, z).

1. Introduction

Let Z, N be the sets of all integers and positive integers, respectively.

Let a, b, c be fixed pairwise coprime positive integers with min{a, b, c} > 1.

In this paper, we discuss the number of solutions (x, y, z) of the ternary purely

exponential Diophantine equation

ax + by = cz, x, y, z ∈ N. (1.1)

In 1933, K. Mahler [9] used his p-adic analogue of the Thue–Siegel method

to prove that (1.1) has only finitely many solutions (x, y, z). His method is in-

effective. Later, an effective result for solutions of (1.1) was given in [4] by

A. O. Gel’fond. Let N(a, b, c) denote the number of solutions (x, y, z) of (1.1).

As a straightforward consequence of an upper bound for the number of solutions

of binary S-unit equations due to F. Beukers and H. P. Schlickewei [2],

we have N(a, b, c) ≤ 236. In nearly two decades, many papers investigated the
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exact values of N(a, b, c). The known results showed that (1.1) has only a few

solutions for some special cases (see [8]).

Recently, Y.-Z. Hu and M.-H. Le [5], [6] successively proved that

(i) if a, b, c satisfy certain divisibility conditions and max{a, b, c} is large enough,

then (1.1) has at most one solution (x, y, z) with min{x, y, z} > 1;

(ii) if max{a, b, c} > 5× 1027, then N(a, b, c) ≤ 3.

R. Scott and R. Styer [12] proved that if 2 - c, then N(a, b, c) ≤ 2. The proofs

of the first two results use the Gel’fond–Baker method with an elementary ap-

proach, and the proof of the last result uses some elementary algebraic number

theory methods. In this paper, by analyzing the gap rule for solutions of (1.1)

along the approach given in [6], we use another new idea dealing with the existence

of three distinct solutions to prove a general result as follows:

Theorem 1.1. If max{a, b, c} ≥ 1062, then N(a, b, c) ≤ 2.

Notice that, for any positive integer k with k>1, if (a, b, c)=(2, 2k−1, 2k+1),

then (1.1) has only two solutions (x, y, z) = (1, 1, 1) and (k + 2, 2, 2), see [10].

This implies that there exist infinitely many triples (a, b, c) with N(a, b, c) = 2.

Therefore, in general, N(a, b, c) ≤ 2 should be the best upper bound for N(a, b, c),

except for the case (a, b, c) = (3, 5, 2), where the equation 3x + 5y = 2z has only

three solutions (x, y, z) = (1, 1, 3), (1, 3, 7), (3, 1, 5), see [11].

2. Preliminaries

Lemma 2.1. Let t be a real number. If t ≥ 1062, then t > 65006(log t)18,

where log is used for natural logarithm.

Let α be a fixed positive irrational number, and let α = [a0, a1, . . . ] denote

the simple continued fraction expansion of α. For any nonnegative integer i, let

pi/qi be the i-th convergent of α. By [7, Chapter 10], we obtain the following two

lemmas immediately.

Lemma 2.2. (i) The convergents pi/qi(i = 0, 1, . . . ) satisfy

p−1 = 1, p0 = a0, pi+1 = ai+1pi + pi−1,

q−1 = 0, q0 = 1, qi+1 = ai+1qi + qi−1, i ≥ 0.

(ii)
p0/q0 < p2/q2 < · · · < p2i/q2i < p2i+2/q2i+2 < · · · < α

< · · · < p2i+3/q2i+3 < p2i+1/q2i+1 < · · · < p3/q3 < p1/q1, i ≥ 0.

(iii) 1/qi(qi+1 + qi) < |α− pi/qi| < 1/qiqi+1, i ≥ 0.
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Lemma 2.3. Let p and q be positive integers. If |α − p/q| < 1/(2q2), then

(p/d)/(q/d) is a convergent of α, where d = gcd(p, q).

Let u,v,k be fixed positive integers such that min{u, v, k}>1 and gcd(u, v)=1.

Lemma 2.4 ([6, Lemma 4.3]). The equation

ul + vm = k, l,m ∈ N (2.1)

has at most two solutions (l,m).

Lemma 2.5. Let (l1,m1) and (l2,m2) be two solutions of (2.1). If l1 < l2,

then m1 > m2,

max{ul2−l1 , vm1−m2} >
√
k (2.2)

and

ul2−l1 = vm2t+ 1, vm1−m2 = ul1t+ 1 (2.3)

for some t ∈ N.

Proof. Since

ul1 + vm1 = k, ul2 + vm2 = k, (2.4)

we have

ul1 ≡ −vm1 (mod k), ul2 ≡ −vm2 (mod k). (2.5)

If l1 < l2 and m1 ≤ m2, then from (2.5) we get

ul2−l1 ≡ vm2−m1 (mod k). (2.6)

Since gcd(u, v) = 1 and min{u, v} > 1, we have ul2−l1 6= vm2−m1 . Hence, by (2.4)

and (2.6), we get

k > max{ul2 , vm2} > max{ul2−l1 , vm2−m1} > k, (2.7)

a contradiction. Therefore, if l1 < l2, then m1 > m2. Moreover, by (2.5), we get

ul2−l1vm1−m2 ≡ 1 (mod k) and (2.2).

On the other hand, by (2.4), we have

ul1(ul2−l1 − 1) = vm2(vm1−m2 − 1). (2.8)

Therefore, since gcd(u, v) = 1, by (2.8), we get (2.3). The lemma is proved. �
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Lemma 2.6 ([1]). The equation

ul − vm = k, l,m ∈ N (2.9)

has at most two solutions (l,m).

Lemma 2.7. Let (l1,m1) and (l2,m2) be two solutions of (2.9). If l1 < l2,

then m1 < m2,

ul2−l1 = vm1t+ 1, vm2−m1 = ul1t+ 1 (2.10)

for some t ∈ N,

vm2−m1 > ul2−l1 > vm1 (2.11)

and

vm2−m1 > k. (2.12)

Proof. Since

ul1 − vm1 = k, ul2 − vm2 = k, (2.13)

if l1 < l2, then from (2.13) we get vm2 + k = ul2 > ul1 = vm1 + k and m1 < m2.

Hence, by (2.13), we have

ul1(ul2−l1 − 1) = vm1(vm2−m1 − 1), (2.14)

whence we obtain (2.10), since gcd(u, v) = 1. Further, by (2.10) and (2.13),

we have

vm2−m1 − ul2−l1 = (ul1 − vm1)t = kt. (2.15)

Therefore, by (2.10) and (2.15), we obtain (2.11) and (2.12). The lemma is

proved. �

Let r > 1, s > 2 be fixed coprime positive integers.

Lemma 2.8 ([3]). There exist positive integers n such that

rn ≡ δ (mod s), δ ∈ {1,−1}. (2.16)

Let n1 be the least value of n with (2.16). Then we have rn1 ≡ δ1 (mod s) and

rn1 = sf + δ1, δ1 ∈ {1,−1} (2.17)

for some f ∈ N.

A positive integer n satisfies (2.16) if and only if n1|n. Moreover, if n1|n,

then rn1 − δ1|rn − δ.
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Obviously, for any fixed r and s, the corresponding n1, δ1 and f are uniquely

determined.

Lemma 2.9. Let t be a positive integer such that t > 1 and s is divisible by

every prime divisor of t. Let n′ be a positive integer satisfying

rn
′
≡ δ′ (mod st), δ′ ∈ {1,−1}. (2.18)

If s satisfies either 2 - s or 4|s, then n1|n′ and

n′

n1
≡ 0

(
mod

t

gcd(t, f)

)
. (2.19)

Proof. Notice that gcd(r, s) = 1 and s is divisible by every prime divisor

of t. We have gcd(r, st) = 1. Hence, by Lemma 2.8, there exist positive integers n′

satisfying (2.18). Further, since rn
′ ≡ δ′ (mod s) by (2.18), we get n1|n′ and

n′ = n1n2 (2.20)

for some n2 ∈ N.

Since either 2 - s or 4|s, we have

s > 2. (2.21)

By (2.17), (2.18) and (2.20), we get

rn
′
≡ (rn1)n2 ≡ (sf + δ1)n2 ≡ δn2

1 + n2δ
n2−1
1 sf

+

n2∑
i=2

(
n2
i

)
δn2−i
1 (sf)i ≡ δ′ (mod st). (2.22)

We see from (2.22) that δn2
1 ≡ δ′ (mod s). Hence, by (2.21), we get δn2

1 = δ′,

and by (2.22),

f

(
n2 +

n2∑
i=2

(
n2
i

)
(δ1sf)i−1

)
≡ 0 (mod t). (2.23)

Further, by (2.23), we obtain

n2 +

n2∑
i=2

(
n2
i

)
(δ1sf)i−1 ≡ 0

(
mod

t

gcd(t, f)

)
. (2.24)
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Let p be a prime divisor of t/ gcd(t, f). Since p|t and s is divisible by every

prime divisor of t, we see from (2.24) that p|n2. Let

pα
∣∣∣∣n2, pβ

∣∣∣∣sf, pγ
∣∣∣∣ t

gcd(t, f)
, pπi

∣∣∣∣i, i ≥ 2. (2.25)

Then, α, β and γ are positive integers. If p = 2, then 4
∣∣s and β ≥ 2. Thus,

πi(i ≥ 2) are nonnegative integers satisfying

πi ≤
log i

log p

{
cc ≤ i− 1 < 2(i− 1) ≤ β(i− 1), if p = 2,

< i− 1, otherwise.
(2.26)

Hence, by (2.25) and (2.26), we have(
n2
i

)
(δ1sf)i−1 ≡ n2

(
n2 − 1

i− 1

)
(δ1sf)i−1

i
≡ 0 (mod pα+1) (2.27)

for i ≥ 2.

By (2.25) and (2.27), we get

pα
∣∣∣∣n2 +

n2∑
i=2

(
n2
i

)
(δ1sf)i−1. (2.28)

Further, we see from (2.24), (2.25) and (2.28) that

α ≥ γ. (2.29)

Therefore, letting p run through all prime divisors of t/ gcd(t, f), by (2.20), (2.25)

and (2.29), we obtain (2.19). The lemma is proved. �

3. Further lemmas on the solutions of (1.1)

Lemma 3.1 ([6, Theorem 2.1]). All solutions (x, y, z) of (1.1) satisfy

max{x, y, z} < 6500(log max{a, b, c})3.

Lemma 3.2. Let (x, y, z) be a solution of (1.1) with a2x < cz. If b ≥ 3 and

c ≥ 16, then y/z is a convergent of log c/ log b with

0 <
log c

log b
− y

z
<

2

zcz/2 log b
. (3.1)
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Proof. Since min{b, c} > 1 and gcd(b, c) = 1, log c/ log b is a positive irra-

tional number. Let d = gcd(y, z). Since a2x < cz, if d ≥ 2, then from (1.1) we get

cz/2 > ax = cz − by = (cz/d − by/d)
d−1∑
i=0

c(d−1−i)z/dbiy/d > c(d−1)z/d ≥ cz/2,

a contradiction. So we have d = 1 and gcd(y, z) = 1.

Since ax < cz/2, we have ax < by. Hence, by (1.1), we get

z log c = log(by(1 +
ax

by
)) < y log b+

ax

by
. (3.2)

Since ax < by, by (1.1), we have cz < 2by and

ax

by
<

2ax

cz
<

2cz/2

cz
=

2

cz/2
. (3.3)

Hence, by (3.2) and (3.3), we get

0 < z log c− y log b <
2

cz/2
, (3.4)

whence we obtain (3.1). On the other hand, since b ≥ 3 and c ≥ 16, we have

2/(zcz/2 log b) < 1/(2z2). This implies that 0 < log c/ log b − y/z < 1/(2z2)

by (3.4). Therefore, applying Lemma 2.3, y/z is a convergent of log c/ log b.

Thus, the lemma is proved. �

Using the same method as in the proof of Lemma 3.2, we can obtain the

following lemma immediately.

Lemma 3.3. Let (x, y, z) be a solution of (1.1) with b2y < cz. If a ≥ 1062,

then x/z is a convergent of log c/ log a with

0 <
log c

log a
− x

z
<

2

zcz/2 log a
.

Lemma 3.4. Let (x, y, z) and (x′, y′, z′) be two solutions of (1.1) such that

x > x′ and z < z′. If c = max{a, b, c} ≥ 1062, then (y′/d)/(z′/d) is a convergent

of log c/ log b with

0 <
log c

log b
− y′/d

z′/d
<

2

z′ac log b
,

where d = gcd(y′, z′).
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Proof. Since x > x′ and z < z′, if ax
′
> by

′
, then we get 2ax

′
> cz

′
> cz >

ax ≥ ax′+1 ≥ 2ax
′
, a contradiction. So we have ax

′
< by

′
and

z′ log c = log(by
′
(1 +

ax
′

by′
)) < y′ log b+

ax
′

by′
. (3.5)

Since 2by
′
> cz

′
, we get

ax
′

by′
<

2ax
′

cz′
=

2

ax−x′cz′−z
· a

x

cz
<

2

ac
. (3.6)

Hence, by (3.5) and (3.6), we obtain

0 <
log c

log b
− y′

z′
<

2

z′ac log b
. (3.7)

If | log c/ log b− y′/z′| ≥ 1/(2z′2), then from (3.7) we get

z′ >
1

4
ac log b. (3.8)

Since c = max{a, b, c}, by Lemma 3.1, we have z′ < 6500(log c)3. Since a log b ≥
min{2 log 3, 3 log 2} > 2, by (3.8), we get

13000(log c)3 > c. (3.9)

But, since c ≥ 1062, by Lemma 2.1, (3.9) is false. Therefore, we have∣∣∣∣ log c

log b
− y′

z′

∣∣∣∣ < 1

2z′2
. (3.10)

Applying Lemma 2.3 to (3.10), we find that (y′/d)/(z′/d) is a convergent of

log c/ log b. Thus, the lemma is proved. �

Lemma 3.5. Let (x, y, z) and (x′, y′, z′) be two solutions of (1.1) such that

y > y′ and z ≤ z′. If a = max{a, b, c} ≥ 1062, then (x′/d)/(z′/d) is a convergent

of log c/ log a with

0 <
log c

log a
− x′/d

z′/d
<

2

z′a log a
, (3.11)

where d = gcd(x′, z′).
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Proof. The proof of this lemma is similar to Lemma 3.4 . Since y > y′ and

z ≤ z′, we see from

ax + by = cz, ax
′
+ by

′
= cz

′
(3.12)

that

x < x′, (3.13)

ax
′
> by

′
and 2ax

′
> cz

′
. Hence, by the second equality of (3.12), we have

z′ log c = log

(
ax

′

(
1 +

by
′

ax′

))
< x′ log a+

by
′

ax′ (3.14)

and
by

′

ax′ <
2by

′

cz′
=

2

by−y′cz′−z
· b
y

cz
<

2

by−y′cz′−z
. (3.15)

By (3.12), we have by ≡ cz (mod ax) and by
′ ≡ cz

′
(mod ax

′
), whence,

by (3.13), we get

by−y
′
cz

′−z ≡ 1 (mod ax). (3.16)

Further, since y > y′, we have by−y
′
cz

′−z > 1. Hence, by (3.16), we get

by−y
′
cz

′−z > ax. (3.17)

Therefore, by (3.14), (3.15) and (3.17), we obtain by
′
/ax

′
< 2/ax and

0 <
log c

log a
− x′

z′
<

2

z′ax log a
. (3.18)

Since ax ≥ a = max{a, b, c} ≥ 1062, by Lemma 3.1, we can deduce that

2

z′ax log a
<

1

2z′2
. (3.19)

Thus, by Lemma 2.3, we find from (3.18) and (3.19) that (x′/d)/(z′/d) is a con-

vergent of log c/ log a with (3.11). The lemma is proved. �

4. The equation AX + λBY = CZ

For any fixed triple (a, b, c), put

P (a, b, c) = {(a, b, c, 1), (c, a, b,−1), (c, b, a,−1)}. (4.1)
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Let (A,B,C, λ) be an element of P (a, b, c). Obviously, (1.1) has a solution

(x, y, z), which is equivalent to saying that the equation

AX + λBY = CZ , X, Y, Z ∈ N (4.2)

has the solution

(X,Y, Z) =


(x, y, z), if (A,B,C, λ) = (a, b, c, 1),

(z, x, y), if (A,B,C, λ) = (c, a, b,−1),

(z, y, x), if (A,B,C, λ) = (c, b, a,−1).

This implies that, for any (A,B,C, λ) ∈ P (a, b, c), the numbers of solutions of

(1.1) and (4.2) are equal. Moreover, by Lemma 3.1, we have

Lemma 4.1. All the solutions (X,Y, Z) of (4.2) satisfy max{X,Y, Z} <
6500(log max{a, b, c})3.

Here and below, we always assume that (1.1) has solutions (x, y, z). Then,

for any (A,B,C, λ) ∈ P (a, b, c), (4.2) has solutions (X,Y, Z).

For a fixed element (A,B,C, λ) ∈ P (a, b, c), (4.2) is sure to have a solution

(X1, Y1, Z1) such that Z1 ≤ Z, where Z runs through all solutions (X,Y, Z) of

(4.2) for this (A,B,C, λ). Since gcd(A,C) = 1 and min{A,C} > 1, by Lemma 2.8,

there exist positive integers n such that

An ≡ δ (mod CZ1), δ ∈ {1,−1}. (4.3)

Let n1 be the least value of n with (4.3), and let

An1 ≡ δ1 (mod CZ1), δ1 ∈ {1,−1}. (4.4)

Then we have

An1 = CZ1f + δ1, f ∈ N. (4.5)

Obviously, for any fixed triple (A,B,C, λ) ∈ P (a, b, c), the parameters Z1, n1, δ1
and f are uniquely determined.

Lemma 4.2. (4.2) has at most two solutions (X,Y, Z) with the same value Z.

Proof. By Lemmas 2.4 and 2.6, we obtain the lemma immediately. �

Lemma 4.3 ([5, Lemma 3.3]). Let (X,Y, Z) and (X ′, Y ′, Z ′) be two distinct

solutions of (4.2) with Z ≤ Z ′. Then we have XY ′−X ′Y 6= 0 and A|XY
′−X′Y | ≡

(−λ)Y+Y ′
(mod CZ).
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Lemma 4.4. Let (X1, Y1, Z1) and (X2, Y2, Z2) be two solutions of (4.2) such

that Z1 < Z2 and Z1 ≤ Z, where Z runs through all solutions (X,Y, Z) of (4.2)

for this (A,B,C, λ). If C satisfies

2 - C or 4|CZ1 , (4.6)

then

gcd(CZ2−Z1 , f)|Y2, (4.7)

where f is defined as in (4.5).

Proof. The proof of this lemma is similar to that of Lemma 2.9. Since

AX1 + λBY1 = CZ1 , AX2 + λBY2 = CZ2 and Z1 < Z2, we have

AX1Y2 = (−λ)Y2BY1Y2 + CZ1

Y2∑
i=1

(
Y2
i

)
(−λBY1)Y2−iCZ1(i−1),

AX2Y1 ≡ (−λ)Y1BY1Y2 (mod CZ2).

Eliminating BY1Y2 from the above two equations, we get

λ′Amin{X1Y2,X2Y1}
(
A|X1Y2−X2Y1| − (−λ)Y1+Y2

)
≡ Y2BY1(Y2−1)CZ1 +

Y2∑
i=2

(−λ)i+1

(
Y2
i

)
BY1(Y2−i)CZ1i (mod CZ2), (4.8)

where λ′ ∈ {1,−1}.
By Lemma 4.3, |X1Y2 −X2Y1| is a positive integer. Since Z1 < Z2, using

Lemma 4.3 again, we have

A|X1Y2−X2Y1| ≡ (−λ)Y1+Y2 (mod CZ1). (4.9)

Therefore, by Lemma 2.8, we get from (4.4), (4.5) and (4.9) that

An1 − δ1
∣∣A|X1Y2−X2Y1| − (−λ)Y1+Y2

and

A|X1Y2−X2Y1| − (−λ)Y1+Y2 = CZ1fg (4.10)

for some g ∈ N.

Substituting (4.10) into (4.8), we have

λ′Amin{X1Y2,X2Y1}fg

≡ Y2BY1(Y2−1)+

Y2∑
i=2

(−λ)i+1

(
Y2
i

)
BY1(Y2−i)CZ1(i−1) (mod CZ2−Z1). (4.11)
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Let p be a prime divisor of gcd(CZ2−Z1 , f). Since p
∣∣C and gcd(B,C) = 1,

we see from (4.11) that p
∣∣Y2. Let

pα
∣∣∣∣Y2, pβ

∣∣∣∣CZ1 , pγ
∣∣∣∣ gcd(CZ2−Z1 , f), pπi

∣∣∣∣i, i ≥ 2. (4.12)

Then, by (4.6), α, β and γ are positive integers with β ≥ 2 if p = 2 and πi(i ≥ 2)

are nonnegative integers satisfying (2.26). By (2.26) and (4.12), we have(
Y2
i

)
BY1(Y2−i)CZ1(i−1) ≡ Y2

(
Y2 − 1

i− 1

)
BY1(Y2−i)CZ1(i−1)

i

≡ 0 (mod pα+1), i ≥ 2. (4.13)

Hence, by (4.12) and (4.13), we get

pα
∣∣∣∣Y2BY1(Y2−1) +

Y2∑
i=2

(−λ)i+1

(
Y2
i

)
BY1(Y2−i)CZ1(i−1). (4.14)

Therefore, since gcd(CZ2−Z1 , f)
∣∣f and gcd(CZ2−Z1 , f)

∣∣CZ2−Z1 , we find from

(4.11), (4.12) and (4.14) that α and γ satisfy (2.29). Thus, letting p run through

all prime divisors of gcd(CZ2−Z1 , f), by (2.29) and (4.12), we obtain (4.7).

The lemma is proved. �

Lemma 4.5 ([6, Lemma 4.7]). Let (Xj , Yj , Zj) (j = 1, 2, 3) be three distinct

solutions of (4.2) with Z1 < Z2 ≤ Z3. If C = max{a, b, c}, then max{a, b, c} <
5× 1027.

Lemma 4.6. Let (Xj , Yj , Zj) (j = 1, 2, 3) be three distinct solutions of (4.2)

with Z1 < Z2 ≤ Z3. If CZ2−Z1 > (max{a, b, c})1/2 and C satisfies (4.6), then

max{a, b, c} < 1062.

Proof. Since Z2 ≤ Z3, by Lemma 4.3, we have X2Y3 −X3Y2 6= 0 and

A|X2Y3−X3Y2| ≡ (−λ)Y2+Y3 (mod CZ2). (4.15)

Further, since Z1 < Z2 and C satisfies (4.6), by using Lemma 2.9 with r = A,

t = CZ2−Z1 , s = CZ1 and n′ = |X2Y3 −X3Y2|, we get from (4.4), (4.5) and (4.15)

that

|X2Y3 −X3Y2| ≡ 0

(
mod

CZ2−Z1

gcd(CZ2−Z1 , f)

)
, (4.16)

where f is defined as in (4.5). Recall that X2Y3 −X3Y2 6= 0. By (4.16), we have

|X2Y3 −X3Y2| gcd(CZ2−Z1 , f) ≥ CZ2−Z1 . (4.17)
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Furthermore, by Lemma 4.4, we have gcd(CZ2−Z1 , f) ≤ Y2. Hence, we get from

(4.17) that

Y2 |X2Y3 −X3Y2| ≥ CZ2−Z1 . (4.18)

By Lemma 4.1, we have

Y2 |X2Y3 −X3Y2| < Y2 max{X2Y3, X3Y2} ≤ (max{X2, Y2, X3, Y3})3

< 65003 (log max{a, b, c})9 . (4.19)

Therefore, if CZ2−Z1 > (max{a, b, c})1/2, then from (4.18) and (4.19) we get

65006 (log max{a, b, c})18 > max{a, b, c}. (4.20)

Thus, applying Lemma 2.1 to (4.20), we obtain max{a, b, c} < 1062. The lemma

is proved. �

5. Proof of Theorem 1.1 for c = max{a, b, c}

By [12], Theorem 1.1 holds for 2 - c. Therefore, we just have to consider the

case that

2
∣∣c. (5.1)

Since gcd(ab, c) = 1, by (5.1), we have

2 - a, 2 - b. (5.2)

In this section, we will prove the theorem for the case that

c = max{a, b, c} ≥ 1062. (5.3)

We now assume that (1.1) has three distinct solutions (xj , yj , zj) (j = 1, 2, 3)

with z1 ≤ z2 ≤ z3. Then, (4.2) has three solutions (Xj , Yj , Zj) = (xj , yj , zj) (j =

1, 2, 3) for (A,B,C, λ) = (a, b, c, 1) with Z1 ≤ Z2 ≤ Z3. By Lemma 4.2, we can

remove the case z1 = z2 = z3. Since C = c = max{a, b, c} ≥ 1062, by Lemma 4.5,

we can remove the case z1 < z2 ≤ z3. So we have

z1 = z2 < z3. (5.4)

Since z1 = z2 and

ax1 + by1 = ax2 + by2 = cz1 , (5.5)
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(2.1) has two solutions (l,m) = (xj , yj) (j = 1, 2) for (u, v, k) = (a, b, cz1). Since

(x1, y1) 6= (x2, y2), we may therefore assume that

x1 < x2. (5.6)

Then, by Lemma 2.5, we have

y1 > y2, (5.7)

ax2−x1 = by2t1 + 1, by1−y2 = ax1t1 + 1 (5.8)

for some t1 ∈ N, and

max{ax2−x1 , by1−y2} > cz1/2. (5.9)

By the symmetry of a and b in (5.5), we may assume that

ax2−x1 > by1−y2 . (5.10)

Hence, by (5.3), (5.9) and (5.10), we have

ax2−x1 > cz1/2 ≥
√
c = (max{a, b, c})1/2 . (5.11)

By (5.6), if x3 ≥ x2, then (4.2) has three solutions (Xj , Yj , Zj) = (zj , yj , xj)

(j = 1, 2, 3) for (A,B,C, λ) = (c, b, a,−1) with Z1 < Z2 ≤ Z3. Since CZ2−Z1 =

ax2−x1 > (max{a, b, c})1/2 by (5.11), using Lemma 4.6, we get from (5.2) that

max{a, b, c} < 1062, which contradicts (5.3). Therefore, we have

x3 < x2. (5.12)

By (5.8) and (5.10), we get ax2−x1 > by1−y2 = ax1t1 + 1 > ax1 , and by (5.5),

cz1 > ax2 > a2x1 . This implies that (x, y, z) = (x1, y1, z1) is a solution of (1.1)

with a2x < cz. Notice that b ≥ 3 and c ≥ 16 by (5.2) and (5.3). Using Lemma 3.2,

y1/z1 is a convergent of log c/ log b with

0 <
log c

log b
− y1
z1

<
2

z1cz1/2 log b
. (5.13)

On the other hand, by (5.4) and (5.12), (x2, y2, z2) and (x3, y3, z3) are two

solutions of (1.1) such that x2 > x3 and z2 < z3. Since c = max{a, b, c} ≥ 1062,

by Lemma 3.4, (y3/d)/(z3/d) is also a convergent of log c/ log b with

0 <
log c

log b
− y3/d

z3/d
<

2

z3ac log b
, (5.14)

where d = gcd(y3, z3).
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By (5.4), (X1, Y1, Z1) = (z1, y1, x1) and (X3, Y3, Z3) = (z3, y3, x3) are two

distinct solutions of (4.2) for (A,B,C, λ) = (c, b, a,−1). Hence, by Lemma 4.3,

we have z1y3 − z3y1 6= 0. This implies that y1/z1 and (y3/d)/(z3/d) are two

distinct convergents of log c/ log b. Therefore, by (ii) of Lemma 2.2, we see from

(5.13) and (5.14) that
y1
z1

=
p2s
q2s

,
y3/d

z3/d
=
p2t
q2t

(5.15)

for some non-negative integers s, t with s 6= t.

If s < t, by (i) and (iii) of Lemma 2.2, then from (5.13) and (5.15) we get

z3 ≥
z3
d

= q2t ≥ q2s+2 = a2s+2q2s+1 + q2s ≥ q2s+1 + q2s >

(
q2s

∣∣∣∣ log c

log b
− p2s
q2s

∣∣∣∣)−1
=

(
z1

(
log c

log b
− y1
z1

))−1
>

1

2
cz1/2 log b >

√
c

2
. (5.16)

Since c = max{a, b, c}, by Lemma 3.1, we have z3 < 6500(log c)3. Therefore,

by (5.16), we get

130002 (log c)
6
> c. (5.17)

However, since c ≥ 1062, by Lemma 2.1, (5.17) is false.

Similarly, if s > t, then from (5.14) and (5.15) we get

z1 = q2s ≥ q2t+2 ≥ q2t+1 + q2t >

(
q2t

∣∣∣∣ log c

log b
− p2t
q2t

∣∣∣∣)−1
=

(
z3
d

(
log c

log b
− y3/d

z3/d

))−1
>

1

2
ac log b > c. (5.18)

Further, by Lemma 3.1, we have z1 < 6500(log c)3. Therefore, by (5.18), we get

6500 (log c)
3
> c. (5.19)

By Lemma 2.1, this inequality contradicts the assumption that c ≥ 1062. Thus,

we have N(a, b, c) ≤ 2 for case (5.3).

6. Proof of Theorem 1.1 for c 6= max{a, b, c}

In this section, we will prove Theorem 1.1 for the case that c 6= max{a, b, c}.
Then, by the symmetry of a and b in (1.1), we may assume that

a = max{a, b, c} ≥ 1062. (6.1)
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For any solution (x, y, z) of (1.1), since az > cz = ax + by > ax ≥ a by (6.1),

we have

z ≥ 2. (6.2)

Hence, by (5.1) and (6.2), we get

4
∣∣cz. (6.3)

We now assume that (1.1) has three solutions (xj , yj , zj) (j = 1, 2, 3) with

x1 ≤ x2 ≤ x3. Then, (4.2) has three solutions (Xj , Yj , Zj) = (zj , yj , xj) (j =

1, 2, 3) for (A,B,C, λ) = (c, b, a,−1) with Z1 ≤ Z2 ≤ Z3. By Lemma 4.2, we can

remove the case x1 = x2 = x3. Since C = a = max{a, b, c} ≥ 1062, by Lemma 4.5,

we can remove the case x1 < x2 ≤ x3. So we have

x1 = x2 < x3. (6.4)

Since x1 = x2, we have

cz1 − by1 = cz2 − by2 = ax1 . (6.5)

This implies that (2.9) has two solutions (l,m) = (zj , yj) (j = 1, 2) for (u, v, k) =

(c, b, ax1). Since (z1, y1) 6= (z2, y2), we may assume that

z1 < z2. (6.6)

Then, by Lemma 2.7, we get from (6.6) that

y1 < y2 (6.7)

and

by2−y1 = cz1t2 + 1, cz2−z1 = by1t2 + 1 (6.8)

for some t2 ∈ N.

By the first equality of (6.8), we have

by2−y1 > cz1 > ax1 . (6.9)

If y3 ≥ y2, by (6.7), then (4.2) has three solutions (Xj , Yj , Zj) = (zj , xj , yj)

(j = 1, 2, 3) for (A,B,C, λ) = (c, a, b,−1) with Z1 < Z2 ≤ Z3. However, since

C = b is odd and CZ2−Z1 = by2−y1 > ax1 ≥ a = max{a, b, c} ≥ 1062, by (5.2),

(6.1) and (6.9), we have a contradiction to Lemma 4.6. Therefore, we obtain

y3 < y2. (6.10)
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Suppose that z3 ≥ z2. By (6.6), then (4.2) has three solutions (Xj , Yj , Zj) =

(xj , yj , zj) (j = 1, 2, 3) for (A,B,C, λ) = (a, b, c, 1) with Z1 < Z2 ≤ Z3. Since

a = max{a, b, c} ≥ 1062, by Lemma 4.6, we obtain

CZ2−Z1 = cz2−z1 < (max{a, b, c})1/2 =
√
a. (6.11)

Hence, by the second equality of (6.8) and (6.11), we have

by1 < by1t2 + 1 = cz2−z1 <
√
a ≤ ax1/2 < cz1/2. (6.12)

This implies that (x, y, z) = (x1, y1, z1) is a solution of (1.1) with b2y < cz.

Therefore, by Lemma 3.3, x1/z1 is a convergent of log c/ log a with

0 <
log c

log a
− x1
z1

<
2

z1cz1/2 log a
. (6.13)

On the other hand, by(6.10),(1.1) has two solutions (x2, y2, z2) and (x3, y3, z3)

such that y2 > y3 and z2 ≤ z3. Since a = max{a, b, c} ≥ 1062, by Lemma 3.5,

(x3/d)/(z3/d) is also a convergent of log c/ log a with

0 <
log c

log a
− x3/d

z3/d
<

2

z3a log a
, (6.14)

where d = gcd(x3, z3). Further, by Lemma 4.3, x1/z1 and (x3/d)/(z3/d) are two

distinct convergents of log c/ log a. Hence, by (ii) of Lemma 2.2, we see from (6.13)

and (6.14) that
x1
z1

=
p2s
q2s

,
x3/d

z3/d
=
p2t
q2t

(6.15)

for some non-negative integers s, t with s 6= t.

Since a = max{a, b, c}, by Lemmas 2.2 and 3.1, we get from (6.13), (6.14)

and (6.15) that

6500 (log a)
3
>



z3 ≥
z3
d

= q2t ≥ q2s+2 ≥ q2s+1 + q2s >

(
q2s

∣∣∣∣ log c

log a
− p2s
q2s

∣∣∣∣)−1
=

(
z1

(
log c

log a
− x1
z1

))−1
>

1

2
cz1/2 log a, if s < t,

z1 = q2s ≥ q2t+2 ≥ q2t+1 + q2t >

(
q2t

∣∣∣∣ log c

log a
− p2t
q2t

∣∣∣∣)−1
=

(
z3
d

(
log c

log a
− x3/d

z3/d

))−1
>

1

2
a log a, if s > t,


>

1

2

√
a log a. (6.16)
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But, since a ≥ 1062, by Lemma 2.1, (6.16) is false. Therefore, we obtain

z3 < z2. (6.17)

Finally, we can write the known results (6.4), (6.6), (6.7), (6.10) and (6.17) as

x1 = x2 < x3, ,max{y1, y3} < y2, max{z1, z3} < z2,

and complete the proof in the following four cases.

Case (i): y3 ≤ y1 < y2 and z3 ≤ z1 < z2.

In this case, since x3 > x1 = x2 and

ax3 = cz3 − by3 = ax3−x1cz1 − ax3−x1by1 ,

we get

cz3(ax3−x1cz1−z3 − 1) = by3(ax3−x1by1−y3 − 1). (6.18)

Since gcd(b, c) = 1, by (6.18), we have

ax3−x1by1−y3 = cz3t3 + 1 (6.19)

for some t3 ∈ N.

Hence, we see from (6.19) that ax3−x1by1−y3 > cz3 = ax3 + by3 > ax3 and

by1−y3 > ax1 .

This implies that y3 < y1. Therefore, (4.2) has three solutions (Xj , Yj , Zj) (j =

1, 2, 3) for (A,B,C, λ) = (c, a, b,−1) such that (X1, Y1, Z1) = (z3, x3, y3),

(X2, Y2, Z2) = (z1, x1, y1), (X3, Y3, Z3) = (z2, x1, y2) and Z1 < Z2 < Z3. How-

ever, since 2 - b = C and CZ2−Z1 = by1−y3 > ax1 ≥ a = max{a, b, c} ≥ 1062,

we have a contradiction to Lemma 4.6.

Case (ii): y3 ≤ y1 < y2 and z1 < z3 < z2.

Since

cz3 = ax3 + by3 = cz3−z1ax1 + cz3−z1by1 , (6.20)

we have

by3(cz3−z1by1−y3 − 1) = ax1(ax3−x1 − cz3−z1),

whence we get

cz3−z1by1−y3 = ax1t4 + 1 (6.21)

for some t4 ∈ N.
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By (6.21), we have cz3−z1by1−y3 > ax1 . This implies that

max{cz3−z1 , by1−y3} > ax1/2 ≥
√
a. (6.22)

If cz3−z1 > by1−y3 , by (6.22), then cz3−z1 >
√
a. Notice that (4.2) has

three solutions (Xj , Yj , Zj) (j = 1, 2, 3) for (A,B,C, λ) = (a, b, c, 1) such that

(X1, Y1, Z1) = (x1, y1, z1), (X2, Y2, Z2) = (x3, y3, z3), (X3, Y3, Z3) = (x2, y2, z2)

and Z1 < Z2 < Z3. However, because 4
∣∣CZ1 by (6.3), and CZ2−Z1 = cz3−z1 >√

a = (max{a, b, c})1/2 with max{a, b, c} ≥ 1062, we have a contradiction to

Lemma 4.6.

Similarly, if cz3−z1 < by1−y3 , then y3 < y1 and by1−y3 >
√
a. In this case,

(4.2) has three solutions (Xj , Yj , Zj) (j = 1, 2, 3) for (A,B,C, λ) = (c, a, b,−1)

such that (X1, Y1, Z1) = (z3, x3, y3), (X2, Y2, Z2) = (z1, x1, y1), (X3, Y3, Z3) =

(z2, x2, y2) and Z1 < Z2 < Z3. However, since 2 - b = C, CZ2−Z1 = by1−y3 >√
a = (max{a, b, c})1/2 and max{a, b, c} ≥ 1062, we have a contradiction to

Lemma 4.6.

Case (iii): y1 < y3 < y2 and z3 ≤ z1 < z2.

Since x3 > x1, we have

ax1 + by1 = cz1 ≥ cz3 = ax3 + by3 > ax1 + by1 ,

a contradiction.

Case (iv): y1 < y3 < y2 and z1 < z3 < z2.

By (6.20), we have

ax1(cz3−z1 − ax3−x1) = by1(by3−y1 − cz3−z1). (6.23)

Since gcd(a, b) = 1, we get from (6.23) that

by3−y1 − cz3−z1 = ax1t5, (6.24)

where t5 ∈ Z, t5 6= 0.

If t5 > 0, then from (6.24) we get by3−y1 > ax1 ≥ a. In this case, (4.2) has

three solutions (Xj , Yj , Zj) (j = 1, 2, 3) for (A,B,C, λ) = (c, a, b,−1) such that

(X1, Y1, Z1) = (z1, x1, y1), (X2, Y2, Z2) = (z3, x3, y3), (X3, Y3, Z3) = (z2, x2, y2)

and Z1 < Z2 < Z3. However, since 2 - b = C, CZ2−Z1 = by3−y1 > a =

max{a, b, c} ≥ 1062, we have a contradiction to Lemma 4.6.

Similarly, if t5 < 0, then from the second equality of (6.24), we get cz3−z1 >

ax1 ≥ a = max{a, b, c} ≥ 1062. In this case, (4.2) has three solutions (Xj , Yj , Zj)
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(j = 1, 2, 3) for (A,B,C, λ) = (a, b, c, 1) such that (X1, Y1, Z1) = (x1, y1, z1),

(X2, Y2, Z2) = (x3, y3, z3), (X3, Y3, Z3) = (x2, y2, z2) and Z1 < Z2 < Z3. How-

ever, since 4
∣∣cz = CZ for any solutions (x, y, z) and (X,Y, Z) of (1.1) and (4.2),

respectively, and CZ2−Z1 = cz3−z1 > max{a, b, c} ≥ 1062, we have a contradiction

to Lemma 4.6.

Thus, Theorem 1.1 holds for the case c 6= max{a, b, c}. To sum up, the

theorem is proved. �
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[4] A. Gelfond, Sur la divisibilité de la différence des puissances de deux nombres entiers par
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