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On Poincaré compactification and the projectivization
of polynomial vector fields

By FENGBAI LI (Shanghai)

Abstract. The main purpose of this note is to clarify two commonly used notions,

the Poincaré compactification and the projectivization, in the study of polynomial vector

fields in Cn. We show that these two notions are indeed equivalent.

1. Introduction

Poincaré compactification of real polynomial vector fields was introduced

by Poincaré [6] to study their behavior at infinity. Through central projection,

a polynomial vector field on Rn induces a vector field on Sn, the n-dimensional

sphere, and the infinity of the original system corresponds to the equator on Sn

(see, e.g., [1]).

As pointed out by Lefschetz [4], the Poincaré compactification is of “pro-

jective” nature. But since the real projective space RPn is not orientable for n

even, there is an intrinsic ambiguity for vector fields on it (cf. [1]). Thus the

orientable double cover of RPn, the sphere Sn, is a better choice for this con-

struction. However, the complex projective space CPn is orientable for any n.

Therefore CPn is the natural choice for the “Poincaré compactification” for poly-

nomial vector fields in Cn. Of course, we do not have the “central projection”

any more as in the real case. So the construction needs to be first carried out

algebraically and then given a geometric meaning.

On the other hand, there is also the notion of projectivization for polynomial

vector fields in Cn, which is essentially the extension to homogeneous polynomial
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vector fields in Cn+1. Poincaré compactification is defined through Pfaffian forms,

while the projectivization is defined through homogeneous vector fields. However,

we will show that both notions induce the same foliation on the projective space,

which is our main result.

Theorem 1. Poincaré compactification and the projectivization of polyno-

mial vector fields in Cn are equivalent.

In Section 2, we first establish the equivalence in dimension two. The higher-

dimensional case is treated in Section 3.

2. Poincaré compactification and the projectivization

of polynomial vector fields in C2

Consider a polynomial vector field in C2

X = p(x, y)
∂

∂x
+ q(x, y)

∂

∂y
,

where p and q are complex polynomials of degree ≤ d = max{deg p,deg q}.
There are two other equivalent representations of the vector field X , one by

the differential equation

ẋ = p(x, y), ẏ = q(x, y),

and the other by the Pfaffian form

ω = q(x, y)dx− p(x, y)dy = 0. (1)

For the Poincaré compactification of X , we work with the Pfaffian form.

Setting (x, y) = (X
Z , Y

Z ), (1) is transformed to

1

Zd+2
[(XQ(X,Y, Z)− Y P (X,Y, Z))dZ

+ Z(P (X,Y, Z)dY −Q(X,Y, Z)dX)] = 0, (2)

where P (X,Y, Z) = Zdp(X
Z , Y

Z ) and Q(X,Y, Z) = Zdq(X
Z , Y

Z ). Let p(x, y) =

pd(x, y) + pd−1(x, y) + · · · and q(x, y) = qd(x, y) + qd−1(x, y) + · · · be the homo-

geneous expansion of p(x, y) and q(x, y), where pk(x, y) and qk(x, y) are homo-

geneous of degree k, 0 ≤ k ≤ d. If xqd(x, y) − ypd(x, y) ≡ 0, we say that X is

dicritical. Otherwise we say that X is non-dicritical.
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If X is non-dicritical, we multiply (2) by Zd+2 and get

(XQ(X,Y, Z)− Y P (X,Y, Z))dZ + Z(P (X,Y, Z)dY −Q(X,Y, Z)dX) = 0. (3)

If X is dicritical, we can write

P (X,Y, Z) = XR(X,Y, Z) + ZP̃ (X,Y, Z),

Q(X,Y, Z) = Y R(X,Y, Z) + ZQ̃(X,Y, Z),

where R(X,Y, Z), P̃ (X,Y, Z) and Q̃(X,Y, Z) are homogeneous of degree d − 1.

Multiplying (2) by Zd+1, we get

(XQ̃(X,Y, Z)− Y P̃ (X,Y, Z))dZ + (P (X,Y, Z)dY −Q(X,Y, Z)dX) = 0. (4)

A homogeneous one-form Ω = A(X,Y, Z)dX+B(X,Y, Z)dY +C(X,Y, Z)dZ

on C3 defines a co-dimension one foliation on CP2 if and only if Ω vanishes on the

Euler vector field V = X ∂
∂X + Y ∂

∂Y + Z ∂
∂Z identically, i.e., XA + Y B + ZC ≡ 0

(see [2]). Thus the Poincaré compactification of X is given by (3) if X is non-

dicritical, and by (4) if X is dicritical (cf. [5]). In the homogeneous coordinates

[X : Y : Z] on CP2, the infinity for the original system X corresponds to the line

at infinity {Z = 0}.
Next, we consider the projectivization of X , which is the extension of X to

a homogeneous vector field X̃ in C3 (cf. [3]). Write

∂

∂x
=

Z

2X

(
X

∂

∂X
− Y

∂

∂Y
− Z

∂

∂Z

)
,

∂

∂y
=

Z

2Y

(
−X ∂

∂X
+ Y

∂

∂Y
− Z

∂

∂Z

)
.

Then we can rewrite X as

1

2XY Zd−1

[
Y P

(
X

∂

∂X
−Y ∂

∂Y
−Z ∂

∂Z

)
+XQ

(
−X ∂

∂X
+Y

∂

∂Y
−Z ∂

∂Z

)]
. (5)

Note that the projectivization of X is well-defined up to adding a multiple

of the Euler vector field. If X is non-dicritical, then after multiplying (5) by

2XY Zd−1, adding (Y P + XQ)V and dividing by 2XY , we get

X̃ = P (X,Y, Z)
∂

∂X
+ Q(X,Y, Z)

∂

∂Y
. (6)

If X is dicritical, then after multiplying (5) by 2XY Zd−2, adding (Y P̃ + XQ̃)V

and dividing by 2XY , we get

X̃ = P̃ (X,Y, Z)
∂

∂X
+ Q̃(X,Y, Z)

∂

∂Y
−R(X,Y, Z)

∂

∂Z
. (7)
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To get the projectivized vector field, we consider the compactification of C3

to CP3 and the hyperplane at infinity. Both (6) and (7) are homogeneous vector

fields in C3 leaving the hyperplane at infinity invariant, and thus each induces

a projectivized vector field on CP2.

Consider an arbitrary homogeneous vector field

F (X,Y, Z)
∂

∂X
+ G(X,Y, Z)

∂

∂Y
+ H(X,Y, Z)

∂

∂Z

in C3, which can be equivalently written as

Ẋ = F (X,Y, Z), Ẏ = G(X,Y, Z), Ż = H(X,Y, Z).

In Pfaffian form, the above is equivalent to

F (X,Y, Z)dZ −H(X,Y, Z)dX = 0, G(X,Y, Z)dZ −H(X,Y, Z)dY = 0, (8)

or

F (X,Y, Z)dY −G(X,Y, Z)dX = 0, H(X,Y, Z)dY −G(X,Y, Z)dZ = 0, (9)

or

G(X,Y, Z)dX − F (X,Y, Z)dY = 0, H(X,Y, Z)dX − F (X,Y, Z)dZ = 0. (10)

Set (X,Y, Z) = (U
T , V

T , W
T ), with [U : V : W : T ] being the homogeneous

coordinates of CP3. Then (8) transforms as

F (TdW −WdT )−H(TdU−UdT ) = 0, G(TdW −WdT )−H(TdV −V dT ) = 0.

Thus in the affine chart {W = 1} and restricting to the hyperplane at infinity

{T = 0}, we get

U̇ = F (U, V, 1)− UH(U, V, 1), V̇ = G(U, V, 1)− V H(U, V, 1). (11)

Similarly, (9) transforms as

F (TdV −V dT )−G(TdU −UdT ) = 0, H(TdV −V dT )−G(TdW −WdT ) = 0.

Thus in the affine chart {V = 1} and restricting to the hyperplane at infinity

{T = 0}, we get

U̇ = F (U, 1,W )− UG(U, 1,W ), Ẇ = H(U, 1,W )−WG(U, 1,W ). (12)
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And (10) transforms as

G(TdU −UdT )−F (TdV −V dT ) = 0, H(TdU −UdT )−F (TdW −WdT ) = 0.

Thus in the affine chart {U = 1} and restricting to the hyperplane at infinity

{T = 0}, we get

V̇ = G(1, V,W )− V F (1, V,W ), Ẇ = H(1, V,W )−WF (1, V,W ). (13)

Combining (11), (12) and (13), we see that the projectivized vector field

induced by F ∂
∂X + G ∂

∂Y + H ∂
∂Z is given in the Pfaffian form by

(UG− V F )dW + (WF − UH)dV + (V H −WG)dU = 0. (14)

In the non-dicritical case, we have F =P , G=Q and H=0. Thus (14) reads as

(UQ− V P )dW + W (PdV −QdU) = 0,

which is the same as (3).

In the dicritical case, we have F = P̃ , G=Q̃ and H=−R. Thus (14) reads as

(UQ̃− V P̃ )dW + (WP̃ + UR)dV − (WQ̃ + V R)dU = 0.

Since WP̃ + UR = P and WQ̃ + V R = Q, it is the same as (4).

The above discussion establishes the equivalence between Poincaré compact-

ification and the projectivization of polynomial vector fields in C2.

3. Poincaré compactification and the projectivization

of polynomial vector fields in Cn

Since the higher dimensional case is essentially the same, we only describe it

briefly below.

Let X =
∑n

i=1 pi(z) ∂
∂zi

be a polynomial vector field in Cn, where pi(z) are

polynomials in z = (z1, . . . , zn) of degree ≤ d = max{deg p1, . . . ,deg pn}. The

vector field can be represented equivalently as a set of differential equations

żi = pi(z), i = 1, . . . , n,

or a set of Pfaffian forms

ωij = pi(z)dzj − pj(z)dzi = 0, 1 ≤ i 6= j ≤ n.
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Of course, the Pfaffian system is redundant and a non-redundant system is given

by a set of n− 1 Pfaffian forms with fixed i, for any 1 ≤ i ≤ n.

Let pi(z) = pi,d(z) + pi,d−1(z) + · · · be the homogeneous expansion of pi(z),

with pi,k(z) homogeneous of degree k, 0 ≤ k ≤ d. Set z = Z
Z0

with Z =

(Z1, . . . , Zn), Pi(Z0, Z) = Zd
0pi(

Z
Z0

), Pi,d(Z) = Zd
0pi,d( Z

Z0
) and P̃i(Z0, Z) =

Pi(Z0,Z)−Pi,d(Z)
Z0

.

Let C be the algebraic variety on the hyperplane at infinity {Z0 = 0} defined

by the set of equations (cf. [7])

ZiPj,d(Z)− ZjPi,d(Z) = 0, 1 ≤ i 6= j ≤ n.

If the dimension of C is k, 0 ≤ k ≤ n − 1, then we say that X is k-dicritical.

If k = n − 1, we say that X is dicritical. If 0 ≤ k < n − 1, we say that X is

indicritical, and in particular if k = 0, we say that X is non-dicritical.

If ZiPj,d(Z)− ZjPi,d(Z) 6= 0, we set

Ωij = (ZiPj(Z0, Z)− ZjPi(Z0, Z))dZ0 + Z0(Pi(Z0, Z)dZj − Pj(Z0, Z)dZi),

otherwise we set

Ωij = (ZiP̃j(Z0, Z)− ZjP̃i(Z0, Z))dZ0 + (Pi(Z0, Z)dZj − Pj(Z0, Z)dZi).

The Poincaré compactification of X is given in Pfaffian form by

Ωij = 0, 1 ≤ i 6= j ≤ n. (15)

For the projectivization X̃ of X , we write

∂

∂zi
=

Z0

2Zi

Zi
∂

∂Zi
−

∑
0≤j 6=i≤n

Zj
∂

∂Zj

 .

If X is indicritical, then

X̃ =

n∑
i=1

Pi(Z0, Z)
∂

∂Zi
, (16)

and if X is dicritical, then we can write Pi,d(Z) = ZiR(Z) and get

X̃ =

n∑
i=1

P̃i(Z0, Z)
∂

∂Zi
−R(Z)

∂

∂Z0
. (17)

Similar computation as in the two-dimensional case shows that projectivization

(16) or (17) is equivalent to Poincaré compactification (15). This completes the

proof of Theorem 1. �

Remark 2. In summary, the projectivization of a polynomial vector field in

Cn is a homogeneous polynomial vector field in Cn+1, which induces a projec-

tivized vector field on CPn as the Poincaré compactification.
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[3] J. P. Jouanolou, Équations de Pfaff algébriques, Lecture Notes in Mathematics, Vol. 708,

Springer, Berlin, 1979.

[4] S. Lefschetz, Differential Equations: Geometric Theory, Interscience Publishers, New York

– London, 1963.

[5] L. Perko, Differential Equations and Dynamical Systems, Third Edition, Springer-Verlag,

New York, 2001.

[6] H. Poincaré, Mémoire sur les courbes définies par une equation différentielle, J. Math.
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