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On a characterization theorem on non-discrete totally
disconnected locally compact fields

By GENNADIY M. FELDMAN (Kharkiv)

and MARGARYTA V. MYRONYUK (Kharkiv)

Abstract. We prove the following theorem. Let X be a non-discrete totally dis-

connected locally compact field, R be its ring of integers, P be the nonzero prime ideal

of R. Assume that the residue field R/P is a field of characteristic p > 2. Let ξ and η

be independent identically distributed random variables with values in X and distribu-

tion µ, such that µ has a continuous density with respect to a Haar measure on X. This

implies that the random variables S = ξ + η and D = (ξ − η)2 are independent if and

only if µ is a shift of the Haar distribution of a compact subgroup of X.

1. Introduction

Let ξ1, ξ2, . . . , ξn, n ≥ 2, be independent identically distributed real-valued

random variables. It is known that if the sample mean ξ̄ = 1
n

∑n
j=1 ξj and the

sample variance s2 = 1
n

∑n
j=1(ξj − ξ̄)2 are independent, then all ξj are Gauss-

ian random variables (see [15], [18], [19], [23], and also [17, §4.2]). For n = 2,

this theorem can be formulated as follows. If ξ and η are independent identi-

cally distributed random variables and their sum ξ + η and square of difference

(ξ − η)2 are also independent, then ξ and η are Gaussian random variables. This

characterization theorem can be considered as a generalization of the well-known

Kac–Bernstein theorem, where Gaussian distribution on the real line is character-

ized by independence of the sum and the difference of two independent random

variables.
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In the last years, much attention has been devoted to the generalization of

characterization theorems of mathematical statistics to various algebraic struc-

tures, such as locally compact Abelian groups, Lie groups, quantum groups, sym-

metric spaces (see, e.g., [1]–[14], [16], [20], [21], and also [9] for additional refer-

ences and related results). However, in all studied characterization problems on

groups only linear forms of independent random variables with values in a group

were considered. To the best of our knowledge, first a non-linear characterization

problem was considered in [14], where, in particular, the following theorem was

proved.

Theorem A. Consider the field of p-adic numbers Qp, where p > 2. Let ξ

and η be independent identically distributed random variables with values in Qp
and distribution µ, such that µ has a continuous density with respect to a Haar

measure on Qp. This implies that the random variables S = ξ+η and D = (ξ−η)2

are independent if and only if µ is a shift of the Haar distribution of a compact

subgroup of Qp.

Using the scheme of the proof of Theorem A, we prove in this note that The-

orem A holds true for non-discrete totally disconnected locally compact fields.

Note that on totally disconnected locally compact Abelian groups, in particular,

on totally disconnected locally compact fields, Gaussian measures are degener-

ated, and shifts of the Haar distributions of compact subgroups play the role of

Gaussian measures.

Recall some results about non-discrete totally disconnected locally compact

fields (see, e.g., [22]), and introduce the notation that will be used. Let X be

a non-discrete totally disconnected locally compact field with an ultra-metric

norm |.|. Denote by R the ring of integers in X consisting of all elements of X

such that |x| ≤ 1. The ring R is compact and open. Denote by P the prime

ideal in R consisting of all elements of R such that |x| < 1. The residue field

R/P is a field of non-zero characteristic p and consists of q elements, where q

is a power of p. The ideal P is principal, i.e., there exists an element p ∈ P

such that P = pR. In so doing, |p| = q−1 and X =
∞⋃

n=−∞
pnR. The family

{pnR}∞n=−∞ forms an open basis at zero of the field X. Denote by e the identity

of the field X. There exists an element ε of order q − 1 in the multiplicative

group of the field X. In so doing |ε| = 1, and the elements 0, ε, ε2, . . . , εq−1 = e

form the complete set of representatives of the residue classes R/P . Take B ⊂ X.

Put B[2] = {x ∈ X : x = t2, t ∈ B}. Consider A = {x ∈ X : |x − e| < 1},
i.e., A = e + P . Each element a ∈ A is represented as a convergent series

a = e+ a1p + a2p
2 + . . . , where either aj = 0 or aj = εkj , kj ∈ {1, 2, . . . , q − 1}.
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The set A is a compact subgroup in the multiplicative group of the field X,

and when q is odd, satisfies the condition A[2] = A. Each element x ∈ X,

x 6= 0, is uniquely represented in the form x = pnεka, where n is an integer,

k ∈ {1, 2, . . . , q − 1}, a ∈ A. Denote by R× the group of invertible elements of

the ring R. It consists of all elements of R such that |x| = 1. Then each element

x ∈ X, x 6= 0 is uniquely represented in the form x = pnc, where n is an integer,

c ∈ R×.

The additive group of the field X is a locally compact Abelian group. We also

denote this group by X. Denote by (x, y), x, y ∈ X, elements of the group X2.

Denote by T the mapping T : X2 7→ X2 defined by the formula T (x, y) =

(x+ y, (x− y)2). The element x ∈ X is said to be compact if the smallest closed

subgroup of X containing x is compact. Denote by mX a Haar measure on X.

Choose a Haar measure mX such that mX(R) = 1. Then mX(pnR) = q−n.

We shall also assume that mX2 = mX ×mX . Denote by I(X) the set of all shifts

of the Haar distributions mK of compact subgroups K of the group X. Denote

by Ex the degenerate distribution concentrated at a point x ∈ X. If ξ and η are

random variables with values in X, then we denote by µξ the distribution of the

random variable ξ, and by µ(ξ,η) the distribution of the random vector (ξ, η).

2. The main theorem

The main result of the work is the proof of the following statement.

Theorem 1. Let X be a non-discrete totally disconnected locally compact

field such that the residue field R/P is a field of characteristic p > 2. Let ξ

and η be independent identically distributed random variables with values in X

and distribution µ, such that µ has a continuous density with respect to a Haar

measure mX . The random variables S = ξ+ η and D = (ξ− η)2 are independent

if and only if µ ∈ I(X).

To prove Theorem 1, we need some lemmas.

Lemma 1. Let X be a non-discrete totally disconnected locally compact

field such that the residue field R/P is a field of characteristic p > 2. Then on

the set X [2], there exists a continuous function s(x) satisfying the equation

s2(x) = x, x ∈ X [2]. (1)
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Proof. Let x ∈ X, x 6= 0. Then x is uniquely represented in the form

x = pnεka, where n is an integer, k ∈ {1, 2, . . . , q − 1}, a ∈ A, and the elements

0, ε, ε2, . . . , εq−1 = e form the complete set of representatives of the residue classes

of R/P . We have x2 = p2nε2ka2. The representation

X = {0} ∪
∞⋃

n=−∞
pnR×

implies that

X [2] = {0} ∪
∞⋃

n=−∞
p2n(R×)[2]. (2)

Put Ak = εk + P = εkA, k = 1, . . . , q − 1. Note that Aq−1 = A and R× =
q−1⋃
k=1

Ak. Since q is odd, we have A[2] = A. It follows from this that A
[2]
k = A2k

if k = 1, . . . , q−12 , and A
[2]
k = A2k−q+1 if k = q+1

2 , . . . , q − 1. First define the

function s(x) on the set (R×)[2] =

q−1
2⋃

k=1

A2k. Let x ∈ A2k. Then the equation

x = t2 has two roots t1 ∈ Ak and −t1 ∈ Ak+ q−1
2

, and they belong to different

residue classes. The residue class Ak is a compact set, the function g(x) = x2

is continuous on Ak and it is a one-to-one mapping of the set Ak on A2k. This

implies that the inverse to g(x) mapping sk : A2k 7→ Ak is also continuous, and

hence is a homeomorphism between A2k and Ak. Put s(x) = sk(x), if x ∈ A2k,

k = 1, 2, . . . , q−12 . Since A2k is an open set in X, the function s(x) is continuous

and satisfies equation (1) on (R×)[2]. Taking into account (2), put

s(x) =

{
pns(c), if x = p2nc, c ∈ (R×)[2],

0, if x = 0.

It is obvious that s(x) is the required function. �

Lemma 2. LetX be a non-discrete totally disconnected locally compact field

such that the residue field R/P is a field of characteristic p > 2. Let (x0, y0) ∈ X2,

and assume that |x0 − y0| = q−l. Then for k ≥ l + 1, the following equality

T{(x0, y0) + (pkR)2} = (x0 + y0, (x0 − y0)2) + (pkR)× (pk+lR) (3)

holds.
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Proof. Since |x0 − y0|p = q−l, we have x0 − y0 = plc, where c ∈ R×. Note

that on the one hand, the equality

T{(x0, y0)+(pkR)2} = T{(x0 + pkx, y0 + pky) : x, y ∈ R}

= {(x0+y0+pk(x+y), (x0−y0)2+2pk(x0−y0)(x−y)

+ p2k(x− y)2) : x, y ∈ R}

= {(x0+y0+pks, (x0−y0)2+2pk+lct+p2kt2) : s, t ∈ R} (4)

holds true for any k. On the other hand, the equality

{2ct+ pk−lt2 : t ∈ R} = R (5)

holds true for k ≥ l + 1. Indeed, note that (e + pmR)[2] = e + pmR is fulfilled

for any m ≥ 1. This implies that (c + pmR)[2] = c2 + pmR for all c ∈ R×, i.e.,

{c2 + 2cpmt + p2mt2 : t ∈ R} = c2 + pmR, and hence, {2ct + pmt2 : t ∈ R} = R.

For k ≥ l + 1, this equality implies (5). Taking into account (5), we get that (3)

follows from (4). �

Lemma 3. LetX be a non-discrete totally disconnected locally compact field

such that the residue field R/P is a field of characteristic p > 2. Let a function s

be as constructed in the proof of Lemma 1. Consider the mappings Sj from

X ×X [2] to X2 of the form

S1(u, v) =

(
u+ s(v)

2
,
u− s(v)

2

)
, S2(u, v) =

(
u− s(v)

2
,
u+ s(v)

2

)
.

Let (u0, v0) ∈ X × X [2], and assume that |s(v0)| = q−l. Put Ek = (u0, v0) +

(pkR)× (pk+lR). Then for k ≥ l + 1, the following statements are valid:

(i) Ek ⊂ X ×X [2],

(ii) S1(Ek) ∩ S2(Ek) = ∅,

(iii)
∫

Sj(Ek)

Φj(x, y)dmX2(x, y) =
∫
Ek

Φj(Sj(u, v))|s(v)|−1dmX2(u, v), j = 1, 2,

for any continuous function Φj(x, y) on Sj(Ek).

Proof. (i) Note that |v0| = q−2l. It follows from the proof of Lemma 1 that

if w0 ∈ X [2] and |w0| = q−2l, then w0 +w ∈ X [2] for w ∈ p2l+1R. Since k ≥ l+ 1,

from what has been said it follows that (i) is fulfilled.
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(ii) Assume that S1(Ek) ∩ S2(Ek) 6= ∅. Then as easily seen, there exist

elements v1, v2 ∈ R such that

s(v0 + pk+lv1) = −s(v0 + pk+lv2). (6)

Since v0 ∈ X [2] and |v0| = q−2l, we have v0 = p2lc, where c ∈ (R×)[2] and

v0 + pk+lvi = p2l(c + pk−lvi) ∈ p2l(c + pk−lR), i = 1, 2. It follows from the

definition of the function s that {s(x) : x ∈ (c+pR)}
⋂
{−s(x) : x ∈ (c+pR)} = ∅.

Since k ≥ l + 1, this implies that {s(x) : x ∈ p2l(c + pk−lR)}
⋂
{−s(x) : x ∈

p2l(c+ pk−lR)} = ∅, contrary to (6). Hence, (ii) is proved.

(iii) We will prove that equality (iii) holds true for S1. For S2 the reasoning

is similar. Put (x0, y0) = S1(u0, v0) =
(
u0+s(v0)

2 , u0−s(v0)
2

)
, and verify that

S1(Ek) = (x0, y0) + (pkR)2. (7)

Let u ∈ pkR, v ∈ pk+lR. We have

S1(u0 + u, v0 + v) =

(
u0 + u+ s(v0 + v)

2
,
u0 + u− s(v0 + v)

2

)
.

Since the residue field R/P is a field of characteristic p > 2, we have |2x| = |x|
for all x ∈ X. Hence,∣∣∣∣u0 + u+ s(v0 + v)

2
− u0 + s(v0)

2

∣∣∣∣ ≤ max {|u|, |s(v0 + v)− s(v0)|}. (8)

It follows from u ∈ pkR that

|u| ≤ q−k. (9)

Since s2(x) = x, we have

|s(v0 + v)− s(v0)| = |v|
|s(v0 + v) + s(v0)|

. (10)

Note that v0 + v = p2lc + pk+lt for some t ∈ R. This implies that s(v0 + v) =

pls(c+pk−lt). Moreover, s(v0) = pls(c). Since the points s(c+pk−lt) and s(c) are

at the same residue class of the ideal P in R, we have |s(c+pk−lt)+s(c)| = 1, and

hence, |s(v0 + v) + s(v0)| = q−l. Taking into account that |v| ≤ q−k−l, it follows

from (10) that

|s(v0 + v)− s(v0)| ≤ q−k. (11)
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Taking into account (9) and (11), we find from (8) that inequality∣∣∣∣u0 + u+ s(v0 + v)

2
− u0 + s(v0)

2

∣∣∣∣ ≤ q−k (12)

holds true. We note that if T (a, b) = T (a′, b′), then either (a, b) = (a′, b′) or

(a, b) = (b′, a′). Since |x0 − y0| = |s(v0)| = q−l, and k ≥ l + 1, the restriction of

the mapping T to the set (x0, y0) + (pkR)2 is injective. Taking this into account,

(7) follows from Lemma 2 and (12). Moreover, it follows from what has been said

that the mappings T and S1 are inverse homeomorphisms of the sets (x0, y0) +

(pkR)2 and Ek.

Let m ≥ 1. Represent the group (pkR)2 as a union of cosets of the subgroup

(pk+mR)2. We have

(pkR)2 =

q2m⋃
i=1

Bi.

Then by Lemma 2,

S1(Ek) =

q2m⋃
i=1

{(x0, y0) +Bi}. (13)

We note that mX2{(x0, y0)+Bi}=mX2(Bi)=q−2k−2m. Let (xi, yi)∈(x0, y0)+Bi.

Then T (xi, yi) = (ui, vi) ∈ T{(x0, y0)+Bi} ⊂ Ek. By the condition of the lemma,

|s(v)| = q−l for (u, v) ∈ Ek. Thus |s(vi)| = q−l. It follows from k ≥ l + 1 that

(x0, y0)+Bi = (x̃0, ỹ0)+(pk+mR)2, where |x̃0− ỹ0| = q−l. Then Lemma 2 implies

that T{(x0, y0)+Bi} = T{(x̃0, ỹ0)+(pk+mR)2} = (x̃0+ỹ0, (x̃0−ỹ0)2)+(pk+mR)×
(pk+m+lR). We obtain from here that mX2{T{(x0, y0) + Bi}} = q−(2k+2m+l).

It follows from what has been said that the equality

q2m∑
i=1

Φ1(xi, yi)mX2{(x0, y0) +Bi}

=

q2m∑
i=1

Φ1(S1(ui, vi))mX2{T{(x0, y0) +Bi}}|s(vi)|−1 (14)

is valid. Moreover, (13) implies that the sum in the left-hand side of equality (14)

tends to the integral of the left-hand side of equality (iii) as m → ∞. Since

TS1(Ek) = Ek, it follows from (13) that

Ek =

p2m⋃
i=1

T{(x0, y0) +Bi}.
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Thus the sum in the right-hand side of equality (14) tends to the integral of the

right-hand side of equality (iii) as m → ∞. Passing to the limit in equality (14)

as m→∞, we get (iii). �

Lemma 4. Let X be a non-discrete totally disconnected locally compact

field such that the residue field R/P is a field of characteristic p > 2. Let ξ and η

be independent identically distributed random variables with values in X and

distribution µ, such that µ has a continuous density ρ with respect to mX and

ρ(0) > 0. This implies that the random variables S = ξ+ η and D = (ξ− η)2 are

independent if and only if the density ρ satisfies the equation

ρ2(u)ρ(v)ρ(−v) = ρ2(0)ρ(u+ v)ρ(u− v), u, v ∈ X. (15)

Proof. First, we shall prove that the distribution µ(S,D) has a density % with

respect to mX2 and get a representation for %. Inasmuch as µ(S,D) = T (µ(ξ,η))

and the distribution µ(ξ,η) is absolutely continuous with respect to mX2 , so is

µ(ξ,η){(t, t) : t ∈ X} = 0. Therefore, the distribution µ(S,D) is concentrated at

the set X × (X [2]\{0}). Fix a function s constructed in the proof of Lemma 1.

Let the mappings Sj and the sets Ek be the same as in Lemma 3. Let (u0, v0) ∈
X × (X [2]\{0}). Represent the element s(v0) in the form s(v0) = plc, where

c ∈ R×. By Lemma 3, (i) and (ii) hold for k ≥ l + 1. We have

µ(S,D){Ek} = T (µ(ξ,η)){Ek} = µ(ξ,η){T−1(Ek)} =

∫
T−1(Ek)

ρ(x)ρ(y)dmX2(x, y)

=

∫
S1(Ek)

ρ(x)ρ(y)dmX2(x, y) +

∫
S2(Ek)

ρ(x)ρ(y)dmX2(x, y). (16)

Using equality (iii) of Lemma 3, transform the integrals in the right-hand side of

equality (16). We obtain∫
S1(Ek)

ρ(x)ρ(y)dmX2(x, y) =

∫
Ek

ρ

(
u+ s(v)

2

)
ρ

(
u− s(v)

2

)
|s(v)|−1dmX2(u, v),

∫
S2(Ek)

ρ(x)ρ(y)dmX2(x, y) =

∫
Ek

ρ

(
u− s(v)

2

)
ρ

(
u+ s(v)

2

)
|s(v)|−1dmX2(u, v).

Then (16) implies that

µ(S,D){Ek} = 2

∫
Ek

ρ

(
u+ s(v)

2

)
ρ

(
u− s(v)

2

)
|s(v)|−1dmX2(u, v).
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This equality means that the distribution µ(S,D) has a density %(u, v) with respect

to mX2 , and this density is of the form

%(u, v) =

2ρ
(
u+s(v)

2

)
ρ
(
u−s(v)

2

)
|s(v)|−1, if u ∈ X, v ∈ X [2]\{0},

0, if u ∈ X, v /∈ (X [2]\{0}).
(17)

Note that when we got representation (17) for the density of the distribution

µ(S,D), we did not use the independence of the random variables S and D.

Necessity. By the condition of the lemma, the random variables S and D are

independent. Therefore, there exist integrable with respect to mX functions rj
on X, such that the equality

r1(u)r2(v) = 2ρ

(
u+ s(v)

2

)
ρ

(
u− s(v)

2

)
|s(v)|−1 (18)

holds true almost everywhere with respect to mX2 on X × (X [2]\{0}). Since the

function in the right-hand side of equality (18) is continuous, we can assume with-

out loss of generality that the functions rj are also continuous, and equality (18)

holds true everywhere on X × (X [2]\{0}). Since ρ(0) > 0, it is easily seen that

r1(0) > 0. Put v = t2, t 6= 0. It follows from (18) that

r2(t2) = 2r−11 (0)ρ

(
s(t2)

2

)
ρ

(
−s(t2)

2

)
|s(t2)|−1, t ∈ X, t 6= 0. (19)

Note that (18) and (19) imply the equality

r1(u)ρ

(
s(t2)

2

)
ρ

(
−s(t2)

2

)
= r1(0)ρ

(
u+ s(t2)

2

)
ρ

(
u− s(t2)

2

)
, (u, t) ∈ X2, t 6= 0. (20)

It follows from the continuity of ρ and r1 that equality (20) holds true for all

u, t ∈ X. Put in (20) t = 0. We deduce from the resulting equality that

r1(u) =
r1(0)

ρ2(0)
ρ2
(u

2

)
, u ∈ X. (21)

Substituting (21) into (20), we find that

ρ2
(u

2

)
ρ

(
s(t2)

2

)
ρ

(
−s(t2)

2

)
= ρ2(0)ρ

(
u+ s(t2)

2

)
ρ

(
u− s(t2)

2

)
, u, t ∈ X. (22)
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Note that either s(t2) = t or s(t2) = −t. This implies that the equalities

ρ

(
s(t2)

2

)
ρ

(
−s(t2)

2

)
= ρ

(
t

2

)
ρ

(
− t

2

)
, t ∈ X, (23)

and

ρ

(
u+ s(t2)

2

)
ρ

(
u− s(t2)

2

)
= ρ

(
u+ t

2

)
ρ

(
u− t

2

)
, u, t ∈ X, (24)

are fulfilled for an arbitrary function ρ. Substituting (23) and (24) into (22),

we get that the density ρ satisfies equation (15). The necessity is proved.

Sufficiency. It follows from (17) and (24) that we have the following repre-

sentation for the density % of the distribution µ(S,D):

%(u, v) =

2ρ
(
u+t
2

)
ρ
(
u−t
2

)
|s(t2)|−1, if u ∈ X, v = t2, t 6= 0,

0, if u ∈ X, v /∈ (X [2]\{0}).
(25)

If a density ρ satisfies equation (15), it is easily seen that the density %(u, v) is

represented as a product of a function of u and a function of v. This implies the

independence of S and D. �

Lemma 5. Let X be a non-discrete totally disconnected locally compact

field such that the residue field R/P is a field of characteristic p > 2. Let ξ and η

be independent identically distributed random variables with values in X and

distribution µ, such that µ has a continuous density ρ with respect to mX and

ρ(0) > 0. If the random variables S = ξ + η and D = (ξ − η)2 are independent,

then the set K = {x ∈ X : ρ(x) > 0} is a subgroup of X.

Proof. By Lemma 4, the function ρ(x) satisfies equation (15). Assume that

ρ(x) > 0 at a point x ∈ X. Put in (15) u = v = x
2 . We get

ρ3
(x

2

)
ρ
(
−x

2

)
= ρ3(0)ρ(x). (26)

Since ρ(0) > 0 and ρ(x) > 0, it follows from (26) that

ρ
(x

2

)
ρ
(
−x

2

)
> 0. (27)

Put in (15) u = v = −x2 . We obtain

ρ3
(
−x

2

)
ρ
(x

2

)
= ρ3(0)ρ(−x). (28)

Taking into account (27), it follows from (28) that ρ(−x) > 0. So we proved that

if ρ(x) > 0, then ρ(−x) > 0. Taking this into account, (15) implies that the set

K = {x ∈ X : ρ(x) > 0} is a subgroup in X. �
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Now we can prove the main theorem.

Proof of Theorem 1. Necessity. It is obvious that replacing, if it is nec-

essary, the random variables ξ and η by new independent random variables ξ+ x

and η + x, we can assume from the beginning that ρ(0) > 0. It follows from

Lemma 4 that the function ρ satisfies equation (15). By Lemma 5, the set

K = {x ∈ X : ρ(x) > 0} is a subgroup in X. Obviously, this subgroup is

open. Hence, it is closed. Let x ∈ K. Denote by G the minimal closed subgroup

generated by x. There are two possibilities: either X is a field of characteristic

zero or X is a field of non-zero characteristic p.

Assume that X is a field of characteristic zero. It is well-known that then

X is a finite extension of the field of the p-adic numbers Qp, and hence the

additive group of the field X is topologically isomorphic to the group Qmp for

some m. This implies that X consists of compact elements. Thus G is a compact

subgroup. Consider the restriction of equation (15) to G. Put ϕ(x) = log ρ(x),

x ∈ G. It follows from (15) that

2ϕ(u) + ϕ(v) + ϕ(−v) = 2ϕ(0) + ϕ(u+ v) + ϕ(u− v), u, v ∈ G.

Integrate both sides of this equality by the measure dmG(v). We get that ϕ(u) =

ϕ(0) for all u ∈ G, and hence ρ(x) = ρ(0) for all x ∈ K. It follows from this that

K is a compact group and µ = mK .

IfX is a field of non-zero characteristic p, then the subgroupG is topologically

isomorphic to the group of residue classes modulo p and we reason similarly.

The necessity is proved.

Sufficiency. Let K be a nonzero compact subgroup of X. Assume that X is

a field of characteristic zero. Then the additive group of the fieldX is topologically

isomorphic to the group Qmp for some m. Since K is a compact subgroup, K is

topologically isomorphic to some subgroup of the group Zmp , where Zp is the ring

of p-adic integers. It is not difficult to verify that in this case the subgroup K

possesses the property:

(i) if x ∈ K, then x
2 ∈ K.

If X is a field of non-zero characteristic p, then obviously, (i) holds true.

Let ξ and η be independent identically distributed random variables with

values in X and distribution µ = mK ∗Ex. It follows from (i) that then ξ+η and

ξ − η are independent ([9, §7])). Hence, the random variables S and D are also

independent. �

Remark 1. Let X be an arbitrary non-discrete totally disconnected locally

compact field. Comparing Theorems A and 1, we note that, generally speaking,
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it is not true that if a characterization theorem holds for a field Qp, then it holds

for X. Below we give an example of a characterization theorem which holds true

when X = Qp, where p > 2, but fails, generally speaking, for an arbitrary X.

Denote by Aut(X) the set of all topological automorphisms of the additive

group of the field X, by I the identity automorphism ofX, and by S(X) the subset

of Aut(X) consisting of those α ∈ Aut(X) which have the following property:

there exists a nonzero compact subgroup K of X such that α(K)=(I+α)(K)=K.

The following statement follows from the main theorem proved in [12].

Theorem B. Let X = Qp, where p > 2. Let α be a topological automor-

phism of the additive group of the field X. Let ξ1 and ξ2 be independent random

variables with values in X and distributions µ1 and µ2. The symmetry of the

conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2
implies that µ1, µ2 ∈ I(X) if and only if α ∈ S(X).

We will verify that, generally speaking, Theorem B fails if X is an arbitrary

non-discrete totally disconnected locally compact field such that the residue field

R/P is a field of characteristic p > 2. Assume that X is a field of characteristic

zero. Then the additive group of the field X is topologically isomorphic to the

group Qmp for some m. In order not to complicate the notation, we assume that

X = Qmp . Let m > 1. Any topological automorphism α of the additive group

of the field X is defined by an reversible (m × m)-matrix with elements of Qp.
Assume that a diagonal matrix α0 = diag{e, . . . , e,−e} corresponds to a topologi-

cal automorphism α0. It follows from p > 2 that I ∈ S(Qp), and hence, obviously,

α0 ∈ S(X).

It is not difficult to verify that if L1 and L2 are random variables with values

in an arbitrary locally compact Abelian group, then the conditional distribution

of the random variable L2 given L1 is symmetric if and only if the random vectors

(L1, L2) and (L1,−L2) are identically distributed. This implies that if η1 and η2
are independent identically distributed random variables with values in X, then

the conditional distribution of the linear form L2 = η1 − η2 given L1 = η1 + η2 is

symmetric. Let ξ1 and ξ2 be independent identically distributed random variables

with values in X and distribution µ supported in the subgroup G = {0}m−1×Qp.
Since the restriction of α0 to G coincides with −I, it follows from what has been

said above that the conditional distribution of the linear form L2 = ξ1 + α0ξ2
given L1 = ξ1 + ξ2 is symmetric. Since µ is an arbitrary distribution, Theorem B

fails for the field X.
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