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On a characterization theorem on non-discrete totally
disconnected locally compact fields

By GENNADIY M. FELDMAN (Kharkiv)
and MARGARYTA V. MYRONYUK (Kharkiv)

Abstract. We prove the following theorem. Let X be a non-discrete totally dis-
connected locally compact field, R be its ring of integers, P be the nonzero prime ideal
of R. Assume that the residue field R/P is a field of characteristic p > 2. Let £ and 7
be independent identically distributed random variables with values in X and distribu-
tion u, such that p has a continuous density with respect to a Haar measure on X. This
implies that the random variables S = ¢ + 7 and D = (¢ — 7)? are independent if and
only if p is a shift of the Haar distribution of a compact subgroup of X.

1. Introduction

Let &1,&,...,&,, n > 2, be independent identically distributed real-valued
random variables. It is known that if the sample mean & = %2?21 &; and the
sample variance s° = %Z?zl(fj — £)? are independent, then all ¢; are Gauss-
ian random variables (see [15], [18], [19], [23], and also [17, §4.2]). For n = 2,
this theorem can be formulated as follows. If £ and 7 are independent identi-
cally distributed random variables and their sum £ + 1 and square of difference
(€ —n)? are also independent, then ¢ and 1 are Gaussian random variables. This
characterization theorem can be considered as a generalization of the well-known
Kac—Bernstein theorem, where Gaussian distribution on the real line is character-
ized by independence of the sum and the difference of two independent random
variables.
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In the last years, much attention has been devoted to the generalization of
characterization theorems of mathematical statistics to various algebraic struc-
tures, such as locally compact Abelian groups, Lie groups, quantum groups, sym-
metric spaces (see, e.g., [1]-[14], [16], [20], [21], and also [9] for additional refer-
ences and related results). However, in all studied characterization problems on
groups only linear forms of independent random variables with values in a group
were considered. To the best of our knowledge, first a non-linear characterization
problem was considered in [14], where, in particular, the following theorem was
proved.

Theorem A. Consider the field of p-adic numbers Q,, where p > 2. Let £
and n be independent identically distributed random variables with values in Q,,
and distribution u, such that y has a continuous density with respect to a Haar
measure on Q. This implies that the random variables S = £+n and D = (£—n)?
are independent if and only if p is a shift of the Haar distribution of a compact
subgroup of Q,,.

Using the scheme of the proof of Theorem A, we prove in this note that The-
orem A holds true for non-discrete totally disconnected locally compact fields.
Note that on totally disconnected locally compact Abelian groups, in particular,
on totally disconnected locally compact fields, Gaussian measures are degener-
ated, and shifts of the Haar distributions of compact subgroups play the role of
Gaussian measures.

Recall some results about non-discrete totally disconnected locally compact
fields (see, e.g., [22]), and introduce the notation that will be used. Let X be
a non-discrete totally disconnected locally compact field with an ultra-metric
norm |.|. Denote by R the ring of integers in X consisting of all elements of X
such that |z| < 1. The ring R is compact and open. Denote by P the prime
ideal in R consisting of all elements of R such that |z| < 1. The residue field
R/P is a field of non-zero characteristic p and consists of ¢ elements, where ¢
is a power of p. The ideal P is principal, i.e., there exists an element p € P

such that P = pR. In so doing, |p| = ¢! and X = |J p"R. The family

n=—oo

{p" R} _ . forms an open basis at zero of the field X. Denote by e the identity
of the field X. There exists an element € of order ¢ — 1 in the multiplicative
group of the field X. In so doing |¢| = 1, and the elements 0,¢,£2,...,e971 = ¢
form the complete set of representatives of the residue classes R/P. Take B C X.
Put B? = {x € X : . =t t € B}. Consider A = {z € X : |z —e¢| < 1},
ie., A = e+ P. FEach element a € A is represented as a convergent series
a=e+ap+awp?+ ..., where either a; = 0 or a; =%, k; € {1,2,...,¢—1}.
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The set A is a compact subgroup in the multiplicative group of the field X,
and when ¢ is odd, satisfies the condition A = A. Each element z € X,
x # 0, is uniquely represented in the form x = p”c®a, where n is an integer,
ke {1,2,...,q—1}, a € A. Denote by R* the group of invertible elements of
the ring R. It consists of all elements of R such that |x| = 1. Then each element
x € X, x # 0 is uniquely represented in the form z = p™c, where n is an integer,
c € R*.

The additive group of the field X is a locally compact Abelian group. We also
denote this group by X. Denote by (z,y), ¥,y € X, elements of the group X2.
Denote by T the mapping T : X2 +— X? defined by the formula T(x,y) =
(z +y, (z —y)?). The element x € X is said to be compact if the smallest closed
subgroup of X containing x is compact. Denote by mx a Haar measure on X.
Choose a Haar measure mx such that mx(R) = 1. Then mx(p"R) = ¢ "
We shall also assume that mx2 = mx x mx. Denote by I(X) the set of all shifts
of the Haar distributions my of compact subgroups K of the group X. Denote
by E, the degenerate distribution concentrated at a point x € X. If £ and 7 are
random variables with values in X, then we denote by u¢ the distribution of the
random variable £, and by j(¢ ) the distribution of the random vector (£, 7).

2. The main theorem

The main result of the work is the proof of the following statement.

Theorem 1. Let X be a non-discrete totally disconnected locally compact
field such that the residue field R/P is a field of characteristic p > 2. Let &
and 1 be independent identically distributed random variables with values in X
and distribution p, such that 1 has a continuous density with respect to a Haar
measure mx. The random variables S = ¢ +1n and D = (£ —n)? are independent
if and only if pn € I(X).

To prove Theorem 1, we need some lemmas.

Lemma 1. Let X be a non-discrete totally disconnected locally compact
field such that the residue field R/P is a field of characteristic p > 2. Then on
the set X[, there exists a continuous function s(x) satisfying the equation

s}(x) ==z, xe X3, (1)
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PRrROOF. Let x € X, x # 0. Then z is uniquely represented in the form
x = p"eFa, where n is an integer, k € {1,2,...,¢ — 1}, a € A, and the elements
0,e,¢2,...,e971 = e form the complete set of representatives of the residue classes
of R/P. We have 22 = p?"c2¥q2. The representation

X ={0}u D p"R*

n=—oo
implies that

X = oyu | pme, @

n=-—oo

Put A, = e* + P =¢*A, k =1,...,¢ — 1. Note that 4,1 = A and R* =
qg—1

U Ax. Since ¢ is odd, we have A2l = A. Tt follows from this that AE] = Agp
k=1

if k = 1,...,";21, and Af] = Aogp_gr1 if k = ﬁ;,...,q— 1. First define the

q—1

2
function s(z) on the set (R*)? = |J Asx. Let z € Ag. Then the equation
k=1

x = t? has two roots t; € A and —t; € A, and they belong to different

2

4azt,
residue classes. The residue class Ay is a compzact set, the function g(z) = =
is continuous on Ay and it is a one-to-one mapping of the set A on As,. This
implies that the inverse to g(x) mapping sy : Asp — Ay is also continuous, and
hence is a homeomorphism between Agy and Ag. Put s(x) = sp(x), if @ € Agy,
k=1,2,..., %. Since Ay, is an open set in X, the function s(z) is continuous
and satisfies equation (1) on (R*)[l. Taking into account (2), put

pis(c), if @ =p™e, ce (R,
5(x) =
0, if =0.

It is obvious that s(z) is the required function. O

Lemma 2. Let X be a non-discrete totally disconnected locally compact field
such that the residue field R/ P is a field of characteristic p > 2. Let (zg,y0) € X2,
and assume that |zo — yo| = ¢~'. Then for k > 1+ 1, the following equality

T{(z0,0) + (p*R)*} = (z0 + 3o, (z0 — y0)*) + (P*R) x (p"*'R) 3)

holds.
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PROOF. Since |z — yo|, = ¢!, we have z¢ — yo = p'c, where ¢ € R*. Note
that on the one hand, the equality

T{(x0,y0)+ (" R)*} = T{(xo + p*2,y0 + p*y) : 7,y € R}
= {(zo+yo+p"(@+y), (wo—v0)*+20" (x0—10) (z—)
+p** (@ —y)?) s2,y € R}
= {(zo+yo+p"s, (wo—yo) > +2p"ct+p*"1%) 1 5,t € R} (4)

holds true for any k. On the other hand, the equality
{2ct +p" 42 tc R} =R (5)

holds true for & > [ 4+ 1. Indeed, note that (e + p™R)!? = e 4+ p™R is fulfilled
for any m > 1. This implies that (¢ + p™R)? = ¢ + p™R for all ¢ € R, i.e.,
{c? +2cp™t + p?™t? 1 t € R} = ¢ + p™R, and hence, {2¢t +p™t?> : t € R} = R.
For k > 1+ 1, this equality implies (5). Taking into account (5), we get that (3)
follows from (4). O

Lemma 3. Let X be a non-discrete totally disconnected locally compact field
such that the residue field R/ P is a field of characteristic p > 2. Let a function s
be as constructed in the proof of Lemma 1. Consider the mappings S; from
X x X2 to X2 of the form

Su(u,v) = (u+25(v)’ u—;(v)> 7 S, 0) = (u —25(7))’ u+25(v)> .

Let (ug,v0) € X x XPl, and assume that |s(vo)| = ¢~!. Put Ep = (ug,v) +
(p*R) x (p**H'R). Then for k > 1+ 1, the following statements are valid:
(i) Ex C X x X,
(i) S1(Ex) N Sa(Ey) =0,
i) [ @z, y)dmxz(z,y) = [ ©;(S;(u,v))|s(v)|dmx2(u,v), j =1,2,
S;(Ek) Ej
for any continuous function ®;(x,y) on S;(Ey).
PROOF. (i) Note that |vg| = ¢g~2!. Tt follows from the proof of Lemma 1 that

if wg € X and |wo| = ¢ %, then wo +w € XP for w € p?*'R. Since k > 1 +1,
from what has been said it follows that (i) is fulfilled.
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(i) Assume that Si(E)) N Sz(Ey) # 0. Then as easily seen, there exist
elements vy, vo € R such that

s(vg + p* 1) = —s(vo + pF ). (6)

Since vo € X and |vg| = ¢, we have vy = p%ec, where ¢ € (R*)P and
vo + pFtly; = p?(c 4+ pF ) € p2(c + p*'R), i = 1,2. It follows from the
definition of the function s that {s(z) : € (c+pR)} {—s(x) : z € (c+pR)} = 0.
Since k > I + 1, this implies that {s(x) : z € p?(c + p*'R)}N{—s(x) : = €
p2(c+p*'R)} = 0, contrary to (6). Hence, (ii) is proved.

(iii) We will prove that equality (iii) holds true for S;. For Sy the reasoning
uo+;(U0)’ uo—;(vo))

is similar. Put (2o, y0) = S1(ug,vo) = ( , and verify that

S1(Ex) = (z0,%0) + (p"R)*. (7)

Let u € p*R, v € p**'R. We have

Ug +u+ s(vg +v) ug+u—s(vg+v
Sl(u0+u,vo+v)_( o 2(0 )’ 0 2(0 ))

Since the residue field R/P is a field of characteristic p > 2, we have [2z| = ||
for all x € X. Hence,

ug +u+s(vg+v)  up+s(vo)

2 2

< max {lul,[s(vo +v) = s(vo)[}.  (8)

It follows from u € p* R that
lul <q*. (9)
Since §%(z) = x, we have

|v]

|s(vo +v) — 5(vo)| = |s(vo +v) + s(vo)|

(10)

Note that vy + v = p?c + p**!t for some ¢t € R. This implies that s(vy + v) =
pls(c+pF~lt). Moreover, 5(vg) = p's(c). Since the points s(c+p*~'t) and s(c) are
at the same residue class of the ideal P in R, we have |s(c+p*~'t) +5(c)| = 1, and

hence, |s(vo + v) + 5(vg)| = ¢~!. Taking into account that |v| < ¢~ ¥~ it follows
from (10) that

[s(vo +v) —s(v0)| < g7 (11)
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Taking into account (9) and (11), we find from (8) that inequality

uo+u+s(vo+v) uo+s(vo)| _ "

2 2 - (12)

holds true. We note that if T'(a,b) = T'(a’,b'), then either (a,b) = (a’,b’) or
(a,b) = (V/,a’). Since |zg — yo| = |5(vo)| = ¢~%, and k > [ + 1, the restriction of
the mapping 7" to the set (xq,yo) + (p*R)? is injective. Taking this into account,
(7) follows from Lemma 2 and (12). Moreover, it follows from what has been said
that the mappings T' and S; are inverse homeomorphisms of the sets (xq,yo) +
(ka)Q and E}.

Let m > 1. Represent the group (p*R)? as a union of cosets of the subgroup
(p*+™R)2. We have

q27n
(p*R)* = | B:.
i=1

Then by Lemma 2,

2m

2
S1(Ex) = U{(xo,yo) + B;}. (13)
i=1
We note that mx2{(zo, yo)+B; } =mx2(B;)=q~2*72™. Let (z;,v:) € (w0, yo)+Bi.
Then T'(x;,v;) = (u;,v;) € T{(z0,y0)+Bi} C Ex. By the condition of the lemma,
|s(v)| = ¢! for (u,v) € Ej. Thus |s(v;)| = ¢~'. It follows from k > [ + 1 that
(w0,y0)+ Bi = (To, ¥o) + (p*+™R)?%, where |To— 7| = ¢~!. Then Lemma 2 implies
that T{(zo, yo)+Bi} = T{(Zo, J0)+(* " R)*} = (To+5o, (To—o)*) +(p* ™ R) x
(pF*+™mH R). We obtain from here that mx2{T{(zo,y0) + B;}} = ¢~ k+2m+h),
It follows from what has been said that the equality

2@1(%»%‘)7”)(2{(950790) + Bi}

= O (S (ui, vi))mx>{T{(z0,y0) + Bi} }s(vi)| ™" (14)

@
Il
—

is valid. Moreover, (13) implies that the sum in the left-hand side of equality (14)
tends to the integral of the left-hand side of equality (iii) as m — oo. Since
TS51(Ey) = Ey, it follows from (13) that

2m

P

By = | T{(z0,30) + Bi}.
i=1
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Thus the sum in the right-hand side of equality (14) tends to the integral of the
right-hand side of equality (iii) as m — oo. Passing to the limit in equality (14)
as m — oo, we get (iii). O

Lemma 4. Let X be a non-discrete totally disconnected locally compact
field such that the residue field R/ P is a field of characteristic p > 2. Let £ and 7
be independent identically distributed random variables with values in X and
distribution p, such that p has a continuous density p with respect to mx and
p(0) > 0. This implies that the random variables S = ¢ +n and D = (£ —n)? are
independent if and only if the density p satisfies the equation

p*(u)p(v)p(=v) = p*(0)p(u + v)p(u —v), u,v € X. (15)

PROOF. First, we shall prove that the distribution y (g py has a density o with
respect to mx> and get a representation for ¢. Inasmuch as ps py = T (1))
and the distribution g,y is absolutely continuous with respect to mxy:, so is
pemi(t,t) -t € X} = 0. Therefore, the distribution ji(g py is concentrated at
the set X x (X[2\{0}). Fix a function s constructed in the proof of Lemma 1.
Let the mappings S; and the sets Ej, be the same as in Lemma 3. Let (ug, vo) €
X x (XIZI\{0}). Represent the element s(vo) in the form s(vy) = p'c, where
¢ € R*. By Lemma 3, (i) and (ii) hold for & >+ 1. We have

sy (Ex} = T(em) {Ex} = e (T (Er)} = / p()p(y)dmxz (z, )
T-1(Ey)

- / p(@)p(y)dmx(z,y) + / pe)p(y)dmya(z,y).  (16)
S1(Ek) Sa(Ek)

Using equality (iii) of Lemma 3, transform the integrals in the right-hand side of
equality (16). We obtain

[ omtmsatan = [o (7)o (S5 oo im0,

Sl(Ek) F

[ omtnsaen = o) () ) s

Sa(Ek) E},

Then (16) implies that

s (B) =2 [ (7Y (U0 et e o).

Ey
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This equality means that the distribution (g py has a density o(u, v) with respect
to mxz, and this density is of the form

2 (“+g<“>) p ("—;<“>) s(0)|71, if ue X, ve XE\{o},

0, if welX, v¢ (XE\{0}).

o(u,v) = (17)

Note that when we got representation (17) for the density of the distribution
K(s,p), we did not use the independence of the random variables S and D.

Necessity. By the condition of the lemma, the random variables S and D are
independent. Therefore, there exist integrable with respect to mx functions r;
on X, such that the equality

) =20 () (S22 o (18)

holds true almost everywhere with respect to my2 on X x (X[?I\{0}). Since the

function in the right-hand side of equality (18) is continuous, we can assume with-
out loss of generality that the functions r; are also continuous, and equality (18)
holds true everywhere on X x (X2\{0}). Since p(0) > 0, it is easily seen that
r1(0) > 0. Put v = t2, ¢ # 0. It follows from (18) that

rm%wﬁmpcwﬂp(“ﬂ>mﬁ|%texw¢a (19)

2 2
Note that (18) and (19) imply the equality

on () (-4)

— 1 (0)p (“Jr;(ﬂ)) P (“‘;“2)) , (wi) e X2 t£0. (20

It follows from the continuity of p and r; that equality (20) holds true for all
u,t € X. Put in (20) t = 0. We deduce from the resulting equality that

r1(0) o (u
rl(u):p;(o)p (7), ue X. (21)

2
Substituting (21) into (20), we find that

)0()o (22

— 22(0)p (“+5(t2>>p<“_;(t2>>, u,t € X. (22)

2
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Note that either s(¢%) =t or s(t?) = —t. This implies that the equalities

() () (o) vex
() () ()5 e

are fulfilled for an arbitrary function p. Substituting (23) and (24) into (22),
we get that the density p satisfies equation (15). The necessity is proved.

and

Sufficiency. It follows from (17) and (24) that we have the following repre-
sentation for the density ¢ of the distribution s (g p):

20 (S1) p (451) [s(t2) Y, i we X, v="12 t£0,
Q(U,U) = (25)
0 it we X, v (XP\{0}).

If a density p satisfies equation (15), it is easily seen that the density o(u,v) is
represented as a product of a function of u and a function of v. This implies the
independence of S and D. O

Lemma 5. Let X be a non-discrete totally disconnected locally compact
field such that the residue field R/ P is a field of characteristic p > 2. Let £ and n
be independent identically distributed random variables with values in X and
distribution p, such that p has a continuous density p with respect to mx and
p(0) > 0. If the random variables S = £ +n and D = (¢ — n)? are independent,
then the set K = {x € X : p(x) > 0} is a subgroup of X.

PRrROOF. By Lemma 4, the function p(z) satisfies equation (15). Assume that
p(z) >0 at a point x € X. Put in (15) u = v = . We get

p° (g) p (—g) = p*(0)p(). (26)
Since p(0) > 0 and p(x) > 0, it follows from (26) that
E)ol(5) 0 o
Put in (15) v = v = —§. We obtain
o (=5)r(5) =002 (28)

Taking into account (27), it follows from (28) that p(—x) > 0. So we proved that
if p(x) > 0, then p(—=z) > 0. Taking this into account, (15) implies that the set
K ={x € X : p(x) > 0} is a subgroup in X. O
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Now we can prove the main theorem.

PROOF OF THEOREM 1. Necessity. It is obvious that replacing, if it is nec-
essary, the random variables ¢ and n by new independent random variables £ + z
and 7 + x, we can assume from the beginning that p(0) > 0. It follows from
Lemma 4 that the function p satisfies equation (15). By Lemma 5, the set
K ={x € X : p(x) > 0} is a subgroup in X. Obviously, this subgroup is
open. Hence, it is closed. Let x € K. Denote by G the minimal closed subgroup
generated by x. There are two possibilities: either X is a field of characteristic
zero or X is a field of non-zero characteristic p.

Assume that X is a field of characteristic zero. It is well-known that then
X is a finite extension of the field of the p-adic numbers Q,, and hence the
additive group of the field X is topologically isomorphic to the group Q' for
some m. This implies that X consists of compact elements. Thus G is a compact
subgroup. Consider the restriction of equation (15) to G. Put ¢(z) = log p(z),
z € G. Tt follows from (15) that

2¢(u) + (v) + p(=v) = 2¢(0) + p(u+v) + p(u—v), uw,veEG.

Integrate both sides of this equality by the measure dmg(v). We get that p(u) =
©(0) for all u € G, and hence p(x) = p(0) for all x € K. It follows from this that
K is a compact group and p = mg.

If X is a field of non-zero characteristic p, then the subgroup G is topologically
isomorphic to the group of residue classes modulo p and we reason similarly.
The necessity is proved.

Sufficiency. Let K be a nonzero compact subgroup of X. Assume that X is
a field of characteristic zero. Then the additive group of the field X is topologically
isomorphic to the group Q" for some m. Since K is a compact subgroup, K is
topologically isomorphic to some subgroup of the group Z;', where Z,, is the ring
of p-adic integers. It is not difficult to verify that in this case the subgroup K
possesses the property:

(i) if z € K, then § € K.
If X is a field of non-zero characteristic p, then obviously, (i) holds true.

Let £ and 1 be independent identically distributed random variables with
values in X and distribution u = mg * E,. It follows from (i) that then £ +n and
& —n are independent ([9, §7])). Hence, the random variables S and D are also
independent. ([

Remark 1. Let X be an arbitrary non-discrete totally disconnected locally
compact field. Comparing Theorems A and 1, we note that, generally speaking,
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it is not true that if a characterization theorem holds for a field @, then it holds
for X. Below we give an example of a characterization theorem which holds true
when X = Q,, where p > 2, but fails, generally speaking, for an arbitrary X.

Denote by Aut(X) the set of all topological automorphisms of the additive
group of the field X, by I the identity automorphism of X, and by S(X) the subset
of Aut(X) consisting of those a € Aut(X) which have the following property:
there exists a nonzero compact subgroup K of X such that a(K)=(I+a)(K)=K.
The following statement follows from the main theorem proved in [12].

Theorem B. Let X = Q,, where p > 2. Let o be a topological automor-
phism of the additive group of the field X. Let & and & be independent random
variables with values in X and distributions p; and pe. The symmetry of the
conditional distribution of the linear form Lo = & + «a&s given Ly = & + &
implies that p1, e € I(X) if and only if a € S(X).

We will verify that, generally speaking, Theorem B fails if X is an arbitrary
non-discrete totally disconnected locally compact field such that the residue field
R/P is a field of characteristic p > 2. Assume that X is a field of characteristic
zero. Then the additive group of the field X is topologically isomorphic to the
group Q" for some m. In order not to complicate the notation, we assume that
X = Q. Let m > 1. Any topological automorphism « of the additive group
of the field X is defined by an reversible (m x m)-matrix with elements of Q,.
Assume that a diagonal matrix ag = diag{e, ..., e, —e} corresponds to a topologi-
cal automorphism «y. It follows from p > 2 that I € S(Q,), and hence, obviously,
Qg € S(X)

It is not difficult to verify that if L; and Lo are random variables with values
in an arbitrary locally compact Abelian group, then the conditional distribution
of the random variable Lo given L is symmetric if and only if the random vectors
(L1, L) and (L1, —L2) are identically distributed. This implies that if 7 and 7,
are independent identically distributed random variables with values in X, then
the conditional distribution of the linear form Lo = 1y — 12 given Ly =1y + 12 is
symmetric. Let & and & be independent identically distributed random variables
with values in X and distribution u supported in the subgroup G = {0}™~1 x Qp-
Since the restriction of oy to G coincides with —1, it follows from what has been
said above that the conditional distribution of the linear form Lo = & + apés
given Ly = &1 + &5 is symmetric. Since p is an arbitrary distribution, Theorem B
fails for the field X.
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