
Publ. Math. Debrecen

95/3-4 (2019), 377–392

DOI: 10.5486/PMD.2019.8503

Gradient estimates for a weighted nonlinear equation
on complete noncompact manifolds

By JING LI (Nanjing), GUOQING HE (Wuhu) and PEIBIAO ZHAO (Nanjing)

Abstract. Ma, Huang and Luo [12] considered ∆u+cuα = 0(α < 0) with Ricij ≥
−Kgij , and obtained some gradient estimates. In the present paper, we investigate the

weighted nonlinear equation ∆fu+cu−α = 0 with RicNf ≥ −K, where f is a smooth real-

valued function on a complete noncompact Riemannian manifold (Mn, g), α > 0 and c

are two real constants, and we achieve some gradient estimates for positive solutions of

this weighted nonlinear equation. The results posed in this paper can be regarded as

a natural generalization of the results in [12].

1. Introduction

Let f be a smooth real-valued function on a complete noncompact Riemann-

ian manifold (Mn, g). The f -Laplacian (see [13], [14]) is given by ∆f = ∆−∇f∇.

It is known that ∆f is self-adjoint, while dµ = e−fdVg is a naturally associated

measure on Mn. The definition of the N -Bakry–Emery Ricci tensor is as follows:

RicNf = Ric +∇2f − 1

N
df ⊗ df,
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where ∇2 denotes the Hession and Ric denotes the Ricci tensor, 0 ≤ N ≤ ∞,

N = 0 if and only if the function f = 0. When N =∞, it is called the∞-Bakry–

Emery Ricci tensor:

Ricf = Ric +∇2f.

In particular, when Ricf = λg, it is called a gradient Ricci soliton which is closely

related to Ricci flow.

Ma, Huang and Luo [12] and Yang [19] obtained some gradient estimates

for positive solutions of the equation as follows:

∆u+ cu−α = 0, (1.1)

in a complete noncompact Riemannian manifold M , where α > 0, c are two real

numbers. Equation (1.1) has an important position (see [6], [9]). In this paper,

we study the weighted nonlinear equation

∆fu+ cu−α = 0 (1.2)

in M , where α > 0, c are two real numbers and f is a smooth real-valued function

on M . For gradient estimates, there are many interesting results, one can see

[3], [4], [7], [8], [10], [11], [18] for details.

Following Brighton’s argument in [1] by choosing a test function uε(ε 6= 0),

there are many papers to get gradient estimates in this way, see [12] and the others.

By choosing this test function uε(ε 6= 0), we also obtain the gradient estimates

about (1.2) with RicNf ≥ −K, while Zhang and Ma [21] obtained the gradient

estimates about (1.2) by choosing h = logu (the idea was originated by Cheng

and Yau [5]). We get the following result firstly.

Theorem 1.1. Let (Mn, g) be a complete noncompact Riemannian manifold

with RicNf ≥ −K in the metric ball Bp(2R), where −K = −K(2R), K(2R) ≥ 0,

R > 0. Assume that u is a positive solution to (1.2) with α, c satisfying one of

the following two conditions:

(1) When c > 0, we have α > 0;

(2) When c < 0,

0 < α <
1

2[n+N + 2 +
√

(n+N)2 + 5(n+N) + 3]
, n ≥ 3,

then we have

|∇u(x)| ≤ C(n,N, α)M

√
2K−

(n+N−1+
√

(n+N)KR)c1+c2−3c21
R2

, (1.3)

where M = supBp(2R) u(x), C(n,N, α) > 0.
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Remark 1.1. Comparing with [12], our result in Theorem 1.1 extends the

gradient estimate of ∆u + cuα = 0 (α < 0) with Ricij ≥ −Kgij to the case of

∆fu + cu−α = 0 (α > 0) with RicNf ≥ −K, where −K = −K(2R), K(2R) ≥ 0,

R > 0.

Letting R→∞ in (1.3), we obtain

Corollary 1.2. Let (Mn, g) be a complete noncompact Riemannian mani-

fold with RicNf ≥ −K, where K ≥ 0 is a constant. Suppose that u is a positive

solution to (1.2) with α, c satisfying conditions (1) or (2) in Theorem 1.1, then

we get

|∇u| ≤ C(n,N, α)M
√

2K, (1.4)

where M = supM u(x), C(n,N, α) > 0.

Remark 1.2. Corollary 1.2 extends the global estimate [12, Corollary 1.5] of

∆u+cuα = 0 (α < 0) with Ricij ≥ −Kgij to the global estimate of ∆fu+cu−α =

0 (α > 0) with RicNf ≥ −K, where K ≥ 0 is a constant.

In particular, when K = 0, that is RicNf ≥ 0, we have that any positive

solution to (1.2) must be constant.

When c = 0 in (1.2), it degenerates an f -harmonic function, that is,

∆fu = ∆u−∇f∇u = 0.

To a smooth positive harmonic function, Schoen and Yau [20] studied gradi-

ent estimates of the equation above on complete Riemannian manifolds in 1994.

To a smooth positive f -harmonic function, Chen and Chen [4] investigated gra-

dient estimates of it with Ricf ≥ −H, (H ≥ 0). It is an interesting work to study

gradient estimates of f -harmonic functions with RicNf ≥ −K, (K ≥ 0).

Theorem 1.3. Suppose that (Mn, g) is a complete noncompact Riemannian

manifold and RicNf ≥ −K in the metric ball Bp(2R), where −K = −K(2R),

K(2R) ≥ 0, R > 0. Then, for any positive f -harmonic function u, we have

|∇u(x)| ≤M

√
n+N

(ε−1)2−(n+N)(ε2−ε)

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+
(

2 +
(n+N)(ε− 1)2

(ε− 1)2 − (n+N)(ε2 − ε)

) c21
R2

] 1
2

, (1.5)

where M = supBp(2R)u(x), ε ∈ (0, 1).
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By choosing R → ∞ in (1.5), the following global estimate of positive

f -harmonic functions is established.

Corollary 1.4. Suppose that (Mn, g) is a complete noncompact Riemann-

ian manifold and RicNf ≥ −K, (K ≥ 0). Then, for any positive f -harmonic

function u, we have

|∇u| ≤ 2M

√
2(n+N − 1)K

n+N
, (1.6)

where M = supMu(x).

Remark 1.3. When RicNf ≥ 0, we also have that any positive f -harmonic

function must be constant here.

In particular, Li [10] studied the diffusion operator L = ∆−∇φ · ∇ and ob-

tained many results of it, including if Ricm,n(L) ≥ 0, then every positive solution

(and bounded solution) of Lu = 0 must be constant (see [10, Theorem 2.2]).

Similarly, Ruan [16] also obtained this Liouville property of L-harmonic

function on M (see [16, Corollary 1.2]).

2. Proof of Theorem 1.1.

In this subsection, we give the proof of Theorem 1.1.

Let h=uε, where ε is a nonzero constant that is to be determined. From (1.2),

we get

∆fh = ∆h−∇f∇h = ε(ε− 1)uε−2|∇u|2 + εuε−1∆fu

= ε(ε− 1)uε−2|∇u|2 − cεuε−α−1 =
ε− 1

ε

|∇h|2

h
− cεuε−α−1

=
ε− 1

ε

|∇h|2

h
− cεh

ε−α−1
ε , (2.1)

and

∇h∇∆fh = ∇h∇
(
ε− 1

ε

|∇h|2

h
− cεh

ε−α−1
ε

)
=
ε− 1

εh
∇h∇|∇h|2 − ε− 1

ε

|∇h|4

h2
− cεε− α− 1

ε

|∇h|2

h
h
ε−α−1

ε

=
ε− 1

εh
∇h∇|∇h|2 − ε− 1

ε

|∇h|4

h2
− c(ε− α− 1)h

ε−α−1
ε
|∇h|2

h
. (2.2)
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Substituting (2.1), (2.2) together into the Bochner formula [17] for h, we have:

1

2
∆f |∇h|2 ≥

1

n+N
|∆fh|2 + 〈∇h,∇(∆fh)〉+ RicNf (∇h,∇h)

=
1

n+N

[
ε− 1

ε

|∇h|2

h
− cεh

ε−α−1
ε

]2
+
ε− 1

εh
∇h∇|∇h|2

− ε− 1

ε

|∇h|4

h2
− c(ε− α− 1)h

ε−α−1
ε
|∇h|2

h
+ RicNf (∇h,∇h)

=

[
1

n+N

(ε−1)2

ε2
− ε−1

ε

]
|∇h|4

h2
+
c2ε2

n+N
h2(

ε−α−1
ε )+

ε−1

εh
∇h∇|∇h|2

−

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]
h
ε−α−1

ε
|∇h|2

h
+ RicNf (∇h,∇h). (2.3)

Lemma 2.1. Assume that u is a positive solution to (1.2) and RicNf ≥ −K
in the metric ball Bp(2R), where −K = −K(2R), K(2R) ≥ 0, R > 0. Denote

h = uε with ε 6= 0. When c > 0 and α > 0, then there exists ε ∈ (0, 1) such that

1

2
∆f |∇h|2 ≥

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
|∇h|4

h2
+
ε− 1

εh
∇h∇|∇h|2−K|∇h|2. (2.4)

Proof. From (2.3), when c > 0, α > 0, for ε ∈ (0, 1),

−c

[
2(ε− 1)

n+N
+ (ε− α− 1)

]
≥ 0,

so we have (2.4). Lemma 2.1 is proved. �

Lemma 2.2. Assume that u is a positive solution to (1.2) and RicNf ≥ −K
in the metric ball Bp(2R), where −K = −K(2R), K(2R) ≥ 0, R > 0. Denote

h = uε with ε 6= 0. If c < 0, and for a fixed α, there exist two positive constants

ε, δ such that

c

[
2(ε− 1)

n+N
+ (ε− α− 1)

]
≥ 0 (2.5)

and
c2ε2

n+N
− 1

δ

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]
≥ 0, (2.6)

then we have

1

2
∆f |∇h|2 ≥

{
1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]}
|∇h|4

h2

+
ε− 1

εh
∇h∇|∇h|2 −K|∇h|2. (2.7)
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Proof. Fix a point q. Suppose that there exists a constant δ > 0 such that

h
ε−α−1

ε ≤ δ |∇h|
2

h , according to (2.5), then (2.3) becomes

1

2
∆f |∇h|2 ≥

{
1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ
[2c(ε− 1)

n+N
+ c(ε− α− 1)

]} |∇h|4
h2

+
c2ε2

n+N
h

2(ε−α−1)
ε +

ε− 1

εh
∇h∇|∇h|2 + RicNf (∇h,∇h)

≥
{

1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ
[2c(ε− 1)

n+N
+ c(ε− α− 1)

]} |∇h|4
h2

+
ε− 1

εh
∇h∇|∇h|2 −K|∇h|2.

Conversely, if h
ε−α−1

ε ≥ δ |∇h|
2

h at q, according to (2.5), (2.6), then (2.3) becomes

1

2
∆f |∇h|2 ≥

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
|∇h|4

h2
+
ε− 1

εh
∇h∇|∇h|2+RicNf (∇h,∇h)

+

[
c2ε2

n+N
− 1

δ
(
2c(ε− 1)

n+N
+ c(ε− α− 1))

]
δ2
|∇h|4

h2

≥

{
1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]}
|∇h|4

h2

+
ε− 1

εh
∇h∇|∇h|2 + RicNf (∇h,∇h)

≥

{
1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]}
|∇h|4

h2

+
ε− 1

εh
∇h∇|∇h|2 −K|∇h|2.

In both cases, we can find that (2.7) holds always. Lemma 2.2 is proved. �

According to the maximum principle, we only need to ensure that |∇h|
4

h2 has

a positive coefficient in (2.4), and (2.7) can get the upper bound of the term |∇h|.
To get this goal, we prove the following proposition.

Proposition 2.3. Let (Mn, g) be a complete noncompact Riemannian man-

ifold with RicNf ≥ −K, where K ≥ 0 is a constant. Suppose that u is a positive

solution to (1.2). If α and c satisfy one of the following two conditions:

(i) when c > 0, α > 0;

(ii) when c < 0, 0 < α < 1

2[n+N+2+
√

(n+N)2+5(n+N)+3]
, n ≥ 3,
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then we have

1

2
∆f |∇h|2 ≥ C̃1(n,N, α)

|∇h|4

h2
+ C̃2(n,N, α)

∇h
h
∇|∇h|2 −K|∇h|2, (2.8)

where C̃1(n,N, α) > 0, C̃2(n,N, α) < 0.

Proof. Next, we prove the above results in two cases.

Case 1. c > 0, α > 0.

From Lemma 2.1, we have (2.4), that is

1

2
∆f |∇h|2 ≥

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
|∇h|4

h2
+
ε− 1

εh
∇h∇|∇h|2 −K|∇h|2.

We find that C̃1(n,N, α) = 1
n+N

(ε−1)2
ε2 − ε−1

ε > 0, C̃2(n,N, α) = ε−1
ε < 0 at this

situation.

Case 2. c < 0, 0 < α < 1

2[n+N+2+
√

(n+N)2+5(n+N)+3]
, n ≥ 3.

According to Lemma 2.2, ε and δ need to be selected appropriately to ensure

the following inequality:

1

n+N

(ε− 1)2

ε2
− ε− 1

ε
− δ

[
2c(ε− 1)

n+N
+ c(ε− α− 1)

]
> 0. (2.9)

When c < 0, under the assumption of (2.5), inequality (2.6) becomes

δ ≥
2(ε−1)
n+N + (ε− α− 1)

cε2

n+N

(2.10)

and (2.9) becomes

δ <
1

n+N
(ε−1)2
ε2 − ε−1

ε

c
[
2(ε−1)
n+N + (ε− α− 1)

] . (2.11)

In order to ensure we can choose a positive δ, from (2.10) and (2.11), we need to

choose an ε satisfying

2(ε−1)
n+N + (ε− α− 1)

cε2

n+N

<
1

n+N
(ε−1)2
ε2 − ε−1

ε

c
[
2(ε−1)
n+N + (ε− α− 1)

] . (2.12)
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The above inequality (2.12) can be written as

[
2(ε− 1)

a
+ (ε− α− 1)

]2
<

ε2

n+N

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
, (2.13)

where a = n+N .

Inequality (2.13) is equivalent to

(a2+5a+3)ε2−
[
2(α+1)a2+(4α+9)a+6

]
ε+
[
a2(α+1)2+4(α+1)a+3

]
< 0. (2.14)

To ensure there are some ε suiting for (2.14), we have

[
2(α+ 1)a2 + (4α+ 9)a+ 6

]2
− 4
[
a2(α+ 1)2 + 4(α+ 1)a+ 3

]
(a2 + 5a+ 3)

= a2
[
4α2 − 8α+ 1− 4α2a− 4αa

]
= (4− 4a)α2 − (4a+ 8)α+ 1 > 0. (2.15)

It is necessary that there are some α holding for (2.15) to ensure there are some

ε suiting for (2.14), so we have

(4a+ 8)2 − 4(4− 4a) > 0

and (4a+ 8)2 − 4(4− 4a) > 0 is right for ∀a = n+N ≥ 3.

So we can get the roots of (2.15):

α1 =
1
2

a+ 2−
√
a2 + 5a+ 3

< 0, α2 =
1
2

a+ 2 +
√
a2 + 5a+ 3

> 0.

So we can choose α ∈
(

0,
1
2

a+2+
√
a2+5a+3

)
. Then we can obtain the roots of (2.14):

ε1 =
[2(α+ 1)a2 + (4α+ 9)a+ 6]− a

√
4α2 − 8α+ 1− 4(α2 + α)a

2(a2 + 5a+ 3)
,

ε2 =
[2(α+ 1)a2 + (4α+ 9)a+ 6] + a

√
4α2 − 8α+ 1− 4(α2 + α)a

2(a2 + 5a+ 3)
,

and we can check that ε1 > 0, ε2 > 0. We choose

ε := ε̃ =
ε1 + ε2

2
=

2(α+ 1)a2 + (4α+ 9)a+ 6

2(a2 + 5a+ 3)
. (2.16)
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We need ε̃−1 = a[(2a+4)α−1]
2(a2+5a+3) < 0 and obtain α < 1

2a+4 . We also need (2.5) is right

when (2.16) holds, then we have α > 0. So we choose α ∈
(

0,
1
2

a+2+
√
a2+5a+3

)
because of

1
2

a+2+
√
a2+5a+3

< 1
2a+4 . In particular, we let

δ := δ̃ =
1

2


2(ε̃−1)
n+N + (ε̃− α− 1)

cε̃2

n+N

+
1

n+N
(ε̃−1)2
ε̃2 − ε̃−1

ε̃

c
[
2(ε̃−1)
n+N + (ε̃− α− 1)

]
 . (2.17)

Then (2.5), (2.6) and (2.9) are satisfied, and (2.7) becomes

1

2
∆f |∇h|2 ≥ C̃1(n,N, α)

|∇h|4

h2
+ C̃2(n,N, α)

∇h
h
∇|∇h|2 + RicNf (∇h,∇h)

≥ C̃1(n,N, α)
|∇h|4

h2
+ C̃2(n,N, α)

∇h
h
∇|∇h|2 −K|∇h|2, (2.18)

where C̃1(n,N, α) > 0, C̃2(n,N, α) < 0 are given by

C̃1(n,N, α) =
1

2

 (ε̃− 1)2

aε̃2
− ε̃− 1

ε̃
− a

ε̃2

[
2(ε̃− 1)

a
+ ε̃− α− 1

]2 ,

C̃2(n,N, α) =
2αa2 + (4α− 1)a

2(α+ 1)a2 + (4α+ 9)a+ 6
,

respectively, at this situation, where a = n + N . We complete the proof of

Proposition 2.3. �

In the following subsection, we will complete the proof of Theorem 1.1.

Choosing a cut-off function ξ, it satisfies ξ(r) ∈ [0, 1], ξ(r) = 1 for r ≤ 1, ξ(r) = 0

for r ≥ 2, and

0 ≥ ξ− 1
2 ξ
′
(r) ≥ −c1, ξ

′′
(r) ≥ −c2,

where c1 > 0, c2 > 0. Let ρ(x) = d(x, p) be the distance between the point x and

the point p in M , and let the function

φ(x) = ξ

(
ρ(x)

R

)
.

Without loss of generality, we can suppose that φ is smooth in Bp(2R) from

Calabi [2] or Cheng and Yau [5]. We get

|∇φ|2

φ
≤ c21
R2

. (2.19)
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From Qian’s results in [15], we get

∆f (ρ2) ≤ (n+N)

(
1 +

√
1 +

4Kρ2

n+N

)
.

So

∆fρ =
1

2ρ

[
∆f (ρ2)− 2|∇ρ|2

]
≤ n+N − 2

2ρ
+
n+N

2ρ

(
1 +

√
1 +

4Kρ2

n+N

)

=
n+N − 1

ρ
+
√

(n+N)K,

and

∆fφ =
ξ
′′
(r)|∇ρ|2

R2
+
ξ
′
(r)∆fρ

R
≥ −

(n+N − 1 +
√

(n+N)KR)c1 + c2
R2

. (2.20)

We define the function G = φ|∇h|2 and will use the maximum principle on it.

Suppose that the point x0 ∈ Bp(2R) is the maximal value point ofG andG(x0)>0

(otherwise the proof is trivial). Then at x0,

∆fG ≤ 0 and ∇|∇h|2 = −|∇h|
2

φ
∇φ,

and

0 ≥ ∆fG = φ∆f |∇h|2 + |∇h|2∆fφ+ 2∇φ∇|∇h|2

= φ∆f |∇h|2 +
∆fφ

φ
G− 2

|∇φ|2

φ2
G

≥ 2φ

[
C̃1(n,N, α)

|∇h|4

h2
+ C̃2(n,N, α)

∇h
h
∇|∇h|2 + RicNf (∇h,∇h)

]

+
∆fφ

φ
G− 2

|∇φ|2

φ2
G

= 2C̃1(n,N, α)
G2

φh2
−2C̃2(n,N, α)

G

φ
∇φ∇h

h
−2KG+

∆fφ

φ
G−2

|∇φ|2

φ2
G, (2.21)

where, in the second inequality, the estimate (2.18) is used. Multiplying both

sides of (2.21) by φ
G yields

2C̃1(n,N, α)
G

h2
≤ 2C̃2(n,N, α)∇φ∇h

h
+ 2Kφ−∆fφ+ 2

|∇φ|2

φ
. (2.22)
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Using the Cauchy inequality

2C̃2(n,N, α)∇φ∇h
h
≤ (C̃2(n,N, α))2

C̃1(n,N, α)

|∇φ|2

φ
+ C̃1(n,N, α)

G

h2

in (2.22) yields

C̃1(n,N, α)
G

h2
≤ 2Kφ−∆fφ+

(
2 +

(C̃2(n,N, α))2

C̃1(n,N, α)

)
|∇φ|2

φ
. (2.23)

Hence, for Bp(R), we have

C̃1(n,N, α)G(x) ≤ C̃1(n,N, α)G(x0)

≤ h(x0)2

[
2K +

(n+N − 1 +
√

(n+N)KR)c1 + c2
R2

+

(
2 +

(C̃2(n,N, α))2

C̃1(n,N, α)

)
c21
R2

]
. (2.24)

Then, we have

C̃1(n,N, α)ε2u2ε−2|∇u|2(x)

≤ h(x0)2ε

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+

(
2+

(C̃2(n,N, α))2

C̃1(n,N, α)

)
c21
R2

]

= h(x0)2ε

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+
2c21
R2

+

(
(C̃2(n,N, α))2

C̃1(n,N, α)

)
c21
R2

]
.

It shows that

|∇u|2(x) ≤ 1

ε2
M2

{
(C̃2(n,N, α))2

(C̃1(n,N, α))2
c21
R2

+
1

C̃1(n,N, α)
×[

2K +
(n+N − 1 +

√
(n+N)KR)c1 + c2 + 2c21

R2

]}

≤M2

[
C(n,N, α)

(
2K+

(n+N−1+
√

(n+N)KR)c1+c2+3c21
R2

)]
,

and hence,

|∇u(x)| ≤ C(n,N, α)M

√
2K+

(n+N−1+
√

(n+N)KR)c1+c2+3c21
R2

, (2.25)

where M = supBp(2R) u(x), C(n,N, α) > 0. Theorem 1.1 is proved. �
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3. Proofs of Theorem 1.3 and Corollary 1.4.

In this section, we will give the proofs of Theorem 1.3 and Corollary 1.4.

Firstly, we give the proof of Theorem 1.3.

Proof. Let h = uε. Then

∆fh = ∆h−∇f∇h = ε(ε−1)uε−2|∇u|2 +εuε−1∆fu = ε(ε−1)uε−2|∇u|2, (3.1)

and

〈∇h,∇(∆fh)〉 = 〈∇h,∇(ε(ε− 1)uε−2|∇u|2)〉

=
ε− 1

ε
〈∇h,∇|∇h|2〉 − ε− 1

ε

|∇h|4

h2
. (3.2)

From (3.1) and (3.2), using the Bochner formula on h to the N -Bakry–Emery

Ricci tensor (see [17]):

1

2
∆f |∇h|2 ≥

1

n+N
|∆fh|2 + 2〈∇h,∇(∆fh)〉+ RicNf (∇h,∇h)

=
1

n+N

[
ε(ε− 1)uε−2|∇u|2

]2
+
ε− 1

ε
〈∇h,∇|∇h|2〉

− ε− 1

ε

|∇h|4

h2
+ RicNf (∇h,∇h)

=

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
|∇h|4

h2
+
ε− 1

εh
〈∇h,∇|∇h|2〉

+ RicNf (∇h,∇h). (3.3)

According to the maximum principle, we only need to ensure that |∇h|
4

h2 has

a positive coefficient in (3.3) such that the upper bound of the term |∇h| is

achieved. It can be checked that for any ε ∈ (0, 1),

1

n+N

(ε− 1)2

ε2
− ε− 1

ε
> 0.

Similarly to the previous approach in the proof of Theorem 1.1, we also choose φ

as the cut-off function as before. We define the function G = φ|∇h|2 and will use

the maximum principle on it. Suppose that the point x0 ∈ Bp(2R) is the maximal

value point of G and G(x0) > 0 (otherwise the proof is trivial). Then at x0,

∆fG ≤ 0 and ∇|∇h|2 = −|∇h|
2

φ
∇φ,
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and

0 ≥ ∆fG = φ∆f |∇h|2 +
∆fφ

φ
G− 2

|∇φ|2

φ2
G

≥ 2φ

{[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
|∇h|4

h2
+
ε− 1

εh
〈∇h,∇|∇h|2〉

+ RicNf (∇h,∇h)

}
+

∆fφ

φ
G− 2

|∇φ|2

φ2
G

= 2

[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
G2

φh2
− 2(ε− 1)

ε
∇φ∇h

h

G

φ
− 2KG

+
∆fφ

φ
G− 2

|∇φ|2

φ2
G. (3.4)

Then multiplying by φ
G both sides of (3.4) gives

2

[
1

n+N

(ε− 1)2

ε2
− ε− 1

ε

]
G

h2
≤ 2(ε− 1)

ε
∇φ∇h

h
+ 2Kφ−∆fφ+ 2

|∇φ|2

φ
. (3.5)

Using the Cauchy inequality

2(ε− 1)

ε
∇φ∇h

h
≤

(ε−1)2
ε2

(ε−1)2
(n+N)ε2 −

ε−1
ε

|∇φ|2

φ
+

[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
G

h2

in (3.5) yields[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
G

h2
≤

[
2 +

(ε−1)2
ε2

(ε−1)2
(n+N)ε2 −

ε−1
ε

]
|∇φ|2

φ
+ 2Kφ−∆fφ. (3.6)

Hence, for Bp(R), we have[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
G(x) ≤

[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
G(x0)

≤h(x0)2

2K+
(n+N−1+

√
(n+N)KR)c1+c2
R2

+

[
2+

(ε−1)2
ε2

(ε−1)2
(n+N)ε2−

ε−1
ε

]
c21
R2

 . (3.7)
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Then, we have[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]
ε2u2ε−2|∇u|2(x)

≤ u2ε(x0)

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+

2+
(ε−1)2
ε2

(ε−1)2
(n+N)ε2−

ε−1
ε

c21
R2

]
.

It shows that

|∇u|2(x) ≤

[
(ε− 1)2

(n+N)ε2
− ε− 1

ε

]−1
1

ε2
M2

[
2K +

2 +
(ε−1)2
ε2

(ε−1)2
(n+N)ε2 −

ε−1
ε

 c21
R2

+
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

]

=
n+N

(ε− 1)2 − (n+N)ε(ε− 1)
M2

[
2K +

2 +
(ε−1)2
ε2

(ε−1)2
(n+N)ε2 −

ε−1
ε

 c21
R2

+
(n+N − 1 +

√
(n+N)KR)c1 + c2
R2

]

=
n+N

(ε−1)2−(n+N)ε(ε−1)
M2

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+

(
2 +

(n+N)(ε− 1)2

(ε− 1)2 − (n+N)ε(ε− 1)

)
c21
R2

]
,

and hence

|∇u|(x) ≤M

√
n+N

(ε−1)2−(n+N)(ε2−ε)

[
2K+

(n+N−1+
√

(n+N)KR)c1+c2
R2

+

(
2 +

(n+N)(ε− 1)2

(ε− 1)2 − (n+N)(ε2 − ε)

)
c21
R2

] 1
2

,

for any ε ∈ (0, 1), where M = supBp(2R) u(x), so we complete the proof of

Theorem 1.3. �

In the following, we give the proof of Corollary 1.4.
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Proof. When choosing R→∞ in (1.5), we have

|∇u|(x) ≤M

√
2K(n+N)

(ε− 1)2 − (n+N)(ε2 − ε)
.

By using the knowledge of quadratic equation in one variable, for any ε ∈ (0, 1),

we get that the equation (ε − 1)2 − (n + N)(ε2 − ε) reaches its maximal value

when ε = n+N−2
2n+2N−2 and

[
(ε − 1)2 − (n + N)(ε2 − ε)

]
max

= (n+N)2

4(n+N−1) . Then

we get |∇u| ≤ 2M
√

2(n+N−1)K
n+N , where M = supM u(x). This ends the proof of

Corollary 1.4. �
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