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Gradient estimates for a weighted nonlinear equation
on complete noncompact manifolds

By JING LI (Nanjing), GUOQING HE (Wuhu) and PEIBIAO ZHAO (Nanjing)

Abstract. MA, HUANG and Luo [12] considered Au+cu® = 0(a < 0) with Ric;; >
—Kgij;, and obtained some gradient estimates. In the present paper, we investigate the
weighted nonlinear equation Afu+cu™% = 0 with Ric}v > — K, where f is a smooth real-
valued function on a complete noncompact Riemannian manifold (M™",g), a > 0 and ¢
are two real constants, and we achieve some gradient estimates for positive solutions of
this weighted nonlinear equation. The results posed in this paper can be regarded as
a natural generalization of the results in [12].

1. Introduction

Let f be a smooth real-valued function on a complete noncompact Riemann-
ian manifold (M™, g). The f-Laplacian (see [13], [14]) is given by Ay = A=V fV.
It is known that A is self-adjoint, while du = e~/dVj is a naturally associated
measure on M™. The definition of the N-Bakry—Emery Ricci tensor is as follows:

1
Ric} = Ric+V?f — v ed,
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where V2 denotes the Hession and Ric denotes the Ricci tensor, 0 < N < oo,
N = 0 if and only if the function f = 0. When N = o0, it is called the co-Bakry-
Emery Ricci tensor:
Ricy = Ric+V2f.

In particular, when Ricy = Ag, it is called a gradient Ricci soliton which is closely
related to Ricci flow.

Ma, HuaNG and Luo [12] and YANG [19] obtained some gradient estimates
for positive solutions of the equation as follows:

Au+cu™®* =0, (1.1)

in a complete noncompact Riemannian manifold M, where a > 0, ¢ are two real
numbers. Equation (1.1) has an important position (see [6], [9]). In this paper,
we study the weighted nonlinear equation

Aru+cu =0 (1.2)

in M, where a > 0, ¢ are two real numbers and f is a smooth real-valued function
on M. For gradient estimates, there are many interesting results, one can see
[3], [4], [7], [8], [10], [11], [18] for details.

Following BRIGHTON’s argument in [1] by choosing a test function u¢(e # 0),
there are many papers to get gradient estimates in this way, see [12] and the others.
By choosing this test function u®(e # 0), we also obtain the gradient estimates
about (1.2) with Ric}v > —K, while ZHANG and MA [21] obtained the gradient
estimates about (1.2) by choosing h = logu (the idea was originated by CHENG
and YAU [5]). We get the following result firstly.

Theorem 1.1. Let (M™, g) be a complete noncompact Riemannian manifold
with Ricgcv > —K in the metric ball B,(2R), where —K = —K(2R), K(2R) > 0,
R > 0. Assume that u is a positive solution to (1.2) with «, ¢ satisfying one of
the following two conditions:

(1) When ¢ > 0, we have a > 0;
(2) When ¢ <0,

1
I<a< , m>3,
2ln+ N+2++/(n+N)2+5(n+N)+3]

then we have

N-1 N)K —3c?
|Vu(x)|<C(n,N,a)M\/2K—(n+ *V(”JFRQ) Rlate=3a

where M = supp_ o) u(z), C(n, N,a) > 0.
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Remark 1.1. Comparing with [12], our result in Theorem 1.1 extends the
gradient estimate of Au + cu® = 0 (a < 0) with Ric;; > —Kg,; to the case of
Aju+cu™® =0 (a > 0) with Ric} > —K, where —K = —K(2R), K(2R) > 0,
R > 0.

Letting R — oo in (1.3), we obtain

Corollary 1.2. Let (M™,g) be a complete noncompact Riemannian mani-
fold with Ric}v > —K, where K > 0 is a constant. Suppose that u is a positive
solution to (1.2) with «, ¢ satisfying conditions (1) or (2) in Theorem 1.1, then
we get

|Vu| < C(n, N,a)MV2K, (1.4)

where M = sup,; u(z), C(n, N,a) > 0.

Remark 1.2. Corollary 1.2 extends the global estimate [12, Corollary 1.5] of
Au+cu® =0 (a < 0) with Ric;; > —Kg,; to the global estimate of Aju+cu™* =
0 (o > 0) with Ricjcv > —K, where K > 0 is a constant.

In particular, when K = 0, that is Ricé«v > 0, we have that any positive
solution to (1.2) must be constant.

When ¢ =0 in (1.2), it degenerates an f-harmonic function, that is,
Aru=Au—VfVu=0.

To a smooth positive harmonic function, SCHOEN and YAU [20] studied gradi-
ent estimates of the equation above on complete Riemannian manifolds in 1994.
To a smooth positive f-harmonic function, CHEN and CHEN [4] investigated gra-
dient estimates of it with Ricy > —H, (H > 0). It is an interesting work to study
gradient estimates of f-harmonic functions with Ric}v >—-K, (K >0).

Theorem 1.3. Suppose that (M", g) is a complete noncompact Riemannian
manifold and Rici‘y > —K in the metric ball B,(2R), where —K = —K(2R),
K(2R) > 0, R > 0. Then, for any positive f-harmonic function u, we have

n+N (n+N—-1++/(n+N)KR)c1+co
Vu(@)] < M\/(sl)Q(n+N)(626) [QK—’— R?

(n+N)(e—1)?2 )i
(e—1)2—(n+ N)(e?—¢)/ R?

1
2

: (1.5)

+(2+

where M = supp, apyu(z), € € (0,1).
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By choosing R — oo in (1.5), the following global estimate of positive
f-harmonic functions is established.

Corollary 1.4. Suppose that (M™,g) is a complete noncompact Riemann-
ian manifold and Ricjcv > —K, (K > 0). Then, for any positive f-harmonic
function u, we have
2(n+ N -1)K

Vu| < 2M ,
Vul < n+ N

(1.6)
where M = suppru(z).

Remark 1.3. When Ric}v > 0, we also have that any positive f-harmonic
function must be constant here.

In particular, L1 [10] studied the diffusion operator L = A — V¢ -V and ob-
tained many results of it, including if Ric,, (L) > 0, then every positive solution
(and bounded solution) of Lu = 0 must be constant (see [10, Theorem 2.2]).

Similarly, RUAN [16] also obtained this Liouville property of L-harmonic
function on M (see [16, Corollary 1.2]).

2. Proof of Theorem 1.1.

In this subsection, we give the proof of Theorem 1.1.
Let h=u¢, where ¢ is a nonzero constant that is to be determined. From (1.2),
we get

Afh=Ah =V fVh=e(e = 1)u"?|Vul’ + eu” ' Agu
e—1|Vh}?

=e(e — Du?|Vul? —ceu® ! = - - ceuf—o—1
= %@ —cehTE (2.1)
and
VhVAfh = VAV <€ K 1 \V:P - Cahm1>
-1 1 4 a1 :
B Eeh A - € |Vh]Z| — el ? |v}]3| h™—=
) Eg_hlvww;”? = : |th|4 —ele—a—DhTE N:'Q. (2.2)
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Substituting (2.1), (2.2) together into the Bochner formula [17] for h, we have:

%Af\vm? > ﬁmwﬁ + (Vh,V(Agh)) + Ric} (Vh, Vh)
_ an 5; ! |V:|2 e 2 + ag_hlvwwh\?
- ! |Vh};|4 —ele—a—1)hTE @ +RicY (Vh, V)
_ % +ole—a- 1)1 === V0 R (o w). (23)

Lemma 2.1. Assume that u is a positive solution to (1.2) and Ric}v >-K
in the metric ball B,(2R), where —K = —K(2R), K(2R) > 0, R > 0. Denote
h = u® with e #0. When ¢ > 0 and « > 0, then there exists € € (0,1) such that

1 (5—1)25—1] VA4 e—1

1
ZA|Vh|? > hV|Vh|?—K|Vh]?. (2.4
2f\V\_n+N = . + VhV|Vh| VA= (2.4)

h? ch

PROOF. From (2.3), when ¢ > 0, a > 0, for ¢ € (0,1),

2(e—-1)
n+ N

+(5a1)] >0,

so we have (2.4). Lemma 2.1 is proved. O

Lemma 2.2. Assume that u is a positive solution to (1.2) and Ricjzv >-K
in the metric ball B,(2R), where —K = —K(2R), K(2R) > 0, R > 0. Denote
h =wu® withe # 0. If ¢ <0, and for a fixed «, there exist two positive constants
€,0 such that

2(e—1)
—a— > .
S +(e—a 1)]_0 (2.5)
and
2?1 2c(e—1)
= —a-1)| > 2.
nIN 5| ThEN +ce—a—-1)| >0, (2.6)
then we have
1 9 1 (e-1)?% e-1 2¢(e = 1) |Vh|*
- > _ _ —a—
2Af|Vh| {n+N g2 € 0 n+ N tele—a-1) h?
-1
+ Esh VhV|Vh|? — K|Vh|?. (2.7)
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PROOF. Fix a point q. Suppose that there exists a constant 6 > 0 such that
e—a— 2
R < 5‘%’;‘ , according to (2.5), then (2.3) becomes

1 9 1 (e—-1)?% e-1 2c(e — 1) |Vh|*
— AV > — — _ —
2Af| | {n—l—N e? € 5{ n+ N cle—a 1)} h?

?e? 20—y £ —
€

1 2 niN
+ ——VAV|Vh[ + Ric} (Vh, Vh)

1 (e—1)?% e-1 2¢(e — 1) |Vh|*
> - _ a1
_{n—i—N e? 5 5{ n+ N tele—a )] h?

-1
+ ggh VhV|Vh|? — K|Vh|?,

e—a—1

Conversely, if h—= > 5% at ¢, according to (2.5), (2.6), then (2.3) becomes

1 9 1 (e=1)?% e—1||Vh* e-1 9 . N
- > —_ \
SOV 2 | — — | Ss S VAVIVAR 4 Ric} (Vh, Vh)
e 1 2c(e—1) 5| Vh|*
i —a-—-1 el
L Er ey e S e
1 (e—12 e—1 _[2(e—1) REZE
> _ _ — —
_{n+N e? € 0 n+ N tele—a=1) h?
-1
+ Egh VhV|Vh[2 + RicY (Vh, Vh)
1 (e—12 e—1 _[2(e—1) 11 |vht
> _ _ — -
_{n+N g2 5 0 n+ N tele—a=1) h?
-1
+ S VhV|VA]? — K|V
ch
In both cases, we can find that (2.7) holds always. Lemma 2.2 is proved. O
V!

According to the maximum principle, we only need to ensure that - has
a positive coefficient in (2.4), and (2.7) can get the upper bound of the term |Vh|.
To get this goal, we prove the following proposition.

Proposition 2.3. Let (M", g) be a complete noncompact Riemannian man-
ifold with Ric}v > — K, where K > 0 is a constant. Suppose that u is a positive
solution to (1.2). If « and c satisfy one of the following two conditions:

(i) when ¢ >0, a > 0;

. 1 >
(ii) whenec< 0,0 < a < NI o NS n >3,
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then we have

VAt - Vh
h2 +CQ('I’L,N,CY)T

1 -
5Af|Vh|2 > C1(n, N, ) V|Vh?> — K|Vh]?,  (2.8)

where C; (n,N,a) >0, ég(n,N, a) < 0.
PRroOF. Next, we prove the above results in two cases.

Case 1. ¢ >0, a > 0.
From Lemma 2.1, we have (2.4), that is

1 (e=1)% e—-1||VR* ¢
- +

1
ZA¢|Vh|? >
2 sIVRI = n+N g2 € h?

—1
VhV|Vh|* — K|Vh]2.
eh

We find that Cy(n, N, a) = n_&N (8221)2 — % >0, Cy(n,N,a) = %1 < 0 at this

situation.

L ,n>3
2[n+N+2+4/(n+N)2+5(n+N)+3]
According to Lemma 2.2, ¢ and J need to be selected appropriately to ensure

Case 2. ¢<0,0<a<

the following inequality:

1 (671)2767175 2c(e — 1)

—a—1 . 2.9
n+N g2 € n+ N tele-a )| >0 (2.9)

When ¢ < 0, under the assumption of (2.5), inequality (2.6) becomes

2(e—1)
+E—a-1
6> C(EQ ) (2.10)
n+N
and (2.9) becomes
1 (6*21)2 _e—1
§< — N« < . (2.11)
c [27(16-:1\1!) +(e—a-— 1)}

In order to ensure we can choose a positive J, from (2.10) and (2.11), we need to
choose an € satisfying

2(e—1) 1 (e—1)2 _1
n+N + (E —a- 1) n+N €2 - % ) (212)

ce? e—
n+N C|:27(H_J$)+(€*Oéfl):|
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The above inequality (2.12) can be written as
[2(51)+(5a1)r< = 1 (51)251] 213)
n+N|n+N &2 e | '

where a =n + N.
Inequality (2.13) is equivalent to

(a®+5a+3)22 - [2(a+1)a>+ (da-+9)a+6| =+ [ (a-+1)*+4(a+1)a+3] < 0. (2.14)

To ensure there are some ¢ suiting for (2.14), we have

[2(a +1)a® + (4o +9)a + 6}2 - 4[(12(& +1)2+4(a+1)a+ 3} (a® + 5a + 3)

= 2 [40? —8a+1—4a2a— 404@} = (4—4a)a® — (4a+8)a+1>0. (2.15)

It is necessary that there are some « holding for (2.15) to ensure there are some

¢ suiting for (2.14), so we have

(4a + 8)% — 4(4 — 4a) > 0

and (4a + 8)? — 4(4 — 4a) > 0 is right for Va =n + N > 3.

So we can get the roots of (2.15):
1

1 1
ap = 2 <0, g = 2 > 0.
a+2—+va%+5a+3 a+2++va%z+5a+3

l .
So we can choose o € (0, m) Then we can obtain the roots of (2.14):

2(a+ 1)a® + (4a + 9)a + 6] — ay/4a2 — 8a + 1 — 4(a? + a)a

LT 2(a® + 5a + 3)
2(a+ 1)a® + (4a + 9)a + 6] + ay/4a2 —8a + 1 — 4(a? + a)a
Eog =
2 2(a2 + 5a + 3) ’

and we can check that £; > 0,5 > 0. We choose

. e te 2a+1a’+ (da+9)a+6
s _ . 2.16
e 2 2(a2 + ba + 3) (2.16)
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We need £—1 = 4Eatbo"l] - o 404 obtain o < 5. We also need (2.5) is right

2(a?+5a+3) 2a+4"
1

when (2.16) holds, then we have o« > 0. So we choose a € (0, m)

because of a+2+\/§2+5a+3 < 2a1+4. In particular, we let
26-1) 4 (z 1 (E-1? a1
52521 n€+N —‘r(E-O{-l) n+N 652 _% (217)
' 2 ce? 2(¢-1) ~ ' '
P cloy TE—a-1)

Then (2.5), (2.6) and (2.9) are satisfied, and (2.7) becomes

1 - Rt S h
iAf\vm? > Cy(n, N, ) |Vh2| + Cy(n, N, a)%V\Vh\Q + Ric} (Vh, Vh)
- nt h
ZCl(n,N,a)|vh2| +Cg(n,N,a)vTV\Vh\2—K\Vh|2, (2.18)

where Cy(n, N,a) > 0, Cy(n, N,a) < 0 are given by

2
N 1)(E-1)2 -1 al26-1) _
Cl(”aNaa):§ 02 - z _57 a +é—a—1 s

. 20a + (4o — 1)a
C 7N, - ’
2(n, N, a) 2a+1)a?+ (da+9)a+6

respectively, at this situation, where a« = n + N. We complete the proof of
Proposition 2.3. ]

In the following subsection, we will complete the proof of Theorem 1.1.
Choosing a cut-off function &, it satisfies £(r) € [0,1], {(r) =1 for r <1, &(r) =0
for r > 2, and

0>¢3 () >, €)= e
where ¢; > 0, co > 0. Let p(z) = d(z, p) be the distance between the point x and
the point p in M, and let the function

br) = ¢ (”(Rf) |

Without loss of generality, we can suppose that ¢ is smooth in B,(2R) from
CALABI [2] or CHENG and YAU [5]. We get

2
Vol _

cf
o < (2.19)
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From QIAN’s results in [15], we get

Af(p?) < (n+N) <1+ 1+ 4Kp2>.

n+ N
So
1 9 9 n+N—-2 n+N 4K p?
= — — < 1 1
Agp on Ar(p?) = 2|Vp|"| < o <+ TN
N -1
IS O L
1)
and
MIVeP  €mApp . (n+N—1++/(n+ N)KR)e1 + ¢
T e . . (2.20)

We define the function G = ¢|Vh|? and will use the maximum principle on it.
Suppose that the point 29 € B,(2R) is the maximal value point of G and G(z) >0
(otherwise the proof is trivial). Then at xg,

_Ivhp

A;G <0 and V|Vh|? = 5

——Vo,

and

0> AsG = ¢Af|Vh|? +|Vh]*PAsd + 2V V| Vh|?

Ayo |V<f>|2
= oA VH? + 228G - G
¢Af|Vh| 5 po
~ 4 ~
>2¢ cl(n,N,a)Wh’;" +C’2(n,N,a)%V\Vh\2+Ric§V(Vh,Vh)
Af¢ Vol
G-2 G
¢ ¢?
G? G_ Vh Asd V|2
= AL A 2.21
=204 (n, Na)(bh —2C5(n, Noz)¢V¢ A 2KG+ 5 G pe G, (2.21)

where, in the second inequality, the estimate (2.18) is used. Multiplying both
sides of (2.21) by % yields

5 G 5 Vh Vel

2C’1(n,N,a)ﬁ < 2C%(n, N, )V(bf—i—ZK(b Arp+2—— 5 (2.22)
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Using the Cauchy inequality

N Vh (62(n7N7 Oé))2 ‘V¢|2 5 G
2C! ,N, Vo— < = +C 7N1 792
2(n, N,a)V¢ A Cin.N.a) & 1(n, N, a) 2

in (2.22) yields

C’l(n,N,a)g <2K¢—Asod+ <2+

(2.23)

<@mNaw>ww
h2 = '

Ci(n,N,a) ¢
Hence, for B,(R), we have
Ci(n, N,a)G(x) < Ci(n, N,a)G(xo)
N-1+n+NK
< h(zo)? [QK Lot N1+ %‘; JKR)er + cz

(C’Q(n,N,Oé))2 C%
* (“ c<zv>> =

. (2.24)

Then, we have
Ci(n, N, a)e?u®*~2|Vu|*(z)

9 n+N—-14++/(n+N)KR)c,+c Cy(n,N,a))?\ &2
< h(zq) [2[(4—( ik ks (R;r JKR) +2+<2+W>

R2

~ hao)* 2K+(n+N71+\/(n+N)KR)cl+62+Lc%+ (C*g(n,zv,oé))2 ﬁ.
R? R? Ci(n,N,a) |R?

It shows that

|WMw<;Mﬂ

(gQ(n’Nva))2 C% + 1 «
1

(Cr(m N, a)? B2 " Gy(m, N, o)

2K 1 (n+N—1+/(n+ N)KR)c1 + ¢z + 2¢}
RZ

}

(n+N—1++/(n+ N)KR)ci+ca+3c?
< M?|C(n, N, a) <2K+ = L,
and hence,
N—-1+,/ N)K 2
Vu(z)| < C(n, N, a)M\/2K+(n+ i “”RQ) Rleiteat3a g o

where M = supp_ (o) u(x), C(n,N,a) > 0. Theorem 1.1 is proved. O
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3. Proofs of Theorem 1.3 and Corollary 1.4.

In this section, we will give the proofs of Theorem 1.3 and Corollary 1.4.
Firstly, we give the proof of Theorem 1.3.

PrOOF. Let h = u®. Then
Ath = Ah—VfVh =¢e(e—1)u 3| Vul|?* +eu® T Apu = e(e — 1)u?|Vul?, (3.1)
and
(Vh,V(Ash)) = (Vh, V(e(e = Du?|Vul?))
e—1 e—1|Vh|*
= h h|?) — .
— (v, VIVR) - SR

From (3.1) and (3.2), using the Bochner formula on h to the N-Bakry-Emery
Ricci tensor (see [17]):

(3.2)

v

1 2 ; 2 . N
2Af|Vh| . N|Afh| +2(Vh,V(Arh)) + Ricy (Vh,Vh)

2
1

n+ N

e 1[Vh!
€ h?

1 (5—1)275—1
n+N g2 €

e—1

e(e — Du?|Vul? 5

+ (Vh,V|Vh|?)

+ Ric} (Vh, Vh)

Vhl* -1
|h2| +— (Vh,V|Vh|?)

+ Ric} (Vh, Vh). (3.3)

4
According to the maximum principle, we only need to ensure that ‘Vh@ has

a positive coefficient in (3.3) such that the upper bound of the term |Vh| is
achieved. It can be checked that for any € € (0,1),

1 (5—1)2_5—1

n+N g2 € > 0.

Similarly to the previous approach in the proof of Theorem 1.1, we also choose ¢
as the cut-off function as before. We define the function G' = ¢|Vh|? and will use
the maximum principle on it. Suppose that the point zo € B,(2R) is the maximal
value point of G and G(zg) > 0 (otherwise the proof is trivial). Then at xg,

VAP

A;G <0 and V|Vh? = 5

Vo,
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and

2
A, HlVel,

0> AfG = ¢Af|Vh|2 +

¢ ¢?
+ Ric} (Vh, Vh)} + %G -2 VJ;PG
+sbg_ 2'2“5'20. (3.4)

Then multiplying by % both sides of (3.4) gives

Vg|?
ra

2

Vh
Vo +2K6 — Apo+2

1 (8—1)2_6—1 G _2e—-1)
n+N g2 e | h%Z €

Using the Cauchy inequality

2Ae 1), Vh _ D0 we) [ -1 - 1] G
T = (e—1)2 e—1 2 72
L Fs o Al (n+ N)e e |k

in (3.5) yields

e—1 (b

(n+N)e2 ~— €

(e—1)2 5—1] G

e—1)2
Z <2+ = Vol +2K¢—Asp. (3.6)
(n+ N)e2 e | A%~ (e=1)?

Hence, for B,(R), we have

(e—-1)2% e-1 (e—1)2 e-1
— G(x) < — G
(n+ N)e2 € (z) < (n+ N)e2 (z0)
(n+N—1++/(n+N)KR)c1+co (5;721)2 c?
Sh(mO)Q{QK—i- = 2t Ril? . (3.7)
(n+N)e? £
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Then, we have

(e—-1)2 -1

2, 22 2
T N2 e‘u |Vu|*(x)

oK (n+N—-14++/(n+N)KR)c1+c¢o 5 (82721)2 c
* R2 b e e i

S UZE(IO)

(n+N)e2 ¢

It shows that

- (e=1)? 2
5 (e—1)2 e—1 1.5 3 1
Vef@ s \GaveE o | @M | 2= o =
(n+N)e2 ~ ¢
(n+N—-1++/(n+ N)KR)c; + ¢

+ R2
(e=1)? 2
n+ N T2 c
- M?*12K + 2+ ——F—— | =&
12— — 1?1 | R
(e—=12—-(n+N)e(c-1) (n€+N)a2 el R

N (n+N—-1++/(n+ N)KR)c; + c2
R2

- ntN 2 (n+N-1+/(n+N)KR)e1+¢;
G R e R R 72
(TL+N)(€71)2 c?
" (2+ (5—1)2—(n+N)5(5—1)) RZ|
and hence
ntN (n+N—1+/(n+N)KR)ei +c2
vl = \/ e gy [QK ¥ e

1
2

Y

(n+ N)(e —1)? 3
+ (“ (8—1)2—(n—|—N)(€2—€)> 2

for any ¢ € (0,1), where M = supp (o) u(z), so we complete the proof of
Theorem 1.3. U

In the following, we give the proof of Corollary 1.4.
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PrOOF. When choosing R — oo in (1.5), we have

2K (n + N)
Vul(@) < M\/(s Tt M@ o)

By using the knowledge of quadratic equation in one variable, for any ¢ € (0, 1),

we get that the equation (¢ — 1)? — (n + N)(g% — ) reaches its maximal value

hen & = ZHEZ and [(e — 12 = (n+ N)(e2 —e)| = =505, T

when € = 2555 and |(e ) (n+ N)(e? —¢) max — TntN-T) en
we get |Vu| < 2M 2("2117;,1)[(, where M = sup,; u(z). This ends the proof of
Corollary 1.4. O
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