
Publ. Math. Debrecen
46 / 3-4 (1995), 349–372

On characterizations of Sasakian space forms
and locally ϕ-symmetric spaces by

ϕ-geodesic tubes

By M. DJORIĆ (Belgrade)

Abstract. This paper continues the study of the problem to which extent the
properties of tubes about ϕ-geodesics on a Sasakian manifold influence the geometry of
the ambient space. We characterize Sasakian space forms and ϕ-symmetric spaces by
analysing the action of the shape operator and the Ricci operator on these tubes.

1. Introduction

In this paper, Sasakian manifolds will be studied by investigating
the properties of the extrinsic and intrinsic geometry of tubes on these
manifolds. The strong influence by the features of the geometry of small
geodesic spheres and tubes on the geometry of the ambient space was
ascertained a long time ago. Since then, it has been the topic of numerous
investigations and discussions, such as [2]–[16], [20].

We refer to [16] and [23] as the most comprehensive and detailed
studies of this relation which include a selection of already known and
new results. In particular, these studies have shown that the theory of
Jacobi vector fields is very important in the investigation of Riemannian
geometry, as this is one of the most convenient methods for analysing the
extrinsic and intrinsic geometry of small geodesic spheres and small tubes
about curves and submanifolds of a Riemannian manifold.

This technique was used in treating the relation between the curva-
ture of the ambient space and the properties of the shape operator and
the Ricci operator of small geodesic spheres on an almost Hermitian [9]
and on a Sasakian manifold [10]. This led to several new characteriza-
tions of Kähler and nearly Kähler manifolds of constant holomorphic sec-
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tional curvature, of locally Hermitian symmetric spaces, of nearly Kähler
3-symmetric spaces, of Sasakian space forms and of locally ϕ-symmetric
spaces. In [11] the author, together with L. Vanhecke, initiated the study
of similar problems by considering small tubes on Sasakian manifolds. In
particular, the research of small tubes about the flow lines of the character-
istic vector field resulted in characterizations of Sasakian space forms and
locally ϕ-symmetric spaces. Later, (in [12]), the author started analysing
similar problems considering the tubes about geodesics which cut at all of
its points the integral curves of the characteristic vector field ξ orthogo-
nally. These particular geodesics are usually called ϕ-geodesics and this
study has led to characterizations of Sasakian space forms and of locally
ϕ-symmetric spaces too. Several new characterizations of these spaces are
the main purpose of this paper. More precisely, we analyse the properties
of tubes about ϕ-geodesics σ on a Sasakian manifold M(ϕ, ξ, η, g) by in-
vestigating the action of the shape operator and the Ricci operator on the
plane {ξ, ϕv} which is parallel along a ϕ-geodesic γ tangent to v and pass-
ing through σ(t). In this paper γ is tangent to v while meeting σ̇(t) and
ϕσ̇(t) orthogonally, whereas in [12] γ is tangent to v = ϕσ̇(t). Recently
D. Blair and B. Papantoniou gave in [2] a characterization of Sasakian
space forms by means of the Weingarten map on sufficiently small geodesic
tubes.

The article is organized in the following way. In Section 2 we recall
some general preliminary facts concerning Sasakian manifolds. After fo-
cussing on the central role of Fermi coordinates and Jacobi vector fields
in Section 3, we compute the explicit formulas for the shape operator of
tubes about ϕ-geodesics on a Sasakian space form in the above described
points. Then, in Sections 4 and 5, we treat our main results considering
the extrinsic and intrinsic geometry of these tubes.

The author is grateful to L. Vanhecke and P. Bueken for several
useful discussions.

2. Sasakian manifolds

A C∞ manifold M2n+1 of dimension 2n+1, together with a global 1-
form η such that η∧(dη)n 6= 0, is said to be a contact manifold . Given such
a contact form η, it is well known that there exists a unique vector field ξ on
M2n+1 satisfying η(ξ) = 1 and dη(ξ, X) = 0; ξ is called the characteristic
vector field of the contact structure. Moreover, if there exists a tensor field
ϕ of type (1,1) such that

(1) ϕ2 = −I + η ⊗ ξ,

then M admits a Riemannian metric g satisfying

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ),
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for any vector fields X,Y . The structure (ϕ, ξ, η, g) is called a contact
metric structure and a manifold M2n+1 with a contact metric structure
is said to be a contact metric manifold . If the contact metric structure
tensors satisfy

(2) (∇Xϕ)Y = g(X, Y )ξ − η(Y )X,

where ∇ denotes the Riemannian connection of g, M is said to be a
Sasakian manifold . This condition implies

(3) ∇Xξ = −ϕX

from which it follows that ξ is a Killing vector field. Hence, its integral
curves are geodesics called ξ-geodesics. Also, vectors which are orthogonal
to ξ are called horizontal vectors. The curvature tensor

RXY = ∇[X,Y ] − [∇X ,∇Y ]

of a Sasakian manifold satisfies

(4)
RXY ξ = η(Y )X − η(X)Y,

RXξY = g(X,Y )ξ − η(Y )X.

We refer the reader to [1] and [24] for more details about the study of these
manifolds.

Furthermore, it is natural to consider the notion of a locally ϕ-sym-
metric Sasakian space since a locally symmetric Sasakian manifold is a
space of constant curvature 1 (Okumura [19]). Here, a Sasakian manifold
is said to be locally ϕ-symmetric if ϕ2(∇V R)XY Z = 0 for all horizontal
vectors X, Y, Z, V (Takahashi [21]). On the other hand, it is easy to see
from (3) that a geodesic which is orthogonal to ξ at one point, remains
orthogonal to it. Such geodesics are called ϕ-geodesics and Takahashi
used them to define special local diffeomorphisms sm and afterwards to
give one very helpful characterization of locally ϕ-symmetric spaces (see
Theorem A (i)). A local diffeomorphism sm, m ∈ M is said to be a ϕ-
geodesic symmetry if its domain U is such that, for every ϕ-geodesic γ(s)
for which γ(0) lies in the intersection of U with the integral curve of ξ
through m,

(sm ◦ γ)(s) = γ(−s)

for all s with γ(±s) ∈ U , s being the arc length.
We now present some further properties of Sasakian manifolds that

will be useful for the work below.
Let U be a neighborhood in a Sasakian manifold M on which ξ is

regular (see [1] for a definition of regularity). In [18] it is proved that each
manifold U = Ũ/ξ, which is the base space of the local fibration Ũ π−→ U ,
is a Kähler manifold (U , G, J) with the Kähler structure (G, J) on U . If
X∗, Y ∗ . . . denote the horizontal lifts of X, Y · · · ∈ X (U), (the Lie algebra
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of smooth vector fields on U), with respect to the connection form η, then
we have [18]

(JX)∗ = ϕX∗(5)

(∇̄XY )∗ = ∇X∗Y ∗ − η(∇X∗Y ∗)ξ,(6)

where ∇̄ denotes the Riemannian connection of (U , G). From this we get

(R̄XY Z)∗ = RX∗Y ∗Z
∗ + g(ϕX∗, Z∗)ϕY ∗ − g(ϕY ∗, Z∗)ϕX∗(7)

+ 2g(ϕX∗, Y ∗)ϕZ∗,

ρ̄(X, Y )∗ = ρ(X∗, Y ∗) + 2g(X∗, Y ∗),(8)

τ̄∗ = τ + 2n,(9)

where R̄ denotes the Riemannian curvature tensor of (U , G) and ρ̄, τ̄ (resp.,
ρ, τ) are the Ricci tensor (of type (0,2)) and the scalar curvature of (U , G)
(resp., of (Ũ , g)). Further, we have

(∇̄XR̄)Y ZV W ◦ π = (∇X∗R)Y ∗Z∗V ∗W∗ ,(10)

(∇̄X ρ̄)Y Z ◦ π = (∇X∗ρ)Y ∗Z∗ ,(11)

for X,Y, Z, V, W ∈ χ(U).

We shall need the following results:

Theorem A [21]. A Sasakian manifold is locally ϕ-symmetric if and
only if
(i) sm is a local automorphism of the Sasakian structure (g, ξ, η, ϕ) for

each m ∈ M ; or
(ii) each base manifold U of a local fibration is locally Hermitian symmet-

ric.

Related to (ii) we have

Theorem B (see for example [20]). A Kähler manifold (U , G, J) is
locally Hermitian symmetric if and only if

(∇̄XR̄)X JX X JX = 0

for all X ∈ X (U).

Corresponding to this theorem and (ii) in Theorem A we have, by
using (10),
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Theorem C [6]. A Sasakian manifold is locally ϕ-symmetric if and
only if

(∇XR)X ϕX X ϕX = 0

for all vector fields X orthogonal to ξ.

Next, we give the definition of a special class of locally ϕ-symmetric
spaces, namely that of Sasakian space forms. A plane section of the tan-
gent space at a point of M is called a ϕ-section if it is spanned by hori-
zontal vectors X and ϕX. The sectional curvature of a ϕ-section is called
a ϕ-sectional curvature. If a Sasakian manifold has constant ϕ-sectional
curvature c, i.e., independent of X, then its curvature tensor is given by

(12)

RXY Z =
c + 3

4
{g(X,Z)Y − g(Y, Z)X}+

c− 1
4

{η(Y )η(Z)X

− η(X)η(Z)Y − g(Z,ϕY )ϕX + g(Z, ϕX)ϕY

− 2g(X,ϕY )ϕZ − g(X,Z)η(Y )ξ + g(Y, Z)η(X)ξ},
and such a manifold is called a Sasakian space form. Note that c is au-
tomatically globally constant for dim M ≥ 5. Here and in the rest of the
paper we shall suppose, if necessary, that M is a connected manifold. The
Sasakian space forms have been classified completely (see for example [1],
[24]) and locally there are three classes according to c + 3 > 0, c + 3 = 0
and c + 3 < 0.

The following characterization of Sasakian manifolds of constant ϕ-
sectional curvature was given by Tanno:

Theorem D [22]. A connected Sasakian manifold M of dimension
≥ 5 is a Sasakian space form if and only if, for every horizontal vector X,
RXϕXX is co-linear with ϕX.

This theorem is similar to the following one in Kähler geometry:

Theorem E [22]. A connnected Kähler manifold (M, G, J) of dimen-
sion ≥ 4 is a complex space form (that is, it has constant holomorphic
sectional curvature) if and only if, for any vector X, RX JXX is propor-
tional to JX.

Moreover, these two theorems may be related to the following one
which follows at once using (5) and (7):

Theorem F [18]. A connected Sasakian manifold has constant ϕ-
sectional curvature if and only if the holomorphic sectional curvature of
each base manifold is constant.
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3. Geometry of tubes

Suppose σ : [a, b] → M is a smooth, embedded curve in a connected
n-dimensional Riemannian manifold (M, g) of class C∞ and denote by σ⊥
the normal bundle of σ and by expσ the exponential map of this normal
bundle, i.e.,

expσ(σ(t), V ) = expσ(t) V

for any t ∈ [a, b] and all V ∈ σ(t)⊥ where σ(t)⊥ denotes the fiber of σ⊥
over σ(t). The set

Uσ(r) = {expσ(t) V | V ∈ σ(t)⊥, ‖V ‖ < r, t ∈ [a, b]}

is said to be the (open) tubular neighborhood or the (open) solid tube of
radius r about σ. Since [a, b] is compact and since σ : [a, b] → M is
an embedding, we shall always assume that the radius r of this tubular
neighborhood is smaller than the distance from σ to its nearest focal point.
In this case, the exponential map expσ is a diffeomorphism between Uσ(r)
and the so-called (open) solid tube Nσ(r) of radius r about the zero section
of the normal bundle σ⊥ of σ, that is,

Nσ(r) =
⋃

t∈[a,b]

{U ∈ σ(t)⊥ | ‖U‖ < r}.

Consequently, for small s > 0 the set

Pσ(s) = {p ∈ Uσ(r) | d(σ, p) = s}

is a smooth hypersurface in M called the tubular hypersurface or just the
tube of radius s about σ. If σ is a geodesic on M , the tubes Pσ are called
geodesic tubes of M about σ.

To study the geometry of tubular neighborhoods and tubes, we use
a special type of coordinate systems, the so-called Fermi coordinate sys-
tems [15], [16], [23], which may be introduced as follows. Suppose that
σ : [a, b] → M is a unit speed curve and let {fi, i = 1, . . . , n} be an
orthonormal basis of Tσ(a)M such that f1 = σ̇(a). Further, let F1 be the
unit tangent field σ̇ and F2, . . . , Fn the normal vector fields along σ which
are parallel with respect to the normal connection ∇⊥ of the normal bun-
dle σ⊥ and such that Fi(a) = fi, i = 2, . . . , n. (Note that, in the special
case where σ is a geodesic, this translation is just the parallel translation
with respect to the Levi Civita connection ∇.) Then the Fermi coordinate
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system (x1, . . . , xn) with respect to σ(a) and {F1, . . . , Fn} is defined by

(13)

x1


expσ(t)




n∑

j=2

tjFj





 = t− a,

xi


expσ(t)




n∑

j=2

tjFj





 = ti, i = 2, . . . , n.

The extrinsic geometry of the tube Pσ(r) is determined by its shape oper-
ator Sσ and we shall now show that the use of Jacobi vector fields along
geodesics orthogonal to the curve σ leads to a useful expression for this
shape operator. In general, σ is not a geodesic, but for our purposes it is
enough to assume that Pσ is a geodesic tube. Further, let p = expσ(t)(rv),
v ∈ σ(t)⊥, ‖v‖ = 1 be a point of Pσ(r) and suppose γ : s → expσ(t)(sv)
is the unit speed geodesic connecting σ(t) and p. We specify the frame
field {F1, . . . , Fn} along σ such that F1(t) = σ̇(t) and F2(t) = γ′(0) = v,
and denote by {E1, . . . , En} the frame field along γ obtained by parallel
translation of {F1(t), . . . , Fn(t)} with respect to the Levi Civita connection
∇. Next, let Y1, Y2, . . . , Yn be the Jacobi vector fields along γ satisfying
the initial conditions

(14)





Y1(0) = F1(t), Y ′
1(0) =

(
∇γ′

∂
∂x1

)
(σ(t)),

Yi(0) = 0, Y ′
i (0) = Fi(t), i = 3, . . . , n.

Then it is easy to see that these Jacobi vector fields are related to the basic
vector fields ∂

∂xi
of the Fermi coordinate system with respect to σ(a) and

{F1, . . . , Fn} as follows:

(15)





Y1(s) = ∂
∂x1

(γ(s)),

Yi(s) = s ∂
∂xi

(γ(s)), i = 3, . . . , n.

Now, define an automorphism-valued function B : s → B(s) by

(16) Yi(s) = (BEi)(s), i = 1, 3, . . . , n.

Then it follows that B satisfies the Jacobi equation

(17) B′′ + R ◦B = 0

with initial conditions

(18) B(0) =
(

1 0
0 0

)
, B′(0) =

(
0 0
0 I

)
,
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where R = Rγ′ · γ′. Further, since ∂
∂r is a unit normal vector of Pσ(r) at

p = expσ(t)(rv) the shape operator Sσ of Pσ(r) at p is defined by

(19) (SσX)(p) =
(
∇X

∂

∂r

)
(p)

for any vector X tangent to Pσ(r) at p. Now, applying this definition to
the special tangent vectors Yi, i = 1, 3, . . . , n (which form a basis for the
tangent space to Pσ(r) at p) and using (16), the expression for the shape
operator Sσ(p) takes the form

(20) Sσ(p) = (B′B−1)(r).

From (17) and the initial conditions (18) one can compute a power series
expansion for B in terms of the arc length s along γ. Using (19), one
then derives power series expansions for the components of the shape op-
erator Sσ

αβ(p) = g(SσEα, Eβ)(p), α, β = 1, 3, . . . , n. In what follows we
shall write Rxywz for the value of the curvature tensor field on tangent
vectors x, y, w, z at some point m ∈ M . (Since R is a tensor field, we have
(RXY WZ)m = Rxywz for any vector fields X,Y, W,Z such that Xm = x,
and so forth.) We have

(21)





Sσ
11(p) = −rR1v1v − r2

2 ∇vR1v1v + O(r3),

Sσ
1α(p) = − r

2R1vαv − r2

3 ∇vR1vαv + O(r3),

Sσ
αβ(p) = 1

r δαβ − r
3Rαvβv − r2

4 ∇vRαvβv + O(r3),

where α, β = 3, . . . , n and R denotes the Riemannian curvature tensor
of the ambient space M . As a notational matter, we have posed here
Rαvβv = RFαvFβv(σ(t)) and ∇vRαvβv = (∇vR)FαvFβv(σ(t)) for α, β =
3, . . . , n. It should be noted that for these expressions the spaces {γ′(0)}⊥
and {γ′(r)}⊥ are identified via the parallel orthonormal basis. For more
details we refer to [13], [15], [16] and [23].

The Ricci operator Qσ of the tube Pσ(r) contains information about
the intrinsic geomery of the tube Pσ(r) and using the method of Jacobi
vector fields and the Gauss equation one obtains its power series expansion.
This has been done in [13] and we shall need the formulas for the compo-
nents of the Ricci tensor ρσ of the geodesic tube Pσ(r) at p = expσ(t)(rv):

ρσ
11(p) = ρ11 − (n− 1)R1v1v + r

(
∇vρ11 −

n

2
∇vR1v1v

)

+ r2
(1

2
∇2

vvρ11 − n + 1
6

∇2
vvR1v1v +

1
3
R1v1vρvv
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− n− 1
3

R2
1v1v −

n + 1
12

n∑

λ=3

R2
1vλv

)
+ O(r3),

ρσ
1α(p) = ρ1α − n− 1

2
R1vαv + r

(
∇vρ1α − n

3
∇vR1vαv

)

+ r2
(1

2
∇2

vvρ1α − n + 1
8

∇2
vvR1vαv +

1
6
R1vαvρvv

− 3n− 5
24

R2
1v1vR1vαv − n + 1

24

n∑

λ=3

R1vλvRαvλv

)
+ O(r3),

ρσ
αβ(p) =

n− 3
r2

δαβ +
(

ραβ − n− 1
3

Rαvβv − 1
3
ρvvδαβ − 2

3
R1v1vδαβ

)

+ r

(
∇vραβ − n

4
Rαvβv − 1

4
∇vρvvδαβ − 1

4
∇vR1v1vδαβ

)

+r2

(
1
2
∇2

vvραβ−n+1
10

∇2
vvRαvβv+

1
9
Rαvβvρvv+

2
9
R1v1vRαvβv

− n− 1
20

R1vαvR1vβv − n + 1
45

n∑
γ=3

RαvγvRβvγv − 1
10
∇2

vvρvvδαβ

− 1
15
∇2

vvR1v1vδαβ − 1
3
R2

1v1vδαβ − 2
15

n∑
γ=3

R2
1vγvδαβ

− 1
45

n∑
γ,µ=3

R2
γvµvδαβ

)
+ O(r3),(22)

where α, β = 3, . . . , n and ρ denotes the Ricci tensor of M .
Next, we consider the special case of Sasakian space forms and we

study Jacobi vector fields on these manifolds in order to obtain the ex-
pression of the shape operator at some special points of tubes along ϕ-
geodesics in these spaces. A similar technique was used in [3] where the
Jacobi vector fields were used to study the shape operator of a geodesic
sphere, in [7] where these fields were used in the treatment of local sym-
metries with respect to ϕ-geodesics and in [12] where they were used in a
related study of the shape operator of tubes about ϕ-geodesics.

Let m be a point on a Sasakian manifold M2n+1 with structure tensors
(ϕ, ξ, η, g) and of constant ϕ-sectional curvature c. Further, let γ be a ϕ-
geodesic, parametrized by arc length s, through m = γ(0) with initial
velocity vector γ′(0) = v. Hereafter we shall also write γ′(s) = v at any
point of γ. For a horizontal vector field V the Jacobi equation

(23) ∇V∇V X + RV XV = 0
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for a given Sasakian space form M2n+1 becomes by virtue of (12)

(24) ∇V∇V X +
c + 3

4
(X − g(V, X)V )

− c− 1
4

(η(X)ξ + 3g(V, ϕX)ϕV ) = 0.

To solve (24), we choose an orthonormal basis {e1, . . . , e2n+1} at m adapted
to our constructions, i.e., such that: e1 = v, e2n−1 = u, e2n = ξ and
e2n+1 = ϕv, (where u is a horizontal vector orthogonal to v and ϕv) and
we denote by {E1, . . . , E2n+1} the orthonormal basis along γ obtained by
parallel translation of the vectors ei along γ. Since it follows from the
Sasakian condition (2) and its consequence (3) that the two-plane {ξ, ϕv}
is parallel along γ, we obtain easily along γ

(25)
{

E2n = ϕv sin s + ξ cos s,

E2n+1 = ϕv cos s− ξ sin s,

s being the arc length from m along γ.
Further, from our construction of the frame field {E1, . . . , E2n+1} it

is easily seen that any vector field X orthogonal to the ϕ-geodesic γ can
be written as

(26) X =
2n−2∑
a=2

laEa + l2n−1E2n−1 + l2nE2n + l2n+1E2n+1

and hence we easily see that (24) is equivalent to the following system of
differential equations:

l′′a +
c + 3

4
la = 0, a = 2, . . . , 2n− 1,(27)

{
l′′2n + l2n + (c− 1) sin s(l2n sin s + l2n+1 cos s) = 0,

l′′2n+1 + l2n+1 + (c− 1) cos s(l2n sin s + l2n+1 cos s) = 0.
(28)

The solutions of the 2n − 2 equations (27) are standard and it can be
shown that the equations (28) lead to two other equations where one is of
the same form as (27) and the other is still more elementary. We refer to
[3], [6] and [7] for more details about these solutions, emphasizing that one
has to consider three cases according to c+3 > 0, c+3 < 0 and c+3 = 0.

In the further text we shall need the solutions of the Jacobi differential
equation along a ϕ-geodesic γ satisfying the following initial conditions:

Xi(0) = 0, X ′
i(0) = ei, i = 2, . . . , 2n− 2, 2n, 2n + 1,(29)
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X2n−1(0) = u, X ′
2n−1(0) = 0.(30)

We shall therefore give these special solutions for the three cases, where
we use the notation k =

√
c+3 if c+3 > 0 and k =

√
−(c+3) if c+3 < 0.

See [7] for details. First, we compute the Jacobi vector fields Xi(s), i =
2, . . . , 2n − 2 along γ with the initial conditions (29) and for the special
orthonormal basis {E1(s), . . . , E2n+1(s)} established at the beginning of
this section. Using the previous formulas we obtain

c + 3 < 0 c + 3 = 0 c + 3 > 0

Xi(s) 2
k sinh k

2 sEa(s) sEa(s) 2
k sin k

2 sEa(s)

for i = 2, . . . , 2n− 2. Next, consider the Jacobi vector field X2n−1(s)
along γ satisfying the initial conditions (30). From the previous formulas
we get

c + 3 < 0 c + 3 = 0 c + 3 > 0

X2n−1(s) cosh k
2 sE2n−1(s) E2n−1(s) cos k

2 sE2n−1(s)

Finally, we consider the Jacobi vector fields X2n(s) and X2n+1(s)
along γ satisfying the initial conditions (29) and from the previous formulas
we obtain

X2n(s) = (ρ sin s + λ cos s)E2n(s) + (ρ cos s− λ sin s)E2n+1(s),

X2n+1(s) = (ν sin s− ρ cos s)E2n(s) + (ν cos s + ρ sin s)E2n+1(s)

where

c + 3 < 0 c + 3 = 0 c + 3 > 0

ρ 2
k2 (cosh ks− 1) s2 − 2

k2 (cos ks− 1)
λ − 4

k3 sinh ks− c−1
k2 s − 2

3s3 + s 4
k3 sin ks + c−1

k2 s

ν 1
k sinh ks s 1

k sin ks.

Further, consider the tube Pσ(r) of radius r about the ϕ-geodesic σ
embedded in M . Let γ denote the unit-speed geodesic meeting σ orthog-
onally at m = σ(t) and tangent to a horizontal vector v such that v is
also orthogonal to ϕu at m where u = σ̇ at m. We close this section by
giving the explicit formulas for the shape operator Sσ at p = expσ(t)(rv)
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of the sufficiently small geodesic tubes about ϕ-geodesics when the ambi-
ent space M is a Sasakian space form. For this purpose we suppose that
{E1, . . . , E2n+1} is an orthonormal frame field along γ defined as above and
use relations (15)–(20) and the previously computed Jacobi vector fields.
An easy calculation shows that the shape operator Sσ can be represented
by the quasi-diagonal matrix

(31) Sσ(p) =




A(r) . . . 0 0 0 0
...

. . .
...

...
...

...
0 . . . A(r) 0 0 0
0 . . . 0 B(r) 0 0
0 . . . 0 0 C(r) D(r)
0 . . . 0 0 D(r) E(r)




with respect to the basis {E2, . . . , E2n−1, ξ, ϕv}. The explicit expressions
for the entries are as follows:

Case 1. c + 3 = 0

A(r) =
1
r

, B(r) = 0, C(r) =
3

r(r2 + 3)
,

D(r) = − r2

r2 + 3
, E(r) =

4r2 + 3
r(r2 + 3)

;

Case 2. c + 3 > 0

A(r) =
k

2
cot

kr

2
, B(r) = −k

2
tan

kr

2
,

C(r) =
k3

ω
sin kr, D(r) = −k2 − 4

ω
(kr sin kr + 2 cos kr − 2),

E(r) =
k

ω
(4 sin kr + kr(k2 − 4) cos kr),

where ω = k3r sin kr − 4kr sin kr − 8 cos kr + 8;

Case 3. c + 3 < 0

A(r) = −k

2
coth

kr

2
, B(r) =

k

2
tanh

kr

2
,

C(r) = −k3

θ
sinh kr, D(r) =

k2 + 4
θ

(kr sinh kr − 2 cosh kr + 2),

E(r) =
k

θ
(4 sin kr − kr(k2 + 4) cos kr),
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where θ = 8 cosh kr − k3r sinh kr − 4kr sinh kr − 8.

Finally, it follows easily from the expressions for the curvature tensor
of the Sasakian space form (M, ϕ, ξ, η, g) and from the Gauss equation
that the Ricci operator Qσ(p) of Pσ(r) has a similar expression as that of
Sσ(p) in (31) but with other functions as entries.

4. Extrinsic geometry of tubes about ϕ-geodesics
on Sasakian manifolds

In this section we derive some new characterizations of Sasakian space
forms and locally ϕ-symmetric spaces related to the shape operator. We
show that its action has some very particular features when restricted to
the parallel plane {ξ, ϕv} along a ϕ-geodesic γ through σ(t), tangent to
v and meeting σ̇(t) and ϕσ̇(t) orthogonally. From now on, we call these
tubes ϕ-geodesic tubes and we use the notations as at the end of Section 3.

Here we also note that along γ we have v = γ′(s) = ∂
∂s and at p =

expm(rv) this vector is a unit normal vector of Pσ(r).

Theorem 1. Let (M2n+1, ϕ, η, ξ, g) be a Sasakian manifold of dimen-
sion ≥ 5. Then, with the conventions made above, M is a Sasakian space
form if and only if, for every sufficiently small ϕ-geodesic tube Pσ(r),
Sσ(p)ϕv (or Sσ(p)ξ, respectively) belongs to the plane {ξ, ϕv}(p) for all
m ∈ M and all v, where p = expm(rv).

Proof. First, if M is a Sasakian space form, using the explicit ex-
pressions for the shape operator Sσ of the tube Pσ(r) at p and derived
in Section 3, we see immediately that in this case Sσ preserves the plane
{ξ, ϕv}(p).

To prove the converse we first write down the formulas for Sσ(p)ϕv
and Sσ(p)ξ using (21) and (25):

Sσ(p)ϕv =
1
r
ϕv + ξ − r

6
[3ϕv + 2Rvϕvv + Ruvϕvvu](32)

− r2

12
[6ξ + (∇vR)uvϕvvu + 3(∇vR)vϕvv] + O(r3),

Sσ(p)ξ =
1
r
ξ − ϕv − 5

6
rξ(33)

+
r2

12
[2ϕv + Rvϕvvuu + Rvϕvv] + O(r3).

Now, Sσ(p)ϕv belongs to the parallel plane field {ξ(p), ϕv(p)} if and only
if

g(Sσ(p)ϕv, x(r)) = 0
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for all parallel vectors x which are orthogonal to that plane along the
ϕ-geodesic γ. Using (32), this gives

(34) Rvϕvvx + Rvϕvvug(u, x) = 0

at all m ∈ M , for all horizontal u and all horizontal v orthogonal to u
and ϕu at m. Further, since u is orthogonal to ξ and ϕv at m, after
replacing u by x in relation (34), we get Rvϕvvu = 0. Therefore, (34)
implies Rvϕvvx = 0 and then, since Rvϕvvξ = 0, we obtain that Rvϕvv is
proportional to ϕv. Finally, using Theorem D, we conclude that M is a
Sasakian space form.

To complete the proof, it is enough to use next (33) and to repeat a
similar procedure.

Theorem 2. Let (M2n+1, ϕ, η, ξ, g) be a Sasakian manifold of dimen-
sion ≥ 5. Then with the conventions made above, M is a Sasakian space
form if and only if, for all v and for every sufficiently small ϕ-geodesic tube
Pσ(r), the integral curves of ϕv = ϕ ∂

∂s on Pσ(r) are geodesics on these
tubes.

Proof. Let M be a Sasakian manifold and denote by ∇̃ the induced
Riemannian connection on Pσ(r). Then the integral curves of ϕv are
geodesics if and only if

∇̃ϕv(ϕv) = 0,

that is, if and only if
g(∇ϕv(ϕv), X) = 0

for all vectors X tangent to Pσ(r). Using (1) and (2), we see that this is
equivalent to the condition

g(Sσ(p)ϕv, ϕX) = 0,

which means that Sσ(p)ϕv must belong to the plane {ξ, ϕv}(p) and con-
versely. Hence, the result follows from Theorem 1.

Remark. We also note that it is easy to prove when dim M ≥ 5 that a
Sasakian manifold has constant ϕ-sectional curvature if and only if ϕv =
ϕ ∂

∂r on each sufficiently small Pσ(r) satisfies the Killing equation at the
points p = expm(rv), for all m ∈ M and all v with the conventions as
above.

To finish this section we give one characterization of locally ϕ-sym-
metric spaces. Therefore we consider the geodesic of Pσ(r) tangent to ϕv
at p = expm(rv). Its curvature κσ(p) in M is given by

(35) κσ(p) = g(Sσ(p)ϕv, ϕv).

Using this real valued function and the ϕ-geodesic symmetry sm centered
at m, we obtain
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Theorem 3. Let (M2n+1, ϕ, η, ξ, g) be a Sasakian manifold. Then,
with the conventions made above, M is locally ϕ-symmetric space if and
only if

(36) κσ(p) = κσ(sm(p)), p = expm(rv),

for all m ∈ M , all v and all sufficiently small r.

Proof. First, if M is a locally ϕ-symmetric Sasakian manifold, owing
to Theorem A (i), sm is a local automorphism of the Sasakian structure
(ϕ, η, ξ, g) and hence we obtain the result at once.

We now prove the converse. Using (25) and (32), we get for (35)

(37) κσ(p) =
1
r
− 3r +

8r

3
Rvϕv vϕv − r2

4
(∇vR)vϕv vϕv + O(r3).

Then (36) and (37) imply

(∇vR)vϕv vϕv = 0

for all horizontal v orthogonal to u and ϕu at m and all m ∈ M . Now, the
required result follows by using Theorem C, since the horizontal vector u
may be chosen arbitrarily.

5. Intrinsic geometry of tubes about ϕ-geodesics
on Sasakian manifolds

This section is devoted to research about the intrinsic geometry of ϕ-
geodesic tubes by treating their Ricci operator Qσ and its action restricted
to the parallel plane {ξ, ϕv} along a ϕ-geodesic γ as before. Analogous
theorems as for the shape operator Sσ will be proved here, although in
several cases the proofs require a more elaborated treatment.

Theorem 4. Let (M2n+1, ϕ, η, ξ, g) be a Sasakian manifold of dimen-
sion ≥ 5. Then with the conventions made before, M is a Sasakian space
form if and only if, for every sufficiently small ϕ-geodesic tube Pσ(r),
Qσ(p)ϕv (or Qσ(p)ξ, respectively) belongs to the plane {ξ, ϕv}(p) for all
m ∈ M and all v, where p = expm(rv).

Proof. We start with the “if” part of the theorem. Therefore, let
{E1, . . . , En} be an orthonormal basis parallel along γ defined as in Section
3. In that way, using (22) and (25), we get

Qσ(p)ϕv =
2n− 2

r2
ϕv +

2n− 2
r

ξ + Qϕv − 2n

3
Rvϕvv

− n

3
Rvϕvvuu−

[
n− 1 +

1
3
(ρvv + 2Rvuvu)

]
ϕv
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+ r
{1

3
(3n + 1− ρvv − 2Rvuvu)ξ+(∇vQ)ϕv− 2n + 1

4
(∇vR)vϕvv

− 2n + 1
12

(∇vR)vϕvvuu− 1
4

[(∇vρ)vv + (∇vR)vuvu]ϕv
}

+ r2
{1

2
Qϕv − 2n + 3

12
Rvϕvv +

1
2
(∇2

vvQ)ϕv − n + 1
5

(∇2
vvR)vϕvv

+
1
9
ρvvRvϕvv +

2
9
RvuvuRvϕvv − n + 1

18
RvϕvvuRvuv

− 2n + 2
45

RvRvϕvvv+
[2− 17n

12
+

1
6
(ρvv+2Rvuvu)− 1

10
(∇2

vvρ)vv

− 1
15

(∇2
vvR)vuvu− 1

3
R2

vuvu−
2
15

2n+1∑

λ=3

R2
vλvu−

1
45

2n+1∑

λ,µ=3

R2
vλvµ

]
ϕv

− 1
4

[(∇vρ)vv + (∇vR)vuvu] ξ +
[
− 1

12
Rvϕvvu

− n + 1
20

(∇2
vvR)vϕvvu +

1
18

ρvvRvϕvvu − 27n + 7
180

RvuvuRvϕvvu

− 7n + 7
180

2n+1∑

λ=3

RvϕvvλRvλvu

]
u
}

+O(r3),(38)

Qσ(p)ξ =
2n− 2

r2
ξ − 2n− 2

r
ϕv +

1
3

(n + 3− ρvv − 2Rvuvu) ξ

+ r
{2n− 3

12
Rvϕvv +

2n− 1
12

Rvϕvvuu +
[
−14n + 1

12
+

1
3
(ρvv

+ 2Rvuvu)
]
ϕv − 1

4
[(∇vρ)vv + (∇vR)vuvu] ξ

}

+ r2
{

(∇vQ)ϕv − 2n + 2
5

(∇vR)vϕvv − n + 1
10

(∇vR)vϕvvuu

+
[ 5
18

ρvv− 113n + 23
180

+
5
9
Rvuvu− 1

10
(∇2

vvρ)vv− 1
15

(∇2
vvR)vuvu

− 1
3
R2

vuvu −
2
15

2n+1∑

λ=3

R2
vλvu −

1
45

2n+1∑

λ,µ=3

R2
vλvµ

]
ξ
}

+ O(r3).(39)

First we consider the action of Qσ on ϕv and for this purpose let X be a
parallel vector field along γ with X(0) = x and orthogonal to the parallel
plane spanned by ξ(p) and (ϕv)(p). Then it follows that Qσ(p)ϕv belongs
to that plane if and only if

g(Qσ(p)ϕv, X(p)) = 0
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for all such X. Using (38), this implies the following necessary conditions:

3g(Qϕv, x) = 2nRvϕvvx + nRvϕvvug(u, x),(40)

12g((∇vQ)ϕv, x)=(2n+1)
(
3(∇vR)vϕvvx+(∇vR)vϕvvug(u, x)

)
,(41)

1
2
g(Qϕv, x) +

1
2
g
(
(∇2

vvQ)ϕv, x
)
− 2n + 3

12
Rvϕvvx(42)

− n + 1
5

(∇2
vvR)vϕvvx +

1
9
ρvvRvϕvvx +

2
9
RuvuvRvϕvvx

− n + 1
18

RvϕvvuRvuvx − 2n + 2
45

RvRvϕvvvx

=
(1

6
Rvϕvvu +

n + 1
20

(∇2
vvR)vϕvvu − 1

18
ρvvRvϕvvu

+
27n + 7

180
RuvuvRvϕvvu +

7n + 7
180

2n+1∑

λ=3

RvϕvvλRvλvu

)
g(u, x).

Differentiation of (40) leads to

(43) 3g
(
(∇vQ)ϕv, x

)
= n

(
2(∇vR)vϕvvx + (∇vR)vϕvvug(u, x)

)

and then (41) implies

(44) (3− 2n)(∇vR)vϕvvx = (2n− 1)(∇vR)vϕvvug(u, x).

Since u is orthogonal to ξ and ϕv at m, replacing x by u in the last relation
gives

(45) (∇vR)vϕvvu = 0.

The last relation yields together with (44)

(46) (∇vR)vϕvvx = 0

and hence

(47) (∇2
vvR)vϕvvx = −Rvϕvvx.

The local fibration formulas (5) and (10) show that (46) is equivalent to

(48) (∇wR)wJwwy = 0,

at m̄ = π(m), where v = w∗, x = y∗, for all (unit) w orthogonal to Jy. To
handle this condition we use the method of integration, instead of the usual
linearization and contraction technique. (See for example [8], [14],[10], [12]



366 M. Djorić

for more details.) Using now the well-known integration formulas, the last
relation implies

(49) 2∇yτ − 7(∇ρ)(y, y) + 3(∇yR)yJyyJy = 0

for all unit vectors y of Tm̄B.
Further, using the Kähler and the second Bianchi identity in relation

(48) when w ∈ {y, Jy}⊥, and integrating the obtained relation over the
unit sphere S2n−3(1) in {y, Jy}⊥ ⊂ Tm̄B, we get

(50) ∇yτ − 4(∇yρ)(y, y) + 2(∇yR)yJyyJy = 0.

Then, (49) and (50) yield

(51) ∇yτ − 2(∇yρ)(y, y) = 0.

Linearization and contraction of this relation yields

∇zτ = 0.

Finally, using (50) and (51), the last relation implies

(52) (∇yR)yJyyJy = 0,

for all unit vectors y of Tm̄B. Theorem A (ii) then implies that B is locally
Hermitian symmetric and using Theorem B we may conclude that M is
locally ϕ-symmetric.

Further, since u is orthogonal to ξ and ϕv at m, replacing x by u in
(40) gives

(53) g(Qϕv, u) = nRvϕvvu

and hence, relation (40) implies

(54) 3g(Qϕv, x) = 2nRvϕvvx + g(Qϕv, u)g(u, x).

On the other hand relation (43), by means of (45) and (46), reduces to

(55) g((∇vQ)ϕv, x) = 0.

Next, since Qξ = 2nξ, (54) and (55) give

(56)

{
3g((∇vQ)ξ, x) = 2nRvϕvvx + g(Qϕv, u)g(u, x),
3g((∇2

vvQ)ϕv, x) = −2nRvϕvvx − g(Qϕv, u)g(u, x).

Now, put x = u in (42) and (56). Then we obtain

(57) Rvϕvvu

(
n− 2
12

+
1
6
ρvv +

23− 37n

180
Rvuvu

)

− 7n + 7
180

2n+1∑

λ=3

RvϕvvλRvλvu − 2n + 2
45

RvRvϕvvvu = 0.
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Further, from (42), (47), (53), (56) and (57) we get

2n− 3
60

Rvϕvvx +
1
9
ρvvRvϕvvx +

2
9
RvuvuRvϕvvx

−n + 1
18

RvϕvvuRvuvx − 2n + 2
45

RvRvϕvvvx +
(3− 2n

60
Rvϕvvu(58)

−1
9
ρvvRvϕvvu +

n− 3
18

RvuvuRvϕvvu +
2n + 2

45
RvRvϕvvvu

)
g(u, x) = 0.

On the other hand, we get on (B, G, J), using (54) and taking into account
the local fibration formulas (5), (7) and (8),

(59) 3G(QJw, y) = 2nRwJwwy + G(QJw, z)G(z, y),

where v = w∗, u = z∗ and x = y∗. First, we consider the case when B is
locally irreducible. Then it is an Einstein space and because y and z are
orthogonal to Jw at m̄ = π(m) ∈ B, (59) then yields

RwJww = ζJw,

which implies, using Theorem E, that B has constant holomorphic sectional
curvature since dimB ≥ 4. Secondly, if B is locally reducible, it is locally
a product B1 × · · · × Bk of Kählerian Einstein spaces. For each factor Bi

with dimBi ≥ 4, (59) is satisfied and hence, these Bi are complex space
forms. If dimBi = 2, the same result follows from (51). To handle this
case we first note that (59) may be written in the form

(60) 3QJw − 2nRwJww − ρ̄(Jw, z)z = ηJw.

Now we project this onto the tangent space of the factor B1. Then we get

(61) 3(QJw)1 − 2n(RwJww)1 − νz1 = η(Jw)1,

where ν = ρ̄(Jw, z). Since this factor has constant holomorphic sectional
curvature, say c1, we have

(62) (QJw)1 =
τ̄1

n1
(Jw)1, (RwJww)1 = (c1 cos2 α1)(Jw)1

where G(w1, w1) = cos2 α1. Here n1 = dimB1 and τ̄1 denotes the scalar
curvature of B1, that is

(63) 4τ̄1 = n1(n1 + 2)c1.

Using (62) and (63), (61) yields

(64)
3
4
(n1 + 2)c1(Jw)1 − 2nc1 cos2 α1(Jw)1 − νz1 = η(Jw)1.
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Similarly, by taking the projection on the tangent space of the second
factor B2 in (60), we get

(65)
3
4
(n2 + 2)c2(Jw)2 − 2nc2 cos2 α2(Jw)2 − νz2 = η(Jw)2.

Here n2 = dimB2, τ̄2 denotes the scalar curvature of B2 and G(w2, w2) =
cos2 α2. Since the horizontal vectors u and v (orthogonal to ϕu at m) may
be chosen arbitrarily we obtain from (64) and (65)

(66) c1 + c2 = 0.

Finally, we shall prove that c1 = c2 = 0. For that purpose we first note
that from (58) we obtain on (B, G, J)

(
6n− 5

36
+

1
9
ρ̄ww +

2
9
Rzwzw

)
RwJww − n + 1

18
RwJwwzRwzw

− 2n + 2
45

RwRwJwww +
(5− 6n

36
RwJwwz − 1

9
ρ̄wwRwJwwz(67)

+
n− 3
18

RzwzwRwJwwz +
2n + 2

45
RwRwJwwwz

)
z = ζJw,

using the local fibration formulas (5), (7) and (8), where v = w∗ and
u = z∗.

Moreover, multiplying (67) by Jz we get

(68)
(

6n− 5
36

+
1
9
ρ̄ww +

2
9
Rzwzw

)
RwJwwJz

− n + 1
18

RwJwwzRwzwJz − 2n + 2
45

RwRwJwwwJz = 0.

Further, let w ∈ {y, Jy}⊥. Then (68) also implies

(69)
(

6n− 5
36

+
1
9
ρ̄ww +

2
9
RzJwzJw

)
RJwwJwJz

− n + 1
18

RJwwJwzRJwzJwJz − 2n + 2
45

RJwRJwwJwJwJz = 0,

or, equivalently, taking into account the Kähler identity,

(70)
(

6n− 5
36

+
1
9
ρ̄ww +

2
9
RJzwJzw

)
RwJwwz

− n + 1
18

RJwwJwzRwJzwz +
2n + 2

45
RJwRJwwJwJwJz = 0.
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Now, using (67), (70) and the Kähler identity, we obtain
(

6n− 5
36

+
1
9
ρ̄ww +

2
9
Rzwzw

)
RwJww − n + 1

18
RwJwwzRwzw(71)

− 2n+2
45

RwRwJwww+

(
2
9
RwJzwJzRwJwwz

− n + 1
18

RwzwJzRwJwwJz +
n− 3
18

RzwzwRwJwwz

)
z = ζJw.

Finally, projecting this onto the tangent spaces of the factors B1 and B2

and using (66) we get
c1 = c2 = 0.

The same procedure for the other factors leads to the conclusion that B is
flat.

We conclude that B is a complex space form and hence, using Theorem
F, M is a Sasakian space form. This completes the proof of the first part
of the theorem.

To prove the second part, let Qσ(p)ξ belong to the plane spanned by
ξ(p) and (ϕv)(p). Then (39) yields

(72) (2n− 3)Rvϕvvx = (1− 2n)Rvϕvvug(u, x)

for all horizontal u, v such that u ⊥ ϕv, u ⊥ v at m ∈ M and all horizontal
x orthogonal to ϕv and ξ. Putting x = u in the last relation yields

Rvϕvvx = 0

for all horizontal v and all horizontal x orthogonal to ϕv and ξ (since u can
be chosen arbitrarily). Finally, we conclude that Rvϕvv is proportional to
ϕv, and the result follows using Theorem D.

The converse follows directly from the formulas for the Ricci operator
of these ϕ-geodesic tubes in Sasakian space forms mentioned in Section 3.

This concludes the proof of the theorem.

Now we turn to the properties which are similar to the ones derived by
using the function κσ. Therefore, let Pσ(r) be the ϕ-geodesic tube defined
earlier. The associated Ricci curvature of Pσ(r) with respect to ϕv at p is
defined by

(73) ρσ(ϕv, ϕv)(p) = g(Qσ(p)ϕv, ϕv).
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Using (25) and (38) we get the following expansion for this curvature:

(74)
ρσ(ϕv, ϕv)(p) =

2n− 2
r2

+
2
3

(
ρvv − 3Rvuvu − nRvϕv vϕv

)

−r

4

[
5(∇vρ)vv + (2n + 1)(∇vR)vϕv vϕv + (∇vR)vuvu

]
+ O(r2).

Then we have
Theorem 5. Let (M2n+1, ϕ, η, ξ, g) be a Sasakian manifold of dimen-

sion ≥ 5. Then, with the conventions as in Section 4, M is locally ϕ-
symmetric if and only if, for every sufficiently small ϕ-geodesic tube Pσ(r)

(75) ρσ(ϕv, ϕv)(expm(rv)) = ρσ(ϕv, ϕv)(expm(−rv))

for all m ∈ M and all v.

Proof. First suppose (75) holds. Then using again the local fibration
technique and with the same convention as above we get

(76) (2n + 1)(∇wR)wϕw wϕw + (∇wR)wzwz + 5(∇wρ̄)ww = 0.

After linearizing and contracting the last relation and using the Kähler
and the Bianchi identities, we obtain

2(n + 3)(∇xR)zxzx + 2(11n + 18)(∇xρ̄)xx

+3G(x, x)(∇xρ̄)zz − 2G(x, x)(∇z ρ̄)zx + 10G(x, x)∇xτ̄ = 0.(77)

Repeating the same procedure in (77) yields

(78) (7n + 15)(∇wρ̄)zz − 4(n + 2)(∇z ρ̄)zw + 2(16n + 23)∇w τ̄ = 0

and using the same procedure once again in (78), gives

(79) ∇w τ̄ = 0.

Finally, doing the same for z in (77) implies

(80) (∇yρ̄)yy = 0.

This yields (∇yρ̄)zz + 2(∇z ρ̄)yz = 0 and so, (78) leads to (∇wρ̄)zz =
(∇z ρ̄)wz = 0. Then (76) and (77) yield

(∇wR)wJw wJw = 0

and hence, from Theorem B, we obtain that (B, G, J) is locally Hermitian
symmetric. Then, using Theorem A (ii) we conclude that (M2n+1, ϕ,
η, ξ, g) is a locally ϕ-symmetric Sasakian manifold.

The converse follows easily using Theorem A (i).
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