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Twisted quadratic moments for Dirichlet L-functions at s = 2

By STÉPHANE R. LOUBOUTIN (Marseille)

Abstract. Let c, n be given positive integers. Let q > 2 be coprime with c. Let Xq

be the multiplicative group of order φ(q) of the Dirichlet characters modulo q. Set

M(q, c, n) :=
2

φ(q)

∑
χ∈Xq

χ(−1)=(−1)n

χ(c)|L(n, χ)|2.

The goal of this paper is to explain how one can compute explicit formulas for M(q, c, n)

for given small integers n and c. As an example, we give explicit formulas for M(q, c, 2)

for c ∈ {1, 2, 3, 4, 6}, and for M(p, 5, 2) for p a prime integer. As a consequence, we show

that a previously published formula for M(p, 3, 2) is false.

1. Introduction

Let c, n be given positive integers. Let q > 2 be coprime with c. Let Xq be

the multiplicative group of order φ(q) of the Dirichlet characters modulo q. Set

M(q, c, n) :=
2

φ(q)

∑
χ∈Xq

χ(−1)=(−1)n

χ(c)|L(n, χ)|2.

In [4], we developed a method for obtaining formulas for M(q, 1, n). For example,

by [4, Theorem 2], we have

M(q, 1, 2) =
π2

90
×
{
φ4(q) +

10

q2
φ2(q)

}
, (1)
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where

φk(q) =
∏
p|q

(
1− 1

pk

)
(k ∈ Z≥1).

In [5], for a given c > 1, we developed a method for obtaining formulas for

M(q, c, 1). For example, in the cases where the multiplicative group (Z/cZ)∗ is

trivial of order 1, i.e. for c ∈ {1, 2}, by [5, (1) and (3)] and [6, Theorem 2], we have

M(q, c, 1) =
π2

6c
×
{
φ2(q)− 3cφ1(q)

q

}
. (2)

In the cases where the multiplicative group (Z/cZ)∗ is of order 2, i.e. for c ∈
{3, 4, 6}, by [5, (4) and (5)] and [6, Theorem 4], we have

M(q, c, 1) =
π2

6c
×

φ2(q)− 3cφ1(q)

q
− (c− 1)(c− 2)χc(q)

q

∏
p|q

(
1− χc(p)

p

) ,

where χc is the non-trivial character on the multiplicative group (Z/cZ)∗, i.e.

where χc(n) = 1 if n ≡ 1 (mod c), and χc(n) = −1 if n ≡ −1 (mod c). We point

out that according to [6, Section 4], as c gets bigger, such explicit formula become

very complicated, there is no known closed formula for M(q, c, 2) and we gave

formulas for c ∈ {1, 2, 3, 4, 5, 6, 8, 10}. Restricting himself to prime moduli, in [2,

Corollary 1.1], H. Liu gives explicit formulas for M(p, c, 2) for c = 1, 2, 3, 4,

without explaining why he did not consider neither non-prime moduli nor values

of c > 4. Here, focussing on the particular example of M(q, c, 2), we explain how

to extend Liu’s results to non-prime moduli and values of c > 4. We will prove

the following result and show that the formula for M(p, 3, 2, ) in [2, Corollary 1.1]

is false (compare with [6, Theorem 4]):

Theorem 1. Let q > 1 be coprime with c ∈ {1, 2, 3, 4, 6}. Define

c uc vc
1 10 0

2 70 0

3 210 80

4 490 360

6 1830 2240

Let X+
q be the group of order φ(q)/2 of the even Dirichlet characters modulo q.

For c ∈ {3, 4, 6}, let χc be the only non-trivial character on the multiplicative

group (Z/cZ)∗ = {±1}. Then
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M(q, c, 2) :=
2

φ(q)

∑
χ∈X+

q

χ(c)|L(2, χ)|2

=
π4

90c2
×

φ4(q) +
ucφ2(q)

q2
+
vcχc(q)

q3

∏
p|q

(
1− χc(p)

p

) .

As a Corollary, we recover the formulas in [2, Corollary 1.1], correct the

formula for M(p, 3, 2) and give a new formula, the one for M(p, 6, 2):

Corollary 2. Let p > 3 be a prime integer. We have

M(p, c, 2) =
π4

90c2
× (p2 − 1)(p2 + uc + 1)

p4
(c ∈ {1, 2}),

and

M(p, c, 2) =
π4

90c2
× p4 + ucp

2 + vcχc(p)p− (uc + vc + 1)

p4
(c ∈ {3, 4, 6}).

We also have the explicit formulas

M(p, 3, 2) =
π4

810
× p4 + 210p2 + 80pχ3(p)− 291

p4
,

M(p, 4, 2) =
π4

1440
× p4 + 490p2 + 360χ4(p)− 851

p4

and

M(p, 6, 2) =
π4

3240
× p4 + 1830p2 + 2240pχ6(p)− 4071

p4
.

Let us explain how we performed some numerical computation to check

our formulas for M(p, c, 2), and let us justify that the formula for M(p, 3, 2)

in [2, Corollary 1.1] is not correct. Let p > 3 be a prime integer. We refer

to [7, Chapter 4] for the justification of what follows. For χ0 the trivial char-

acter modulo p, we have L(s, χ0) = (1 − p−s)ζ(s) and L(2, χ0) = p2−1
p2

π2

6 .

For χ0 6= χ ∈ X+
p , we have

L(2, χ) = −Wχ
2π2

p3/2
L(−1, χ̄) = Wχ

π2

p3/2
B2,χ̄ = Wχ

π2

p5/2

p−1∑
a=1

χ̄(a)a2,

where the root number Wχ is a complex number of absolute value equal to 1.
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Hence,

M(p, c, 2) =
2π4

p− 1
×

 (p2 − 1)2

36p4
+

∑
χ0 6=χ∈X+

p

χ(c)

∣∣∣∑p−1
a=1 χ(a)a2

∣∣∣2
p5

 .

Taking p = 5, for which the only χ0 6= χ ∈ X+
5 is the Legendre symbol

(•
5

)
,

for which
∑4
a=1 χ(a)a2 = 1− 22 − 32 + 42 = 4, we obtain

M(5, c, 2) =
8π4

55

(
5 +

( c
5

))
.

For c ∈ {1, 2, 3, 4}, this formula yields the same value as the ones in Corollary 2.

In particular, they give M(5, 3, 2) = 32π4/55, whereas the formula in [2, Corol-

lary 1.1] gives the wrong estimation M(5, 3, 2) = 238π4/(9 · 55).

2. Proof of Theorem 1

Lemma 3. Assume that gcd(c, d) = 1. Set

Scotk(d) =

d−1∑
a=1

cotk
(πa
d

)
,

with the convention that Scotk(1) = 0, and

S2(c, d) :=

d−1∑
a=1

cot2
(πa
d

)
cot2

(πac
d

)
, (3)

with the convention that S2(c, 1) = 0 for c ≥ 1. Then

M(q, c, 2) =
π4

2q4

∑
d|q

µ(q/d)
(

(d− 1) + 2Scot2(d) + S2(c, d)
)
. (4)

In particular,

M(p, c, 2) =
π4

2q4

(
(p− 1) + 2Scot2(p) + S2(c, p)

)
. (5)
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Proof. From [4, Proposition 3], we have

L(2, χ) = − π2

2q2

q−1∑
a=1

χ(a) cot′(πa/q) (χ ∈ X+
q ),

and as in the proof of [4, Proposition 3], we obtain

M(q, c, 2) =
π4

2q4

q−1∑
a=1

gcd(a,q)=1

cot′(πa/q) cot′(πac/q),

with cot′ = −1−cot2 the derivative of cot. Using
∑

d|a and q

µ(d) = 0 or 1 for either

gcd(a, q) > 1 or gcd(a, q) = 1, respectively, we obtain

M(q, c, 2) =
π4

2q4

∑
d>1
d|q

µ(q/d)

d−1∑
a=1

(
1 + cot2

(πa
d

))(
1 + cot2

(πac
d

))
, (6)

and the desired result, thanks to the conventions, Scot2(1) = S2(c, 1) = 0. �

Lemma 4. Let c > 1 be an integer. It holds that

(cot2 x)(cot2(cx)) =
1

c2
cot4 x− 2(c2 − 1)

3c2
cot2 x+

c4 − 1

15c2

− 2

c2

c−1∑
k=1

2 cot3(kπ/c)+cot(kπ/c)
sin2(kπ/c)

cot(kπ/c)− cotx
+

1

c2

c−1∑
k=1

cot2(kπ/c)
sin4(kπ/c)

(cot(kπ/c)− cotx)
2 .

Proof. Adapt the proof of [5, Lemma 4]. �

Lemma 5. Let d > 1 be an integer and θ ∈ (0, π)\ ∈ {πa/d; 1 ≤ a ≤ d−1}.
Set

Tm(θ, d) :=
1

d

d−1∑
a=1

1

(cot θ − cot(πa/d))m
.

Then

T1(θ, d) = (sin2 θ)
(

cot θ − cot(dθ)
)
,

T2(θ, d) = (sin4 θ)
(
d cot2(dθ)− 2(cot θ)(cot(dθ)) + cot2 θ + (d− 1)

)
and

− 2(2 cot3 θ + cot θ)
T1(θ, d)

sin2 θ
+ (cot2 θ)

T2(θ, d)

sin4 θ)

= (d− 3) cot2 θ − 3 cot4 θ + 2(cot3 θ + cot θ) cot(dθ) + d(cot2 θ)(cot2(dθ)).
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Proof. For T1(θ, d), see [5, Lemma 5] and take α = cot θ. For T2(θ, d),

notice that T2(θ, d) = (sin2 θ)dT1(θ,d)
dθ . �

Now, noticing that
∑
d|q µ(q/d)dk = qkφk(q) and φ0(q) = 0 for q > 1,

Theorem 1 follows from (4) and the following Proposition:

Proposition 6. Assume that gcd(c, d) = 1. Set

Fc(d) :=

c−1∑
k=1

(cot3(kπ/c) + cot(kπ/c)) cot(kdπ/c),

with the convention that F1(d) = 0 for d ≥ 1. Then

(d− 1) + 2Scot2(d) + S2(c, d) =
Qc(d)

45c2
+
d2

c2
S2(d, c) +

2d

c2
Fc(d),

where Qc(d) := d4 + 5(7c2 − 9c+ 4)d2 − (3c4 + 5c2 + 3). Notice that S2(d, c) and

Fc(d) depend only on d modulo c. In particular, we have

c S2(d, c) Fc(d) 45c2
(
(d− 1) + 2Scot2(d) + S2(c, d)

)
1 0 0 d4 + 10d2 − 11

2 0 0 d4 + 70d2 − 71

3 2
9

8
9χ3(d) d4 + 210d2 + 80dχ3(d)− 291

4 2 4χ4(d) d4 + 490d2 + 360dχ4(d)− 851

6 164
9

224
9 χ6(d) d4 + 1830d2 + 2240dχ6(d)− 4071

Proof. Using (3) and Lemma 4, we obtain

c2S2(c, d) = Scot4(d)− 2(c2 − 1)

3
Scot2(d) +

c4 − 1

15
(d− 1)

− 2d

c−1∑
k=1

(2 cot3(kπ/c) + cot(kπ/c))
T1(kπ/c, d)

sin2(kπ/c)

+ d

c−1∑
k=1

(cot2(kπ/c))
T2(kπ/c, d)

sin4(kπ/c)
.

Using the last assertion in Lemma 5 for θ = kπ/c, we obtain

c2S2(c, d) = Scot4(d)− 2(c2 − 1)

3
Scot2(d) +

c4 − 1

15
(d− 1)

+ d
(

(d− 3)Scot2(c)− 3Scot4(c)
)
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+ 2d

c−1∑
k=1

(cot3(kπ/c) + cot(kπ/c)) cot(kdπ/c)

+ d2
c−1∑
k=1

(cot2(kπ/c))(cot2(kdπ/c)).

Now, for n > 1, cot(πk/n), 1 ≤ k ≤ n− 1, are the roots of

(X + i)n − (X − i)n

2in
= Xn−1 − (n− 1)(n− 2)

6
Xn−3 + · · · ∈ Q[X].

Hence, Scot2(n) = (n−1)(n−2)
3 and Scot4(n) = (n−1)(n−2)(n2+3n−13)

45 . The desired

result follows. �

Corollary 7. For p 6= 2, 5 a prime integer, we have

M(q, 5, 2) =
π4

2250p4
×


p4 + 994p2 + 1008p− 2003 if p ≡ 1 (mod 5),

p4 + 706p2 + 144p− 2003 if p ≡ 2 (mod 5),

p4 + 706p2 − 144p− 2003 if p ≡ 3 (mod 5),

p4 + 994p2 − 1008p− 2003 if p ≡ 4 (mod 5).

Proof. Follows from (5), Proposition 6 and the computation of S2(r, 5) and

F5(r) for the value r of d modulo 5 ranging in {1, 2, 3, 4}. �

Remark 8. As in [8], for q a positive integer, set

d(q; a1, . . . , an) = (−1)n/2
q−1∑
k=1

cot

(
ka1

q

)
· · · cot

(
kan
q

)
.

In [8, (47)], Zagier gave a reciprocity law for these generalized Dedekind sums

under the assumption that q and the ak’s be pairwise coprime. For S2(c, q) =

d(q; 1, 1, c, c) this assumption is not fulfilled. Hence, Proposition 6, where Fc(x) :=

d(c; 1, 1, 1, x) + d(c; 1, x), which can be viewed as a reciprocity law for the sums

S2(c, d), does not follow from Zagier’s reciprocity law.

3. Conclusion

[5, Lemma 4], which deals with (cotx)(cot(cx)), and the present Corol-

lary 4, which deals with (cot2 x)(cot2(cx)), could easily be generalized to evaluate
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(cotm x)(cotn(cx)) for small values of m and n. Lemma 5 can be very easily gen-

eralized to evaluate Tm(θ, d) for small values of m. Lemma 3 can be generalized

to express M(q, c, n) in terms of

Sk,l(c, d) :=

d−1∑
a=1

cotk
(πa
d

)
cotl

(πac
d

)
,

see [4]. Hence, following the method developed here one could obtain explicit for-

mulas for M(q, c, n) and M(p, c, n) for other small values of n and c. As explained

here and in [6], the formulas for M(q, c, n) would get more complicated as φ(c)

increases. We would get φ(c) twisted quadratic moments formulas, one for each

value of d modulo c (notice that φ(c) = 1 if and only if c = 1, 2, and φ(c) = 2 if

and only if c = 3, 4, 6). Only asymptotic estimates as in [1] and [3] could yield

explicit formulas for all c’s.
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