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Interiors of continuous images of self-similar sets with overlaps

By LIFENG XI (Ningbo), KAN JIANG (Ningbo), JIALI ZHU (Ningbo)
and QIYANG PEI (Ningbo)

Abstract. Let K be the attractor of the following iterated function system
{S1(z) = Az, S2(z) = Az +c— A, Ss(z) = Az + 1 — A},

where S1(I) N Sa(I) # 0, (S1(I) U S2(I)) N S3(I) = @, and I = [0,1] is the convex hull

of K. Let di = 1- i_ A < 1 3 = ds. Suppose that f is a continuous function
—c—

defined on an open set U C R?. Denote the image

Jo(K,K) ={f(z,y): (z,y) € (K x K)NU}.
If 0. f, Oy f are continuous on U, and there is a point (zo,y0) € (K x K)NU such that

aﬂvﬂ(zovyo)
ayf‘(zo,yo)

ayf‘(zwyo)

c (d1,d2) or
8-17f|(onvyo)

€ (di,dz),

1
then fu (K, K) contains an interval. As a result, we let ¢ = X = 3 and if

flz,y) = xo‘yﬁ (af #0), z*+y*(a+#0), sin(z)cos(y), or zsin(zy),

then fy(C,C) contains an interval, where C' is the middle-third Cantor set.
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1. Introduction

Representation of real numbers is an important area in number theory. There
are many ways of expressing numbers, for instance, the S-expansions ([1], [3], [6],
[7], [13], [14], [15], [26]), the continued fractions ([11], [12]), the Liiroth expansions
([5]), and so on. These representations are popular in number theory. There are,
however, some other approaches that can represent real numbers ([2], [24], [37],
[39]). First, let us introduce some basic definitions. Given two non-empty sets
A, B C R, we define

AxB={xxy:x € Ay € B},

where * is 4+, —,- or = (when * = =, y # 0). We call v = z * y an arithmetic
representation in terms of A and B. Steinhaus proved that

C-C={z—-y:z,yeC}=[-1,1],

where C'is the middle-third Cantor set. This result also implies that C+C' = [0, 2]
due to the equation C' = 1—C. In [2], ATHREYA, REZNICK and TYSON considered
the multiplication on C, and proved that

17/21 < L(C - C) < 8/9,

where £ denotes the Lebesgue measure. Moreover, they also considered the di-
vision on C. Due to these two results, it is natural to ask that for the general
self-similar sets Ky and K5, how large K % K> is in the sense of Hausdorff dimen-
sion or Lebesgue measure, where x = + or -. This question was mainly addressed
by PERES and SHMERKIN [31], HOCHMAN and SHMERKIN [19], who proved the
following results. Let K7 and K5 be two self-similar sets with iterated function
systems (IFS’s)

{filz) =riz+ai}is, and  {gj(x) =rjz+ b}y,
respectively, if there are some r;, 7’ such that log |r;|/log|r}| ¢ Q, then

The condition in the above result is called the irrational condition. In [34], SHMERKIN
stated that

dimH(K1 . KQ) = mln{dlmH(Kl) + dimH(Kg), 1}
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under the irrational condition. It is natural to consider the Hausdorff dimension
of K1 x Ky, where x = 4 or - ., without the irrational condition. In [22], JIANG
proved that without the irrational condition, Ky 4+ K> is either a self-similar set or
an attractor of some infinite iterated function system. Moreover, in [23], JIANG
considered the sum K; + K5 from the projectional perspective, and calculated
in certain cases the Hausdorff dimension of the projection of K7 x Ky for some
special angles. If dimg (K7 + K3) = 1 or dimg (K3 - K3) = 1, then one may ask
whether K7+ K or K7 - K5 contains an interval. For K7+ K5, there is a celebrated
conjecture posed by PALIS [30], i.e. whether it is true (at least generically) that
the arithmetic sum of dynamically defined Cantor sets either has measure zero or
contains an interval. This conjecture was solved in [28]. However, for the general
self-similar sets this conjecture is still open. Without the irrational condition,
there are few results for K; - K>. In [38], YUKI considered the general Cantor
sets, and proved under some conditions that K; - Ko contains an interval.
Suppose that K = K . is the self-similar set generated by the following IF'S,

{51(x) = Az, Sa(x) = Az +c— A\, S3(x) = Az + 1 — A},

where S1(1) N Sa(I) # B, (S1(1) U S2(I)) N Ss(I) =0, and I = [0,1] is the convex
hull of K. The class {K ¢} ¢, which is an important class of self-similar sets with
overlaps [21], was investigated by many scholars. It was investigated from different
aspects, see [9], [10], [16], [20], [25], [29], [32], [39]. For example, HOCHMAN [20]
proved the Furstenberg’s conjecture which states dimgy K/3. = 1 for any ¢ ¢ Q,
Keyon discussed the necessary and sufficient condition for the open set condition
satisfied on K /3., RAO and WEN [32] obtained the graph-directed construction
when A\~! is a P.V. number and ¢ € Q.

In [39], TIAN et al. proved that K - K = [0,1] if and only if ¢ > (1 — )%
In this paper, we shall analyze the continuous image of K. Let f be a continuous
function defined on an open set U C R?. We call

fo(K, K) = {f(z,y) : (x,y) € (K x K)NU}

the continuous image of K. For convenience, we write f(K, K) = fr2(K, K).

In this paper, we shall give a sufficient condition such that fi (K, K) contains
an interval. In fact, whether a fractal contains an interval is a crucial problem
in fractal geometry and dynamical systems. SCHIEF [33], BANDT and GRAF [4]
showed the relations among the open set condition, positive Hausdorff measure
and non-empty interiors. DAJANI et al. [8], HARE and SIDOROV [17], [18] found
that the existence of an interior of a class of self-affine sets implies the existence of
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the simultaneous expansions. In [27], LAGARIAS and WANG showed that for some

self-affine tiles, the existence of interiors is equivalent to the positive Lebesgue

measure of the tiles. More results can be found in [27], [29] and references therein.
Now we state the main results of this paper.

Theorem 1. Let K be the attractor of the following IFS
{S1(z) = Az, Sa(x) =Ax+c— A, Ss(z) =Ax+1—A},

where S1(I) N So(I) # 0, (S1(1) U S2(I)) N S3(I) =0 and I = [0,1] is the convex
1—¢c—
hull of K. Let dy = i < e = ds. Suppose that f is a continuous
function defined on an open set U C R?. If 8, f, 8, f are continuous on U, and

there is a point (x0,y0) € (K x K)NU such that

e f | (w0,0)
ayf‘(fo,yo)

ayf|(avo,yo)
8If|(10,y0)

then fy (K, K) contains an interval.

€ (dy,dy) or € (di,dz),

Remark 1. We point that it is not easy to prove this result in terms of the
Newhouse thickness theorem [36], as the IFS of K consists of very complicated
overlaps.

Corollary 1. Suppose di < da, and let

a—1
flz,y) =2%+9® with af #0 andﬁ_1¢(@.
Then fy (K, K) contains an interval.
PRroOF. Note that %m =13 % . Take zg = A** and yo = \F2,
o (B-1)
we have W = 5|" AR (5=1) ke . Since gfj ¢ Q, we can take
Y *0,Y0
integers k1 and kg such that
a—1 1 di+d
k1| =—— | — ko is so close to logké~ Lt 2,
B—1 B—1 a 2
hence | 2271ow0) | 45 cloge enough to 4492 which implies Sefleovo) | ¢ (d1,d2)
9y fl(zg,v0) 2 9y fl(zo.v0) 1,52/
Therefore, fy (K, K) contains an interval. O

Note that if ¢ = A = 1/3, then K is the middle-third Cantor set. We have
the following results.
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Corollary 2. Let C be the middle-third Cantor sets. If 0, f, 0, f are con-
tinuous on U, and there is a point (z¢,y) € (C x C)NU such that

a’/fl(zo,yo)
Do f(z0,0)

awf‘(fo,yo)

<3orl<
ayf|(:co,yo)

1< < 3,

then fy(C,C) contains an interval.

Corollary 3. Let C be the middle-third Cantor set. If f(x,y) is one of the
following functions,

2y? (@B #0), 2%ty (a#0), zxy? sin(z)cos(y), =zsin(zy),

then fy(C,C) contains an interval.

This paper is organized as follows. In Section 2, we will give proofs of The-
orem 1 and Corollary 3.

2. Proofs of the main results

In this section, we assume that f : U — R is a function such that 9, f, 9, f
are continuous on U.

Fix A € (0,1) and 2\ > ¢ > A with ¢ + X < 1. Given J = [21,z2], we let
9(t) = x1 + (2 — 1)t with g;([0,1]) = J, and

J=JD U2y ‘](3)7

where

IO = g,(S:([0,1]))-

Suppose G = UjeaJ is the union of some closed intervals pairwise disjoint, we let
G - UJGAJ.

Lemma 1. Suppose I = [a,a +t] and J = [b,b+t|. Then

ﬂ (](i) > J(j))7 ﬂ (I(i) XJ(S)), ﬂ ([(3) XJ(j))

1<i,j<2 1<i<2 1<j<2

are non-empty.
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PRrROOF. We note that
[a+ (c—MNt,a+ ] x [b+ (c — A\)t, b+ M] C n (I x Ju)y,

1<4,5<2
la+(c=Nta+ M x b+ 1= Nt,b+1] = (| D x @),
1<i<2
[a+ (1 =Nta+t x b+ (c—Ntb+M = [ I xJD). 0
1<5<2

Let H = [0,1]. For any 41 ---4,, € {1,2,3}", we call f;,....(H) = (fi, o
-0 f; J(H) a basic interval of rank n, or n-basic interval, which has length A\™.
Denote by H,, the collection of all these basic intervals of rank n. We say that
I x J is a basic square of K x K, if I and J are basic intervals of the same rank.
Suppose A and B are the left and right endpoints of some basic intervals in Hy,
for some k > 1, respectively. Denote by G,, the union of basic intervals of rank n
contained in [A, B].

The following Lemma 2 comes from [2] and [39], here we give its proof just
for the self-containedness of the paper.

Lemma 2. Let F: U — R be a continuous function. Suppose A and B (M
and N) are the left and right endpoints of some basic intervals in Hy, for some
ko > 1, respectively, such that [A, B] x [M,N] C U. Then KN[A, B] = ﬂio:ko Gn,

and K N [M,N] = (", G. Moreover, if for any n > ko and any two n-basic
intervals I C G,,, J C G, such that

F(I,J)=F(,J),
then F(K N[A, B],K N[M,N]) = F(Gy,,GY,).

PROOF. By the construction of G, (G},), i.e. Gn41 C G, (G4, C GY,) for
any n > ko, it follows that

- (oo} o o0 ’
KN[A B]= ﬂnzko G, and KnN[M,N]= ﬂn=ko Gl
The continuity of F' yields that
F(KN[ABLENMN]) =) F(GnG).
n=ko
In terms of the relation G, 11 = G, G = G’ and the condition in the lemma,
it follows that

(G Go) = UlSiStn UISJ‘St’n Fllni Ing) = UlSiSt UlSJ’St’n Fllnis Jns)

n

p— = . e ) _ ’
= F <U1§i§tn I’I’L,Z) Ulﬁ]gt% Jn,]) - F(Gn+1, n+1).



Interiors of images of self-similar sets 407

Therefore, F'(K N[A, B], KN [M, N]) = F(Gy,,G},)- |

Proposition 1. If there is a point (xo,y0) € (K x K)NU such that

awfl(wo,yo) >0> 8yf|($07y0)’

ayfl(wo,yo)
Ox f

zJ 1(z0,v0)

di <

< d27

then fy (K, K) contains an interval.

PROOF. Let I x J(C U) be a basic square of K x K close enough to (zg, o),
that means I = [a,a +t], J = [b,b+ t] are basic intervals such that (a,b) is close
enough to (g, o) and ¢ is small enough. Then

I=la,a+ct)Ufa+ (1 —dt,a+t], J=[bb+ct]Ub+(1—d)tb+t],
where d = \. In what follows, we let § = 1 —c— \. In terms of Lemma 2, it suffices
to prove

f(IﬂJ):f(Lj)

if we want to prove that fy (K, K) contains an interval. Since

arf‘(aco,yo) >0> 8yf|(9£07y0)’

it follows that
f,J)=[f(a,b+1), f(a+1t,b)].

Moreover, in terms of the conditions

ayf'(moyyo)

<
9 f(20,90)

< and c¢>d= ),

1
5

0
d

we conclude that

hl(x’y) = f(l‘ - 6t7y) - f(%y + dt) = t(_dayf - 6aacf) + O(t> >0,
hs(z,y) = f(x —dt,y) — f(x,y +ct) = t(—cOyf — 05 f) + o(t) > 0,

where o(t)/t — 0 uniformly as t — 0, i.e. o(t) is independent of the choice of
(x,y) as O, f and 0, f are continuous at (zo, o). In fact,

fI)y = | fa®,gwm).

1<i,5<3
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Using Lemma 1, we obtain that

[ = \J ra =J1UJ,UJ5U Jy,
1<4,j<3

where

A C
dt
B P |D
ot
G 1o
t||E St
ct
ct F dt -
(a,b) t

Figure 1. Basic square in Proposition 1

Hence, in order to prove f(I,J) = f(I,.J), we only need to check

f(B) = f(C) =0,
f(D) = f(E) =0,
f(F) = f(G) = 0.

However, the above inequalities are the direct consequences of

f(B) = f(C) =hi(P) 20, f(D)— f(E)=h2(Q) =0,
f(F) = f(G) = h3(R) = 0.

O

For the function f(x,y) in Proposition 1, when considering the function

—f(z,y), we obtain the following Proposition 2.

Proposition 2. If there is a point (zg,y0) € (K x K)NU such that

893f|(f60,y0) <0< ayf'(ﬂm,yo)7

ayfl(zo,yo)
6zf|(ro,yo)

< d27

then fy (K, K) contains an interval.
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By the symmetry of K x K, we obtain the following result.

Proposition 3. If there is a point (xo,y0) € (K x K)NU such that

a""/’f|(960,yo) ’ ayf‘(wo,yo) <0,

6mf|(zo,yo)

<d
ayf‘(zo,yo) 2

dy <

then fy (K, K) contains an interval.
With a similar discussion, we are allowed to prove the following result.

Proposition 4. If there is a point (zo,y0) € (K x K)NU such that

aacf|(aco.,yo) >0, 6yf|(wo,yo) >0,

92 f (g, ug)

d
3yf|(1‘oyyo) < dz,

di <

then fy (K, K) contains an interval.

PROOF. The proof is similar to Proposition 1. Let d=Xand § =1—c— A.
Let I x J(C U) be a basic square of K x K close enough to (xg,yo), that means
I =1la,a+t], J=1[bb+t] are basic intervals such that (a,b) is close enough to
(z0, o) and t is small enough. Then

I=la,a+ct)]Ufa+ (1 —dt,a+t], J=[bb+ct]U[b+(1—d)t,b+1.
In terms of Lemma 2, it suffices to prove
FULT) = F(L, ).
By virtue of

aacf|(aco,yo) >0, 8yf|($o,y0) >0,

it follows that
I J) = [f(a,b), fla+t,b+ )] = [f(A), f(H)]

as in Figure 2.
Moreover, in terms of the conditions

9z [ (z0,30)

and c>d= ),
ayf|(:p0,y0)

< <

1
5

0
d
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~
S

D d 1
t
Cc S
G
ot R
t|P Bl| &t F|
ct
A ct 0 E dt
(a’b) t

Figure 2. Basic square in Proposition 4

we conclude that

ha(z,y) = f(z +ct,y) — fo,y +0t) = t(cdu f — 00y, f) +o(t) > 0
h5(3c,y) = f(xvy"_t) _f(x"_(stvy) :t(ayf_(saxf)'i_o( ) > 0
he(x,y) = flz+dt,y) — f(z,y+ 0t) = t(d0. f — 69, f) + o(t) > 0,

where o(t)/t — 0 uniformly as ¢t — 0, i.e. o(t) is independent of the choice of
(x,y), as O f and 0, f are continuous at (xo, yo). Using Lemma 1, we obtain that

fa )= |J U909 =500 007U s,

1<4,5<3
where
Js = [f(A), f(B)], Js = [f(C), f(D)],
Jr =[f(E), f(F)], Js = [f(G), f(H)]
Hence, in order to prove f(I,J) = f(I,J), we only need to prove
f(B) = f(C) =0,
f(D) = f(E) =0,
f(F) = f(G) = 0.
However, the above inequalities follow immediately from
f(B) = f(C) =ha(P) 20, f(D) - f(E)=hs(Q) >0,
f(F) = f(G) = he(R) > 0. O

In the same way, we obtain the following result.
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Proposition 5. If there is a point (zg,yo) € (K x K)NU such that

89cf|(xo,yo) ' ayf|(10,yo) >0,

9y fl(wg.u0) 9z fl(zg.v0)
8uTleomn | € (0d2) 0r |5 | € (diyda),
then fy (K, K) contains an interval.
ProOOF OF THEOREM 1.
It follows from Propositions 1-5. (]

Proor oF COROLLARY 3.

It suffices to check the conditions in Theorem 1.

(1) If f(z,y) = z*y® with af # 0, using (z*9?) = (zy?/*)*, we only need
to deal with f(x,y) = zy”. Using the symmetry, we may assume that |y| > 1.

Now we have
Ouf=y" and Oyf =~yxy' "

with gﬁ = I%YI |%‘ . If |y| = 3F for some integer k& > 0, we take y = 1 and x =
(2/3) - 37% hence g””; =3/2 € (1,3) in this case. Otherwise, if 3% < |y| < 3F+!
for some integer k > 0, then we take y = 1 and « = 3= **1 | then % € (1,3).

Now, fu(C,C) contains an interval for f(z,y) = x°y® with a8 # 0.
(2) If f(x,y) =a* £y with a # 0, then
0. f| = lajz®™"  and |9, f| = |aly* !

with gmf = yZ—j . When «a # 1, take x,y € C such that y/x is close enough
Y
to 1, then 1 < ’gmf <3dorl< ’gy; < 3. When a = 1, the classical result
Y x

C + C =[0,2] implies there is an interval in f(C,C) =C + C.

(3) If f(x,y) = x £ y?, then 0, f = 1,|0, f| = 2y. Take zg = 8/9,y0 = 1/3,
which implies 1 < |1/(2yo)| < 3.

(4) If f(x,y) = sin(z) cos(y), then
|0z f| = |coszcosy|, |0yf] =|sinzsinyl.
We take (zo,y0) = (2/3,2/3), and obtain that
| cos(2/3) cos(2/3)| = 0.6176..., |sin(2/3)sin(2/3)| =0.3823...,

cos(2/3) cos(2/3) | _
and thus 1 < Sn(2/3)sm(2/3) | = 1.615... < 3.
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(5) If f(x,y) = xzsin(zy), then
0] = | sin(ay) + zycoszyl,  19,f] = o cos(zy).
We take (zg,y0) = (2/3,2/3), and obtain that

e f | (w0,0)
89]0‘(100,?/0)

9sin(4/9)
=1+ ————=5|=2.071...€(1,3). O
‘ 4cos(4/9) (1,3)
Remark 2. Our idea can be implemented for other overlapping self-similar
sets. Moreover, in Corollary 3, for some functions, we can obtain that fy(C,C)
contains infinitely many closed intervals.
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