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Interiors of continuous images of self-similar sets with overlaps

By LIFENG XI (Ningbo), KAN JIANG (Ningbo), JIALI ZHU (Ningbo)
and QIYANG PEI (Ningbo)

Abstract. Let K be the attractor of the following iterated function system

{S1(x) = λx, S2(x) = λx+ c− λ, S3(x) = λx+ 1− λ},

where S1(I) ∩ S2(I) 6= ∅, (S1(I) ∪ S2(I)) ∩ S3(I) = ∅, and I = [0, 1] is the convex hull

of K. Let d1 =
1− c− λ

λ
<

1

1− c− λ = d2. Suppose that f is a continuous function

defined on an open set U ⊂ R2. Denote the image

fU (K,K) = {f(x, y) : (x, y) ∈ (K ×K) ∩ U}.

If ∂xf , ∂yf are continuous on U, and there is a point (x0, y0) ∈ (K ×K) ∩ U such that∣∣∣∣∂yf |(x0,y0)∂xf |(x0,y0)

∣∣∣∣ ∈ (d1, d2) or

∣∣∣∣∂xf |(x0,y0)∂yf |(x0,y0)

∣∣∣∣ ∈ (d1, d2),

then fU (K,K) contains an interval. As a result, we let c = λ =
1

3
, and if

f(x, y) = xαyβ(αβ 6= 0), xα ± yα(α 6= 0), sin(x) cos(y), or x sin(xy),

then fU (C,C) contains an interval, where C is the middle-third Cantor set.
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1. Introduction

Representation of real numbers is an important area in number theory. There

are many ways of expressing numbers, for instance, the β-expansions ([1], [3], [6],

[7], [13], [14], [15], [26]), the continued fractions ([11], [12]), the Lüroth expansions

([5]), and so on. These representations are popular in number theory. There are,

however, some other approaches that can represent real numbers ([2], [24], [37],

[39]). First, let us introduce some basic definitions. Given two non-empty sets

A,B ⊂ R, we define

A ∗B = {x ∗ y : x ∈ A, y ∈ B},

where ∗ is +,−, · or ÷ (when ∗ = ÷, y 6= 0). We call u = x ∗ y an arithmetic

representation in terms of A and B. Steinhaus proved that

C − C = {x− y : x, y ∈ C} = [−1, 1],

where C is the middle-third Cantor set. This result also implies that C+C = [0, 2]

due to the equation C = 1−C. In [2], Athreya, Reznick and Tyson considered

the multiplication on C, and proved that

17/21 ≤ L(C · C) ≤ 8/9,

where L denotes the Lebesgue measure. Moreover, they also considered the di-

vision on C. Due to these two results, it is natural to ask that for the general

self-similar sets K1 and K2, how large K1 ∗K2 is in the sense of Hausdorff dimen-

sion or Lebesgue measure, where ∗ = + or · . This question was mainly addressed

by Peres and Shmerkin [31], Hochman and Shmerkin [19], who proved the

following results. Let K1 and K2 be two self-similar sets with iterated function

systems (IFS’s)

{fi(x) = rix+ ai}ni=1 and {gj(x) = r′jx+ bj}mj=1,

respectively, if there are some ri, r
′
j such that log |ri|/ log |r′j | /∈ Q, then

dimH(K1 +K2) = min{dimH(K1) + dimH(K2), 1}.

The condition in the above result is called the irrational condition. In [34], Shmerkin

stated that

dimH(K1 ·K2) = min{dimH(K1) + dimH(K2), 1}
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under the irrational condition. It is natural to consider the Hausdorff dimension

of K1 ∗K2, where ∗ = + or · ., without the irrational condition. In [22], Jiang

proved that without the irrational condition, K1 +K2 is either a self-similar set or

an attractor of some infinite iterated function system. Moreover, in [23], Jiang

considered the sum K1 + K2 from the projectional perspective, and calculated

in certain cases the Hausdorff dimension of the projection of K1 ×K2 for some

special angles. If dimH(K1 + K2) = 1 or dimH(K1 ·K2) = 1, then one may ask

whether K1+K2 or K1 ·K2 contains an interval. For K1+K2, there is a celebrated

conjecture posed by Palis [30], i.e. whether it is true (at least generically) that

the arithmetic sum of dynamically defined Cantor sets either has measure zero or

contains an interval. This conjecture was solved in [28]. However, for the general

self-similar sets this conjecture is still open. Without the irrational condition,

there are few results for K1 · K2. In [38], Yuki considered the general Cantor

sets, and proved under some conditions that K1 ·K2 contains an interval.

Suppose that K = Kλ,c is the self-similar set generated by the following IFS,

{S1(x) = λx, S2(x) = λx+ c− λ, S3(x) = λx+ 1− λ},

where S1(I) ∩ S2(I) 6= ∅, (S1(I) ∪ S2(I)) ∩ S3(I) = ∅, and I = [0, 1] is the convex

hull of K. The class {Kλ,c}λ,c, which is an important class of self-similar sets with

overlaps [21], was investigated by many scholars. It was investigated from different

aspects, see [9], [10], [16], [20], [25], [29], [32], [39]. For example, Hochman [20]

proved the Furstenberg’s conjecture which states dimH K1/3,c = 1 for any c /∈ Q,
Keyon discussed the necessary and sufficient condition for the open set condition

satisfied on K1/3,c, Rao and Wen [32] obtained the graph-directed construction

when λ−1 is a P.V. number and c ∈ Q.

In [39], Tian et al. proved that K · K = [0, 1] if and only if c ≥ (1 − λ)2.

In this paper, we shall analyze the continuous image of K. Let f be a continuous

function defined on an open set U ⊂ R2. We call

fU (K,K) = {f(x, y) : (x, y) ∈ (K ×K) ∩ U}

the continuous image of K. For convenience, we write f(K,K) = fR2(K,K).

In this paper, we shall give a sufficient condition such that fU (K,K) contains

an interval. In fact, whether a fractal contains an interval is a crucial problem

in fractal geometry and dynamical systems. Schief [33], Bandt and Graf [4]

showed the relations among the open set condition, positive Hausdorff measure

and non-empty interiors. Dajani et al. [8], Hare and Sidorov [17], [18] found

that the existence of an interior of a class of self-affine sets implies the existence of



404 Lifeng Xi, Kan Jiang, Jiali Zhu and Qiyang Pei

the simultaneous expansions. In [27], Lagarias and Wang showed that for some

self-affine tiles, the existence of interiors is equivalent to the positive Lebesgue

measure of the tiles. More results can be found in [27], [29] and references therein.

Now we state the main results of this paper.

Theorem 1. Let K be the attractor of the following IFS

{S1(x) = λx, S2(x) = λx+ c− λ, S3(x) = λx+ 1− λ},

where S1(I) ∩ S2(I) 6= ∅, (S1(I) ∪ S2(I)) ∩ S3(I) = ∅ and I = [0, 1] is the convex

hull of K. Let d1 =
1− c− λ

λ
<

1

1− c− λ
= d2. Suppose that f is a continuous

function defined on an open set U ⊂ R2. If ∂xf , ∂yf are continuous on U, and

there is a point (x0, y0) ∈ (K ×K) ∩ U such that∣∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣∣ ∈ (d1, d2) or

∣∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣∣ ∈ (d1, d2),

then fU (K,K) contains an interval.

Remark 1. We point that it is not easy to prove this result in terms of the

Newhouse thickness theorem [36], as the IFS of K consists of very complicated

overlaps.

Corollary 1. Suppose d1 < d2, and let

f(x, y) = xα ± yβ with αβ 6= 0 and
α− 1

β − 1
/∈ Q.

Then fU (K,K) contains an interval.

Proof. Note that
∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ =
∣∣∣αβ ∣∣∣ · ∣∣∣xα−1

yβ−1

∣∣∣ . Take x0 = λk1 and y0 = λk2 ,

we have
∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ =
∣∣∣αβ ∣∣∣ · ∣∣∣λk1(α−1

β−1 )−k2
∣∣∣(β−1)

. Since α−1
β−1 /∈ Q, we can take

integers k1 and k2 such that

k1

(
α− 1

β − 1

)
− k2 is so close to

1

β − 1
logλ

∣∣∣∣βα · d1 + d2

2

∣∣∣∣ ,
hence

∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ is close enough to d1+d2
2 , which implies

∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ ∈ (d1, d2).

Therefore, fU (K,K) contains an interval. �

Note that if c = λ = 1/3, then K is the middle-third Cantor set. We have

the following results.
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Corollary 2. Let C be the middle-third Cantor sets. If ∂xf , ∂yf are con-

tinuous on U, and there is a point (x0, y0) ∈ (C × C) ∩ U such that

1 <

∣∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣∣ < 3 or 1 <

∣∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣∣ < 3,

then fU (C,C) contains an interval.

Corollary 3. Let C be the middle-third Cantor set. If f(x, y) is one of the

following functions,

xαyβ(αβ 6= 0), xα ± yα(α 6= 0), x± y2, sin(x) cos(y), x sin(xy),

then fU (C,C) contains an interval.

This paper is organized as follows. In Section 2, we will give proofs of The-

orem 1 and Corollary 3.

2. Proofs of the main results

In this section, we assume that f : U → R is a function such that ∂xf , ∂yf

are continuous on U.

Fix λ ∈ (0, 1) and 2λ ≥ c ≥ λ with c + λ < 1. Given J = [x1, x2], we let

gJ(t) = x1 + (x2 − x1)t with gJ([0, 1]) = J , and

J̃ = J (1) ∪ J (2) ∪ J (3),

where

J (i) = gJ(Si([0, 1])).

Suppose G = ∪J∈ΛJ is the union of some closed intervals pairwise disjoint, we let

G̃ = ∪J∈ΛJ̃ .

Lemma 1. Suppose I = [a, a+ t] and J = [b, b+ t]. Then⋂
1≤i,j≤2

(I(i) × J (j)),
⋂

1≤i≤2

(I(i) × J (3)),
⋂

1≤j≤2

(I(3) × J (j))

are non-empty.
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Proof. We note that

[a+ (c− λ)t, a+ λt]× [b+ (c− λ)t, b+ λt] ⊂
⋂

1≤i,j≤2

(I(i) × J (j)),

[a+ (c− λ)t, a+ λt]× [b+ (1− λ)t, b+ t] =
⋂

1≤i≤2

(I(i) × J (3)),

[a+ (1− λ)t, a+ t]× [b+ (c− λ)t, b+ λt] =
⋂

1≤j≤2

(I(3) × J (j)). �

Let H = [0, 1]. For any i1 · · · in ∈ {1, 2, 3}n, we call fi1···in(H) = (fi1 ◦
· · · ◦ fin)(H) a basic interval of rank n, or n-basic interval, which has length λn.

Denote by Hn the collection of all these basic intervals of rank n. We say that

I × J is a basic square of K ×K, if I and J are basic intervals of the same rank.

Suppose A and B are the left and right endpoints of some basic intervals in Hk

for some k ≥ 1, respectively. Denote by Gn the union of basic intervals of rank n

contained in [A,B].

The following Lemma 2 comes from [2] and [39], here we give its proof just

for the self-containedness of the paper.

Lemma 2. Let F : U → R be a continuous function. Suppose A and B (M

and N) are the left and right endpoints of some basic intervals in Hk0 for some

k0 ≥ 1, respectively, such that [A,B]× [M,N ] ⊂ U. Then K∩ [A,B] =
⋂∞
n=k0

Gn,

and K ∩ [M,N ] =
⋂∞
n=k0

G′n. Moreover, if for any n ≥ k0 and any two n-basic

intervals I ⊂ Gn, J ⊂ G′n such that

F (I, J) = F (Ĩ , J̃),

then F (K ∩ [A,B],K ∩ [M,N ]) = F (Gk0 , G
′
k0

).

Proof. By the construction of Gn (G′n), i.e. Gn+1 ⊂ Gn (G′n+1 ⊂ G′n) for

any n ≥ k0, it follows that

K ∩ [A,B] =
⋂∞

n=k0
Gn and K ∩ [M,N ] =

⋂∞
n=k0

G′n.

The continuity of F yields that

F (K ∩ [A,B],K ∩ [M,N ]) =
⋂∞

n=k0
F (Gn, G

′
n).

In terms of the relation Gn+1 = G̃n, G′n+1 = G̃′n and the condition in the lemma,

it follows that

F (Gn, G
′
n) =

⋃
1≤i≤tn

⋃
1≤j≤t′n

F (In,i, Jn,j) =
⋃

1≤i≤tn

⋃
1≤j≤t′n

F (Ĩn,i, J̃n,j)

= F

(⋃
1≤i≤tn

Ĩn,i,
⋃

1≤j≤t′n
J̃n,j

)
= F (Gn+1, G

′
n+1).
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Therefore, F (K ∩ [A,B],K ∩ [M,N ]) = F (Gk0 , G
′
k0

). �

Proposition 1. If there is a point (x0, y0) ∈ (K ×K) ∩ U such that
∂xf |(x0,y0) > 0 > ∂yf |(x0,y0),

d1 <
∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣ < d2,

then fU (K,K) contains an interval.

Proof. Let I×J(⊂ U) be a basic square of K×K close enough to (x0, y0),

that means I = [a, a+ t], J = [b, b+ t] are basic intervals such that (a, b) is close

enough to (x0, y0) and t is small enough. Then

Ĩ = [a, a+ ct] ∪ [a+ (1− d)t, a+ t], J̃ = [b, b+ ct] ∪ [b+ (1− d)t, b+ t],

where d = λ. In what follows, we let δ = 1−c−λ. In terms of Lemma 2, it suffices

to prove

f(I, J) = f(Ĩ , J̃)

if we want to prove that fU (K,K) contains an interval. Since

∂xf |(x0,y0) > 0 > ∂yf |(x0,y0),

it follows that

f(I, J) = [f(a, b+ t), f(a+ t, b)].

Moreover, in terms of the conditions

δ

d
<

∣∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣∣ < 1

δ
and c ≥ d = λ,

we conclude that

h1(x, y) = f(x− δt, y)− f(x, y + dt) = t(−d∂yf − δ∂xf) + o(t) ≥ 0,

h2(x, y) = f(x, y + δt)− f(x− t, y) = t(∂xf + δ∂yf) + o(t) ≥ 0,

h3(x, y) = f(x− δt, y)− f(x, y + ct) = t(−c∂yf − δ∂xf) + o(t) ≥ 0,

where o(t)/t → 0 uniformly as t → 0, i.e. o(t) is independent of the choice of

(x, y) as ∂xf and ∂yf are continuous at (x0, y0). In fact,

f(Ĩ , J̃) =
⋃

1≤i,j≤3

f(I(i), J (j)).
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Using Lemma 1, we obtain that

f(Ĩ , J̃) =
⋃

1≤i,j≤3

f(I(i), J (j)) = J1 ∪ J2 ∪ J3 ∪ J4,

where

J1 = [f(A), f(B)], J2 = [f(C), f(D)],

J3 = [f(E), f(F )], J4 = [f(G), f(H)].

Figure 1. Basic square in Proposition 1

Hence, in order to prove f(I, J) = f(Ĩ , J̃), we only need to check
f(B)− f(C) ≥ 0,

f(D)− f(E) ≥ 0,

f(F )− f(G) ≥ 0.

However, the above inequalities are the direct consequences of

f(B)− f(C) = h1(P ) ≥ 0, f(D)− f(E) = h2(Q) ≥ 0,

f(F )− f(G) = h3(R) ≥ 0. �

For the function f(x, y) in Proposition 1, when considering the function

−f(x, y), we obtain the following Proposition 2.

Proposition 2. If there is a point (x0, y0) ∈ (K ×K) ∩ U such that
∂xf |(x0,y0) < 0 < ∂yf |(x0,y0),

d1 <
∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣ < d2,

then fU (K,K) contains an interval.
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By the symmetry of K ×K, we obtain the following result.

Proposition 3. If there is a point (x0, y0) ∈ (K ×K) ∩ U such that
∂xf |(x0,y0) · ∂yf |(x0,y0) < 0,

d1 <
∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ < d2,

then fU (K,K) contains an interval.

With a similar discussion, we are allowed to prove the following result.

Proposition 4. If there is a point (x0, y0) ∈ (K ×K) ∩ U such that
∂xf |(x0,y0) > 0, ∂yf |(x0,y0) > 0,

d1 <
∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ < d2,

then fU (K,K) contains an interval.

Proof. The proof is similar to Proposition 1. Let d = λ and δ = 1− c− λ.
Let I × J(⊂ U) be a basic square of K ×K close enough to (x0, y0), that means

I = [a, a + t], J = [b, b + t] are basic intervals such that (a, b) is close enough to

(x0, y0) and t is small enough. Then

Ĩ = [a, a+ ct] ∪ [a+ (1− d)t, a+ t], J̃ = [b, b+ ct] ∪ [b+ (1− d)t, b+ t].

In terms of Lemma 2, it suffices to prove

f(I, J) = f(Ĩ , J̃).

By virtue of

∂xf |(x0,y0) > 0, ∂yf |(x0,y0) > 0,

it follows that

f(I, J) = [f(a, b), f(a+ t, b+ t)] = [f(A), f(H)]

as in Figure 2.

Moreover, in terms of the conditions

δ

d
<

∣∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣∣ < 1

δ
and c ≥ d = λ,
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Figure 2. Basic square in Proposition 4

we conclude that

h4(x, y) = f(x+ ct, y)− f(x, y + δt) = t(c∂xf − δ∂yf) + o(t) ≥ 0,

h5(x, y) = f(x, y + t)− f(x+ δt, y) = t(∂yf − δ∂xf) + o(t) ≥ 0,

h6(x, y) = f(x+ dt, y)− f(x, y + δt) = t(d∂xf − δ∂yf) + o(t) ≥ 0,

where o(t)/t → 0 uniformly as t → 0, i.e. o(t) is independent of the choice of

(x, y), as ∂xf and ∂yf are continuous at (x0, y0). Using Lemma 1, we obtain that

f(Ĩ , J̃) =
⋃

1≤i,j≤3

f(I(i), J (j)) = J5 ∪ J6 ∪ J7 ∪ J8,

where

J5 = [f(A), f(B)], J6 = [f(C), f(D)],

J7 = [f(E), f(F )], J8 = [f(G), f(H)].

Hence, in order to prove f(I, J) = f(Ĩ , J̃), we only need to prove
f(B)− f(C) ≥ 0,

f(D)− f(E) ≥ 0,

f(F )− f(G) ≥ 0.

However, the above inequalities follow immediately from

f(B)− f(C) = h4(P ) ≥ 0, f(D)− f(E) = h5(Q) ≥ 0,

f(F )− f(G) = h6(R) ≥ 0. �

In the same way, we obtain the following result.
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Proposition 5. If there is a point (x0, y0) ∈ (K ×K) ∩ U such that
∂xf |(x0,y0) · ∂yf |(x0,y0) > 0,∣∣∣∂yf |(x0,y0)

∂xf |(x0,y0)

∣∣∣ ∈ (d1, d2) or
∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣ ∈ (d1, d2),

then fU (K,K) contains an interval.

Proof of Theorem 1.

It follows from Propositions 1–5. �

Proof of Corollary 3.

It suffices to check the conditions in Theorem 1.

(1) If f(x, y) = xαyβ with αβ 6= 0, using (xαyβ) = (xyβ/α)α, we only need

to deal with f(x, y) = xyγ . Using the symmetry, we may assume that |γ| ≥ 1.

Now we have

∂xf = yγ and ∂yf = γxyγ−1

with
∣∣∣∂xf∂yf

∣∣∣ = 1
|γ|
∣∣ y
x

∣∣ . If |γ| = 3k for some integer k ≥ 0, we take y = 1 and x =

(2/3) · 3−k, hence
∣∣∣∂xf∂yf

∣∣∣ = 3/2 ∈ (1, 3) in this case. Otherwise, if 3k < |γ| < 3k+1

for some integer k ≥ 0, then we take y = 1 and x = 3−(k+1), then
∣∣∣∂xf∂yf

∣∣∣ ∈ (1, 3).

Now, fU (C,C) contains an interval for f(x, y) = xαyβ with αβ 6= 0.

(2) If f(x, y) = xα ± yα with α 6= 0, then

|∂xf | = |α|xα−1 and |∂yf | = |α|yα−1

with
∣∣∣∂xf∂yf

∣∣∣ =
∣∣∣xα−1

yα−1

∣∣∣ . When α 6= 1, take x, y ∈ C such that y/x is close enough

to 1, then 1 <
∣∣∣∂xf∂yf

∣∣∣ < 3 or 1 <
∣∣∣∂yf∂xf

∣∣∣ < 3. When α = 1, the classical result

C + C = [0, 2] implies there is an interval in f(C,C) = C + C.

(3) If f(x, y) = x ± y2, then ∂xf = 1, |∂yf | = 2y. Take x0 = 8/9, y0 = 1/3,

which implies 1 < |1/(2y0)| < 3.

(4) If f(x, y) = sin(x) cos(y), then

|∂xf | = | cosx cos y|, |∂yf | = | sinx sin y|.

We take (x0, y0) = (2/3, 2/3), and obtain that

| cos(2/3) cos(2/3)| = 0.6176 . . . , | sin(2/3) sin(2/3)| = 0.3823 . . . ,

and thus 1 <
∣∣∣ cos(2/3) cos(2/3)

sin(2/3) sin(2/3)

∣∣∣ = 1.615 . . . < 3.
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(5) If f(x, y) = x sin(xy), then

|∂xf | = | sin(xy) + xy cosxy|, |∂yf | = |x2 cos(xy)|.

We take (x0, y0) = (2/3, 2/3), and obtain that∣∣∣∣∂xf |(x0,y0)

∂yf |(x0,y0)

∣∣∣∣ =

∣∣∣∣1 +
9 sin(4/9)

4 cos(4/9)

∣∣∣∣ = 2.071 . . . ∈ (1, 3). �

Remark 2. Our idea can be implemented for other overlapping self-similar

sets. Moreover, in Corollary 3, for some functions, we can obtain that fU (C,C)

contains infinitely many closed intervals.
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