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Estimation on the Walsh—Fejér and Walsh logarithmic kernels

By GYORGY GAT (Debrecen) and GABOR LUCSKAI (Debrecen)

Abstract. The main aim of this article is to demonstrate the difference of the
trigonometric and the Walsh system with respect to the behaviour of the maximal
function of the Fejér kernels. Moreover, properties (positivity among others) of the
Walsh logarithmic kernels are also investigated.

1. Introduction and main results

We follow the standard notions of dyadic analysis, see, e.g., [14]. We denote
by N and P the set of natural numbers and positive integers. Define the set of
dyadic intervals as (see, e.g., [1], [12], [14], [15])

_J|p pt1Y\
3= {[2250) pnen).

The dyadic interval I := [0,1) C R is called the unit (dyadic) interval (see [1]).
The Lebesgue measure of a set B (B C I) is A(B) = |B|. Denote by LP(I)
the usual Lebesgue spaces, and by ||.||, the corresponding norms (1 < p < o00).
For a given = € I, let I,,(z) denote the dyadic interval I,,(z) € J of length 27"
which contains z (n € N). In particular, we write I, := I,,(0) (n € N). Denote by
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Q2 := {# : p,n € N} the set of dyadic rational numbers. Let

T = i x,2- (D)

n=0
be the dyadic expansion of x € I, where either x,, = 0 or 1. If z € Q9, then we
choose the expansion which terminates in 0’s.

Set e; := 27%! that is, the i-th coordinate of e; is 1, and the rest are zeros for
all i € N. The dyadic rationals can be represented as the finite 0,1 combinations
of the elements of the set {e; : i € N}.

Set the definition of the n-th (n € N) Walsh—Paley function at point z €I as

oo

wn (@) = [J(=1)"m,

j=0
where N2 n =3 n;27 (n; € {0,1} (j € N)).
The so-called dyadic or logical addition is defined for any =,y € I as

LS
T+y = Z |xn - yn|27(n+1)'

n=0

Denote by

_ LD
_lognk:1 k

n—1 n—1
. 1
= ndX\, D, = E , K, :=-— E Dy, R,:
f(n) /fw k=0 o n k=0 ’
i — =

the Fourier coefficients, the Dirichlet, the Fejér or (C,1) kernels and Walsh loga-
rithmic means, respectively. Moreover, see ([14]),

2n if x € I,
Dan(z) = . (1.1)
0, ifxé¢l,,
Dn(x) = wn(z) Y _ niriDai (x), (1.2)
=0

where r; is the i-th Rademacher function, that is, r;, = (—1)%. It is also known
that the Fejér or (C, 1) means of the function f and Dirichlet kernels are connected
by the equality [14]

1 n—1
ouf ()= 1 3 Sl ) = [ @)Ky +a)do
k=0 T

n—1

%Z/f(q;)Dk(y—ka:)dx (neNyel).

k=07
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On the other hand, for an introduction to the theory of Walsh functions and
Walsh—Fourier series in the context of view of topological groups, see [11] or [14].

The forthcoming lemma will play a prominent role in the proof of some
lemmas and it is due to GOGINAVA [10].

Lemma 1.1 ([10]). For j,n € N, j < 2", we have
DQn,j(x) = DQn (.’E) - u.)2n,1(fE)Dj($).

We use the following notations:

b 00
Kop = ZDZ (a,beN) and nt) = Znﬂl (n,s € N).

l=a I=s
The next two lemmas are proved by GAT [5].

Lemma 1.2.

nk,(z) = Z N Ky (s+1) o2 (T).
s=0

Let |n] := [logy(n)] (1 <n € N). That is, 2/l <n < 27+,

Lemma 1.3 ([5]). Let s,t,n € N, z € I, \ I41. If s <t <|n|, then
IKn(S+1)’2S (.’17)| < 623+t.

Ift < s <|n|, then
0, if v — xpep & I,
K s41) 9 (x) = { ter & I

Wy (s+1) (l‘)?ertil, if x — xep € 1.

In this paper, ¢ denotes an absolute constant which may not be the same at
different occurrences.

Gat [5] proved the following inequality for the maximal function of Fejér
kernels:

Theorem 1.4 ([5]).

/ sup |Kp(z)] dz < cvV2e—4

In|>A
NI,

for all A > a € N.
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In 2004, Goginava improved the result of Gat. That is, he proved:
Theorem 1.5 ([9]).

A—a
sup |Ky(z)|de < c——
| sl < oG
NI,

for all a < A € N.

Theorems 1.4 and 1.5 give powerful methods in the investigation of one and
two-dimensional problems related to Fejér-type means of Walsh—Fourier series
(18], [10)).

Next, we turn our attention to the trigonometric system in order to show some
differences between the behaviour of Fejér kernels with respect to the trigonomet-
ric and the Walsh system. The well-known formula for Fejér kernels ([2]) is

.9 (2n+1 )
sin 5T
Ky8(r) = ————7+  (

)
2(n 4 1)sin” 3

0<x<2m),

which gives the estimation from below for the trigonometric system

1
c1 trie Co 1
< KMe(g)| de < = N> =
Na—/fg?vl ne@ldr < 3 ( >5>7
§

where ¢; and cy are absolute constants.
This naturally raises the question whether the result of Gat and Goginava

can be improved by writing a smaller term instead of ¢
log(Nd)

a . .
SAsa That is, something

smaller instead of ¢
The following theorem shows that the result of Goginava cannot be improved.

This shows a sharp difference between the theory of the trigonometric and the
Walsh system.

Theorem 1.6.

1
C

1
ap | K > < log(N N>-).
[ sl @lde> Geave) (8> 3)
&

After that, we turn our attention to another type of kernel function with
respect to the Walsh—Paley system. That is, we investigate the Walsh—Riesz log-
arithmic kernel.
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The next theorem is a trivial and well-known property of the trigonometric
Riesz logarithmic kernel and probably its proof can be found somewhere, but we
did not find it. However, it is not our result. A proof is given only in order to
demonstrate the differences between the two orthonormal systems.

Theorem 1.7. The trigonometric logarithmic kernels

n—1 ~tri
. 1 D8 (z)
Rtrlg = E k
n (@) logn — k

are positive for all n > 2 and for each x € [—m, 7).

PrOOF. We apply the Abel transform:

) n—1 Dtrig(aj) n—1 1 1 k . 1 n—1
logn - Rif(z) = Y~ 2 = 3 (k - k+1> 2 D)+ 03 Dila)
k=1 j= b=

k=1

n—1
1 1 trig trig
];:1: <k‘ k + 1> k (LE) + n nfl(x) jl 07

because K&(z) > 0 for all n € N and z € [—7, 7. O

The Walsh—Fejér kernel can take negative values, therefore we cannot use the
previous proof. The next theorem shows the behaviour of the logaritmic kernels
with respect to the Walsh—Paley system.

Theorem 1.8. Let t,n € N and x € I; \ I;1. Then we have
2t

-1
> n , forn <20
16 - logn

Bn(2) logn

forn >2' and R,(z)=

2. Proofs

1
PROOF OF THEOREM 1.6. Let a = |log, 5)J and A = [log, N]. Then

the theorem can be written in the following form:

A—a
K, (z) de > ol
/nS;lsz| ()] dx > CoA=a

Ia

We prove this lower estimation.
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Let t,1 € P be arbitrary and n = 228 +228-2 1 ... 4 24 1 922 4 20 where
In| = 2B > A and B = [£]. If t,l € N\ {0}, t # [, then let J} be the dyadic
interval I;4;4+1(x), for which coordinate z; satisfies:

{1, ifie{t,t+1},
€Xr; =

I
0, ifie{0,1,...t—1}U{t+1,t+2,...t+1—1} )

We can write interval I, in the following way:

a1 a—12B—t
=Ji\tm=UJ U JZUUI2B+1 ).
t=0 t=0 [=1

Therefore (recall that n = 228 +228-2 4 ... 4 20),

/ sup |K,(z)|dz > / | K, (2)] de + / | K, (x)] dx

>24
T nz a—1| 12B— th a—17
a Uiz 0 Uz 1 UiZo I2p+1(er)
2B

2B—
C
E 2273 E nsKn(s+1)’25 (.13)
=1 Ji s=0
a—

2B
(&
+ / 2273
s=0

E nsK-n(s+l)72s (Z)
t=01213+1(€t) =

dx

gM'

=

dz = (I) + (II).

Estimation of (I). We distinguish three cases depending on the value of s.
We can suppose that s is even (because ns = 1 if s is even, and ns = 0 if s is odd).

t+1
First case: sis even and t < s < ¢+ 1. Let m := {;J and 2m play the

role of s. Then by Lemma 1.3 we have

t4l
92m+t—1 92| F|+t-1  92+i-2 ot
[ K25 4022 yo2me g2 ()] dr= ot+I+L  gt+l+l 2 ot+i+l g’
Tt
22m—2+t—1 22t+l—3 2t
|K22B+223—2+‘H+22m,’22m,72 (:I;)| dl': 2t+l+l ~ 2t+l+l = E’
Tt
K J 92m—2j+t—1 - 92t—2j—1 ot
‘ 22B 4 92B-24  492m—2j+2 92m—2j (1‘)| xXr = 2t+l+1 S 2t+1 = PEES]

T

forj=1,2,....
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Therefore,
2B
Cc c 2t 2t 2t
/nS;IQPB 2273 ZHSK”(SJrl),QS (x) dx > 2273 g — 472 _ 473 _
J: - s=0
Consequently,
2B
/nS>112pB 22B Zn Kn(*‘“) 2s ( ) dx
T,
N a—12B—t c ¢ gt+1 gt+1 N a—12B—t . t ©
= QTQ*T*ZLT*..._ 227B2 1725
=0 = t=0 I=1 p
a—12B—t 1 w128t t )
Sy pY 3 -2 5
> 22{2(11_1)}22 25 2 ¢ 5p (2B —a).
t=0 [=1 1 v

Second case: t+1 < s. Then K, »:(z) = 0, as it is given by Lemma 1.3.

Third case: 0 < s < t. Then, by Lemma 1.3 again, we have
2s+t—1 23
/‘K223+22372+...+23+2}23 (z)| dz < 02t+l+1 < 2l
It
for the integral on the set J} (recall that s is even and the definition of J} := I; ;1
see in (I)). Then

—12B—t
S [ s o
|n|>2B

a—12B—t -1 gepy —1 ot

SL 22t+l— ng 92B

dz

Z’ﬂs n(e+1) 2 ()

Estimation of (II) is not important for the lower estimation from below, since
(I) will be the major part and since we are to find a lower bound. But anyhow,

a—1 c 2B
= / sup 2273 E 25+t7 1 dx
=0 |n|>2B 5—0

Izp+1(et)
2B -1
25+t—1 a c 223+1+t 2a

a—1

c

- Z 92B+1 Z 2B = Z'Q2B+1 92811 = 928"
t=0 s=0 t=0
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To sum up, we get

[ sw [Ku@)doz e 25280
sup |Kn(z)|dx >c- == —a).
In|>2B 225

a

This completes the proof. O
Before proving Theorem 1.8, we need two lemmas.

Lemma 2.1. Let A > 3. Then
24+

1
> - <0.7254. (2.1)

k=24

PROOF. The case of A € {3,4} is an easy calculation. If A > 5, we get the
following estimation:

ke P 9 94
~< S dr =log [ =2 ) < 0.7254. O
ZA k z Og(1—2A>
k=2 1—9—A4A

Lemma 2.2. Ift € {0,1,2} and z € I; \ I;41, then

24+1_1 D
> % < 0.3627 - 2
k=24

for A > 6.

PRrROOF. Let x € It \ I;41 and apply (1.2):

t—1
Di(a)| = Y k2" — k2!
1=0

Use the notation - -
k= Zkizi and k(™) = Z k27,
i=0 i=m
where k; € {0,1} and m € N. For ¢t = 0, we have |Dy(x)| = ko, and by Lemma 2.1,

2 |D ( )| S k 22 1 0.7254
kT 0 : t
}: — E’ < E - < = 0.3627 -2
Py k Py ko + k() — eyt 1425 2

(recall that t = 0 and A > 4 in this case).
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For t = 1, we have Dy (z) = |ko — 2k1| and

[Di(@)] _ ko — 2k

ko~ 1+k® 7
Thus
ZAil | D ()| < Z Z |/€0 — 2k |
k=24 k - ko,k1€{0,1} j=24-2 1+4j
i 0.7254- > |ko — 2ky| = 0.7254 = 0.3627 - 2'

ko,k1€{0,1}

(recall that t =1 and A > 5).
For t = 2, we have Dy (z) = |ko — 2k1 — 4k2| and

| Dy ()| < |ko — 2k1 — 4ks

ko~ 1+ kG

(recall that t = 2 now). Thus,

A+1_ A-2_
221|Dk($)| < ¥ 2z:1|k0—2/ﬁ—4k2|

ko~ 1+8j
k=24 k?(],k}l,k)ge{o,l} j:2A_3
1
< 07254 > ko — 2k — 4ky|=2-0.7254=0.3627 - 2°
ko,khkze{o,l}

(recall that t = 2 and A > 6 in this case). O

Proor oF THEOREM 1.8. The proof is easy in the case n < 2!, because
if x € It \ I;41, then we have
nfl

n—1

M

log n ~ logn’

k=1

and consequently, n > 2! can be supposed. Suppose that 2 € I has at least two
coordinates different from 0. Let s > 1 and = € I} \ I;41 satisfy

1, ifie{tt+s}

0, ifief{0,1,...t—1}U{t+1,t+2,...,t+s—1},
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and k = a + k2! + 241, where k; € {0,1} (i =0,1,2,...),
a=ki_1) =y k2,  2Fb=p0F = Z ki2'.
] i=t+1

If there is no such s, then z = 27*~!, which will be discussed later. This case is
referred to as s = 0o. Use the notation

20+l _q

. Dy () Dy ()
Lo(z) = Laa(z) == Y L and Loy(2) > p
k=22 k=2a
The following estimations are easy
2t—1
Dy (x
Los(z) =Y ’“kf ) gt 1 (2.3)
k=1
2t 1 2t—1
Dy () Dy yi(2)
Li(z) = Z E Z o 1 k
k=2t k=1
2'—1 20 .
28—k Lottl g
= = = > 2l og2 — 2F 2.4
20+ k Z J °8 24)
k=0 j=2t
Now we turn to the values of L,y ;, where j = 1,2,3,.... Then

2ttt 2 1 w2t+1b($) |:k't2t — Zf_é k‘ZQZ:|

D - 12— _
Liyj(x) = Z Z Z—o Zo 4+ k2t + b 2tH

k=2t+J b=27—

We define the function Lj, ;(x) as the following sum:

271 1 2'-1
wy (2 12) (k2! — a)
Ltl-i-]( )= Z Z t t+1 ’
- k2t +b-2
b=2i—1k;=0 a=0
where j =1,2,3,.... In the next step, we give an upper estimation of |L;,;(x) —
Li;(@)l:

27—1 2°—1 a2t — g2 a2
| Lt j(x) — t+J z)| < Z Z ( (2t + b - 2t+1)2 + (b,2t+1)2>

b=2i—1 a=0
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B Qil 2!(2! — 1)2! 2 -1 -1 2 - DT 1)
- 2-(20+b-20H1)2 6. (2 + b - 20H1)2 6(b - 2¢+1)2

2/-1 23t 2. 23t 2. 23t
- Z < 2 2 2t st 52 2t) +a(2")
2o \2 (L 2m)?  6-25(1+20)° | 2402 -2

291

- 2. (1+20)2 3-(L+20)2 122) M7= pz N

b=27i—1

For a(2%), we obtain

27 -1
_2275 3.221& _2t 3_22t _2t
a(2') = Z ( 2t z T 2t 2 2t2>
o \2-22(1 420 622 (1+20)2 24 2%

291 201

1% 1 1 1 1
T8 Z b?+24~2tb%:1<b2_b2+b+}1>'

Therefore,
Z\Ltﬂ'(x) Ly ()]
i=1
co 271 co 271 1
PAY Y pta S pme
j=1p=2i-1 j=1 p=2i—1 1

211 11 26—1 7% ((3)
< — =Y = S+ 2L < 0.206 - 28 — 0.155, (2.5
- 8 Z 2 + Z b3 6 6 + 24 < ’ ( )

where ¢ denotes the Riemann zeta-function. Moreover, later we will also need the
following estimation:

Z |Litj(x) — Liy ()|

j=J+1
2t_1 oo 271 1 1 00 27 -1 1
2 X ptum X 2

j=J+1p=2i—1 j=J+1p=2i—1

<

oo

21 X1 1 1 2t—1 1.645 1 1.202
_ = < . . . 2.
8 b§b2+24zb3* s 2 T Tw (2.6)

b=27
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In the proof of this estimation we used the following inequalities, which hold for
every J > 0O:

2JZ—<1645 2sz<1202
b=27 b=2"7

Now we investigate L, ;(x), where j =1,2,... and z € I; \ [;41:
9d ot

— 1 —
p(20712) - (k2! — a)
1 _ t
Ltﬂ( )_ Z Z Z kt2t+2t+1b

= 21: {Qt wp(27F12) k2t 2020 — 1) wy(2tHa) }
1 k=0

k2t + 2t+1p 2 k24 2tF1p

b=2i~—

21 t41,, 21 t41,,

wp(2 wp(2
b — = -
Z ke +20 (t )+ 2 Z kt+2b

b=27-1 k=

ot AL 11y 13 11
- = - = 2t+1 -
> 2””(2 ”3)(1+2b 2b>+ 2w x)<1+2b+2b)

b=2i-1

c= Ly (@) + Ly ().

Furthermore,
271

2t 1
|Lt+]( z)| < 5 §lma

therefore,

oo 29—1 foo

1
Zwtﬂ ;bz 2b(2b + 1) 2b+1 =3 ZQb(2b+1)
— ot 1 —log(2)

5 <0.154 - 2", (2.7)

Moreover,
t

i 1 2
Ll <Z <0154 = 2.
Z Bt (@)l = 5 2;1 wizb 1) = e (28)

where the role of J will be discussed later.

Now we estimate Ltﬂ (x). Let By = T2 + % Then, by an Abel trans-

form, we have:
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J 2791
1 2 t+1
E Lt+] § E 6bwb 2
j=1 _] 1p=2i—1

- b
= % Z — Bot1) ;wi(fﬂx) + %ﬁQJ(DQJ(?“x) —1). (2.9)

b=1

We suppose that J < A —t —1. If J < s — 1, then for any b < 27, we have
wy(2tT1z) = 1 (recall that {i : x; = 1, i < t+ s} = {t,t + s} and then 2!T1z €
I,_1\I). If A<t+s, then this is the situation for all J < A —t — 1.

A
If A > t+s, then in 221 D we have addends L1 2 S(w)forj=1,2,.. A-t-1.
Then =t
& 1 2 1%¢ ! 1 24711 »
jz::l Ly (@ =5 bzz:l (Bo — Byr1)b+ = b:ZQ;1 (Bo — Boa1)(Dpyr (28T 1) — 1)

1 9s—1_ 1 9A—t_q 1
s—1
25 (ﬁb Bor1)b— 5 -2 > (Bo—Boar) — P2t
b=1 p=0s—1
2571
1 1 1
> = bh— 92572 il
2 5 (51; Bo+1) (1 T 25>
b=1
1
D) 2A t+1 2A t+1
25711
1 1 2t
> — ) 2.10
SR (By — Bot+1)b — 5 " AT (2.10)
If we use the fact that for any s
1 25-1 1
3 b(Bo — By+1) = 0, (2.11)
b=1
then we have
A—t—1 B ot

j=1
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241
D
Now, we give a lower bound for Z f7 where A > t. By inequalities (2.3),

(24), (2.5), (2.7), (2.12), we have

24 _1 D A—t—1
k
= —Loe+Let Z Liyj
k=1 Jj=1
oo A—-t—1 A—t—1
>2' =142 og2 = 2" = Y Loy — Liyyl+ Y L+ Y Li
j=1 j=1 j=1

> 21 og(2) — 1 —0.206 - 2 +0.155 — 0.154 - 2" — 1
=1.026 - 2" — 1.845. (2.13)

If A > 6 (that is n > 64), then we use Lemma 2.1. We get the following
inequality:

-1 241 -1 241 24+1_q

< Dy(x) _ Dy(x) n < Dy (x) S Dy(x) ot 1
k Z k Z k k k

k=1 k=1 k=2A k=1 k=24

> 1.026 - 28 — 1.845 — 0.7254 - 2t > 0.3006 - 2¢ — 1.845.

Let t > 3. Then the previous inequalities can be written in the following form:

n—1
D 2t
ET) o 4.0t 1845 > 0.5 20 > =

M

ol
Il

1

To summarize, if A > 6,t > 3,t < A, then we have

n—1
1 Dk(I) Qt
= > .
By (2) logn ]; k — 16-logn

The case of A < 6, n € {1,...,127} and ¢t < A can be investigated by the
computer algebra program MATLAB. The computer codes can be found in the
Appendix.

We have left the case t < 3 and A > 7 to the end. Suppose that s < 4.
Let the value of J be 7. We apply the inequality (which can also be proved by
a computer algebra program)

271

D
3 ’“k(x) > 05828, ifte{0,1,2}, z€o,1].
k=1
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Figure 1. f(z) = log128 - Ri2s(z) and g(z) = 0.58 - 2' plot if ¢t €
{0,1,2} and z € [1/8,1].

0.55

jiki}

045

04 L L . . . . . .
08 082 084 0B6 088 09 052 094 096 098 1

Figure 2. f(x) = log128 - Ri2s and g(x) = 0.58 - 2¢ plot if t = 0 and
z € [0.8,1].
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Then we use (2.6), (2.8), and the following estimation:

hS

t—1 A—t—1 27-1 2A-t=1_1

< 1 ' 1
>, L )=3 > X 5bwb(2t“3«"):§ > B2
j=J—t—1 j=J—t—1p=2i-1 =2J—t—2
1 24-t—1_4 b
=5 S Be—Bor1) Y, wi(2a)
p=2J—t—2 §=2J—t—2

1
+ iﬁQA—t—l (DQA—t—1(2t+1$) — D2J—t—1(2t+1(£)) .
Since A—t—1>J—t—1=6—t>4and 2"z € I, ;\ I, for any natural
number k, we have | Dy (2!712)| < 2571 and consequently,

b

Z w;i (28 )

j=2J—t—1

Besides, Dya—+—1(2112), Dys——1(2F12) = 0. Thus,

<92.9571 =95

A—t—1 247
S L@ -2 Y (B Bun) = 2 (Barir — Boaec)
j=d—t—1 p=2J—t—1
1 1 2s+t
s—1
> 2 <1 T2t + 2J—t> - 9J - (2.14)

From Lemma 2.2 with J =7, A > 7, t <2, s <4, it follows that

- D 2J—1 A— -1 p
k
Z?:Z Z Z?
k=1 k=1 j=J k=27 k=2
Dy A—t—1
SHOLE DR S
k=1 j=J—t k=24
2771D oo A—t—1 24+l _1 Dyl
k 1 k
> 2= D e Ligl- Z Loyl D0 L= > =
k=1 j=J—t j=J—t j=J—t k=24
2t—1 1.645 1 1.202 2t 25t
t t
20.58-2—T-F YRy ==1 —0.154 - CY==talrwa —0.3627 - 2°.

Consequently, for J = 7,s € {1,2,3,4} and ¢t € {0, 1, 2}, after some numerical

calculations we obtain
— Dy, 1
— — —2t>0.
Z k (@) 62 =0
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The only task to do is to calculate the term above at 12 points. (The computer
algebra code is attached.)
The next task is to discuss the case A > 7, s > 5 and ¢t € {0,1,2}.

25—t
1 1
By 8, = 1% + 3 e have bzz:l b(By — Bp+1) = 2.1039. Then we apply (2.5)
for the estimation of Y |L;y; — L{, |, and (2.7) for the estimation of ZL;}J

Besides, in the case of A >t + s, we also apply inequality (2.10) and Lemma 2.2
to estimate Y 1/k.

Taking into account these remarks, we obtain

n—1 241 n—1 A—t—1
Dy Dy D
T P g =l het ZLt+J+Z
k=1 k=1 k=24 k=24
A—t—1 A—t—1 n—1 1
t t+1 t 1,2 t
>l 142 1og 22 f;wtﬂv Li |+ ZLHﬁZLHfz kgﬁ

>2 1 1og(2) —1—(0.206 - 2 —0.155) —0.154 - 2/ +(2.1039—1) —0.367 - 2°
t 1 t
>0.659 - 2" +0.258 > 2"

In the case of A < t+4 s — 1, in the calculations above we can apply (2.9)
instead of (2.10). In this situation, by J = A — ¢ — 1, we have

A—t—1 1At12j1 At1271
IRZACEE DN DL R D N DY
j=1 j=1 bp=2i-1 j=1 b=2i-1
1,4—15—1
:§ 9i—1 _ 9A—t-1 1227—2—1 1 15

Then in the same way as in the situation of A > t + s, we have again that

Z >—62tforanys>5t<2andA>7

The only situation that remains is s = oo, that is, when x = S This case
can be dealt with the same way as case A < t + s. Therefore, it is left to the
reader. O

Corollary 2.3. The Walsh logarithmic kernels are positive for each n € N
and for all x € [0,1).
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The next corollary shows a sharp contrast between the Walsh—Fejér and the
Walsh logarithmic kernels.

Corollary 2.4. Let t,a € N and t > a. Then we have

1

/ sup |R,(x)| dz = oco.
n>2t
2—a

ProoF. We apply Theorem 1.8:

1 oo 27t oo 27t
/ sup |R,(x)| dz = Z sup |R,(x)| dz = Z / sup Ry, (x) dx
n>2t t—a—1 n>2t t—a—1 n>2t
2—a 2—t—1 2—t—1
—t —t
SN 2t =
> sup ———dx =c- / dx
t:;l e 16 -logn t:;l s 16 ¢
= 1
—c- = d
e Y ton
t=a—1
3. Appendix

Finally, here is the list of MATLAB codes that have been used during our
research.
The n-th coordinate of N and z, where N is natural number and z € [0, 1):

v

function g = coordN(n,N)
g = mod(floor (2. (-n)*N),2);
end

Vv Vv

The n-th Rademacher function:

function h = rad(n,x)
h = (-1). " (mod(floor(2." (n+1).%x),2));
end

vV V VvV



vV V. V V V V vV V. V V V V V

V V. V V V V

V V. V V V V V VvV VvV
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The n-th Walsh function at point z:

function f = walsh(n,x)

a = floor(log2(1+n));

for b = 1:1:a+1;

y(b) = rad(b-1,x) “coordN(b-1,n);
end

f = prod(y);

end

The n-th Dirichlet mean at point x:

function f = Dir(n,x)
for a = 1:1:n;

y(a) = walsh(a-1,x);
end

f = sum(y);

end

The n-th Riesz logarithmic mean at point x:

function f = logkernel(n,x)
for k = 1:n;

h(k) = sum(Dir(k,x))/k;

end

f = sum(h);

end

The next code counts how many times the code logkernel is less than 2¢/16:

function f = logkern2t16(n)

A = floor(log2(n));

for k = 2:27A

x = (k-1)/27A;t = floor(log2(1/x));

if logkernel(n,x) < 2°t/16 error(k) = -1;
else error(k) = 0;

end

f = sum(error);

end
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The plot of f(z) = log(128) - Riss and g(x) = 0.58 - 2¢ for t € {0,1,2} and
e [1/8,1]:

8

for k = 1:224 x(k) = (k+31)/256; y(k) = logkernel(127,x(k));
end

plot(x,y, ’k’)

hold on

al=[1/8 1/4];

a2=[1/4 1/2];

a3=[1/2 1];

b3=[0.58 0.58];

b2=[0.58*%2 0.58%2];

b1=[0.58*%4 0.58%4];

plot(al,bl, ’-.” , a2,b2, ’-.’, a3,b3, ’-.’ , ’color’ ,
[0.4 0.4 0.4])

> legend(Pf(x)’ , ’g(x)?)

V V. V V V V V V V V V
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