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Estimation on the Walsh–Fejér and Walsh logarithmic kernels

By GYÖRGY GÁT (Debrecen) and GÁBOR LUCSKAI (Debrecen)

Abstract. The main aim of this article is to demonstrate the difference of the

trigonometric and the Walsh system with respect to the behaviour of the maximal

function of the Fejér kernels. Moreover, properties (positivity among others) of the

Walsh logarithmic kernels are also investigated.

1. Introduction and main results

We follow the standard notions of dyadic analysis, see, e.g., [14]. We denote

by N and P the set of natural numbers and positive integers. Define the set of

dyadic intervals as (see, e.g., [1], [12], [14], [15])

J :=

{[
p

2n
,
p+ 1

2n

)
: p, n ∈ N

}
.

The dyadic interval I := [0, 1) ⊂ R is called the unit (dyadic) interval (see [1]).

The Lebesgue measure of a set B (B ⊂ I) is λ(B) = |B|. Denote by Lp(I)

the usual Lebesgue spaces, and by ‖.‖p the corresponding norms (1 ≤ p ≤ ∞).

For a given x ∈ I, let In(x) denote the dyadic interval In(x) ∈ J of length 2−n

which contains x (n ∈ N). In particular, we write In := In(0) (n ∈ N). Denote by
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Q2 := { p2n : p, n ∈ N} the set of dyadic rational numbers. Let

x =

∞∑
n=0

xn2−(n+1)

be the dyadic expansion of x ∈ I, where either xn = 0 or 1. If x ∈ Q2, then we

choose the expansion which terminates in 0’s.

Set ei := 2−i−1, that is, the i-th coordinate of ei is 1, and the rest are zeros for

all i ∈ N. The dyadic rationals can be represented as the finite 0, 1 combinations

of the elements of the set {ei : i ∈ N}.
Set the definition of the n-th (n ∈ N) Walsh–Paley function at point x∈I as

ωn(x) :=

∞∏
j=0

(−1)xjnj ,

where N 3 n =
∑∞
n=0 nj2

j (nj ∈ {0, 1} (j ∈ N)).

The so-called dyadic or logical addition is defined for any x, y ∈ I as

x+ y :=

∞∑
n=0

|xn − yn|2−(n+1).

Denote by

f̂(n) :=

∫
I

fωndλ, Dn :=

n−1∑
k=0

ωk, Kn :=
1

n

n−1∑
k=0

Dk, Rn :=
1

log n

n−1∑
k=1

Dk

k

the Fourier coefficients, the Dirichlet, the Fejér or (C, 1) kernels and Walsh loga-

rithmic means, respectively. Moreover, see ([14]),

D2n(x) =

{
2n, if x ∈ In,
0, if x /∈ In,

(1.1)

Dn(x) = ωn(x)

∞∑
i=0

niriD2i(x), (1.2)

where ri is the i-th Rademacher function, that is, ri = (−1)xi . It is also known

that the Fejér or (C, 1) means of the function f and Dirichlet kernels are connected

by the equality [14]

σnf(y) :=
1

n

n−1∑
k=0

Skf(y) =

∫
I

f(x)Kn(y + x)dx

=
1

n

n−1∑
k=0

∫
I

f(x)Dk(y + x)dx (n ∈ N, y ∈ I).
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On the other hand, for an introduction to the theory of Walsh functions and

Walsh–Fourier series in the context of view of topological groups, see [11] or [14].

The forthcoming lemma will play a prominent role in the proof of some

lemmas and it is due to Goginava [10].

Lemma 1.1 ([10]). For j, n ∈ N, j < 2n, we have

D2n−j(x) = D2n(x)− ω2n−1(x)Dj(x).

We use the following notations:

Ka,b :=
b∑
l=a

Dl (a, b ∈ N) and n(s) :=
∞∑
l=s

nl2
l (n, s ∈ N).

The next two lemmas are proved by Gát [5].

Lemma 1.2.

nKn(x) =

∞∑
s=0

nsKn(s+1),2s(x).

Let |n| := blog2(n)c (1 ≤ n ∈ N). That is, 2|n| ≤ n < 2|n|+1.

Lemma 1.3 ([5]). Let s, t, n ∈ N, x ∈ It \ It+1. If s ≤ t ≤ |n|, then

|Kn(s+1),2s(x)| ≤ c2s+t.

If t < s ≤ |n|, then

Kn(s+1),2s(x) =

{
0, if x− xtet /∈ Is,
ωn(s+1)(x)2s+t−1, if x− xtet ∈ Is.

In this paper, c denotes an absolute constant which may not be the same at

different occurrences.

Gát [5] proved the following inequality for the maximal function of Fejér

kernels:

Theorem 1.4 ([5]). ∫
I\Ia

sup
|n|≥A

|Kn(x)| dx ≤ c
√

2a−A

for all A ≥ a ∈ N.
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In 2004, Goginava improved the result of Gát. That is, he proved:

Theorem 1.5 ([9]). ∫
I\Ia

sup
|n|≥A

|Kn(x)| dx ≤ cA− a
2A−a

for all a < A ∈ N.

Theorems 1.4 and 1.5 give powerful methods in the investigation of one and

two-dimensional problems related to Fejér-type means of Walsh–Fourier series

([8], [10]).

Next, we turn our attention to the trigonometric system in order to show some

differences between the behaviour of Fejér kernels with respect to the trigonomet-

ric and the Walsh system. The well-known formula for Fejér kernels ([2]) is

Ktrig
n (x) =

sin2

(
2n+ 1

2
x

)
2(n+ 1) sin2 x

2

(0 < x < 2π),

which gives the estimation from below for the trigonometric system

c1
Nδ
≤

1∫
δ

sup
n≥N
|Ktrig

n (x)| dx ≤ c2
Nδ

(
N >

1

δ

)
,

where c1 and c2 are absolute constants.

This naturally raises the question whether the result of Gát and Goginava

can be improved by writing a smaller term instead of c
A− a
2A−a

. That is, something

smaller instead of c
log(Nδ)

Nδ
.

The following theorem shows that the result of Goginava cannot be improved.

This shows a sharp difference between the theory of the trigonometric and the

Walsh system.

Theorem 1.6.

1∫
δ

sup
n≥N
|Kn(x)| dx ≥ c

Nδ
log(Nδ)

(
N >

1

δ

)
.

After that, we turn our attention to another type of kernel function with

respect to the Walsh–Paley system. That is, we investigate the Walsh–Riesz log-

arithmic kernel.
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The next theorem is a trivial and well-known property of the trigonometric

Riesz logarithmic kernel and probably its proof can be found somewhere, but we

did not find it. However, it is not our result. A proof is given only in order to

demonstrate the differences between the two orthonormal systems.

Theorem 1.7. The trigonometric logarithmic kernels

Rtrig
n (x) :=

1

log n

n−1∑
k=1

Dtrig
k (x)

k

are positive for all n ≥ 2 and for each x ∈ [−π, π].

Proof. We apply the Abel transform:

log n ·Rtrig
n (x) =

n−1∑
k=1

Dtrig
k (x)

k
=

n−1∑
k=1

(
1

k
− 1

k + 1

) k∑
j=1

Dtrig
j (x) +

1

n

n−1∑
i=1

Di(x)

=

n−1∑
k=1

(
1

k
− 1

k + 1

)
Ktrig
k (x) +

1

n
Ktrig
n−1(x) ≥ 0,

because Ktrig
n (x) ≥ 0 for all n ∈ N and x ∈ [−π, π]. �

The Walsh–Fejér kernel can take negative values, therefore we cannot use the

previous proof. The next theorem shows the behaviour of the logaritmic kernels

with respect to the Walsh–Paley system.

Theorem 1.8. Let t, n ∈ N and x ∈ It \ It+1. Then we have

Rn(x) ≥ 2t

16 · log n
, for n > 2t and Rn(x) =

n− 1

log n
, for n ≤ 2t.

2. Proofs

Proof of Theorem 1.6. Let a =

⌊
log2

(
1

δ

)⌋
and A = dlog2Ne. Then

the theorem can be written in the following form:∫
Ia

sup
n≥2A

|Kn(x)| dx ≥ cA− a
2A−a

.

We prove this lower estimation.
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Let t, l ∈ P be arbitrary and n = 22B + 22B−2 + · · · + 24 + 22 + 20, where

|n| = 2B ≥ A and B =
⌈
A
2

⌉
. If t, l ∈ N \ {0}, t 6= l, then let J lt be the dyadic

interval It+l+1(x), for which coordinate xi satisfies:

xi =

{
1, if i ∈ {t, t+ l},
0, if i ∈ {0, 1, . . . t− 1} ∪ {t+ 1, t+ 2, . . . , t+ l − 1}.

(I)

We can write interval Ia in the following way:

Ia =

a−1⋃
t=0

It \ It+1 =

a−1⋃
t=0

2B−t⋃
l=1

J lt ∪
a−1⋃
t=0

I2B+1(et).

Therefore (recall that n = 22B + 22B−2 + · · ·+ 20),∫
Ia

sup
n≥2A

|Kn(x)| dx ≥
∫

⋃a−1
t=0

⋃2B−t
l=1 Jl

t

|Kn(x)| dx+

∫
⋃a−1

t=0 I2B+1(et)

|Kn(x)| dx

≥
a−1∑
t=0

2B−t∑
l=1

∫
Jl
t

c

22B

∣∣∣∣∣
2B∑
s=0

nsKn(s+1),2s(x)

∣∣∣∣∣ dx
+

a−1∑
t=0

∫
I2B+1(et)

c

22B

∣∣∣∣∣
2B∑
s=0

nsKn(s+1),2s(x)

∣∣∣∣∣ dx = (I) + (II).

Estimation of (I). We distinguish three cases depending on the value of s.

We can suppose that s is even (because ns = 1 if s is even, and ns = 0 if s is odd).

First case: s is even and t ≤ s ≤ t + l. Let m :=

⌊
t+ l

2

⌋
and 2m play the

role of s. Then by Lemma 1.3 we have∫
Jl
t

|K22B+22B−2+...+22m+2,22m(x)| dx=
22m+t−1

2t+l+1
=

22b
t+l
2 c+t−1

2t+l+1
≥ 22t+l−2

2t+l+1
=

2t

8
,

∫
Jl
t

|K22B+22B−2+...+22m,22m−2(x)| dx=
22m−2+t−1

2t+l+1
≤ 22t+l−3

2t+l+1
=

2t

42
,

...∫
Jl
t

|K22B+22B−2+...+22m−2j+2,22m−2j (x)| dx=
22m−2j+t−1

2t+l+1
≤ 22t−2j−1

2t+1
=

2t

4j+1

for j = 1, 2, . . ..
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Therefore,∫
Jl
t

sup
n≥2B

c

22B

∣∣∣∣∣
2B∑
s=0

nsKn(s+1),2s(x)

∣∣∣∣∣ dx ≥ c

22B

∣∣∣∣2t8 − 2t

42
− 2t

43
− . . .

∣∣∣∣ .
Consequently,∫
Ia

sup
n≥2B

c

22B

∣∣∣∣∣
2B∑
s=0

nsKn(s+1),2s(x)

∣∣∣∣∣ dx
≥
a−1∑
t=0

2B−t∑
l=1

c

22B

∣∣∣∣2t − 2t+1

4
− 2t+1

42
− . . .

∣∣∣∣ ≥ a−1∑
t=0

2B−t∑
l=1

c

22B

[
2t ·

(
1−

∞∑
i=1

2

4i

)]

≥
a−1∑
t=0

2B−t∑
l=1

c

22B

[
2t ·
(

1−
1
2

1− 1
4

)]
≥
a−1∑
t=0

2B−t∑
l=1

c · 2t

22B
≥ c · 2a

22B
(2B − a).

Second case: t+ l ≤ s. Then Kn(s),2s(x) = 0, as it is given by Lemma 1.3.

Third case: 0 ≤ s < t. Then, by Lemma 1.3 again, we have∫
Jl
t

|K22B+22B−2+···+2s+2,2s(x)| dx ≤ c2s+t−1

2t+l+1
≤ c2s

2l

for the integral on the set J lt (recall that s is even and the definition of J lt := It+l+1

see in (I)). Then

a−1∑
t=0

2B−t∑
l=1

∫
Jl
t

sup
|n|≥2B

c

22B

∣∣∣∣∣
t−1∑
s=0

nsKn(s+1),2s(x)

∣∣∣∣∣ dx
≤ c

22B

a−1∑
t=0

2B−t∑
l=1

t−1∑
s=0

2s+t

2t+l
≤ c

22B

a−1∑
t=0

2t

2
≤ c 2a

22B
.

Estimation of (II) is not important for the lower estimation from below, since

(I) will be the major part and since we are to find a lower bound. But anyhow,

(II) =

a−1∑
t=0

∫
I2B+1(et)

sup
|n|≥2B

c

22B

∣∣∣∣∣
2B∑
s=0

2s+t−1

∣∣∣∣∣ dx
=

a−1∑
t=0

c

22B+1
·

2B∑
s=0

2s+t−1

22B+1
≤
a−1∑
t=0

· c

22B+1

22B+1+t

22B+1
≤ 2a

22B
.
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To sum up, we get∫
Ia

sup
|n|≥2B

|Kn(x)| dx ≥ c · 2a

22B
(2B − a).

This completes the proof. �

Before proving Theorem 1.8, we need two lemmas.

Lemma 2.1. Let A ≥ 3. Then

2A+1−1∑
k=2A

1

k
< 0.7254. (2.1)

Proof. The case of A ∈ {3, 4} is an easy calculation. If A ≥ 5, we get the

following estimation:

2A+1−1∑
k=2A

1

k
<

2−2−A∫
1−2−A

1

x
dx = log

(
2− 2−A

1− 2−A

)
< 0.7254. �

Lemma 2.2. If t ∈ {0, 1, 2} and x ∈ It \ It+1, then

2A+1−1∑
k=2A

|Dk(x)|
k

≤ 0.3627 · 2t

for A ≥ 6.

Proof. Let x ∈ It \ It+1 and apply (1.2):

|Dk(x)| =

∣∣∣∣∣
t−1∑
i=0

ki2
i − kt2t

∣∣∣∣∣ .
Use the notation

k =

∞∑
i=0

ki2
i and k(m) :=

∞∑
i=m

ki2
i,

where ki ∈ {0, 1} and m ∈ N. For t = 0, we have |Dk(x)| = k0, and by Lemma 2.1,

2A+1−1∑
k=2A

|Dk(x)|
k

=

2A+1−1∑
k=2A

k0
k0 + k(1)

≤
2A−1∑
j=2A−1

1

1 + 2j
≤ 0.7254

2
= 0.3627 · 2t

(recall that t = 0 and A ≥ 4 in this case).
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For t = 1, we have Dk(x) = |k0 − 2k1| and

|Dk(x)|
k

≤ |k0 − 2k1|
1 + k(2)

.

Thus,

2A+1−1∑
k=2A

|Dk(x)|
k

≤
∑

k0,k1∈{0,1}

2A−1−1∑
j=2A−2

|k0 − 2k1|
1 + 4j

≤ 1

4
· 0.7254 ·

∑
k0,k1∈{0,1}

|k0 − 2k1| = 0.7254 = 0.3627 · 2t

(recall that t = 1 and A ≥ 5).

For t = 2, we have Dk(x) = |k0 − 2k1 − 4k2| and

|Dk(x)|
k

≤ |k0 − 2k1 − 4k2|
1 + k(3)

(recall that t = 2 now). Thus,

2A+1−1∑
k=2A

|Dk(x)|
k

≤
∑

k0,k1,k2∈{0,1}

2A−2−1∑
j=2A−3

|k0 − 2k1 − 4k2|
1 + 8j

≤ 1

8
·0.7254 ·

∑
k0,k1,k2∈{0,1}

|k0 − 2k1 − 4k2|=2 · 0.7254=0.3627 · 2t

(recall that t = 2 and A ≥ 6 in this case). �

Proof of Theorem 1.8. The proof is easy in the case n ≤ 2t, because

if x ∈ It \ It+1, then we have

Rn(x) =
1

log n

n−1∑
k=1

Dk(x)

k
=
n− 1

log n
,

and consequently, n ≥ 2t can be supposed. Suppose that x ∈ I has at least two

coordinates different from 0. Let s ≥ 1 and x ∈ It \ It+1 satisfy

xi :=

{
1, if i ∈ {t, t+ s},
0, if i ∈ {0, 1, . . . t− 1} ∪ {t+ 1, t+ 2, . . . , t+ s− 1},

(2.2)
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and k = a+ kt2
t + 2t+1b, where ki ∈ {0, 1} (i = 0, 1, 2, . . .),

a = k(t−1) :=

t−1∑
i=0

ki2
i, 2t+1b = k(t+1) :=

∞∑
i=t+1

ki2
i.

If there is no such s, then x = 2−t−1, which will be discussed later. This case is

referred to as s =∞. Use the notation

La(x) = La,a(x) :=

2a+1−1∑
k=2a

Dk(x)

k
and La,b(x) :=

2b+1−1∑
k=2a

Dk(x)

k
.

The following estimations are easy:

L0,t(x) =

2t−1∑
k=1

Dk(x)

k
= 2t − 1, (2.3)

Lt(x) =

2t+1−1∑
k=2t

Dk(x)

k
=

2t−1∑
k=1

D2t+k(x)

2t + k

=

2t−1∑
k=0

2t − k
2t + k

=

2t+1−1∑
j=2t

2t+1 − j
j

≥ 2t+1 log 2− 2t. (2.4)

Now we turn to the values of Lt+j , where j = 1, 2, 3, . . .. Then

Lt+j(x) =

2t+j+1−1∑
k=2t+j

Dk(x)

k
=

2j−1∑
b=2j−1

1∑
kt=0

2t−1∑
a=0

ω2t+1b(x)
[
kt2

t −
∑t−1
i=0 ki2

i
]

a+ kt2t + b · 2t+1
.

We define the function L1
t+j(x) as the following sum:

L1
t+j(x) :=

2j−1∑
b=2j−1

1∑
kt=0

2t−1∑
a=0

ωb(2
t+1x) (kt2

t − a)

kt2t + b · 2t+1
,

where j = 1, 2, 3, . . .. In the next step, we give an upper estimation of |Lt+j(x)−
L1
t+j(x)|:

|Lt+j(x)− L1
t+j(x)| ≤

2j−1∑
b=2j−1

2t−1∑
a=0

(
a2t − a2

(2t + b · 2t+1)2
+

a2

(b · 2t+1)2

)
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=

2j−1∑
b=2j−1

(
2t(2t − 1)2t

2 · (2t + b · 2t+1)2
− 2t(2t − 1)(2t+1 − 1)

6 · (2t + b · 2t+1)2
+

2t(2t − 1)(2t+1 − 1)

6(b · 2t+1)2

)

=

2j−1∑
b=2j−1

(
23t

2 · 22t(1 + 2b)2
− 2 · 23t

6 · 22t(1 + 2b)2
+

2 · 23t

24b2 · 22t

)
+ α(2t)

= 2t
2j−1∑
b=2j−1

(
1

2 · (1 + 2b)2
− 1

3 · (1 + 2b)2
+

1

12b2

)
+ α(2t) ≤ 2t

8

2j−1∑
b=2j−1

1

b2
+ α(2t).

For α(2t), we obtain

α(2t) =

2j−1∑
b=2j−1

(
−22t

2 · 22t(1 + 2b)2
+

3 · 22t − 2t

6 · 22t(1 + 2b)2
− 3 · 22t − 2t

24 · 22tb2

)

=− 1

8

2j−1∑
b=2j−1

1

b2
+

1

24 · 2t
2j−1∑
b=2j−1

(
1

b2
− 1

b2 + b+ 1
4

)
.

Therefore,

∞∑
j=1

|Lt+j(x)− L1
t+j(x)|

≤ 2t − 1

8

∞∑
j=1

2j−1∑
b=2j−1

1

b2
+

1

24

∞∑
j=1

2j−1∑
b=2j−1

b+ 1
4

b2(b2 + b+ 1
4 )

≤ 2t − 1

8

∞∑
b=1

1

b2
+

1

24

∞∑
b=1

1

b3
=

2t − 1

6
· π

2

6
+
ζ(3)

24
< 0.206 · 2t − 0.155, (2.5)

where ζ denotes the Riemann zeta-function. Moreover, later we will also need the

following estimation:

∞∑
j=J+1

|Lt+j(x)− L1
t+j(x)|

≤ 2t − 1

8

∞∑
j=J+1

2j−1∑
b=2j−1

1

b2
+

1

24

∞∑
j=J+1

2j−1∑
b=2j−1

1

b3

=
2t − 1

8

∞∑
b=2J

1

b2
+

1

24

∞∑
b=2J

1

b3
≤ 2t − 1

8
· 1.645

2J
+

1

24
· 1.202

2J
. (2.6)
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In the proof of this estimation we used the following inequalities, which hold for

every J ≥ 0:

2J
∞∑
b=2J

1

b2
≤ 1.645, 2J

∞∑
b=2J

1

b3
≤ 1.202.

Now we investigate L1
t+j(x), where j = 1, 2, . . . and x ∈ It \ It+1:

L1
t+j(x) =

2j−1∑
b=2j−1

1∑
kt=0

2t−1∑
a=0

ωb(2
t+1x) · (kt2t − a)

kt2t + 2t+1b

=

2j−1∑
b=2j−1

1∑
kt=0

[
2t · ωb(2

t+1x) · kt2t

kt2t + 2t+1b
− 2t(2t − 1)

2
· ωb(2

t+1x)

kt2t + 2t+1b

]

= 2t ·
2j−1∑
b=2j−1

1∑
kt=0

ωb(2
t+1x)

kt + 2b
·
(
kt −

1

2

)
+

1

2

2j−1∑
b=2j−1

1∑
kt=0

ωb(2
t+1x)

kt + 2b

=
2t

2

2j−1∑
b=2j−1

ωb(2
t+1x)

(
1

1 + 2b
− 1

2b

)
+

1

2

2j−1∑
b=2j−1

ωb(2
t+1x)

(
1

1 + 2b
+

1

2b

)

: = L1,1
t+j(x) + L1,2

t+j(x).

Furthermore,

|L1,1
t+j(x)| ≤ 2t

2

2j−1∑
b=2j−1

1

2b(2b+ 1)
,

therefore,

∞∑
j=1

|L1,1
t+j(x)| ≤ 2t

2

∞∑
j=1

2j−1∑
b=2j−1

1

2b(2b+ 1)
≤ 2t

2

∞∑
b=1

1

2b(2b+ 1)

= 2t
1− log(2)

2
≤ 0.154 · 2t. (2.7)

Moreover,
∞∑

j=J+1

|L1,1
t+j(x)| ≤ 2t

2

∞∑
b=J+1

1

2b(2b+ 1)
≤ 0.154 · 2t

2J
, (2.8)

where the role of J will be discussed later.

Now we estimate L1,2
t+j(x). Let βb =

1

1 + 2b
+

1

2b
. Then, by an Abel trans-

form, we have:



Estimation on the Walsh–Fejér and Walsh logarithmic kernels 427

J∑
j=1

L1,2
t+j(x) =

1

2

J∑
j=1

2j−1∑
b=2j−1

βbωb(2
t+1x)

=
1

2

2J−1∑
b=1

(βb − βb+1)

b∑
i=1

ωi(2
t+1x) +

1

2
β2J (D2J (2t+1x)− 1). (2.9)

We suppose that J ≤ A − t − 1. If J ≤ s − 1, then for any b < 2J , we have

ωb(2
t+1x) = 1 (recall that {i : xi = 1, i ≤ t + s} = {t, t + s} and then 2t+1x ∈

Is−1 \ Is). If A ≤ t+ s, then this is the situation for all J ≤ A− t− 1.

If A ≥ t+s, then in

2A−1∑
k=1

Dk

k
we have addends L1,2

t+j(x) for j = 1, 2, . . . A−t−1.

Then

A−t−1∑
j=1

L1,2
t+j(x) =

1

2

2s−1−1∑
b=1

(βb − βb+1)b+
1

2

2A−t−1∑
b=2s−1

(βb − βb+1)(Db+1(2t+1x)− 1)

+
1

2
β2A−t(D2A−t(2t+1x)− 1)

≥ 1

2

2s−1−1∑
b=1

(βb − βb+1)b− 1

2
· 2s−1

2A−t−1∑
b=2s−1

(βb − βb+1)− 1

2
β2A−t

≥ 1

2

2s−1−1∑
b=1

(βb − βb+1)b− 2s−2
(

1

1 + 2s
+

1

2s

)
− 1

2

(
1

2A−t+1
+

1

2A−t+1

)

≥ 1

2

2s−1−1∑
b=1

(βb − βb+1)b− 1

2
− 2t

2A+1
. (2.10)

If we use the fact that for any s

1

2

2s−1−1∑
b=1

b(βb − βb+1) ≥ 0, (2.11)

then we have
A−t−1∑
j=1

L1,2
t+j(x) = −1

2
− 2t

2A+1
≥ −1. (2.12)
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Now, we give a lower bound for

2A−1∑
k=1

Dk

k
, where A ≥ t. By inequalities (2.3),

(2.4), (2.5), (2.7), (2.12), we have

2A−1∑
k=1

Dk

k
= L0,t + Lt +

A−t−1∑
j=1

Lt+j

≥ 2t − 1 + 2t+1 log 2− 2t −
∞∑
j=1

|Lt+j − L1
t+j |+

A−t−1∑
j=1

L1,1
t+j +

A−t−1∑
j=1

L1,2
t+j

≥ 2t+1 log(2)− 1− 0.206 · 2t + 0.155− 0.154 · 2t − 1

= 1.026 · 2t − 1.845. (2.13)

If A ≥ 6 (that is n ≥ 64), then we use Lemma 2.1. We get the following

inequality:

n−1∑
k=1

Dk(x)

k
=

2A−1∑
k=1

Dk(x)

k
+

n−1∑
k=2A

Dk(x)

k
≥

2A−1∑
k=1

Dk(x)

k
− 2t

2A+1−1∑
k=2A

1

k

≥ 1.026 · 2t − 1.845− 0.7254 · 2t ≥ 0.3006 · 2t − 1.845.

Let t ≥ 3. Then the previous inequalities can be written in the following form:

n−1∑
k=1

Dk(x)

k
≥ 2.4 · 2t−3 − 1.845 ≥ 0.5 · 2t−3 ≥ 2t

16
.

To summarize, if A ≥ 6, t ≥ 3, t ≤ A, then we have

Rn(x) =
1

log n

n−1∑
k=1

Dk(x)

k
≥ 2t

16 · log n
.

The case of A ≤ 6, n ∈ {1, . . . , 127} and t ≤ A can be investigated by the

computer algebra program MATLAB. The computer codes can be found in the

Appendix.

We have left the case t < 3 and A ≥ 7 to the end. Suppose that s ≤ 4.

Let the value of J be 7. We apply the inequality (which can also be proved by

a computer algebra program)

27−1∑
k=1

Dk(x)

k
≥ 0.58 · 2t, if t ∈ {0, 1, 2}, x ∈ [0, 1].
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Figure 1. f(x) = log 128 · R128(x) and g(x) = 0.58 · 2t plot if t ∈
{0, 1, 2} and x ∈ [1/8, 1].

Figure 2. f(x) = log 128 · R128 and g(x) = 0.58 · 2t plot if t = 0 and

x ∈ [0.8, 1].
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Then we use (2.6), (2.8), and the following estimation:

A−t−1∑
j=J−t−1

L1,2
t+j(x) =

1

2

A−t−1∑
j=J−t−1

2j−1∑
b=2j−1

βbωb(2
t+1x) =

1

2

2A−t−1−1∑
b=2J−t−2

βbωb(2
t+1x)

=
1

2

2A−t−1−1∑
b=2J−t−2

(βb − βb+1)

b∑
i=2J−t−2

ωi(2
t+1x)

+
1

2
β2A−t−1

(
D2A−t−1(2t+1x)−D2J−t−1(2t+1x)

)
.

Since A− t− 1 ≥ J − t− 1 = 6− t ≥ 4 and 2t+1x ∈ Is−1 \ Is, for any natural

number k, we have |Dk(2t+1x)| ≤ 2s−1, and consequently,∣∣∣∣∣
b∑

i=2J−t−1

ωi(2
t+1x)

∣∣∣∣∣ ≤ 2 · 2s−1 = 2s.

Besides, D2A−t−1(2t+1x), D2J−t−1(2t+1x) = 0. Thus,

A−t−1∑
j=J−t−1

L1,2
t+j(x) ≥ −2s−1

2A−t−1−1∑
b=2J−t−1

(βb − βb+1) = −2s−1 (β2J−t−1 − β2A−t−1)

≥ −2s−1
(

1

1 + 2J−t
+

1

2J−t

)
≥ −2s+t

2J
. (2.14)

From Lemma 2.2 with J = 7, A ≥ 7, t ≤ 2, s ≤ 4, it follows that

n−1∑
k=1

Dk

k
=

2J−1∑
k=1

Dk

k
+
A−1∑
j=J

2j+1−1∑
k=2j

Dk

k
+

n−1∑
k=2A

Dk

k

=

2J−1∑
k=1

Dk

k
+

A−t−1∑
j=J−t

Lt+j +

n−1∑
k=2A

Dk

k

≥
27−1∑
k=1

Dk

k
−

∞∑
j=J−t

|Lt+j−L1
t+j |−

∞∑
j=J−t

|L1,1
t+j |+

A−t−1∑
j=J−t

L1,2
t+j−

2A+1−1∑
k=2A

|Dk|
k

≥ 0.58 · 2t− 2t−1

8
· 1.645

2J−t−1
− 1

24
· 1.202

2J−t−1
−0.154 · 2t

2J−t−1
− 2s+t

2J
−0.3627 · 2t.

Consequently, for J = 7, s ∈ {1, 2, 3, 4} and t ∈ {0, 1, 2}, after some numerical

calculations we obtain
n−1∑
k=1

Dk

k
(x)− 1

16
2t ≥ 0.
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The only task to do is to calculate the term above at 12 points. (The computer

algebra code is attached.)

The next task is to discuss the case A ≥ 7, s ≥ 5 and t ∈ {0, 1, 2}.

By βb =
1

1 + 2b
+

1

b
, we have

2s−1−1∑
b=1

b(βb − βb+1) ≥ 2.1039. Then we apply (2.5)

for the estimation of
∑
|Lt+j − L1

t+j |, and (2.7) for the estimation of
∑
L1,1
t+j .

Besides, in the case of A ≥ t+ s, we also apply inequality (2.10) and Lemma 2.2

to estimate
∑

1/k.

Taking into account these remarks, we obtain

n−1∑
k=1

Dk

k
=

2A−1∑
k=1

Dk

k
+

n−1∑
k=2A

Dk

k
= L0,t + Lt +

A−t−1∑
j=1

Lt+j +

n−1∑
k=2A

Dk

k

≥2t−1+2t+1 log 2−2t−
∞∑
j=1

|Lt+j−L1
t+j |+

A−t−1∑
j=1

L1,1
t+j+

A−t−1∑
j=1

L1,2
t+j−2t

n−1∑
k=2A

1

k

≥2t+1 log(2)−1−(0.206 · 2t−0.155)−0.154 · 2t+(2.1039−1)−0.367 · 2t

≥0.659 · 2t + 0.258 ≥ 1

16
2t.

In the case of A ≤ t + s − 1, in the calculations above we can apply (2.9)

instead of (2.10). In this situation, by J = A− t− 1, we have

A−t−1∑
j=1

L1,2
t+j(x) =

1

2

A−t−1∑
j=1

2j−1∑
b=2j−1

βbωb(2
t+1x) =

1

2

A−t−1∑
j=1

2j−1∑
b=2j−1

βb

=
1

2

A−t−1∑
j=1

2j−1 = 2A−t−1 − 1 ≥ 27−2−1 − 1 = 15.

Then, in the same way as in the situation of A ≥ t + s, we have again that
n−1∑
k=1

Dk

k
≥ 1

16
2t for any s ≥ 5, t ≤ 2 and A ≥ 7.

The only situation that remains is s =∞, that is, when x =
1

2t+1
. This case

can be dealt with the same way as case A ≤ t + s. Therefore, it is left to the

reader. �

Corollary 2.3. The Walsh logarithmic kernels are positive for each n ∈ N
and for all x ∈ [0, 1).
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The next corollary shows a sharp contrast between the Walsh–Fejér and the

Walsh logarithmic kernels.

Corollary 2.4. Let t, a ∈ N and t ≥ a. Then we have

1∫
2−a

sup
n≥2t

|Rn(x)| dx =∞.

Proof. We apply Theorem 1.8:

1∫
2−a

sup
n≥2t

|Rn(x)| dx =
∞∑

t=a−1

2−t∫
2−t−1

sup
n≥2t

|Rn(x)| dx =
∞∑

t=a−1

2−t∫
2−t−1

sup
n≥2t

Rn(x) dx

≥
∞∑

t=a−1

2−t∫
2−t−1

sup
n≥2t

2t

16 · log n
dx = c ·

∞∑
t=a−1

2−t∫
2−t−1

2t

16 · t
dx

= c ·
∞∑

t=a−1

1

t
=∞. �

3. Appendix

Finally, here is the list of MATLAB codes that have been used during our

research.

The n-th coordinate of N and x, where N is natural number and x ∈ [0, 1):

> function g = coordN(n,N)

> g = mod(floor(2.^(-n)*N),2);

> end

The n-th Rademacher function:

> function h = rad(n,x)

> h = (-1).^(mod(floor(2.^(n+1).*x),2));

> end
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The n-th Walsh function at point x:

> function f = walsh(n,x)

> a = floor(log2(1+n));

> for b = 1:1:a+1;

> y(b) = rad(b-1,x)^coordN(b-1,n);

> end

> f = prod(y);

> end

The n-th Dirichlet mean at point x:

> function f = Dir(n,x)

> for a = 1:1:n;

> y(a) = walsh(a-1,x);

> end

> f = sum(y);

> end

The n-th Riesz logarithmic mean at point x:

> function f = logkernel(n,x)

> for k = 1:n;

> h(k) = sum(Dir(k,x))/k;

> end

> f = sum(h);

> end

The next code counts how many times the code logkernel is less than 2t/16:

> function f = logkern2t16(n)

> A = floor(log2(n));

> for k = 2:2^A

> x = (k-1)/2^A;t = floor(log2(1/x));

> if logkernel(n,x) < 2^t/16 error(k) = -1;

> else error(k) = 0;

> end

> f = sum(error);

> end
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The plot of f(x) = log(128) · R128 and g(x) = 0.58 · 2t for t ∈ {0, 1, 2} and

x ∈ [1/8, 1]:

> for k = 1:224 x(k) = (k+31)/256; y(k) = logkernel(127,x(k));

> end

> plot(x,y, ’k’)

> hold on

> a1=[1/8 1/4];

> a2=[1/4 1/2];

> a3=[1/2 1];

> b3=[0.58 0.58];

> b2=[0.58*2 0.58*2];

> b1=[0.58*4 0.58*4];

> plot(a1,b1, ’-.’ , a2,b2, ’-.’, a3,b3, ’-.’ , ’color’ ,

[0.4 0.4 0.4])

> legend(’f(x)’ , ’g(x)’)
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INSTITUTE OF MATHEMATICS

UNIVERSITY OF DEBRECEN

H-4002 DEBRECEN

P. O. BOX 400

HUNGARY

E-mail: gat.gyorgy@science.unideb.hu
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