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The Schur multiplier and stem covers of Leibniz n-algebras

By JOSÉ MANUEL CASAS (Pontevedra), MANUEL AVELINO INSUA (Pontevedra)

and NATÁLIA PACHECO REGO (Barcelos)

Abstract. Given a free presentation 0 → R → F ρ→ G → 0 of a Leibniz

n-algebra G, the quotient R∩[F,n...,F]

[R,F,n−1... ,F]
is known as the Schur multiplier of G. In the

article, we construct a four-term exact sequence relating the Schur multiplier of G
and G/N , from which we derive some formulas concerning dimensions of the under-

lying vector spaces of the corresponding Schur multipliers. Additionally, this exact se-

quence is useful to characterize nilpotency of Leibniz n-algebras. Finally, we characterize

stem covers of Leibniz n-algebras, showing their existence in case of finite dimension.

We also analyze the interaction between stem covers of Leibniz n-algebras and the Schur

multiplier.

1. Introduction

A Leibniz n-algebra [14] is a K-vector space L equipped with a linear map

[−, . . . ,−] : L⊗n → L satisfying the fundamental identity

[[x1, . . . , xn], y1, . . . , yn−1] =

n∑
i=1

[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn]

for all x1, . . . , xn, y1, . . . , yn−1 ∈ L. In case n = 2, the fundamental identity be-

comes the Leibniz identity, so a Leibniz 2-algebra is exactly a Leibniz algebra [21].

The origin of this kind of structures, together with its skew-symmetric version,
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called Lie n-algebras or Filippov algebras [17], [19], was the so called Nambu

mechanics [24], an n-ary generalization of the Hamiltonian mechanics.

This kind of structures have found applications in string theory and

M-branes [2], [26], and in a generalization of Nahm’s equation proposed by Basu

and Harvey [1]. It also has applications in the construction of solutions of the

Yang–Baxter equation [25], and even in the analysis of DNA recombination [27].

On the other hand, the topic of central extensions of an algebraic structure is

present in many applications in Physics, for instance, the Witt algebra and its

one-dimensional universal central extension, the Virasoro algebra, often appear

in problems with conformal symmetry in the setting of string theory [18].

Therefore, our goal in this paper is to continue with the study of central

extensions of Leibniz n-algebras started in [9], with special emphasis on the in-

teraction of the Schur multiplier (first Leibniz n-algebra homology with trivial

coefficients [5]) and coverings of Leibniz n-algebras.

The outline of the paper is as follows: Section 2 is devoted to recall the

background on Leibniz n-algebras, among others, (i-th) nilpotency of an n-sided

ideal, exact sequences in (co)-homology and homomorphisms between abelian

extensions. In Section 3, we recall that the Schur multiplier of a Leibniz n-algebra

G is the Baer-invariant (see [11], [12], [16]) R∩[F, n...,F ]

[R,F,n−1... ,F ]
, where 0→R→F ρ→G→0

is a free presentation of G. Then we construct a four-term exact sequence that

relates the Schur multipliers of G and G/N , from which we derive, in case of finite

dimension, some formulas concerning dimensions of the underlying vector spaces

of the Schur multiplier. In addition, this exact sequence is useful to characterize

nilpotency of Leibniz n-algebras. In Section 4, we analyze the interaction between

stem covers of Leibniz n-algebras and the Schur multiplier. Specifically, in the

case of finite-dimensional Leibniz n-algebras, we show the existence of coverings

and we prove that all stem covers, with finite-dimensional Schur multiplier, are

isoclinic. In the second part of this section, we characterize stem covers of perfect

Leibniz n-algebras, recovering the corresponding results of stem covers in [13]

when we restrict to the case n = 2.

2. Preliminary results on Leibniz n-algebras

Definition 2.1 ([14]). A Leibniz n-algebra is a K-vector space L equipped

with an n-linear map [−, . . . ,−] : L⊗n → L satisfying the following fundamental

identity:
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[[x1, . . . , xn], y1, . . . , yn−1]=

n∑
i=1

[x1, . . . , xi−1, [xi, y1, . . . , yn−1], xi+1, . . . , xn]. (1)

Example 2.2.

(a) If n = 2, then Fundamental Identity (1) gives rise to the Leibniz identity,

so a Leibniz 2-algebra is simply a Leibniz algebra in the sense of [21].

(b) Lie triple systems [20] are Leibniz 3-algebras satisfying the conditions:

[x, y, z] + [y, z, x] + [z, x, y] = 0 and [x, y, y] = 0.

(c) Leibniz triple systems [3] are vector spaces equipped with a trilinear operation

〈−,−,−〉 satisfying the following conditions:

• 〈x, 〈y, z, u〉, v〉 − 〈〈x, y, z〉, u, v〉+ 〈〈x, z, y〉, u, v〉+ 〈〈x, u, y〉, z, v〉
− 〈〈x, u, z〉, y, v〉 = 0; (LTS-A)

• 〈x, y, 〈z, u, v〉〉 − 〈〈x, y, z〉, u, v〉+ 〈〈x, y, u〉, z, v〉 − 〈〈x, y, v〉, u, z〉
+ 〈〈x, y, v〉, z, u〉 = 0. (LTS-B)

If T is a Leibniz triple system, then T is a Leibniz 3-algebra with respect

to the operation [x, y, z] = 〈z, x, y〉 − 〈z, y, x〉.
(d) Trialgebras are vector spaces equipped with three binary associative oper-

ations a,⊥,` satisfying eleven relations (see [23]). The underlying vector

space of an associative trialgebra is a non-Lie Leibniz 3-algebra endowed

with the 3-bracket [x, y, z] = x a (y ⊥ z − z ⊥ y)− (y ⊥ z − z ⊥ y) ` x [8].

(e) 2-dimensional complex Leibniz 3-algebras with one-dimensional derived al-

gebra are classified in [4].

(f) The algebra of C∞-functions on Rn equipped with the bracket [f1, . . . , fn] =

det
(
∂fi
∂xj

)
i,j=1,...,n

is a Leibniz n-algebra.

(g) Any Leibniz algebra L gives rise to a Leibniz n-algebra under the following

n-bracket: [x1, x2, . . . , xn] := [x1, [x2, . . . , [xn−1, xn] . . . ]].

(h) Rn+1 is a Leibniz n-algebra with the bracket given by [v1, v2, . . . , vn] :=

v1× v2× · · · × vn, where v1× v2× · · · × vn denotes the vector product of the

vectors vi ∈ Rn+1.

A homomorphism of Leibniz n-algebras is a linear map that preserves the

bracket. Thus we have defined the category of Leibniz n-algebras, denoted by

nLeib.
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There is a functor [15] Dn : n+1Leib → 2Leib which assigns to a Leibniz

(n+ 1)-algebra L the Leibniz algebra Dn(L) = L⊗n with bracket operation

[a1 ⊗ · · · ⊗ an, b1 ⊗ · · · ⊗ bn] :=

n∑
i=1

a1 ⊗ · · · ⊗ [ai, b1, . . . , bn]⊗ · · · ⊗ an.

Let L be a Leibniz n-algebra. A subalgebra K of L is called n-sided ideal

if [l1, l2, . . . , ln] ∈ K as soon as li ∈ K and l1, . . . , li−1, li+1, . . . , ln ∈ L, for

all i = 1, 2, . . . , n. Let M and P be n-sided ideals of a Leibniz n-algebra L.

The commutator ideal of M and P, denoted by [M,P,L, n−2. . . ,L], is the n-sided

ideal of L spanned by the brackets [l1, . . . , li, . . . , lj , . . . , ln] as soon as li ∈ M,

lj∈ P and lk∈ L for all k different to i, j. Obviously, [M,P,L, n−2. . . ,L]⊂M∩P.

In the particular case M = P = L, then we have [L, n. . .,L], the derived alge-

bra of the Leibniz n-algebra L. By [

i−1︷ ︸︸ ︷
L, . . . ,L,M,

n−i︷ ︸︸ ︷
L, . . . ,L]i we denote the n-

sided ideal spanned by the elements [l1, . . . , li−1,m, li+1, . . . , ln], for any lj ∈
L, j ∈ {1, . . . , i − 1, i + 1, . . . , n}, and m ∈ M. Obviously, [M,L, n−1. . . ,L] =

n∑
i=1

[

i−1︷ ︸︸ ︷
L, . . . ,L,M,

n−i︷ ︸︸ ︷
L, . . . ,L]i. The i-th center of a Leibniz n-algebra L is the i-th-

sided ideal [4]

Zi(L) = {l ∈ L | [l1, . . . , li−1, l, li+1, . . . , ln]i = 0, ∀lj ∈ L, j ∈ {1, . . . , î, . . . , n}}.

The center of a Leibniz n-algebra L is the n-sided ideal Z(L) =

n⋂
i=1

Zi(L).

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket,

that is, the commutator n-sided ideal [L, n. . .,L] = 0. It is clear that a Leibniz

n-algebra L is abelian if and only if L = Z(L).

Let M and P be n-sided ideals of a Leibniz n-algebra L. The centralizer of

M and P on L [10] is the n-sided ideal

CL(M,P) = {li ∈ L | [l1, . . . , li, . . . , ln] ∈ P, i = 1, 2, . . . , n; lj ∈M,

j ∈ {1, . . . , î, . . . , n}; lk ∈ L, k ∈ {1, . . . , î, . . . , ĵ, . . . , n}}.

If P = 0, then CL(M, 0) is called the centralizer of M on L. It is denoted

briefly by CL(M). Obviously, CL(L) = Z(L).

Definition 2.3 ([10]). We call upper central series of a Leibniz n-algebra L
to the sequence of n-sided ideals defined recursively by

Z0(L) = 0; Zk(L) = CL(L,Zk−1(L)), k ≥ 1.
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Let us observe that Z1(L) = Z(L), and that Zk(L) is an n-sided ideal of L
and Zk(L) ⊆ Zk+1(L).

Definition 2.4 ([10]). For an n-sided ideal H of a Leibniz n-algebra L, we de-

fine recursively the following sequences:

(a) H<1>i = H,H<k+1>i = [

i−1︷ ︸︸ ︷
L, . . . ,L,H<k>i ,

n−i︷ ︸︸ ︷
L, . . . ,L]i, k ≥ 1, i ∈ {1, 2, . . . , n}.

(b) H1 = H,Hk+1 =

n∑
i=1

[

i−1︷ ︸︸ ︷
L, . . . ,L,Hk,

n−i︷ ︸︸ ︷
L, . . . ,L]i, k ≥ 1.

The n-sided ideal H is said to be nilpotent of class k (respectively, i-th

nilpotent of class k, i ∈ {1, 2, . . . , n}) if there exists k ∈ N such that Hk 6= 0 and

Hk+1 = 0, (respectively, H<k>i 6= 0 and H<k+1>i = 0).

Remark 2.5. In the case of H = L, the notion of nilpotent (respectively, i-th

nilpotent) Leibniz n-algebra in [4] is recovered.

Proposition 2.6.

(a) If L/Z(L) is a nilpotent (respectively, i-th nilpotent) Leibniz n-algebra, then

L is a nilpotent (respectively, i-th nilpotent) Leibniz n-algebra.

(b) If L is a nilpotent and non-trivial Leibniz n-algebra, then Z(L) 6= 0.

(c) Let f : L � M be a central extension (i.e. [Ker(f),L, n−1. . . ,L] = 0 ⇔
Ker(f) ⊆ Z(L)) of Leibniz n-algebras. M is a nilpotent (respectively, i-th

nilpotent) Leibniz n-algebra if and only if L is a nilpotent (respectively, i-th

nilpotent) Leibniz n-algebra.

Proof.

(a) If L/Z(L) is a nilpotent Leibniz n-algebra (respectively, i-th nilpotent), then

there exists a k ∈ N such that (L/Z(L))k = 0, (respectively, (L/Z(L))<k>i =

0), then, Lk ⊆ Z(L) (respectively, L<k>i ⊆ Z(L)), hence Lk+1 =

n∑
i=1

[

i−1︷ ︸︸ ︷
L, . . . ,L,Lk,

n−i︷ ︸︸ ︷
L, . . . ,L]i = 0 (respectively, L<k+1>i = [

i−1︷ ︸︸ ︷
L, . . . ,L,L<k>i ,

n−i︷ ︸︸ ︷
L, . . . ,L]i = 0).

(b) Assume that L has nilpotency class equal to k, that is Lk+1 = 0, hence

0 6= Lk ⊆ Z(L).
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(c) There exists a k ∈ N such that Mk =

n∑
i=1

[

i−1︷ ︸︸ ︷
M, . . . ,M,Mk−1,

n−i︷ ︸︸ ︷
M, . . . ,M]i =

n∑
i=1

[

i−1︷ ︸︸ ︷
f(L), . . . , f(L), f(L)k−1,

n−i︷ ︸︸ ︷
f(L), . . . , f(L)]i = f(Lk) = 0. Then Lk ⊆

Ker(f) ⊆ Z(L), hence Lk+1 = 0.

Conversely, the quotient of nilpotent Leibniz n-algebras is nilpotent as well.

Similar argument shows the i-th nilpotency. �

Remark 2.7. Proposition 2.6 (b) is not valid for i-th nilpotency as the fol-

lowing counterexample shows: the two-dimensional Leibniz 3-algebra L with

basis {e1, e2} and bracket operation given by [e2, e2, e1] = −e1, [e2, e1, e2] =

e1, [e2, e2, e2] = e1 and zero elsewhere is 1-nilpotent [4] with Z(L) = 0.

2.1. Exact sequences in (co)homology.

A representation [14] of a Leibniz n-algebra L is a K-vector space M equipped

with n actions [−, . . . ,−] : L⊗i ⊗M ⊗ L⊗(n−1−i) → M, 0 ≤ i ≤ n − 1, satisfying

(2n−1) axioms which are obtained from (1) by letting exactly one of the variables

x1, . . . , xn, y1, . . . , yn−1 be in M and all the others in L.

If we define the multilinear applications ρi : L⊗n−1 → EndK(M) by

ρi(l1, . . . , ln−1)(m) = [l1, . . . , li−1,m, li+1, . . . , ln−1], 1 ≤ i ≤ n,

then the axioms of representation can be expressed by means of the following

identities [5]:

(1) For 2 ≤ k ≤ n,

ρk([l1, . . . , ln], ln+1, . . . , l2n−2) =

n∑
i=1

ρi(l1, . . . , l̂i, . . . , ln) · ρk(li, ln+1, . . . , l2n−2).

(2) For 1 ≤ k ≤ n,

[ρ1(ln, . . . , l2n−2), ρk(l1, . . . , ln−1)]

=

n−1∑
i=1

ρk(l1, . . . , li−1, [li, ln, . . . , l2n−2], li+1, . . . , ln−1),

where the bracket on EndK(M) is the usual one for associative algebras.

Let L be a Leibniz n-algebra, and M be a representation of L. Then

Hom(L,M) is a Dn−1(L) = L⊗n−1-representation as Leibniz algebras [14]. One
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defines the cochain complex nCL
∗(L,M) to be CL∗(Dn−1(L), Hom(L,M)).

We also put nHL
∗(L,M) := H∗(nCL

∗(L,M)). Thus, by definition,

nHL
∗(L,M) ∼= HL∗(Dn−1(L),Hom(L,M)).

Here CL∗ denotes the Leibniz complex and HL∗ its homology, called Leibniz

cohomology (see [21], [22] for more information).

Following [14], nHL
0(L,M) ∼= Der(L,M) and nHL

1(L,M) ∼= Ext(L,M),

where Ext(L,M) denotes the set of isomorphism classes of abelian extensions

of L by M. Exact sequences E : 0→ M
κ→ K π→ L → 0 of Leibniz n-algebras such

that [k1, . . . , kn] = 0, k1, . . . , kn ∈ K, as soon as ki, kj ∈ M for some 1 ≤ i, j ≤ n

(i.e. [M,M,K, n−2. . . ,K] = 0), are the objects of the category of abelian extensions

of Leibniz n-algebras, whose morphisms are commutative diagrams of the form:

E1 : 0 // M1

α

��

κ1 // K1

β

��

π1 // L1

γ

��

// 0

E2 : 0 // M2
κ2 // K2

π2 // L2
// 0

We denote such morphism as (α, β, γ) : E1 → E2. It is evident that α and γ

satisfy the following identities:

α([l1, . . . , li−1,m, li+1, . . . , ln]) = [γ(l1), . . . , γ(li−1), α(m), γ(li+1), . . . , γ(ln)],

i = 1, 2, . . . , n, provided that M2 is considered as L1-representation via γ. That is,

α is a morphism of L1-representations. The equivalence classes in Ext(L,M) are

provided by the isomorphisms (1, β, 1) : E → E.

If E is an abelian extension of Leibniz n-algebras, then M is equipped with an

L-representation structure given by [l1, . . . , li−1,m, li+1, . . . , ln] = [k1, . . . , ki−1,

κ(m), ki+1, . . . , kn] such that π(kj) = lj , j = 1, . . . , i−1, i+1, . . . , n, i = 1, 2, . . . , n.

When the initial L-representation structure of M coincides with the above

L-representation structure provided by the extension, then E is said to be an L-

extension.

Given an abelian extension E and a homomorphism of Leibniz n-algebras

γ : L1 → L, we obtain by pulling back along γ an extension Eγ of M by L1,

where Kγ = K×LL1, together with a morphism of extensions (1, γ′, γ) : Eγ → E.

The extension Eγ is called the backward induced extension of E.

Proposition 2.8 ([9, Proposition 1]). Every morphism (α, β, γ) : E1 → E of

abelian extensions of Leibniz n-algebras admits a unique factorization of the form

E1
(α,η,1)→ Eγ

(1,γ′,γ)→ E.



444 J. M. Casas, M. A. Insua and N. Pacheco Rego

Given a homomorphism of L-representations α : M → M0, there can be

constructed the abelian extension αE : 0 → M0
κ0→ αK π0→ L → 0 by putting

αK = (M0 oK)/S, where S = {(α(m),−κ(m)) | m ∈ M}. The abelian extension
αE is called the forward induced extension of E.

Proposition 2.9 ([9, Proposition 2]). Every morphism (α, β, γ) : E → E0 of

abelian extensions of Leibniz n-algebras admits a unique factorization of the form

E
(α,α′,1)→ αE

(1,ξ,γ)→ E0

through the forward induced extension determined by α.

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [5] as

the homology of the Leibniz complex nCL∗(L) := CL∗(Dn−1(L),L), where the

underlying vector space of L is endowed with a structure of Dn−1(L) symmetric

co-representation as Leibniz algebra [22]. We denote the homology groups of this

complex by nHL(L), that is

nHL∗(L) = H∗(CL∗(Dn−1(L),L)) = HL∗(Dn−1(L),L).

A direct computation shows that nHL0(L) = Lab = L
[L, n...,L] .

Let be E : 0 → M
κ→ K π→ L → 0 ∈ Ext(L,M). Then there is an associated

natural exact sequence (see [9]):

0→ Der(L,M)
Der(π)→ Der(K,M)

ρ→ HomL(M,M)
θ∗(E)→

nHL
1(L,M)

π∗→ nHL
1(K,M). (2)

From that, we can define ∆ : Ext(L,M)→ nHL
1(L,M),∆([E]) = θ∗(E)(1M).

The naturality of the sequence (2) implies the well-definition of ∆.

Now for a fixed free presentation 0 → R χ→ F ε→ L → 0, there exists

a homomorphism f : F →K such that π ◦ f = ε, which restricts to f : R→M.

Moreover, f induces an L-representation homomorphism ϕ : R/[R,R,F , n−2. . .

,F ]→ M, where the action of L on R/[R,R,F , n−2. . . ,F ] is given via ε, that is,

[l1, . . . , li−1, r, li+1, . . . , ln] = [x1, . . . , xi−1, r, xi+1, . . . , xn] + [R,R,F , n−2. . . ,F ],

where ε(xj) = lj , j ∈ {1, . . . , i − 1, i + 1, . . . , n}, i ∈ {1, . . . , n}. Naturality of

sequence (2) induces the following commutative diagram:

Der(K,M)

f∗

��

// HomL(M,M)

ϕ∗

��

θ∗(E) //
nHL1(L,M)

‖

��

//
nHL1(K,M)

f∗

��
Der(F ,M)

τ∗ // HomL(R/[R,R,F , n−2. . . ,F ],M)
σ∗ //

nHL1(L,M) //
nHL1(F ,M)
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Keeping in mind that nHL
1(F ,M) = 0 [14], then

∆[E] = θ∗(E)(1M) = σ∗ (ϕ∗(1M)) = σ∗(ϕ).

Proposition 2.10 ([9, Proposition 3]). ∆ : Ext(L,M) → nHL
1(L,M) is an

isomorphism.

Associated to E, there is the isomorphism nHL
k(L,M)

θ∗∼= Hom(nHLk(L),M)

[5, Theorem 3]. Since ∆[E]∈nHL1(L,M), we have θ∗ (∆[E])∈Hom(nHL1(L),M).

Moreover, θ∗ (∆[E]) = θ∗(E), where θ∗(E) is the homomorphism given by the fol-

lowing exact sequence (see [5, Theorem 4]):

nHL1(K)→ nHL1(L)
θ∗(E)→ M→ nHL0(K)→ nHL0(L)→ 0. (3)

2.2. Homomorphisms between abelian extensions.

Let E : 0→ N
χ→ G π→ Q → 0 be a Q-extension of N, and let α : N→ N′ be

a homomorphism of Q-representations, that is, α[q1, . . . , qi−1, n, qi+1, . . . , qn] =

[q1, . . . , qi−1, α(n), qi+1, . . . , qn], n ∈ N, qi ∈ Q, 1 ≤ i ≤ n, and let E′ : 0 → N′
χ′→

G′ π
′

→ Q→ 0 be a Q-extension with ∆[E′] = ξ′ ∈ nHL
1(Q,N′).

Proposition 2.11. There exists a homomorphism of Leibniz n-algebras f :

G → G′ such that the diagram

E : 0 // N
χ //

α

��

G π //

f

��

Q // 0

E′ : 0 // N′
χ′ // G′ π′ // Q // 0

is commutative if and only if α∗(ξ) = ξ′ ∈ nHL
1(Q,N′).

Proof. Naturality of sequence (2) implies α∗(ξ) = α∗ (θ∗(E)(1N)) = θ∗(E)◦
α∗ ◦ 1N = θ∗(E) ◦ α = θ∗(E) (α∗(1N′)) = θ∗(E′)(1N′) = ξ′.

Conversely, for the Q-extension E, we construct the forward induced ex-

tension αE, obtaining the morphism of extensions (α, fα, 1) : E → αE. Thus

α∗(ξ) = α∗ (θ∗(E)(1N)) = α∗ (∆[E]) = ∆[αE]. Consequently, ∆[αE] = α∗(ξ) =

ξ′ = ∆[E′], and then αE ≡ E; thus E
fα→ αE

∼→ E′ concludes the proof. �

Let γ : Q̄ → Q be a homomorphism of Leibniz n-algebras, and let Ē : 0 →
N→ Ḡ → Q̄ → 0 be a Q̄-extension with ∆[Ē] = ξ̄ ∈ nHL

1(Q̄,N).
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Proposition 2.12. There exists a homomorphism of Leibniz n-algebras f̄ :

Ḡ → G such that the following diagram

Ē : 0 // N // Ḡ //

f̄

��

Q̄ //

γ

��

0

E : 0 // N // G // Q // 0

is commutative if and only if nHL
1(γ) = γ∗(ξ) = ξ̄.

Proof. If there exists f̄ , then naturality of sequence (2) implies that ξ̄ =

θ∗(Ē)(1N) = nHL
1(γ) (θ∗(E)(1N)) = γ∗(ξ).

Conversely, from the Q-extension E we construct the backward induced ex-

tension Eγ and the morphism of extensions (1, γ∗, γ) : Eγ → E. Hence ∆[Eγ ] =

γ∗ (∆[E]) = γ∗(ξ) = ξ̄ = ∆[Ē]; consequently, Eγ ≡ Ē, and then f̄ : Ḡ ∼→ Gγ → G
concludes the proof. �

Proposition 2.13. Let be given the following diagram:

Ē : 0 // N //

α

��

Ḡ // Q̄ //

γ

��

0

E′ : 0 // N′ // G′ // Q // 0

There exists f : Ḡ → G′ making the diagram commutative if and only if α∗(∆[Ē])

= γ∗(∆[E′]).

Proof. If f exists and we consider the decomposition (α, σ, 1) ◦ (1, γ̄, γ) :

Ē → E′γ → E′ provided by Proposition 2.8, then Propositions 2.11 and 2.12 imply

that α∗(∆[Ē]) = ∆[E′γ ] = γ∗(∆[E′]).

Conversely, we consider the composition (α, σ, 1) ◦ (1,−, 1) ◦ (1, γ̄, γ) : Ē →
αĒ → E′γ → E′, and applying Propositions 2.11 and 2.12, we have that ∆[αĒ] =

α∗(∆[Ē]) = γ∗(∆[E′]) = ∆[E′γ ]; consequently, αĒ and E′γ are congruent and

(1,−, 1) = (1, φ, 1) is the wanted morphism. �

3. The Schur multiplier of Leibniz n-algebras

For a free presentation 0 → R → F ρ→ G → 0 of a Leibniz n-algebra G,

the quotient
R∩[F ,n...,F ]

[R,F ,n−1... ,F ]
is called the Schur multiplier of G, which is denoted by
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M(G). As it is reported in [5], the Schur multiplier is isomorphic to nHL1(G) and

it is a Baer-invariant, which means that it does not depend on the chosen free

presentation (see [10], [11], [16]).

Our aim in this section is to show the interaction between the Schur mul-

tiplier and nilpotent (respectively, i-th nilpotent) Leibniz n-algebras, as well as

the obtention of several formulas concerning dimensions of the underlying vector

spaces.

Theorem 3.1. Let G be a Leibniz n-algebra with an n-sided ideal B, and

set the short exact sequence 0 → B → G → A → 0. Then there exists a Leibniz

n-algebra Q with an n-sided ideal M such that:

(a) [G, n. . .,G] ∩ B ∼= Q
M .

(b) M∼= M(G).

(c) M(A) is a quotient of Q.

Proof. Let 0→ R → F ρ→ G → 0 be a free presentation of G and consider

the following diagram:

0

��

0

~~
R

��~~
0 // S //

��

F

ρ

��

π◦ρ

��
0 // B //

��

G π //

��

A //

��

0

0 0 0

(4)

Then A ∼= G
B
∼= F/R
S/R

∼= F
S . Now set M ∼= R∩[F, n...,F ]

[R,F,n−1... ,F ]
and Q ∼= S∩[F, n...,F ]

[R,F,n−1... ,F ]
.

Obviously, M is an n-sided ideal of Q.

Thus

[G, n. . .,G] ∩ B ∼=
[
F
R
, n. . .,

F
R

]
∩ S
R
∼=

[F , n. . .,F ] +R
R

∩ S
R
∼=

([F , n. . .,F ] +R) ∩ S
R

∼=
([F , n. . .,F ] ∩ S)+R

R
∼=

[F , n. . .,F ] ∩ S
R ∩ ([F , n. . .,F ] ∩ S)

∼=
[F , n. . .,F ] ∩ S
[F , n. . .,F ] ∩R

∼=
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∼=
([F , n. . .,F ] ∩ S)/[R,F , n−1. . . ,F ]

([F , n. . .,F ] ∩R)/[R,F , n−1. . . ,F ]
∼=
Q
M

. (5)

Now the second statement is obvious. For the third one, since

M(A) ∼=
S ∩ [F , n. . .,F ]

[S,F , n−1. . . ,F ]
∼=

(S ∩ [F , n. . .,F ])/[R,F , n−1. . . ,F ]

[S,F , n−1. . . ,F , ]/[R,F , n−1. . . ,F ]

∼=
Q

[S,F , n−1. . . ,F ]/[R,F , n−1. . . ,F ]
, (6)

then M(A) is the image ofQ under some morphism whose kernel is [S,F,n−1... ,F ]

[R,F,n−1... ,F ]
. �

Corollary 3.2. Let G be a finite-dimensional Leibniz n-algebra, and B be

an n-sided ideal of G such that A ∼= G/B. Then

dim (M(A)) ≤ dim (M(G)) + dim ([G, n. . .,G] ∩ B) .

Proof. From equation (5) we have the short exact sequence of vector spaces

0→M→Q→ [G, n. . .,G] ∩ B → 0,

hence dim(Q) = dim(M) + dim([G, n. . .,G]∩B) = dim(M(G)) + dim([G, n. . .,G]∩B).

On the other hand, equation (6) implies that dim(M(A)) ≤ dim(Q), which

completes the proof. �

Theorem 3.3. Let G be a finite-dimensional Leibniz n-algebra, and B be

a central n-sided ideal of G (i.e. B ⊆ Z(G), equivalently, [B,G, n−1. . . ,G] = 0) such

that A ∼= G/B. Then

dim (M(G)) + dim (B ∩ [G, n. . .,G]) ≤ dim (M(A)) +

n−1∑
i=1

dim(Ji)

where Ji = (B⊗ n−i. . . ⊗B ⊗Gab⊗ i. . . ⊗Gab)⊕ (B⊗ n−i−1. . . ⊗B ⊗Gab ⊗B ⊗Gab⊗ i−1. . .

⊗Gab)⊕ · · · ⊕ (Gab⊗ i. . . ⊗Gab ⊗ B⊗ n−i. . . ⊗B).

Proof. From exact sequence (2) in [7], there is the exact sequence

n−1⊕
i=1

Ji → M(G)→ M(A)→ B → Gab → Aab → 0,

and having in mind diagram (4), there is a surjection C :

n−1⊕
i=1

Ji →
[S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ]
.
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From the proof of Corollary 3.2 and keeping in mind equation (6), we have:

dim (M(G)) + dim ([G, n. . .,G] ∩ B) = dim (Q)

= dim (M(A)) + dim

(
[S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ]

)
≤ dim (M(A)) +

n−1∑
i=1

dim(Ji). �

Lemma 3.4. Let A,B, C be n-sided ideals of a Leibniz n-algebra G such that

C ⊆ A and A ∩ B ⊆ C. Then A+B
C+B

∼= A
C .

Proof. It is enough to use the following identification: a + b + (C + B) ≡
a+ C. �

Lemma 3.5. Let 0→ R → F ρ→ G → 0 be a free presentation of a Leibniz

n-algebra G. Let N be an n-sided ideal of G, and S be an n-sided ideal of F such

that N ∼= S+R
R . Then the quotient R∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]∩[S,F,n−1... ,F ]
does not depend on the

n-sided ideal S.

Proof. Assume there is another n-sided ideal S ′ such thatN ∼= S′+R
R . Since

S+R
R
∼= N ∼= S′+R

R , then for any s ∈ S there exists a s′ ∈ S ′ such that s− s′ ∈ R.

Define ϕ : R ∩ [S,F , n−1. . . ,F ] → R ∩
(
[S ′,F , n−1. . . ,F ] + [R,F , n−1. . . ,F ]

)
by

ϕ(r) = r + 0. Obviously, ϕ is a homomorphism satisfying ϕ
(
[R,F , n−1. . . ,F ]∩

[S,F , n−1. . . ,F ]
)
⊆ [R,F , n−1. . . ,F ]∩

(
[S ′,F , n−1. . . ,F ] + [R,F , n−1. . . ,F ]

)
, then ϕ induces

the homomorphism ϕ
(
r +

(
[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]

))
= r+

(
[R,F , n−1. . . ,F ]

∩
(
[S ′,F , n−1. . . ,F ] + [R,F , n−1. . . ,F ]

))
. It can be easily checked that ϕ is a bijec-

tion. Now Lemma 3.4 provides the following isomorphisms:

R∩ [S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]
∼=

R∩
(
[S ′,F , n−1. . . ,F ]+[R,F , n−1. . . ,F ]

)
[R,F , n−1. . . ,F ] ∩

(
[S ′,F , n−1. . . ,F ]+[R,F , n−1. . . ,F ]

)
∼=

(
R∩ [S ′,F , n−1. . . ,F ]

)
+[R,F , n−1. . . ,F ](

[R,F , n−1. . . ,F ] ∩ [S ′,F , n−1. . . ,F ]
)
+[R,F , n−1. . . ,F ]

∼=
R∩ [S ′,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ] ∩ [S ′,F , n−1. . . ,F ]
�

Theorem 3.6. Let 0→ R→ F ρ→ G → 0 be a free presentation of a Leibniz

n-algebra G. Let N be an n-sided ideal of G. Then the following sequence is exact

and natural for any n-sided ideal S of F such that N ∼= S+R
R .

0→ R∩[S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ]∩[S,F , n−1. . . ,F ]

Π→ M(G)
Σ→ M

(
G
N

)
Γ→ N∩[G, n. . .,G]

[N ,G, n−1. . . ,G]
→ 0. (7)

Proof. Obviously, M(G) ∼= R∩[F, n...,F ]

[R,F,n−1... ,F ]
. Since G

N
∼= F/R

(S+R)/R
∼= F
S+R ,

we have that 0 → S + R → F → G/N → 0 is a free presentation of G/N ,

hence M
( G
N
) ∼= (S+R)∩[F, n...,F ]

[S+R,F,n−1... ,F ]
.
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On the other hand, we can rewrite

N ∩ [G, n. . .,G]

[N ,G, n−1. . . ,G]
∼=
S+R
R ∩ [FR ,

n. . ., FR ]

[S+R
R , FR ,

n−1. . . , FR ]
∼=
S+R
R ∩ [F, n...,F ]+R

R
[S+R,F,n−1... ,F ]

R

∼=
(S +R) ∩ ([F , n. . .,F ] +R)

[S,F , n−1. . . ,F ] +R
.

Then it suffices to show that the following sequence is exact:

0→ R∩ [S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]

Π→ R∩ [F , n. . .,F ]

[R,F , n. . .,F ]

Σ→

(S +R) ∩ [F , n. . .,F ]

[S +R,F , n−1. . . ,F ]

Γ→ (S +R) ∩ ([F , n. . .,F ] +R)

[S,F , n−1. . . ,F ] +R
→ 0.

Define Π : R∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]∩[S,F,n−1... ,F ]
−→ R∩[F, n...,F ]

[R,F,n−1... ,F ]
by Π(x + ([R,F , n−1. . . ,F ] ∩

[S,F , n−1. . . ,F ])) = x + [R,F , n−1. . . ,F ]. It is easy to check that Π is an injective

well-defined linear map.

Define Σ : R∩[F, n...,F ]

[R,F,n−1... ,F ]
−→ (S+R)∩[F, n...,F ]

[S+R,F,n−1... ,F ]
by Σ(x + [R,F , n−1. . . ,F ]) = x +

[S + R, F , n−1. . . ,F ]. Obviously, Σ is a well-defined linear map and Σ ◦ Π = 0,

consequently, Im(Π) ⊆ Ker(Σ).

On the other hand, given x + [R,F , n−1. . . ,F ] ∈ Ker(Σ), then x ∈ [S +

R,F , n−1. . . ,F ]. Hence x ∈ R∩[F , n. . .,F ]∩[S+R,F , n−1. . . ,F ] = R∩[S+R,F , n−1. . . ,F ].

Thus x + [R,F , n−1. . . ,F ] = [s + r, f2, . . . , fn] + [R,F , n−1. . . ,F ] ∈ [S,F,n−1... ,F ]

[R,F,n−1... ,F ]
. Sum-

marizing, x+ [R,F , n−1. . . ,F ] ∈ R∩[S+R,F,n−1... ,F ]∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]
= R∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]
.

Then x +
(
[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]

)
∈ R∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]∩[S,F,n−1... ,F ]
satisfies

that Π
(
x+

(
[R,F , n−1. . . ,F ]∩ [S,F , n−1. . . ,F ]

))
= x+ [R,F , n−1. . . ,F ], which implies

that Ker(Σ) ⊆ Im(Π).

Define Γ : (S+R)∩[F, n...,F ]

[S+R,F,n−1... ,F ]
→ (S+R)∩([F, n...,F ]+R)

[S,F,n−1... ,F ]+R
by Γ

(
x+ [S +R,F , n−1. . . ,F ]

)
= x + ([S,F , n−1. . . ,F ] + R). Γ is a well-defined linear map such that Γ ◦ Σ = 0,

then Im(Σ) ⊆ Ker(Γ).

For the converse, let x+ [S +R,F , n−1. . . ,F ] ∈ (S+R)∩[F, n...,F ]

[S+R,F,n−1... ,F ]
such that Γ(x+

[S +R,F , n−1. . . ,F ]) = x+ ([S,F , n−1. . . ,F ] +R) = 0.

We need to prove that x + [S + R,F , n−1. . . ,F ] ∈ Im(Σ). This occurs only if

x + [S + R,F , n−1. . . ,F ] ∈ R∩[F, n...,F ]

[S+R,F,n−1... ,F ]
, so it suffices to show that x + [S + R,

F , n−1. . . ,F ] = r + [S +R,F , n−1. . . ,F ] for some r ∈ R.
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Since x ∈ [S,F , n−1. . . ,F ] +R, we get x − r ∈ [S,F , n−1. . . ,F ] for some r ∈ R.

Thus x − r + [S + R,F , n−1. . . ,F ] = 0, i.e. x + [S + R,F , n−1. . . ,F ] = r + [S +

R,F , n−1. . . ,F ]. Consequently, x̄ ∈ R∩[F, n...,F ]

[S+R,F,n−1... ,F ]
.

Γ is surjective. Indeed, for x + ([S,F , n−1. . . ,F ] + R) ∈ (S+R)∩([F, n...,F ]+R)

[S,F,n−1... ,F ]+R
,

we have that x ∈ S + R and x̄ ∈ [F, n...,F ]+R
[S,F,n−1... ,F ]+R

∼= [F, n...,F ]

[S,F,n−1... ,F ]+R
. Hence x ∈

(S +R) ∩ [F , n. . .,F ] and Γ(x+ [S +R,F , n−1. . . ,F ]) = x+ ([S,F , n−1. . . ,F ] +R).

To show that sequence (7) is natural, it is easy to check, keeping in mind

Lemma 3.5, that a homomorphism f : G→G′ such that f(N )⊆N ′ (NEG,N ′EG′)
induces homomorphisms between the Schur multipliers such that the following

diagram is commutative:

R∩[S,F,n−1... ,F ]

[R,F,n−1... ,F ]∩[S,F,n−1... ,F ]
// π //

��

M(G)
σ //

f∗

��

M
( G
N
) τ // //

f∗
��

N∩[G, n...,G]

[N ,G,n−1... ,G]

��
R′∩[S′,F ′,n−1... ,F ′]

[R′,F ′,n−1... ,F ′]∩[S′,F ′,n−1... ,F ′]
// π
′
// M(G′) σ′ // M

(
G′
N ′

)
τ ′// // N ′∩[G′, n...,G′]

[N ′,G′,n−1... ,G′]
�

Remark 3.7. Let us observe that an n-sided ideal S such that N ∼= S+R
R as

in Theorem 3.6 always exists. Indeed, it is enough to consider the following 3× 3

diagram:
0

��

0

��

0

��
0 // R

��

R||

||

��

// 0

��

// 0

S + R

����

""

""
0 // S

<<

<<

//

��

F
π◦ρ

!! !!

//

ρ

��

G/N //

��

0

0 // N //

��

G π //

��

G/N //

��

0

0 0 0

Corollary 3.8. Let G be a nilpotent Leibniz n-algebra of class k ≥ 2, and

0→ R→ F ρ→ G → 0 be a free presentation of G, then the following sequence is
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exact and natural:

0→ Fk+1

[R,F , n−1. . . ,F ] ∩ Fk+1
→ M (G)→ M

(
G
Gk

)
→ Gk → 0.

Proof. Take N = Gk and S = Fk in Theorem 3.6. Then N = Gk ∼= Fk
R
∼=

Fk+R
R = S+R

R and [S,F , n−1. . . ,F ] = [Fk,F , n−1. . . ,F ] = Fk+1 ⊆ R. Now exact

sequence (7) concludes the proof. �

Corollary 3.9. Let N be an n-sided ideal of a finite-dimensional Leibniz

n-algebra G satisfying the hypotheses of Theorem 3.6. Then it holds:

dim

(
M

(
G
N

))
+ dim

(
R∩ [S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]

)
= dim (M (G)) + dim

(
N ∩ [G, n. . .,G]

[N ,G, n−1. . . ,G]

)
.

Proof. From exact sequence (7) we have

dim

(
M

(
G
N

))
= dim (Im(Σ)) + dim

(
N ∩ [G, n. . .,G]

[N ,G, n−1. . . ,G]

)
= dim (M (G))

− dim

(
R∩ [S,F , n−1. . . ,F ]

[R,F , n−1. . . ,F ] ∩ [S,F , n−1. . . ,F ]

)
+ dim

(
N ∩ [G, n. . .,G]

[N ,G, n−1. . . ,G]

)
.

�

Definition 3.10. Let Q be a nilpotent Leibniz n-algebra of class k. An ex-

tension of Leibniz n-algebras 0 → N → G π→ Q → 0 is said to be of class k if G
is nilpotent of class k.

Theorem 3.11. A central extension 0 → N → G π→ Q → 0 is of class k if

and only if θ : M (Q)→ N vanishes over Ker(τ), where τ : M (Q)→ M
(
Q/Qk

)
is

induced by the canonical projection Q� Qk.

Proof. Consider the following diagrams of free presentations:

0

��

0

~~

0

��

0

||
R

��~~

S

��}}
0 // S //

��

F

ρ

��

π◦ρ

��

0 // T //

��

F

π◦ρ

��

pr◦π◦ρ

""
0 // N //

��

G π //

��

Q //

��

0 0 // Qk //

��

Q
pr //

��

Q/Qk //

!!

0

0 0 0 0 0 0



The Schur multiplier and stem covers of Leibniz n-algebras 453

then θ : M (Q) = S∩[F, n...,F ]

[S,F,n−1... ,F ]
→ N , given by θ(x + [S,F , n. . .,F ]) = ρ(x), is well-

defined and Ker(τ) ∼= [T ,F,n−1... ,F ]

[S,F,n−1... ,F ]
.

Assume that G is nilpotent of class k, and consider x+[S,F , n−1. . . ,F ] ∈ Ker(τ).

Therefore θ(x+[S,F , n−1. . . ,F ]) = ρ(x) = 0, since ρ(x) ∈ [ρ(T ), ρ(F), n−1. . . , ρ(F))] ⊆
[Gk +N ,G, n−1. . . ,G] ⊆ Gk+1 = 0. For the last inclusion, it is necessary to keep in

mind that π ◦ ρ(T ) ⊆ Qk = π(Gk), and consequently ρ(T ) ⊆ Gk +N .

Conversely, Gk+1 =

n∑
i=1

[G, . . . ,Gk, . . . ,G]i =

n∑
i=1

[ρ(F), . . . , ρ(Fk), . . . , ρ(F)]i

⊆
n∑
i=1

ρ[F , . . . , T , . . . ,F ]i = ρ[T ,F , n−1. . . ,F ] = 0, since [T ,F , n−1. . . ,F ] ⊆ R, be-

cause θ vanishes over Ker(τ). For the last inclusion, it is necessary to keep in

mind that π ◦ ρ(Fk) ⊆ Qk, hence Fk ⊆ T . �

Proposition 3.12. Let G be a nilpotent Leibniz n-algebra, and f : G � Q
be a surjective homomorphism of Leibniz n-algebras. If Ker(f) ⊆ [G, n. . .,G] and

M(Q) = 0, then f is an isomorphism.

In particular, if M
(

G
[G, n...,G]

)
= 0, then M(G) = 0.

Proof. Let N = Ker(f) be, then M(G/N ) = 0. From exact sequence (7),

we have that N = N ∩ [G, n. . .,G] ⊆ [N ,G, n−1. . . ,G], then N ⊆ [N ,G, n−1. . . ,G]. Obvi-

ously, ⊇ is true, then N = [N ,G, n−1. . . ,G].

Obviously, N = N j ⊆ Gj , for all j ≥ 1. Since G is nilpotent, there exists

k ∈ N such that Gk+1 = 0, which implies that N = 0, and consequently, f is

an isomorphism.

The second statement is an obvious consequence of the first one. �

4. Stem covers

The study of different types of central extensions, together with their cor-

responding characterizations, is the subject of [9, Section 4]. To summarize,

let G and Q be two Leibniz n-algebras; a central extension f : G � Q is said

to be a stem extension if Ker(f) ⊆ [G, n. . .,G]. Additionally, if the induced map

M(G)→ M(Q) is the zero map, then the stem extension f : G � Q is said to be

a stem cover. In this last case, G is said to be a cover or a covering algebra. Our

goal in this section is to analyze the interaction between stem covers of Leibniz

n-algebras and the Schur multiplier.
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Stem extensions are characterized in [9] as follows:

Proposition 4.1. The following statements are equivalent for a central ex-

tension E : 0→ N
i→ G f→ Q→ 0:

(a) E is a stem extension.

(b) θ∗ (∆[E]) is a surjective homomorphism.

(c) i∗ : N→ nHL0(G) is the zero map.

(d) f∗ : nHL0(G)
∼→ nHL0(Q).

Lemma 4.2. Let 0→ R → F ρ→ G → 0 be a free presentation of a Leibniz

n-algebra G, and let 0 → M → P ψ→ Q → 0 be a central extension of another

Leibniz n-algebra Q. Then for each homomorphism α : G → Q, there exists

a homomorphism β : F
[R,F,n−1... ,F ]

→ P such that β
(

R
[R,F,n−1... ,F ]

)
⊆ M and the

following diagram is commutative:

0 // R
[R,F,n−1... ,F ]

//

β|

��

F
[R,F,n−1... ,F ]

ρ //

β

��

G //

α

��

0

0 // M // P
ψ // Q // 0

where ρ is the natural surjective homomorphism induced by ρ.

Proof. Since F is a free Leibniz n-algebra, there exists ω : F → P such

that ψ ◦ ω = α ◦ ρ.

On the other hand, ψ(ω(R)) = α(ρ(R)) = 0, hence ω(R) ⊆ M, which implies

the vanishing of ω over [R,F , n−1. . . ,F ]. So ω induces β : F
[R,F,n−1... ,F ]

→ P, and for

any r ∈ R, β(r + [R,F , n−1. . . ,F ]) = ω(r) ∈ M. �

Theorem 4.3. Let G be a Leibniz n-algebra such that M(G) is finite-dimen-

sional, and let 0 → R → F ρ→ G → 0 be a free presentation of G. The extension

0→ M→ P ψ→ G → 0 is a stem cover if and only if there exists an n-sided ideal

S of F such that

(a) P ∼= F
S and M ∼= R

S .

(b) R
[R,F,n−1... ,F ]

∼= M(G)⊕ S
[R,F,n−1... ,F ]

.

Proof. Let 0 → M → P ψ→ G → 0 be a stem cover. By Lemma 4.2,

there exists a homomorphism β : F
[R,F,n−1... ,F ]

→ P such that ψ ◦ β = ρ and

β
(

R
[R,F,n−1... ,F ]

)
⊆ M.
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Since P = Im(β) + M and M ⊆ Z(P), we have M ⊆ [P, n. . .,P] = [Im(β) +

M, n. . ., Im(β) + M] ⊆ Im(β). Thus β is surjective, and β
(

R
[R,F,n−1... ,F ]

)
= M.

Now, let S be an n-sided ideal of F such that Ker(β) = S
[R,F,n−1... ,F ]

. Then

we have the exact sequence 0 → S
[R,F,n−1... ,F ]

→ F
[R,F,n−1... ,F ]

β→ P → 0, which

induces the exact sequence 0 → S
[R,F,n−1... ,F ]

→ R
[R,F,n−1... ,F ]

β|→ M → 0. It follows

from these two exact sequences and the third isomorphism theorem that P ∼=
F/[R,F,n−1... ,F ]

S/[R,F,n−1... ,F ]
∼= F
S and M ∼= R/[R,F,n−1... ,F ]

S/[R,F,n−1... ,F ]
∼= R
S . Moreover, R

[R,F,n−1... ,F ]
∼= M ⊕

S
[R,F,n−1... ,F ]

as K-vector spaces, and thus R
[R,F,n−1... ,F ]

∼= M(G) ⊕ S
[R,F,n−1... ,F ]

, since

M ∼= M(G) by [9, Proposition 9].

Conversely, suppose the existence of an n-sided ideal S of F satisfying (a) and

(b). Then, PM
∼= F/S
R/S

∼= F
R
∼= G, and M(G) ∼= R/[R,F,n−1... ,F ]

S/[R,F,n−1... ,F ]
∼= R
S
∼= M. Moreover,

M ∼= R
S ⊆

S+[F, n...,F ]
S

∼= [F, n...,F ]
S∩[F, n...,F ] ⊆ [FS ,

n. . ., FS ] ∼= [P, n. . .,P]. Therefore, the

extension 0→ M→ P ψ→ G → 0 is a stem cover by [9, Proposition 9]. �

Corollary 4.4. Any finite-dimensional Leibniz n-algebra has at least one

covering.

Proof. Let 0 → R → F ρ→ G → 0 be a free presentation of a finite-

dimensional Leibniz n-algebra G. Following the proof of Theorem 4.3, choose

an n-sided ideal S of F such that S
[R,F,n−1... ,F ]

is the complement of M(G) in
R

[R,F,n−1... ,F ]
. Then the extension 0→ R

S →
F
S → G → 0 is a stem cover of G. �

Previously to the following result, we need to introduce some notions and

properties concerning isoclinism of Leibniz n-algebras. In the particular case of

n-Lie algebras, we recover the corresponding notions and results in [28].

Consider the central extensions Ei : 0 → Ni
χi→ Gi

πi→ Qi → 0, i = 1, 2.

Let Ci : Qi×, n. . .,×Qi → [Gi, n. . .,Gi] be given by Ci(qi1, . . . , qin) = [gi1, . . . , gin],

where πi(gij) = qij , i = 1, 2; j = 1, . . . , n, the commutator map associated to the

extension Ei.

Definition 4.5. The central extensions E1 and E2 are said to be isoclinic

when there exist isomorphisms η : Q1 → Q2 and ξ : [G1, n. . .,G1] → [G2, n. . .,G2]

such that the following diagram is commutative:

Q1 × n. . .×Q1
C1 //

η× n...×η
��

[G1, n. . .,G1]

ξ

��
Q2 × n. . .×Q2

C2 // [G2, n. . .,G2]

(8)
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The pair (η, ξ) is called an isoclinism from E1 to E2 and will be denoted by

(η, ξ) : E1 ∼ E2.

Let Q be a Leibniz n-algebra, then we can construct the following central

extension:

EQ : 0→ Z(Q)→ Q prQ→ Q/Z(Q)→ 0. (9)

Definition 4.6. Let G and Q be Leibniz n-algebras. Then G and Q are said

to be isoclinic when EG and EQ are isoclinic central extensions.

An isoclinism (η, ξ) : EG ∼ EQ is also called an isoclinism from G to Q,

denoted by (η, ξ) : G ∼ Q.

It is a routine task to show that isoclinism is an equivalence relation.

Definition 4.7. A homomorphism of central extensions (α, β, γ) : E1 → E2 is

said to be isoclinic if there exists an isomorphism β′ : [G1, n. . .,G1] → [G2, n. . .,G2]

with (γ, β′) : E1 ∼ E2.

If β is in addition a surjective homomorphism (resp., injective homomor-

phism), then (α, β, γ) is called an isoclinic surjection (resp., isoclinic injection).

Proposition 4.8. For a homomorphism of central extensions (α, β, γ) :

E1 → E2, the following statements hold:

(a) (α, β, γ) is isoclinic if and only if γ is an isomorphism and Ker(β)∩[G1, n. . .,G1]

= 0.

(b) If (α, β, γ) is isoclinic and β′ is given as in the above Definition, then β′ =

β|[G1, n...,G1].

Proof. (a) Assume that (α, β, γ) : E1 → E2 is isoclinic, then (γ, β′) : E1 ∼
E2 is an isoclinism for some isomorphism β′ : [G1, n. . .,G1] → [G2, n. . .,G2]. This

implies by definition that γ is an isomorphism. Now let m ∈ Ker(β)∩ [G1, n. . .,G1].

Then β(m) = 0 and m =
∑
i

λi[g
1
i1, . . . , g

1
in] for some g1

i1, . . . , g
1
in ∈ G1. Since

(γ, β′) : E1 ∼ E2 is an isoclinism, we have

β′(m) = β′

(∑
i

λi[g
1
i1, . . . , g

1
in]

)
= β′

(
C1

(∑
i

λi
(
π1(g1

i1), . . . , π1(g1
in)
)))

= (β′ ◦ C1)

(∑
i

λi
(
π1(g1

i1), . . . , π1(g1
in)
))

= (C2 ◦ (γ × n. . .× γ))

(∑
i

λi
(
π1(g1

i1), . . . , π1(g1
in)
))
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= C2

(∑
i

λi
(
γ(π1(g1

i1)), . . . , γ(π1(g1
in))

))

= C2

(∑
i

λi
(
π2(β(g1

i1)), . . . , π2(β(g1
in))

))

=
∑
i

λi
[
β(g1

i1), . . . , β(g1
in)
]

= β

(∑
i

λi
[
g1
i1, . . . , g

1
in

])
= β(m) = 0.

Since β′ is one-to-one, it follows that m = 0.

Conversely, assume that Ker(β) ∩ [G1, n. . .,G1] = 0. Define β′ : [G1, n. . .,G1] →
[G2, n. . .,G2] by β′(g) = β(g), which is one-to-one. It remains to show that β′ is

onto. Let y ∈ [G2, n. . .,G2]. Then y =
∑
i

λi[g
2
i1, . . . , g

2
in] for some g2

ij ∈ G2, j =

1, . . . , n. Since π1 and γ are onto, it follows that π2(g2
ij) = (γ ◦ π1)(g1

ij) for some

g1
ij ∈ G1, j = 1, . . . , n. By the homomorphism (α, β, γ), we have (γ ◦ π1)(g1

ij) =

(π2 ◦ β)(g1
ij), which implies that g2

ij − β(g1
ij) = χ2(nj) for some nj ∈ N2, j =

1, . . . , n. We now have

β′

(∑
i

λi[g
1
i1, . . . , g

1
in]

)
= β

(∑
i

λi[g
1
i1, . . . , g

1
in]

)
=
∑
i

λi[β(g1
i1), . . . , β(g1

in)]

=
∑
i

λi[g
2
i1 − χ2(n1), . . . , g2

in − χ2(nn)] = y.

(b) Follows directly from the proof of (a). �

Proposition 4.9. Let β : G → Q be a homomorphism of Leibniz n-algebras.

Then β induces an isoclinic homomorphism from EG to EQ if and only if Ker(β)∩
[G, n. . .,G] = 0 and Im(β) + Z(Q) = Q.

In this case, we call β an isoclinic homomorphism.

Proof. Assume that Ker(β) ∩ [G, n. . .,G] = 0 and Im(β) + Z(Q) = Q. First

we prove that β(Z(G)) ⊆ Z(Q). Indeed, let qi ∈ Q, since Im(β) + Z(Q) = Q,

it follows that qi = β(xi)+qi0 for some xi ∈ G and qi0 ∈ Z(Q), i = 1, . . . , n. Then

for any g ∈ Z(G) we haveq1, . . . , β(g)︸︷︷︸
i

, . . . , qn

 = [β(x1) + q10, . . . , β(g), . . . , β(xn) + qn0] = 0.

So the maps α := β|Z(G) and γ : G/Z(G) → Q/Z(Q) given by γ(g) = β(g) are

well-defined homomorphisms, and it is readily verified that (α, β, γ) : EG → EQ
is a homomorphism of central extensions.
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To show that it is isoclinic, it is enough to show by Proposition 4.8 that γ is

an isomorphism. To show that γ is one-to-one, let g ∈ G such that γ(g) = 0.

Then β(g) ∈ Z(Q). We claim that g ∈ Z(G). Indeed, if g /∈ Z(G), then m :=

[g1, . . . , gi−1, g, gi+1, . . . , gn] 6= 0 for some gj ∈ G, j = 1, . . . , i−1, i+1, . . . , n. But

β(m) = [β(g1), . . . , β(gi−1), β(g), β(gi+1), . . . , β(gn)] = 0, because β(g) ∈ Z(Q).

This implies that m ∈ Ker(β)∩ [G, n. . .,G], and thus m = 0, a contradiction. Next

we show that γ is onto. Let q ∈ Q. Since Im(β) + Z(Q) = Q, it follows that

q = β(x) + q0 for some x ∈ G and q0 ∈ Z(Q). Clearly, q = β(x) = γ(x).

Conversely, assume that β induces an isoclinic homomorphism (α, β, γ) from

EG to EQ. Then again by Proposition 4.8, Ker(β) ∩ [G, n. . .,G] = 0. It remains

to show that Im(β) + Z(Q) = Q. Clearly, Im(β) + Z(Q) ⊆ Q. Now let q ∈ Q.

Following the notation in equation (9), prQ and γ are onto, then prQ(q) = γ ◦
prG(g) for some g ∈ G. On the other hand, by the homomorphism (α, β, γ), we

have that (γ ◦ prG)(g) = (prQ ◦ β)(g), which implies that q − β(g) ∈ Ker(prQ) =

Z(Q). Therefore, q = β(g) +n for some n ∈ Z(Q). This completes the proof. �

Proposition 4.10. Let N be an n-sided ideal of a Leibniz n-algebra G. The

natural homomorphism nat : G � G/N is an isoclinic surjection if and only if

N ∩ [G, n. . .,G] = 0.

Proof. Follows by Proposition 4.9, since Ker(nat) = N . In addition, if

N ∩ [G, n. . .,G] 6= 0, then nat is not an isoclinic homomorphism by Proposition 4.8.

Conversely, if N ∩ [G, n. . .,G] = 0, then ξ : [G, n. . .,G]→ [G/N , n. . .,G/N ], given

by ξ([g1, . . . , gn]) = [g1 +N , . . . , gn+N ], is an isomorphism and Z(G/N ) = Z(G)
N ,

and G
Z(G)

η∼= G/N
Z(G)/N by the third isomorphism theorem. Now the commutativity

of diagram (8) immediately follows. �

Corollary 4.11. If G is a Leibniz n-algebra such that its Schur multiplier is

finite-dimensional, then all stem covers of G are isoclinic.

Proof. Let 0 → R → F ρ→ G → 0 be a free presentation of G. Let

0 → M → P ψ→ G → 0 be a stem cover. By the proof of Theorem 4.3, there

exists a surjective homomorphism β : F
[R,F,n−1... ,F ]

→ P and an n-sided ideal S
of F such that R

[R,F,n−1... ,F ]
∼= M(G)⊕Ker(β) and Ker(β) = S

[R,F,n−1... ,F ]
. Moreover,

Ker(β)∩
[

F
[R,F,n−1... ,F ]

, n. . ., F
[R,F,n−1... ,F ]

]
= S

[R,F,n−1... ,F ]
∩ [F, n...,F ]

[R,F,n−1... ,F ]
= S∩[F, n...,F ]

[R,F,n−1... ,F ]
=

M(G) ∩ S
[R,F,n−1... ,F ]

, which vanishes thanks to the finite-dimension and the exact

sequence 0→ M(G) ∩ S
[R,F,n−1... ,F ]

→ M(G)→ M→ 0.

Now Proposition 4.10 completes the proof. �



The Schur multiplier and stem covers of Leibniz n-algebras 459

Lemma 4.12. Let G be a Leibniz n-algebra and

0 //M1
//

α

��

P1
//

β

��

G //

γ

��

0

0 // M2
// P2

// G // 0

be a commutative diagram of short exact sequences of Leibniz n-algebras such

that the bottom row is a stem extension. If the homomorphism γ is surjective,

then β is a surjective homomorphism as well.

Proof. Obviously, P2 = Im(β) +M2. Hence [P2, n. . .,P2]=[Im(β), n. . ., Im(β)].

By [9, Proposition 6], M2 ⊆ [P2, n. . .,P2] = [Im(β), n. . ., Im(β)]. Therefore, P2 ⊆
Im(β) + [Im(β), n. . ., Im(β)], i.e. β is surjective. �

Theorem 4.13. Let G be a Leibniz n-algebra such that M(G) is finite-

dimensional, and let 0 → Mi → Pi
ψi→ G → 0, i = 1, 2, be two stem covers of G.

If η : P1 → P2 is a surjective homomorphism such that η(M1) ⊆ M2, then η is

an isomorphism.

Proof. Let 0 → R → F ρ→ G → 0 be a free presentation of G. By Theo-

rem 4.3, there exist n-sided ideals Si, i = 1, 2, of F such that Pi ∼= F
Si ;Mi

∼= R
Si

and R
[R,F,n−1... ,F ]

∼= M(G)⊕ Si
[R,F,n−1... ,F ]

, i = 1, 2.

By Lemmas 4.2 and 4.12 and the proof of Theorem 4.3, there exists a sur-

jective homomorphism θ : F
[R,F,n−1... ,F ]

→ P2
∼= F
S2 such that Ker(θ) = S2

[R,F,n−1... ,F ]
.

Since F is a free Leibniz n-algebra, there exists a homomorphism δ : F → P1

such that ψ1 ◦ δ = ρ. Moreover, δ(R) ⊆ M1 and δ vanishes on [R,F , n−1. . . ,F ],

consequently, it induces a homomorphism δ′ : F
[R,F,n−1... ,F ]

→ P1
∼= F
S1 such that

δ′ ◦pr = δ, where pr : F → F
[R,F,n−1... ,F ]

is the canonical projection. Since ψ1 ◦δ′ =

ρ, Lemma 4.12 implies that δ′ is a surjective homomorphism. Let Ker(δ′) =
T

[R,F,n−1... ,F ]
for some n-sided ideal T of R.

Since θ
(

T
[R,F,n−1... ,F ]

)
= η

(
δ′
(

T
[R,F,n−1... ,F ]

))
= 0, we have T

[R,F,n−1... ,F ]
⊆

Ker(θ) = S2
[R,F,n−1... ,F ]

, therefore T ⊆ S2.
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From the diagram

T
[R,F,n−1... ,F ]��

j

��
σ

xx
S1

[R,F,n−1... ,F ]
// i //

τ
88

R
[R,F,n−1... ,F ]

β| // //

δ′

����

M1

M1

it follows that S1
[R,F,n−1... ,F ]

∼= T
[R,F,n−1... ,F ]

, and by Theorem 4.3, we have M(G) ⊕
S2

[R,F,n−1... ,F ]
∼= R

[R,F,n−1... ,F ]
∼= M(G)⊕ T

[R,F,n−1... ,F ]
, which implies that S2

∼= T . So η

is an isomorphism, since Ker(η) ∼= S2
T . �

Proposition 4.14. Let 0 → Mi → Pi
ψi→ G → 0, i = 1, 2, be two stem

covers of a finite-dimensional Leibniz n-algebra G with finite-dimensional Schur

multiplier. Then Z(P1)/M1
∼= Z(P2)/M2.

Proof. Let 0 → R → F ρ→ G → 0 be a free presentation of G. By Corol-

lary 4.4, there exists a covering G∗ of G, i.e. there is an exact sequence 0→ M→
G∗ ψ→ G → 0 such that M ⊆ Z(G∗)∩ [G, n. . .,G] and M ∼= M(G) (see [9, Propositions

6 and 9]).

By Theorem 4.3, there exists an n-sided ideal S such that G∗ ∼= F
S , M ∼=

R
S and R

[R,F,n−1... ,F ]
∼= M(G) ⊕ S

[R,F,n−1... ,F ]
. As Z

(
F

[R,F,n−1... ,F ]

)
= T

[R,F,n−1... ,F ]
,

[T ,F , n−1. . . ,F ] ⊆ [R,F , n−1. . . ,F ], thus TS ⊆ Z
(F
S
)
.

Conversely, for x+ S ∈ Z
(F
S
)
, we must show that x+ S ∈ TS .

Indeed, for any f+S ∈ FS , [f1+S, . . . , fi−1+S, x+S, fi+1+S, . . . , fn+S] = 0,

hence [f1, . . . , fi−1, x, fi+1, . . . , fn] ∈ S ∩ [F , n. . .,F ], for any fi ∈ F , i=1, . . . , n.

To show that x∈T , we need to prove that x+[R,F , n−1. . . ,F ]∈Z
(

F
[R,F,n−1... ,F ]

)
= T

[R,F,n−1... ,F ]
. But this holds, since for any fi ∈ F , [f1, . . . , fi−1, x, fi+1, . . . , fn]

+[R,F , n−1. . . ,F ] = 0, i = 1, . . . , n, because [f1, . . . , fi−1, x, fi+1, . . . , fn] ∈ S ∩
[F , n. . .,F ], and by Theorem 4.3, R

[R,F,n−1... ,F ]
∼= R∩[F, n...,F ]

[R,F,n−1... ,F ]
⊕ S

[R,F,n−1... ,F ]
, hence R∩

[F , n. . .,F ] ∩ S ⊆ [R,F , n−1. . . ,F ], but S ⊆ R, then S ∩ [F , n. . .,F ] ⊆ [R,F , n−1. . . ,F ].

Consequently, TS
∼= Z

(F
S
)
. From here, Z(G∗)

M
∼= Z(F/S)

R/S
∼= T /S
R/S

∼= T
R .

Applying this result to each stem cover, we have Z(P1)
M1

∼= T
R
∼= Z(P2)

M2
. �
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The following results are a generalization to Leibniz n-algebras (n ≥ 3) of

the characterizations of stem extensions and stem covers of Leibniz algebras (case

n = 2) in [13].

Proposition 4.15. Let Q be a Leibniz n-algebra, and let U be a subspace

of nHL1(Q), then there exists a stem extension E with U = Ker (θ∗ (∆[E])).

Proof. Consider the quotient K-vector space N = nHL1(Q)/U as a triv-

ial Q-module. Consider the central extension E : 0 → N → G → Q → 0 ∈
nHL

1(Q,N). Thus θ∗ (∆[E]) = θ∗(E) ∈ Hom(nHL1(Q),N).

If θ∗(E) : nHL1(Q) → N = nHL1(Q)/U is the canonical projection, then

there exists a central extension E : 0 → N → G → Q → 0 such that θ∗ (∆[E]) =

θ∗(E) is the canonical projection.

Associated to E, we have the exact sequence (3), where U = Ker (θ∗(E)) =

Ker (θ∗ (∆[E])). Moreover, E is a stem extension by Proposition 4.1. �

Corollary 4.16. A stem extension is a stem cover if and only if U = 0.

Remark 4.17. Any stem cover E : 0 → N → G → Q → 0 is isomorphic to

a stem cover E′ : 0→ nHL1(Q)→ G′ → Q→ 0 with θ∗ (∆[E′]) = 1
nHL1(Q).

Indeed, there always exists E′, it suffices to take U = 0 in Proposition 4.15;

if ϕ : N → nHL1(Q) is the inverse of θ∗ (∆[E]), which is an isomorphism

by [9, Definition 2], then naturality of isomorphism θ∗ : nHL
1(Q,N)

∼→
Hom(nHL1(Q),N) implies θ∗ (ϕ∗ (∆[E])) = ϕ∗ (θ∗ (∆[E])) = ϕ (θ∗ (∆[E])) =

1
nHL1(Q), so we can choose E′ such that ∆[E′] = ϕ∗ (∆[E]). By Proposition 2.11,

there exists a homomorphism f : G → G′ making the following diagram commu-

tative:

E : 0 // N //

ϕ

��

G //

f

��

Q // 0

E′ : 0 //
nHL1(Q) // G′ // Q // 0

Proposition 4.18. Every stem extension of Q is an image by a surjective

homomorphism of some stem cover.

Proof. Let E : 0→ N→ G → Q→ 0 be a stem extension characterized by

∆[E] = ξ ∈ nHL
1(Q,N); then ϕ = θ∗(ξ) = θ∗(∆[E]) = θ∗(E) : nHL1(Q)→ N is

a surjective homomorphism.

In order to complete the proof, we must find η ∈ nHL
1(Q, nHL1(Q)) with

ϕ∗(η) = ξ and θ∗(η) = 1
nHL1(Q), where ϕ∗ is the morphism induced by naturality

of the isomorphism θ∗ on ϕ.
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Let η ∈ nHL
1(Q, nHL1(Q)) be such that θ∗(η) = 1

nHL1(Q), then θ∗(ξ −
ϕ∗(η)) = ϕ − ϕ∗ (θ∗(η)) = 0; consequently, ϕ∗(η) = ξ. Obviously, η satisfies the

required conditions.

Now, let E′ : 0 → nHL1(Q) → G′ → Q → 0 ∈ nHL
1(Q, nHL1(Q)) be

such that ∆[E′] = η; by Proposition 2.11, there exists f : G → G′ such that

(ϕ, f, 1) : E → E′ is a surjective homomorphism. �

Proposition 4.19. There exists only one isomorphism class of stem covers

of Q.

Proof. By Remark 4.17, stem covers are of the form E : 0→ nHL1(Q)→
G → Q→ 0 such that θ∗ (∆[E]) = 1

nHL1(Q).

Fix a stem cover E. For any other stem cover E′, we have that θ∗ (∆[E]) =

θ∗ (∆[E′]) = 1
nHL1(Q), then [E] = [E′]. �

Proposition 4.20. Let Ē : 0 → nHL1(Q̄) → Ḡ → Q̄ → 0 be a stem

cover and let E : 0 → N → G → Q → 0 be a central extension. Then every

homomorphism f : Q̄ → Q can be lifted to a map f ′ : Ḡ → G.

Proof. Let ∆[E] = ξ ∈ nHL
1(Q,N). We define ϕ = f∗ (θ∗(ξ)) : nHL1(Q̄)

→ N. Since η = ∆[Ē] ∈ nHL
1(Q̄, nHL1(Q̄)) is a stem cover with θ∗(η) =

θ∗
(
∆[Ē]

)
= θ∗(Ē) = 1

nHL1(Q̄), we have θ∗ (ϕ∗(η)) =ϕ∗ (θ∗(η)) =ϕ= f∗ (θ∗(ξ)) =

θ∗ (f∗(ξ)), thus ϕ∗(η) = f∗(ξ), i.e. ϕ∗(∆[E]) = f∗(∆[E]). Proposition 2.13

concludes the proof. �

Proposition 4.21. Let E : 0→ N
χ→ G π→ Q → 0 and E′ : 0→ N′

χ′→ G′ π
′

→
Q′ → 0 be central extensions. Let ρ : N→ N′ and σ : Q → Q′ be homomorphisms

of Leibniz n-algebras. Then:

(a) There exists τ : G → G′ inducing ρ and σ if and only if the following diagram

is commutative:

nHL1(Q)
θ∗(E) //

σ∗

��

N

ρ

��
nHL1(Q′)

θ∗(E
′) // N′

(b) If τ exists, it is unique if and only if Hom(nHL0(Q),N′) = 0.

Proof. (a) If τ exists, the commutativity of the square follows from the

naturality of sequence (3).
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Conversely, consider the following diagram provided by the natural isomor-

phism θ∗:

θ∗ : nHL
1(Q,N)

∼ //

ρ∗

��

Hom(nHL1(Q),N)

ρ∗

��
θ′′∗ : nHL

1(Q,N′) ∼ // Hom(nHL1(Q),N′)

θ′∗ : nHL
1(Q′,N′) ∼ //

σ∗

OO

Hom(nHL1(Q′),N′)

σ∗

OO

Let ξ = ∆[E] and ξ′ = ∆[E′] be, then ρ∗ (θ∗(ξ)) = ρ∗ (θ∗ (∆[E])) = ρ∗ (θ∗(E)) =

ρ (θ∗(E)) = θ∗(E
′) ◦ σ∗ = σ∗ ◦ θ∗(E′) = σ∗ (θ′∗ (∆[E′])) = σ∗ (θ∗(ξ

′)). Thus

θ′′∗ (ρ∗(ξ)) = ρ∗ (θ∗(ξ)) = σ∗ (θ′∗(ξ
′)) = θ′′∗ (σ∗(ξ′)), and consequently, ρ∗(ξ) =

σ∗(ξ′). Now Proposition 2.13 provides τ : G → G′ inducing ρ and σ.

(b) Suppose there exists τ : G → G′ that induces ρ and σ, and let τ ′ : G → G′
be another homomorphism that induces ρ and σ, then there are unique homomor-

phisms f : G → N′ such that τ ′ − τ = χ′ ◦ f and ϕ : Q → N′ such that ϕ ◦ π = f ;

consequently, τ ′ = τ + χ′ ◦ϕ ◦ π; that is, for another homomorphism τ ′ : G → G′,
there exists a unique homomorphism ϕ : Q → N′ such that τ ′ = τ + χ′ ◦ ϕ ◦ π.

Conversely, if ϕ : Q → N′ is a homomorphism, then τ ′ = τ + χ′ ◦ ϕ ◦ π induces

ρ and σ.

τ is unique if and only if τ −τ ′ = 0, that is, χ′ ◦ϕ◦π = 0, which is equivalent

to ϕ ∈ Hom(Q,N′) = 0 and then Hom(nHL0(Q),N′) = 0. �

Corollary 4.22. Under the hypothesis of Proposition 4.21, the map τ : G →
G′ exists and it is unique when Q is a perfect Leibniz n-algebra (Q = [Q, n. . .,Q]).

Proof. IfQ is a perfect Leibniz n-algebra, then Hom(nHL0(Q),N′) = 0. �

Proposition 4.23. The isomorphism classes of stem extensions of Q are

in one-to-one correspondence with the subspaces of nHL1(Q). Moreover, if U
and V are two subspaces of nHL1(Q), then U ⊆ V if and only if there is a map

(necessarily surjective) from the stem extension corresponding to U to the stem

extension corresponding to V.

Proof. Let E : 0 → N → G → Q → 0 be a stem extension. According to

Proposition 4.15, let U = Ker (θ∗(E)) = Ker (θ∗(∆[E]) : nHL1(Q)→ N) be the

subspace associated to E. It is clear that isomorphic stem extensions yield the

same subspace of nHL1(Q).

Conversely, let U ⊆ nHL1(Q) and N = nHL1(Q)/U be; we consider the

canonical projection τ : nHL1(Q) → N, then there exists an element ∆[E] ∈
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nHL
1(Q,N) such that θ∗ (∆[E]) = τ . Obviously, [E] is unique, θ∗ (∆[E]) is

a surjective homomorphism and then E is a stem extension.

Finally, if E′ : 0 → N′ → G′ → Q → 0 is other stem extension associated

with U , then there exists an isomorphism r : N → N′ such that the following

diagram is commutative:

0 // U //
nHL1(Q)

θ∗(E) // N //

r

��

0

0 // U //
nHL1(Q)

θ∗(E
′) // N′ // 0

By Proposition 4.21 (a), there exists σ : G → G′ inducing r : N→ N′ and 1Q :

Q → Q such that (r, σ, 1Q) : E → E′ is a homomorphism of extensions; moreover,

σ is an isomorphism, and then E and E′ are in the same isomorphism class.

For the second statement, we consider a morphism of stem extensions (r, t, 1) :

E → E′. Naturality in sequence (3) implies U = Ker (θ∗(E)) ⊆ Ker (θ∗(E
′)) = V.

For the converse, we first recall that every stem extension is isomorphic to

an extension E with θ∗ (∆[E]) the canonical projection. It is thus enough to

consider those. Let U ⊆ V ⊆ nHL1(Q),N = nHL1(Q)/U and N′ = nHL1(Q)/V.

There exists a surjective homomorphism r : N→ N′ such that

0 // U //

��

nHL1(Q)
τ // N //

r

��

0

0 // V //
nHL1(Q)

σ // N′ // 0

Now, if E : 0→ N→ G → Q→ 0 is an extension with θ∗ (∆[E]) = θ∗(E) = τ , and

E′ : 0 → N′ → G′ → Q → 0 is another extension with θ∗ (∆[E′]) = θ∗(E
′) = σ,

then by Proposition 4.21 (a), there exists t : G → G′ inducing r and 1; moreover,

t is surjective. �

Remark 4.24. We recall that when Q is perfect, then Proposition 4.21 implies

that t is uniquely determined by r.

Proposition 4.25. Let Q be a perfect Leibniz n-algebra, and let E : 0 →
N→ G → Q→ 0 be a stem extension, then the following sequence is exact:

0→ nHL1(G)→ nHL1(Q)
θ∗(E)→ N→ 0.

Proof. From exact sequence (3) in [7] and keeping in mind that Proposi-

tion 4.1 implies that nHL0(G) = 0. �
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Note that it follows from Propositions 4.23 and 4.25 that when Q is a perfect

Leibniz n-algebra, then the first n-Leibniz homology K-vector spaces with trivial

coefficients of a stem extension of Q are precisely the subspaces of nHL1(Q).

Corollary 4.26. Let Q be a perfect Leibniz n-algebra, and let E : 0 →
N → G → Q → 0 be a central extension. Then E is a stem cover if and only if

nHL0(G) = nHL1(G) = 0.

Proof. It easily comes from the exact sequence (3) in [7] associated to E,

with nHL0(G) = nHL1(G) = 0, it is easily derived that θ∗(E) is an isomorphism,

and conversely. �

Remark 4.27. Let E : 0 → N → G → Q → 0 be a stem extension with

nHL1(G) = 0, then E is a stem cover. Corollary 4.26 shows that the converse is

true if, in addition, Q is a perfect Leibniz n-algebra.

In general, however, there are stem covers with nHL1(G) 6= 0. For example,

let F be a non-abelian or non-nilpotent free Leibniz n-algebra, and let us consider

the sequence 0→ Fk/Fk+1 → F/Fk+1 → F/Fk → 0, which is central for k ≥ 2,

and moreover, is a stem cover by [9, Proposition 9], since (F/Fk+1)ab
∼= Fab

∼=
(F/Fk)ab and, on the other hand, the map nHL1(F/Fk+1) = Fk+1/Fk+2 →
nHL1(F/Fk)=Fk/Fk+1 is trivial. Moreover, nHL1(F/Fk+1)=Fk+1/Fk+2 6=0.

Proposition 4.28. Let Q be a perfect Leibniz n-algebra, and let 0→ R→
F f→ Q→ 0 be a free presentation. Then

0→ nHL1(Q)→ [F , n. . .,F ]

[R,F , n−1. . . ,F ]

ϕ→ Q→ 0

is a stem cover of Q, where ϕ is induced by f .

Proof. 0 → nHL1(Q) → [F, n...,F ]

[R,F,n−1... ,F ]

ϕ→ Q → 0 is the universal central ex-

tension ofQ [6, Theorem 5]. Moreover, nHL1

(
[F, n...,F ]

[R,F,n−1... ,F ]

)
=nHL0

(
[F, n...,F ]

[R,F,n−1... ,F ]

)
= 0 by [11, Proposition 5.1], hence it is a stem cover by Corollary 4.26. �

From Proposition 4.19, when Q is a perfect Leibniz n-algebra, we have that

any stem cover is isomorphic to 0→ nHL1(Q)→ [F, n...,F ]

[R,F,n−1... ,F ]
→ Q→ 0.
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Proposition 4.29. Let E : 0 → N
χ→ G π→ Q → 0 be a central extension,

and let f : X → Q be a homomorphism of Leibniz n-algebras where X is a perfect

Leibniz n-algebra. Then there exists ϕ : X → G such that π ◦ ϕ = f if and only

if f∗(nHL1(X )) ⊆ π∗(nHL1(G)).

If ϕ exists, then it is uniquely determined.

Proof. If ϕ exists, then the functor nHL1(−) preserves the composition, so

f∗(nHL1(X )) = π∗ (ϕ∗(nHL1(X ))) ⊆ π∗(nHL1(G)).

Conversely, let Q′ = Im(f) ⊆ Q and S = Ker(f), then the exact sequence

0 → S → X → Q′ → 0 induces the exact sequence 0 → S/[S,X , n−1. . . ,X ] =

S ′ → X/[S,X , n−1. . . ,X ] = X ′ f
′

→ Q′ → 0 where f ′ : X ′ → Q′ is induced by f .

Now, sequence (3) implies that f ′∗(nHL1(X ′)) = f∗(nHL1(X )) ⊆ π∗(nHL1(G)) ⊆
nHL1(Q).

In order to complete the proof, we need to construct ϕ′ : X ′ → G such that

the following diagram be commutative:

0 // S ′ //

��

X ′
f ′ //

ϕ′

��

Q′ //

��

0

0 // N // G π // Q // 0

By naturality in sequence (3) and by the fact f ′∗(nHL1(X ′)) ⊆ π∗(nHL1(G)),

then there exists an injective map β : Im(f ′∗)→ Im(π∗) which induces τ ′ : S ′ → N.

From Proposition 4.21 it follows the existence of ϕ′ : X ′ → G. Moreover, ϕ′ is

unique if and only if Hom(nHL1(Q′),N) = 0, which is obvious. Now ϕ : X → G
is obtained by the composition ϕ′ ◦ nat : X → X ′ → G. �
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