Publ. Math. Debrecen
95/3-4 (2019), 437-468
DOI: 10.5486/PMD.2019.8573

The Schur multiplier and stem covers of Leibniz n-algebras

By JOSE MANUEL CASAS (Pontevedra), MANUEL AVELINO INSUA (Pontevedra)
and NATALIA PACHECO REGO (Barcelos)

Abstract. Given a free presentation 0 — R — F 2 G — 0 of a Leibniz

n-algebra G, the quotient is known as the Schur multiplier of G. In the

n—1
article, we construct a fou[lj-zt,;n'l“ éi]act sequence relating the Schur multiplier of G
and G /N , from which we derive some formulas concerning dimensions of the under-
lying vector spaces of the corresponding Schur multipliers. Additionally, this exact se-
quence is useful to characterize nilpotency of Leibniz n-algebras. Finally, we characterize
stem covers of Leibniz n-algebras, showing their existence in case of finite dimension.
We also analyze the interaction between stem covers of Leibniz n-algebras and the Schur
multiplier.

1. Introduction

A Leibniz n-algebra [14] is a K-vector space £ equipped with a linear map
[—,...,—]: LZ" — L satisfying the fundamental identity

n
HI17 s 7xn]ay17 s 5yn—1} = Z[xla sy Ti—1, [xhyla s 7yn—l]5zi+1a s axn]
i=1
for all z1,...,2n,y1,.--,Yn—1 € L. In case n = 2, the fundamental identity be-

comes the Leibniz identity, so a Leibniz 2-algebra is exactly a Leibniz algebra [21].
The origin of this kind of structures, together with its skew-symmetric version,
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called Lie n-algebras or FILIPPOV algebras [17], [19], was the so called NAMBU
mechanics [24], an n-ary generalization of the Hamiltonian mechanics.

This kind of structures have found applications in string theory and
M-branes [2], [26], and in a generalization of Nahm’s equation proposed by BAsu
and HARVEY [1]. It also has applications in the construction of solutions of the
Yang-Baxter equation [25], and even in the analysis of DNA recombination [27].
On the other hand, the topic of central extensions of an algebraic structure is
present in many applications in Physics, for instance, the Witt algebra and its
one-dimensional universal central extension, the Virasoro algebra, often appear
in problems with conformal symmetry in the setting of string theory [18].

Therefore, our goal in this paper is to continue with the study of central
extensions of Leibniz n-algebras started in [9], with special emphasis on the in-
teraction of the Schur multiplier (first Leibniz n-algebra homology with trivial
coefficients [5]) and coverings of Leibniz n-algebras.

The outline of the paper is as follows: Section 2 is devoted to recall the
background on Leibniz n-algebras, among others, (i-th) nilpotency of an n-sided
ideal, exact sequences in (co)-homology and homomorphisms between abelian
extensions. In Section 3, we recall that the Schur multiplier of a Leibniz n-algebra
G is the Baer-invariant (see [11], [12], [16]) %, where 0 > R—F %G -0
is a free presentation of G. Then we construct a four-term exact sequence that
relates the Schur multipliers of G and G/N, from which we derive, in case of finite
dimension, some formulas concerning dimensions of the underlying vector spaces
of the Schur multiplier. In addition, this exact sequence is useful to characterize
nilpotency of Leibniz n-algebras. In Section 4, we analyze the interaction between
stem covers of Leibniz n-algebras and the Schur multiplier. Specifically, in the
case of finite-dimensional Leibniz n-algebras, we show the existence of coverings
and we prove that all stem covers, with finite-dimensional Schur multiplier, are
isoclinic. In the second part of this section, we characterize stem covers of perfect
Leibniz n-algebras, recovering the corresponding results of stem covers in [13]
when we restrict to the case n = 2.

2. Preliminary results on Leibniz n-algebras

Definition 2.1 ([14]). A Leibniz n-algebra is a K-vector space £ equipped
with an n-linear map [—,...,—| : L& — L satisfying the following fundamental
identity:
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n

Hxlv cee 71'n}7y13 e 7yn—1]:2[x17 ceey Ti—1, [xi’yla cee 7yn—1]axi+la e 7xn]- (1)
i=1

Ezxample 2.2.

(a) If n = 2, then Fundamental Identity (1) gives rise to the Leibniz identity,
so a Leibniz 2-algebra is simply a Leibniz algebra in the sense of [21].

(b) Lie triple systems [20] are Leibniz 3-algebras satisfying the conditions:

[z,y,2] + [y, 2,2] + [z,2,9] =0 and [z,y,y] =0.

(c) Leibniz triple systems [3] are vector spaces equipped with a trilinear operation

(—, —, —) satisfying the following conditions:
o (2, (Y, 2z,u),v) — ({2, ¥, 2),u,0) + ((z,2,y), u,v) + ({2, u,y), 2,v)
- <<m,u, Z>7yav> = Oa (LTS-A)
° <xaya <Zaua U>> - <<x,y,z>,u,v> + <<:z:,y,u>,z,v> - <<:17,y,v>,u,z>
+ ((z,y,v), z,u) = 0. (LTS-B)

If T is a Leibniz triple system, then T is a Leibniz 3-algebra with respect
to the operation [z,y, z] = (z,z,y) — (z,y, ).

(d) Trialgebras are vector spaces equipped with three binary associative oper-
ations -, L, F satisfying eleven relations (see [23]). The underlying vector
space of an associative trialgebra is a non-Lie Leibniz 3-algebra endowed
with the 3-bracket [x,y,z]| =24 (y Lz—2zLy)—(yLz—zLy)kax]8].

(e) 2-dimensional complex Leibniz 3-algebras with one-dimensional derived al-
gebra are classified in [4].

(f) The algebra of C*°-functions on R™ equipped with the bracket [fi,..., fn] =

det (gg) is a Leibniz n-algebra.
7 /4,g=1,...,n

(¢) Any Leibniz algebra £ gives rise to a Leibniz n-algebra under the following
n-bracket: [x1,Za,...,%,] = [21, [X2, ..., [Tn-1,Zn] .. .]]-

(h) R"*! is a Leibniz n-algebra with the bracket given by [vi,ve,...,v,] =
V1 X Vg X -+ - X Uy, Where v; X vg X - - - X v, denotes the vector product of the
vectors v; € R*HL,

A homomorphism of Leibniz n-algebras is a linear map that preserves the
bracket. Thus we have defined the category of Leibniz n-algebras, denoted by
Leib.
n
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There is a functor [15] D, : p+1Leib — sLeib which assigns to a Leibniz
(n + 1)-algebra L the Leibniz algebra D,,(L£) = £L®" with bracket operation

[a1®"'®an7b1®"'®bn] ::Za1®"'®[aiabla”wbn]@'“@an'
=1

Let £ be a Leibniz n-algebra. A subalgebra K of £ is called n-sided ideal
if [l1,12,...,1,] € K as soon as I; € K and ly,...,lLi—1,liy1,...,0ln € L, for
all i = 1,2,...,n. Let M and P be n-sided ideals of a Leibniz n-algebra L.
The commutator ideal of M and P, denoted by [M, P, L,772 L], is the n-sided
ideal of £ spanned by the brackets [I1,...,l;,...,l;,...,l,] as soon as l; € M,
l;e P and Iy € L for all k different to i, j. Obviously, [M, P, L,"72, L]C MNP.
In the particular case M = P = L, then we have [£,.7"., L], the derived alge-

i—1 n—i
—— ——
bra of the Leibniz n-algebra £. By [L,...,L,M,L,...,L]; we denote the n-
sided ideal spanned by the elements [l1,...,5;—1,m,liy1,...,1,], for any {; €
L5 €{l,...,i—1,94+1,...,n}, and m € M. Obviously, [M,L,"71 L] =

i—1 n—i
Z[ﬁ, o LML L];. The i-th center of a Leibniz n-algebra L is the i-th-

n

i=1
sided ideal [4]

ZiL)y={leLl| [l lit,Llivr,- s 1) =0, V€ L,je{l,... 0 ...,n}}.

The center of a Leibniz n-algebra £ is the n-sided ideal Z (L) = m Z;i(L).
i=1

An abelian Leibniz n-algebra is a Leibniz n-algebra with trivial bracket,
that is, the commutator n-sided ideal [£,.7.,L£] = 0. It is clear that a Leibniz
n-algebra £ is abelian if and only if £ = Z(L).

Let M and P be n-sided ideals of a Leibniz n-algebra £. The centralizer of
M and P on L [10] is the n-sided ideal

Co(MP)={l; €L|[l1,... i, L] €EPi=1,2,... .m;1; € M,

jef{l,. . i,...onhlhelike{l,. .. i....],...,n}}

If P =0, then Cr(M,0) is called the centralizer of M on L. Tt is denoted
briefly by Cr(M). Obviously, Cr(L) = Z(L).

Definition 2.3 ([10]). We call upper central series of a Leibniz n-algebra £
to the sequence of n-sided ideals defined recursively by

Zo(L) = 0;  Zp(L) = Cp(L, 251 (L)), k> 1.



The Schur multiplier and stem covers of Leibniz n-algebras 441

Let us observe that Z;(£) = Z(L), and that Z;(L) is an n-sided ideal of £
and Z,(L) C Zk41(L).

Definition 2.4 ([10]). For an n-sided ideal H of a Leibniz n-algebra £, we de-
fine recursively the following sequences:

i—1 n—i
— —
(a) HSWi= W H<FH>i= (L, LH<F>0 L, L)y, k>1,i€{1,2,...,n}.
i—1 n—i
N —— —
(b) H' =H, M =L, ,LHNL, ... L], k>1.

i=1

The n-sided ideal H is said to be nilpotent of class k (respectively, i-th
nilpotent of class k, i € {1,2,...,n}) if there exists k € N such that H* # 0 and
HEHL =0, (respectively, H<F>i £ 0 and H<FF1>i = ().

Remark 2.5. In the case of H = L, the notion of nilpotent (respectively, i-th
nilpotent) Leibniz n-algebra in [4] is recovered.

Proposition 2.6.

(a) If £/Z(L) is a nilpotent (respectively, i-th nilpotent) Leibniz n-algebra, then
L is a nilpotent (respectively, i-th nilpotent) Leibniz n-algebra.

(b) If L is a nilpotent and non-trivial Leibniz n-algebra, then Z(L) # 0.

(¢) Let f : L - M be a central extension (i.e. [Ker(f),L,"71 L] =0 &
Ker(f) C Z(L)) of Leibniz n-algebras. M is a nilpotent (respectively, i-th
nilpotent) Leibniz n-algebra if and only if £ is a nilpotent (respectively, i-th
nilpotent) Leibniz n-algebra.

PROOF.

(a) If L/Z(L) is a nilpotent Leibniz n-algebra (respectively, i-th nilpotent), then
there exists a k € N such that (£/Z(L£))* = 0, (vespectively, (£/Z(L))<F>i =
0), then, £¥ C Z(L) (respectively, L<¥>i C Z(L)), hence LFF!
i—1 n—i i—1
n A A e —
MNL.....L.LF L, .. L]; = 0 (vespectively, LKH1> = £, L, LF>,
i=1

—
T Li=0).

(b) Assume that £ has nilpotency class equal to k, that is £F*1 = 0, hence
0+#LFCZ(L).
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i—1 n—i
D —— —_——~
(c) There exists a k € N such that M* = Z[M, MMM M) =
i—1 i
" ——— —
DALY FL), LT L), F(L)]: = F(LF) = 0. Then £F C

i=1

Ker(f) C Z(L), hence £F+1 = 0.

Conversely, the quotient of nilpotent Leibniz n-algebras is nilpotent as well.
Similar argument shows the i-th nilpotency. O

Remark 2.7. Proposition 2.6 (b) is not valid for i-th nilpotency as the fol-
lowing counterexample shows: the two-dimensional Leibniz 3-algebra £ with
basis {e1,e2} and bracket operation given by [es,e2,e1] = —eq,[es,e1,e2] =
€1, [e2, €2, €3] = e; and zero elsewhere is 1-nilpotent [4] with Z (L) = 0.

2.1. Exact sequences in (co)homology.

A representation [14] of a Leibniz n-algebra L is a K-vector space M equipped
with n actions [—,...,—] : L2 @ M ® L2(=1=) 5 M, 0 < i < n — 1, satisfying
(2n—1) axioms which are obtained from (1) by letting exactly one of the variables
T1yee 3 TnyY1,---,Yn—1 be in M and all the others in L.

If we define the multilinear applications p; : L2"~! — Endg(M) by

pill, . slp—)(m) = [ln, .. lict,my i, - 11, 1< <n,

then the axioms of representation can be expressed by means of the following
identities [5]:
(1) For 2 <k <mn,

n

pk([ll, .. .,ln],ln+17 e ,lgn_g) = Zpb(lh e ,l;', .. .,ln) . pk(li7ln+la .. .,lgn_g).

i=1

(2) For 1 <k <mn,
[pl(lna tey l?n—?)apk(llﬁ ) ln—l)]

n—1
=> ey Lot il -y lan—a, lig, -y Inoa),
i=1

where the bracket on Endg (M) is the usual one for associative algebras.

Let £ be a Leibniz n-algebra, and M be a representation of £. Then
Hom(L,M) is a D,,_1(L£) = L®"Lrepresentation as Leibniz algebras [14]. One
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defines the cochain complex ,CL*(L,M) to be CL*(D,_1(L), Hom(L, M)).
We also put ,HL*(L,M) := H*(,,CL*(£,M)). Thus, by definition,

WHL*(£,M) 22 HL*(Dy_1 (L), Hom(£, M)).

Here C'L* denotes the Leibniz complex and HL* its homology, called Leibniz
cohomology (see [21], [22] for more information).

Following [14], ,HL°(L,M) = Der(£,M) and ,HL'(L,M) = Ext(L,M),
where Ext(L£,M) denotes the set of isomorphism classes of abelian extensions
of £ by M. Exact sequences F: 0 = M 5 K 5 £ — 0 of Leibniz n-algebras such
that [k1,...,kn] = 0,k1,...,k, € K, as soon as k;, k; € M for some 1 <i,j <n
(i,e. [M,M, K, 772 K] = 0), are the objects of the category of abelian extensions
of Leibniz n-algebras, whose morphisms are commutative diagrams of the form:

K1 1

E;:0 My ]Cl El 0
L b
E2 :0 M2 = Kg ks £2 0

We denote such morphism as («, 3,7) : E1 — FEs. It is evident that o and ~v
satisfy the following identities:

alllyy . licr,mylipr, oo 0]) = [y, -y y(Liza)y a(m), (L), - v (L)],

i=1,2,...,n, provided that M5 is considered as £;-representation via y. That is,
a is a morphism of £;-representations. The equivalence classes in Ext(£, M) are
provided by the isomorphisms (1,5,1): E — E.

If F is an abelian extension of Leibniz n-algebras, then M is equipped with an
L-representation structure given by [l1,...,li—1,m, lix1,..., 0] = [k1,..., ki—1,
k(m),kit1,. .., kp]suchthat w(k;) = 1,5 =1,...,i—1,i+1,...,n,i=1,2,...,n.
When the initial L-representation structure of M coincides with the above
L-representation structure provided by the extension, then F is said to be an £-
extension.

Given an abelian extension £ and a homomorphism of Leibniz n-algebras
v : L1 — L, we obtain by pulling back along v an extension E, of M by L4,
where K, = K Xz L1, together with a morphism of extensions (1,7',7) : E, — E.
The extension E, is called the backward induced extension of E.

Proposition 2.8 (]9, Proposition 1]). Every morphism («, 3,7) : E1 — E of
abelian extensions of Leibniz n-algebras admits a unique factorization of the form

g eV g ) p

2l
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Given a homomorphism of L-representations a : M — My, there can be
constructed the abelian extension “F : 0 — My =% K B8 £ — 0 by putting
“K = (My x K)/S, where S = {(a(m),—k(m)) | m € M}. The abelian extension
*F is called the forward induced extension of E.

Proposition 2.9 (]9, Proposition 2]). Every morphism («, 3,7) : E — Eq of
abelian extensions of Leibniz n-algebras admits a unique factorization of the form

(

g @D ap 080 B

through the forward induced extension determined by c.

Homology with trivial coefficients of a Leibniz n-algebra L is defined in [5] as
the homology of the Leibniz complex ,CL,(L) := CL.(Dy-1(L), L), where the
underlying vector space of L is endowed with a structure of D,,_1(£) symmetric
co-representation as Leibniz algebra [22]. We denote the homology groups of this
complex by , HL(L), that is

WHL(L) = Ho(CL.(Dp_1(L), £)) = HL.(Dy_1 (L), L).

A direct computation shows that , HLy(L) = Lap = ﬁ

Letbe E:0 = M5 K5 £ — 0 ¢ Ext(£,M). Then there is an associated
natural exact sequence (see [9]):

0 — Der(£, M) "™ Der(xc, M) % Homz (M, M) *~ &
DJHLYN(L,M) 55 HLY (K, M). (2)

From that, we can define A : Ext(£,M) — , HL' (£, M), A([E]) = 0*(E)(1m).
The naturality of the sequence (2) implies the well-definition of A.

Now for a fixed free presentation 0 — R =5 F 5 £ — 0, there exists
a homomorphism f : F — K such that o f =¢, which restricts to f : R — M.
Moreover, f induces an L-representation homomorphism ¢ : R/[R,R,F," 2
, F] = M, where the action of £ on R/[R,R,F,?72, F] is given via ¢, that is,

[lla'"ali—1;F7li+1;"'aln] = [Ila"'axi—17r7xi+17"'7zn] + [RavaaT'L'_%-FL

where €(z;) = l;,5 € {1,...,i—1,i+1,...,n},i € {1,...,n}. Naturality of
sequence (2) induces the following commutative diagram:

0" (E
Der(K, M) — > Homz (M, M) ——— 0 o HI1(£,M) —>  HL (K, M)

S

Der(F, M) A Hom/(R/[R,R,F,"2, F|,M) —— , HLY(L,M) — , HL(F, M)
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Keeping in mind that ,, HL*(F,M) = 0 [14], then
AE] = 0"(E)(1m) = 0" (¢"(1m)) = 0" ().

Proposition 2.10 ([9, Proposition 3]). A : Ext(£,M) — ,HL'(L,M) is an
isomorphism.

Associated to E, there is the isomorphism ,, H L (£, M) f’g Hom(, HL (L), M)
[5, Theorem 3]. Since A[E]€,,HL'(£, M), we have 0, (A[E]) €Hom(,,HL1(L),M).
Moreover, 0, (A[E]) = 0.(E), where 6, (F) is the homomorphism given by the fol-
lowing exact sequence (see [5, Theorem 4]):

WHLL(K) = o HL (L) "M = HLo(K) = W HLo(L) — 0. (3)

2.2. Homomorphisms between abelian extensions.
Let E:0 > N3G 5 O— 0 be a Q-extension of N, and let o : N = N’ be
a homomorphism of Q-representations, that is, «[q1,...,¢i—1,7, Git1s---,qn)

[q1,-- - Gi—1,2(n),Git1,---aqn]sm € Nyg; € Q,1 < i <n,and let E': 0 — N’ X
G' 5 Q — 0 be a Q-extension with A[E'] = ¢ € ,HL'(Q,N’).

Proposition 2.11. There exists a homomorphism of Leibniz n-algebras f :
G — G’ such that the diagram

FE:0

E 0

is commutative if and only if . (§) = &' € ,HL'(Q,N’).

PRrOOF. Naturality of sequence (2) implies o, (§) = . (0*(E)(In)) = 0*(F)o
a,oly=0*(FE)oa=0%(E)(a*(In)) = 0*(E)(In) =&

Conversely, for the Q-extension E, we construct the forward induced ex-
tension “FE, obtaining the morphism of extensions («, fu,1) : E — *“E. Thus
(&) = a. (0*(E)(In)) = ax (A[E]) = A[*E]. Consequently, A[*E] = a. (&) =
¢ = A[E'], and then ®F = FE; thus F '3 « p % B concludes the proof. O

Let v : @ — Q be a homomorphism of Leibniz n-algebras, and let E : 0 —
N — G — Q — 0 be a Q-extension with A[E] = ¢ € , HL*(Q,N).
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Proposition 2.12. There exists a homomorphism of Leibniz n-algebras f :
G — G such that the following diagram

E:0 N G Q
Y
g Q

E:0 N

is commutative if and only if , HL'(y) = v*(&) = €.

PROOF. If there exists f, then naturality of sequence (2) implies that £ =
0 (E)(1n) = nHL'(7) (6°(E) (In)) = 7°(€).

Conversely, from the Q-extension F we construct the backward induced ex-
tension E, and the morphism of extensions (1,7*,v) : E, — E. Hence A[E,] =
v (A[E]) = v*(§) = € = A[E]; consequently, E, = E, and then f: G 5 G, = G
concludes the proof. O

Proposition 2.13. Let be given the following diagram:

N G Qo
e |
N Q

/ g/

E:0

E' :0 0
There exists f : G — G' making the diagram commutative if and only if o, (A[E])
=7 (A[E']).

PROOF. If f exists and we consider the decomposition («,c,1) o (1,%,7) :
E — E’ — E' provided by Proposition 2.8, then Propositions 2.11 and 2.12 imply
that a*(A[E]) = A[E]] = v*(A[E"]).

Conversely, we consider the composition (a,0,1) o (1,—,1) o (1,7,7) : E —
°F — E! — E', and applying Propositions 2.11 and 2.12, we have that A[YE] =
a.(A[E]) = v*(A[E']) = A[E]]; consequently, “E and E’ are congruent and
(1,—,1) = (1,¢,1) is the wanted morphism. |

3. The Schur multiplier of Leibniz n-algebras

For a free presentation 0 — R — F > G — 0 of a Leibniz n-algebra G,
RO[F,™,F]

RF 7] is called the Schur multiplier of G, which is denoted by

the quotient
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M(G). As it is reported in [5], the Schur multiplier is isomorphic to , HL;(G) and
it is a Baer-invariant, which means that it does not depend on the chosen free
presentation (see [10], [11], [16]).

Our aim in this section is to show the interaction between the Schur mul-
tiplier and nilpotent (respectively, i-th nilpotent) Leibniz n-algebras, as well as
the obtention of several formulas concerning dimensions of the underlying vector
spaces.

Theorem 3.1. Let G be a Leibniz n-algebra with an n-sided ideal B, and
set the short exact sequence 0 - B — G — A — 0. Then there exists a Leibniz
n-algebra Q with an n-sided ideal M such that:

(a) [G,.m.,GlNB= 2.
(b) M = M(G).
(c) M(A) is a quotient of Q.

PROOF. Let 0 = R — F 5 G — 0 be a free presentation of G and consider
the following diagram:

0 0 (4)
R
0—S —F
A
P
0 B G—=A 0
0 0 0
~ G ~ F/R ~ F ~ RNO[F,",F] ~ SN[F,n,F]
ThenA:E:S/—R:§ NOWSetM:WaHdQZW
Obviously, M is an n-sided ideal of Q.

Thus

. ~F oL FlLS JF P FI+R S L (F " FIHR)NS
[g,...,g]mB_{R,...,R]mR_ = N = =
([F,.», FINS)+R , [F,.», FInS _ [F,.»,FInS _

R - RN(F,.», FInS)  [F, ", FINR

o~
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~ (F o FInS) /R, FLF] L Q (5)
~([F,.», FINR)/[R, F,n=L F] ~ M’

Now the second statement is obvious. For the third one, since

SN[F,.»,F]  (SN[F, .2, F)/[R,F,""1, F]
S, F,noLF) S, Foe L F/IR, For L F
Q

S FE LA/ RE LA ©)

1%

M(A)

[S,F, "7 F) 0

then M(A) is the image of Q under some morphism whose kernel is RFALA

Corollary 3.2. Let G be a finite-dimensional Leibniz n-algebra, and B be
an n-sided ideal of G such that A = G/B. Then

dim (M(A4)) <dim (M(G)) +dim (|G, .7.,G] N B).
PROOF. From equation (5) we have the short exact sequence of vector spaces
0—-M—=9—1G,.",G]NnB—0,

hence dim(Q) = dim(M) 4+ dim([G,.".,G]NB) = dim(M(G)) +dim([G,.".,G] N B).
On the other hand, equation (6) implies that dim(M(A)) < dim(Q), which
completes the proof. |

Theorem 3.3. Let G be a finite-dimensional Leibniz n-algebra, and B be
a central n-sided ideal of G (i.e. B C Z(G), equivalently, [B,G,"~1,G] = 0) such
that A= G/B. Then

dim (M(G)) +dim (BN [G,.".,G]) <dim (M(A)) + ’i dim(J;)
i=1

where J; = (B® "7 @B ® Gap® .t @Gap) @ (BO "7 @B ®@ Gap, @ B® Gap® 1
@Gab) B+ D (Gab® . ¢ ®Gap @ BR "7 QB).

PROOF. From exact sequence (2) in [7], there is the exact sequence

n—1

@Ji—>M(g)—>M(A)—>B—>gab—>Aab—>O,
=1

Lo o Ny S F LT
and having in mind diagram (4), there is a surjection C : @ Ji — I =T
— [R,F, "~ F|
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From the proof of Corollary 3.2 and keeping in mind equation (6), we have:

dim (M(G)) +dim ([G,.”.,G] N B) = dim (Q)

_ dim (M(A)) + dim <m) < dim (M(A)) + idim(Ji). 0

Lemma 3.4. Let A, B,C be n-sided ideals of a Leibniz n-algebra G such that

A+B ~ A
CCAand ANBCC. Thenc_i_ib,_c

PROOF. It is enough to use the following identification: a + b + (C + B)
a+C.

o

Lemma 3.5. Let 0 = R — F 5 G — 0 be a free presentation of a Leibniz
n-algebra G. Let N be an n-sided ideal of G, and S be an n-sided ideal of F such
that N' = &TR Then the quotient [R]__Ti[s]__;[;l}_}j_l}_] does not depend on the
n-sided ideal S.

PROOF. Assume there is another n-sided ideal 8" such that A = S%R Since
STR NS +R , then for any s € S there exists a s’ € &’ such that s—s" € R.
Define ¢ : Rﬁ[S]—‘" LFl = R0 ([S,F,»=LF]+[R,F,""1LF]) by
¢(r) = r + 0. Obviously, ¢ is a homomorphism satisfying ¢ ([R, F, 7?._.1,]-']0
(S, F,nL F]) C[R, F,n=L FIN([S', F,n=L, F] + [R, F,»~1, F]), then ¢ induces
the homomorphism @ (r + ([R, F,"=L, F]N[S, F, "L F])) = r+ ([R, F, "1, F]
N([s,F,n=L, F] + [R,F,n=1 F])). It can be easily checked that % is a bijec-

tion. Now Lemma 3.4 provides the following isomorphisms:
RN[S,F," L F] ~ N (S, F,nLFl+[R, F,nL F))
R, F,n L FIN[S, F,n» L F]  [R,F,"7L, F]n ([8’,]—',’.‘?.1,]-'] [R, F,n71 f])
(RN[S,F, oL F))+[R, F,n 1, F]
(R, F, - LFIN[S, F,n L F])+[R, F, v F
-~ RN[S, F,"71 F]
R, FCLFINS, FvLF
Theorem 3.6. Let 0 — R — F & G — 0 be a free presentation of a Leibniz
n-algebra G. Let N be an n-sided ideal of G. Then the following sequence is exact
and natural for any n-sided ideal S of F such that N = "SJFTR
R RN[S, F,"71 F] E)M(Q)E)M<Q>E>Nﬂ[g,",g]
[R,F,n-L FIN[S, F,n7 1 F] WV, G,n71 G

O

NG = 0. (7)

. ~ RAO[F,MF . ~ F/R o~
PROOF. Obviously, M(G) = ﬁ Since % = (s+7/z)/72 = S+R’
we have that 0 - S+ R — F — G/N — 0 is a free presentation of G/N,

~ (S+R)N[F,".,F
hence M (%) = 7([5+R),}‘[,":1,}‘}]'
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On the other hand, we can rewrite

F.n FI4+R
NG, 7,6 SERA[L, n, L] SR L2T

)
V,G,n 1G] [M % nol %] o [S+R7_;-'€n_._.1,]:]

1%

Then it suffices to show that the following sequence is exact:

. RNI[S, F,"71 F] it RO[F,.",F] =
R, F,"=L FINI[S, F, 7L F] [R,F,.n., F]

(S+R)N[F,.m., F] N (S+R)N([F,.*, F]+R) .

0.
[S+R,F,"L F] [S, F,""L F]+ R
) RN[S,F,"=1 F] RAO[F, 2, F] nt
Define IT : RF A NE R RFALA by (z + ([R, F,"~L FInN

[S,F,"7LF))) = 2+ [R,F,"71, F]. Tt is easy to check that II is an injective
well-defined linear map.

RNO[F,™,F S+R)N[F,™,F n— _

[S+ R, F,n7L F]. Obviously, ¥ is a well-defined linear map and ¥ o IT = 0,
consequently, Im(IT) C Ker(X).
On the other hand, given z + [R,F,"71, F] € Ker(X), then z € [S +
R, F,n7L F]. Hence z € RN[F,."., FIN[S+R, F,"L, F] = RN[S+R, F,»7L F|.
Thus z + [R, F,""L, F] = [s+7, fo, ..., fu] + [R, F,"7L, F] € H Sum-
RO[S+R.F."=LFIN[S.FhmlF] _ RO[SF =L F)
[R,F,n=L, F) [R.F-LF]

" e RO[S,F,"=LF
Then z + ([R, F,"=1, F]N[S, F,"7L, F]) € [R,]—',".T.l[,]-']m[S,]—‘,“].T.l,]-']

that II (z + ([R, F,»=L, FIn [S,F, "L, F|)) = x4+ [R, F,"~L, F], which implies
that Ker(X) C Im(II).

. (S+R)N[F, ., F] (S+R)N([F, ™, FI+R) n—1
Define I : SIRFTAA T BErAR by I' (z + [S+ R, F,*1, F])

=z+ ([S,F,"7L, F] + R). T is a well-defined linear map such that ' o 3 = 0,
then Im(X) C Ker(T).
ne S+R)N[F, 2, F
For the converse, let z 4+ [S + R, F, "1, F] Eﬁ%
[S+R,F,nLF)=x+ (S, F,""LF]+R)=0.
We need to prove that z + [S + R, F,"71, F] € Im(X). This occurs only if

r+ [S+ R, F,"7HLF| € %, so it suffices to show that = + [S + R,

FooL Fl=r+ S+ R, F,"71, F] for some r € R.

marizing, x + [R, F,"71, F] €

satisfies

such that I'(z+
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Since z € [S, F,"7LF]+ R, we get z —r € [S, F,?7L, F] for some r € R.
Thus 2 —r + [S+ R, F,""LF] =0, ie. 2+ [S+R,F,»""LF] =r+][S+

n—1 _ RO[F,™,F|
R, F,n71 F]. Consequently, T € AR F I

T is surjective. Indeed, for = + ([S, F,"7LF] +R) € (S+R)O(F, 2 F]+R)

[s,.F 2L FI+R
- [FrFIHR - o [FmF)
we have that € S + R and = € SRR BEALATR Hence = €

(S+R)N[F,.» , Fland 'z + [S+ R, F,""LF]) =z + ([S, F,""LF|+ R).

To show that sequence (7) is natural, it is easy to check, keeping in mind
Lemma 3.5, that a homomorphism f : G— G’ such that f(N)CN’ (NQG,N'QG)
induces homomorphisms between the Schur multipliers such that the following
diagram is commutative:

RN[S,F,"=1F] ™ o g T NN[G, ™G]
[R.F,"=LFIN[S,F, "o F) M(G) M (%) WV.G,%1.6]

| R |

R'N[S",F' "ol F] Tr / o’ g 7 NG, .G
[R,,]:/,"‘T.l,}-/]ﬁ[s/,.F’,".il,]:/] M(g ) - M (N’ [N/’g/ynu—‘l’g/] D

Remark 3.7. Let us observe that an n-sided ideal S such that N = % as
in Theorem 3.6 always exists. Indeed, it is enough to consider the following 3 x 3
diagram:

0——=R R 0 0

/

S+R

NP7
VAT

0 N G—">G/N 0

0 0 0

Corollary 3.8. Let G be a nilpotent Leibniz n-algebra of class k > 2, and
0— R — F 2 G— 0 be a free presentation of G, then the following sequence is
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exact and natural:

Fh+l g k

0= R E AR MO =M (gk) -Gk —0.
PROOF. Take A’ = G¥ and 8 = F* in Theorem 3.6. Then N = GF = £ =
ﬂT—FR = 5% and [S, F,"7L F] = [FNF,n0L F] = FMUC R Now exact
sequence (7) concludes the proof. 0

Corollary 3.9. Let N be an n-sided ideal of a finite-dimensional Leibniz
n-algebra G satisfying the hypotheses of Theorem 3.6. Then it holds:

o ((3)) o (2S5

:mmmug»+mm<

Nﬂwp%m)
V,G,m 1G] )

PrOOF. From exact sequence (7) we have

dim (M (ff)) = dim (Im(X)) + dim <W) =dim (M (G))

. ( RNI[S, F,n 1 F] ) . (J\/n [g,.v.,g])
—dim +dim | —M— ) .
R, F,»=LFIN[S,F,n»7L F] WV, G, n71 g U
Definition 3.10. Let Q be a nilpotent Leibniz n-algebra of class k. An ex-

tension of Leibniz n-algebras 0 - N — G 5 Q — 0 is said to be of class k if G
is nilpotent of class k.

Theorem 3.11. A central extension 0 = N — G 5 Q — 0 is of class k if
and only if § : M (Q) — N vanishes over Ker(7), where 7 : M (Q) — M (Q/Q¥) is
induced by the canonical projection Q —» QF.

PRrOOF. Consider the following diagrams of free presentations:
0 0 0 0

—F 0——=T —=F

Kowop
TOop

S
0 N G—">0Q 0 0 Qk Q—">9/QF ——=0
0 0

.

0 0
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then 0 : M (Q) = % — N, given by 0(x + [S, F,."., F]) = p(x), is well-
defined and Ker(7) = %

Assume that G is nilpotent of class k, and consider x+[S, F,"71, F| € Ker(7).
Therefore 0(x+[S, F,"71, F]|) = p(z) = 0, since p(z) € [p(T), p(F), "7, p(F))] C
[GF + N,G, 71 G] C GF! = 0. For the last inclusion, it is necessary to keep in
mind that 7o p(T) € QF = 7(G¥), and consequently p(7) C GF + N.

Conversely, GFt1 = Z[g,...,g’“,...,g]i = Z[p(f),...,p(]—'k),...,p(}')]i

i=1 i=1
- Zp[]—",...,T,...,]—']i = p|T,F,"=L, F] = 0, since [T, F,"71, F] C R, be-
=1

cause 6 vanishes over Ker(7). For the last inclusion, it is necessary to keep in
mind that 7o p(F*) C Q% hence F* C T. O

Proposition 3.12. Let G be a nilpotent Leibniz n-algebra, and f : G — Q
be a surjective homomorphism of Leibniz n-algebras. If Ker(f) C [G,.".,G] and
M(Q) =0, then f is an isomorphism.

In particular, if M (ﬁ) =0, then M(G) = 0.

ProoF. Let NV = Ker(f) be, then M(G/N) = 0. From exact sequence (7),
we have that N = N N[G,.".,G] C [N,G,"71 G], then N C [N, G, G]. Obvi-
ously, D is true, then N = [N, G, "7} G].

Obviously, N' = N7 C G7, for all j > 1. Since G is nilpotent, there exists
k € N such that GF*! = 0, which implies that A = 0, and consequently, f is
an isomorphism.

The second statement is an obvious consequence of the first one. ([

4. Stem covers

The study of different types of central extensions, together with their cor-
responding characterizations, is the subject of [9, Section 4]. To summarize,
let G and Q be two Leibniz n-algebras; a central extension f : G — Q is said
to be a stem extension if Ker(f) C [G,.7.,G]. Additionally, if the induced map
M(G) — M(Q) is the zero map, then the stem extension f: G — Q is said to be
a stem cover. In this last case, G is said to be a cover or a covering algebra. Our
goal in this section is to analyze the interaction between stem covers of Leibniz
n-algebras and the Schur multiplier.
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Stem extensions are characterized in [9] as follows:

Proposition 4.1. The following statements are equivalent for a central ex-
tensionE:0—>N—i>gi>Q—>O:
(a) E is a stem extension.
(b)
(¢) ix : N = ,HLy(G) is the zero map.
(d) fue:nHLo(G) = nHLo(Q).

Lemma 4.2. Let 0 = R — F % G — 0 be a free presentation of a Leibniz

n-algebra G, and let 0 - M — P ﬂ Q — 0 be a central extension of another
Leibniz n-algebra Q. Then for each homomorphism « : G — Q, there exists

0. (A[FE]) is a surjective homomorphism.

a hOIHOHlOI'phiSIH /6 : m — P such that ,8 <m) g M and the
following diagram is commutative:
R F P
0 [R,F,nmL,F [R,F,nm1,F) g 0
L
0 M P— Y50 0

where p is the natural surjective homomorphism induced by p.

PROOF. Since F is a free Leibniz n-algebra, there exists w : F — P such
that Y ow = aop.

On the other hand, ¥(w(R)) = a(p(R)) = 0, hence w(R) C M, which implies
the vanishing of w over [R,F, 7?71, F]. So w induces 3 : m — P, and for
any r € R, B(r + [R, F,"71L F]) =w(r) e M. O

Theorem 4.3. Let G be a Leibniz n-algebra such that M(G) is finite-dimen-

sional, and let 0 - R — F LN G — 0 be a free presentation of G. The extension

0—->M—=>P ¥ G — 0 is a stem cover if and only if there exists an n-sided ideal
S of F such that

(a) P2 L and M= E.
R ~ S
(b) [R,F2LF] M(9) @ [R,F L7

PRrROOF. Let 0 - M — P g G — 0 be a stem cover. By Lemma 4.2,
there exists a homomorphism 8 : ——2—— — P such that ¥y o 3 = p and

[R,F,"=L,F]
# (i) M
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Since P = Im(B) + M and M C Z(P), we have M C [P,.7.,P] = [Im(8) +

M, .7 Im(B) + M] C Im(3). Thus 3 is surjective, and 3 (ﬁ) =M.

Now, let S be an n-sided ideal of F such that Ker(8) = m];gT}'] Then

s & 7 % p .0, which

we have the exact sequence 0 —
4 0= mFna7A ~ mrs

B

: s R |

induces the exact sequence 0 — RFATF O mEATA M — 0. It follows
from these two exact sequences and the third isomorphism theorem that P =
F/RFZLF] ~ F ~ RARFTLF] A R R ~
S/[R,Fn=LF] — S and M = S/IR,FroLF] T ST Moreover, [R,Fr=LF] Mo

~ T B :
TRFA & K-vector spaces, and thus = M(G) @ R Since
M = M(G) by [9, Proposition 9].
Conversely, suppose the existence of an n-sided ideal S of F satisfying (a) and

~Y S ~ ~J ~ 3y 7n'7'17 ~ ~/
(b). Then, L = % = % >~ G, and M(G) = % =~ R =~ M. Moreover,

MR C SHfS"y'l"ﬂ = 5[:[-}.””}-]}.] C [£,.m, L] = [P,.n.,P]. Therefore, the

R
[R,F,"m1F)

extension 0 — M — P % G — 0 is a stem cover by [9, Proposition 9]. O

Corollary 4.4. Any finite-dimensional Leibniz n-algebra has at least one
covering.

PROOF. Let 0 - R — F 5 G — 0 be a free presentation of a finite-
dimensional Leibniz n-algebra G. Following the proof of Theorem 4.3, choose

an n-sided ideal S of F such that m is the complement of M(G) in
m. Then the extension 0 — % — g — G — 0is astem cover of G. U

Previously to the following result, we need to introduce some notions and
properties concerning isoclinism of Leibniz n-algebras. In the particular case of
n-Lie algebras, we recover the corresponding notions and results in [28].

Consider the central extensions F; : 0 = N; 2% ¢, 5 0, — 0,5 = 1,2.
Let C; : Q;%x,."., xQ; — [G;,.".,G;] be given by Ci(qi1,-.-,qin) = [gi1s - - Ginl,
where 7;(gi;) = ¢ij,© = 1,2;j = 1,...,n, the commutator map associated to the
extension Fj;.

Definition 4.5. The central extensions FE; and F, are said to be isoclinic
when there exist isomorphisms 1 : Q1 — Qy and £ : [G1,.7.,G1] — [Ga,.™.,G2]
such that the following diagram is commutative:

Q1 x.1.x Q1 s (G111, Gl (8)

nx.ﬁ.xnl lﬁ

Qo X .. X Qo &, (G2, .., Go]
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The pair (n,&) is called an isoclinism from FE; to Es and will be denoted by
(n,€) : Ex ~ Ej.

Let Q be a Leibniz n-algebra, then we can construct the following central

extension:

Eo:0— Z(Q) — Q™8 0/Z(Q) — 0. 9)

Definition 4.6. Let G and Q be Leibniz n-algebras. Then G and Q are said
to be isoclinic when Eg and Eg are isoclinic central extensions.
An isoclinism (n,£) : Eg ~ Eg is also called an isoclinism from G to Q,

denoted by (n,€) : G ~ Q.
It is a routine task to show that isoclinism is an equivalence relation.

Definition 4.7. A homomorphism of central extensions («, 8,7) : B4 — Fs is
said to be isoclinic if there exists an isomorphism S : [G1,.7.,G1] — [Ga, .., G3]
with (v,8) : By ~ Es.

If B is in addition a surjective homomorphism (resp., injective homomor-
phism), then (a, 3,7) is called an isoclinic surjection (resp., isoclinic injection).

Proposition 4.8. For a homomorphism of central extensions («,3,7) :
FEy — Es, the following statements hold:

(a) (a, B,7) is isoclinic if and only if v is an isomorphism and Ker(8)N[G1, .., G1]

= 0.
(b) If (e, B,7y) is isoclinic and ' is given as in the above Definition, then 3’ =
BiiGy, 2,611+

PROOF. (a) Assume that (o, 8,7) : 1 — FEs is isoclinic, then (vy,8') : Eq ~
Es is an isoclinism for some isomorphism 8’ : [G1,.7.,G1] — [G2,.".,G2]. This
implies by definition that 7 is an isomorphism. Now let m € Ker(8)N[Gy,.7.,G1].
Then f(m) = 0 and m = Z)\Z-[gl-117...7gi1n] for some g}y,...,g4, € Gi. Since

(7,8') : E1 ~ Es is an isoclinism, we have

ﬂ/(m) = 6/ <Z /\i[gz'llw"vgiln}) = 6/ (Cl <Z Ai (Fl(gill)v"ﬂﬂl(giln))))
= (B'oCh) (Z Ai (7T1(9¢11)a~~-,7fl(9}n))>

= (Cyo(yx.". x7)) (Z Xi (m1(gh), - 77T1(91'1n))>
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<Z)\ (m 911 W(Wl(giln)))>
<Z/\ m2(B(gh)) 2<ﬁ<gin>>>>
—ZA (gh)s-., Blgh)] = (ZA gﬂ,...,gén]>:ﬁ(m>=0-

Since 3’ is one-to-one, it follows that m = 0.
Conversely, assume that Ker(8) N [G1,.7.,G1] = 0. Define 5’ : [G1,.7.,G1] —
[Ga,.™.,Ga] by B'(g9) = B(g), which is one-to-one. It remains to show that /3’ is

onto. Let y € [G2,.7.,G2]. Then y = Z)\Z-[gfh...,g?n} for some g7; € Ga,j =

K3
1,...,n. Since 7 and 7 are onto, it follows that m2(g7;) = (v o m1)(g};) for some
g}j € G1,j = 1,...,n. By the homomorphism («, 3,7), we have (y o Wl)(g}j) =
(m2 0 B)(gi;), which implies that g7; — B(g;) = x2(n;) for some n; € Na,j =
1,...,n. We now have

ﬂl (Z >‘1 [gz'llv te 7gi1n]> = ﬂ <Z )‘7 [gilla tee 7gzn > Z )‘ gzl B(giln)]
=2 Ailgh = xa(m), g0 = X)) = -

(b) Follows directly from the proof of (a). O

Proposition 4.9. Let 5 : G — Q be a homomorphism of Leibniz n-algebras.
Then 8 induces an isoclinic homomorphism from Eg to Eg if and only if Ker(8)N
[G,.".,G] =0 and Im(B) + Z(Q) = Q.

In this case, we call 8 an isoclinic homomorphism.

PROOF. Assume that Ker(8)N[G,.".,G] =0 and Im(8) + Z(Q) = Q. First
we prove that 5(Z(G)) C Z(Q). Indeed, let ¢; € Q, since Im(B) + Z(Q) = Q,
it follows that g; = 8(z;) + gio for some z; € G and ¢;0 € Z(Q),i=1,...,n. Then
for any g € Z(G) we have

qla"wﬁ(Q)a"'aQﬂ = [ﬁ(xl>+q107aﬁ(g)776(xn)+qn0] =0.
~—~

%

So the maps a := Bz and v : G/Z(G) — Q/Z(Q) given by v(g) = B(g) are
well-defined homomorphisms, and it is readily verified that («, 3,7) : Eg — Eg
is a homomorphism of central extensions.
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To show that it is isoclinic, it is enough to show by Proposition 4.8 that v is
an isomorphism. To show that 7 is one-to-one, let g € G such that v(g) = 0.
Then 5(g) € Z(Q). We claim that g € Z(G). Indeed, if g ¢ Z(G), then m :=
91,---+9i-1,9,9i+1,---,9n) #0forsomeg; € G,j=1,...,i—1,i+1,...,n. But
B(m) = [8(g1)s- -+ B(gi1), (), B(gi1)s-- - Blgn)] = 0, because 3(g) € Z(Q).
This implies that m € Ker(8) N [G,.7.,G], and thus m = 0, a contradiction. Next
we show that 7 is onto. Let ¢ € Q. Since Im(8) + Z(Q) = Q, it follows that
q = B(z) + qo for some z € G and qy € Z(Q). Clearly, § = f(z) = ¥(T).

Conversely, assume that 8 induces an isoclinic homomorphism («, 3,7) from
Eg to Eg. Then again by Proposition 4.8, Ker(8) N [G,.".,G] = 0. It remains
to show that Im(8) + Z(Q) = Q. Clearly, Im(8) + Z(Q) C Q. Now let ¢ € Q.
Following the notation in equation (9), prg and ~ are onto, then pro(q) = v o
prg(g) for some g € G. On the other hand, by the homomorphism (a, 8,7), we
have that (y o prg)(g) = (pro o 8)(g), which implies that ¢ — 5(g) € Ker(prg) =
Z(Q). Therefore, ¢ = 8(g) +n for some n € Z(Q). This completes the proof. O

Proposition 4.10. Let N be an n-sided ideal of a Leibniz n-algebra G. The
natural homomorphism nat : G — G/N is an isoclinic surjection if and only if

NNG,.m.,G]=0.

PRrROOF. Follows by Proposition 4.9, since Ker(nat) = N. In addition, if
NN[G,.7.,G] # 0, then nat is not an isoclinic homomorphism by Proposition 4.8.
Conversely, if NN [G,.7.,G] =0, then ¢ : [G,.7.,G] = [G/N,.".,G/N], given
by &(lg1, .-+, 9n]) = g1 + N, ..., g, +N], is an isomorphism and Z(G/N) = %,

n
and % = % by the third isomorphism theorem. Now the commutativity

of diagram (8) immediately follows. O

Corollary 4.11. If G is a Leibniz n-algebra such that its Schur multiplier is
finite-dimensional, then all stem covers of G are isoclinic.

PROOF. Let 0 - R — F % G — 0 be a free presentation of G. Let

0—-M—=>"P % G — 0 be a stem cover. By the proof of Theorem 4.3, there
exists a surjective homomorphism 8 : ——Z—— — P and an n-sided ideal S

[R,F,"2LF)
of J* such that m =~ M(G) & Ker(3) and Ker(8) = ——5——. Moreover,
Ker(3) N [ - n F — S [F.nF  _ SnF.nF]

T [RFAILF)
R, F,rLF) 7 RFACLF] O RFALF D RFAILF] T RFAILF]
M(G) N ﬁ, which vanishes thanks to the finite-dimension and the exact

sequence 0 — M(G) N m — M(G) - M —=0.

Now Proposition 4.10 completes the proof. ([l
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Lemma 4.12. Let G be a Leibniz n-algebra and

0 My P1 g 0
Pop b
0 My P g 0

be a commutative diagram of short exact sequences of Leibniz n-algebras such
that the bottom row is a stem extension. If the homomorphism =y is surjective,
then ( is a surjective homomorphism as well.

PRrROOF. Obviously, Pz =Im(5) +Ms. Hence [Pa,.%., Pz]=[Im(B),.7.,Im(B)].
By [9, Proposition 6], My C [Pa,.7.,Pa] = [Im(8),.7.,Im(53)]. Therefore, Py C
Im(B) + [Im(5),.7.,Im(B)], i.e. B is surjective. O

Theorem 4.13. Let G be a Leibniz n-algebra such that M(G) is finite-
dimensional, and let 0 — M; — P; a G — 0,2 = 1,2, be two stem covers of G.
If n : Py — Pq is a surjective homomorphism such that n(My) C Ms, then 7 is
an isomorphism.

PROOF. Let 0 - R — F & G — 0 be a free presentation of G. By Theo-
rem 4.3, there exist n-sided ideals S;,7 = 1,2, of F such that P; = %; M, = SE
and —L—— =2M(G)p —=—,i=1,2.

[R,F,"=1,F] [R,FLF]’

By Lemmas 4.2 and 4.12 and the proof of Theorem 4.3, there exists a sur-
3 3 3 . F ~ £ —_ 52
jective homomorphism 6 : RFEA P2 = 5 such that Ker(0) = REATA"

Since F is a free Leibniz n-algebra, there exists a homomorphism 6 : F — P;
such that 1, 0 & = p. Moreover, §(R) C My and § vanishes on [R,F,"~1, F],

Py . /. F ~ F
consequeiltly, it induces a homomorphism ¢’ : RFLA — P = S such that
6" opr =6, where pr : F — m is the canonical projection. Since ;08" =
P, Lemma 4.12 implies that ¢’ is a surjective homomorphism. Let Ker(d') =
T _gi i
RF i for some n-sided ideal 7 of R.

: T _ ! T _ T
Since 0 ([R,fﬁ:aﬂ) - 77(6 ([R,f,n:l,f})) = 0, we have mrms ©
Ker(f) = —=52—— therefore 7 C So.

RF 1A
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From the diagram

-
[R,F,no14F]
/ Ij
) B
S ? R
R 7] [R.F,"oLF) M;

i*

My
it follows that " ]__Snl_l 7 = [sz_l 7 and by Theorem 4.3, we have M(G) &

S ~ R ~ T . . . ~
[RJ:,"?T.I,]:] TN M(G) & RETA’ which implies that S; 2 7. So n

is an isomorphism, since Ker(n) = 8—72 O

Proposition 4.14. Let 0 — M; — P; ¥ G — 0,i = 1,2, be two stem
covers of a finite-dimensional Leibniz n-algebra G with finite-dimensional Schur
multiplier. Then Z(P1)/My =2 Z(P3)/Ma.

PROOF. Let 0 = R — F & G — 0 be a free presentation of G. By Corol-
lary 4.4, there exists a covering G* of G, i.e. there is an exact sequence 0 — M —
G* % G — 0 such that M C Z(G*)N[g,.m.,G] and M = M(G) (see [9, Propositions
6 and 9]).

By Theorem 4.3, there exists an n-sided ideal S such that G* & §7 M =
R R ~ S F _ T
§ and mto = MG) @ atoige As Z([R,f,":l,f]) T RESLF
[T, F,» L F] C[R,F,»= 1L, F], thus T C 7 (%).

Conversely, for x +S € Z (%), we must show that z + S € 73—

Indeed, for any f+S € £, [fi+S,..., fis1+S,2+8, fir1+S, ..., fn+S] =0,
hence [f1,..., fi—1, %, fit1y - -+, fn] € SN[F,.7., F], for any f; € F,i=1, ..., n.

To show that € T, we need to prove that z+[R, F, 771, Fle Z (4)

[R,F,"=1,F]
= m But this holds, since for any f; € F,[f1,.-, fi—1, @, fit1s-- -, [n]
+[R,F,"LF] = 0,4 = 1,...,n, because [f1,..., fi—1,%, fix1,---,fn] € SN
n ~ RO[F,5,F
[F,.m., F], and by Theorem 4.3, [72,]-_,75.’.1,]-'] = [R?][-',".T.l,,/’:]] ) [R,f,iil,f]’ hence RN
[F,.n, FINS C [R,F,n~L, F], but S C R, then SN [F,.n., F| C [R,F, 7L, F].
Consequently, L = Z (£). From here, Z(,a ) o Lg/{;) v %?‘Z ~ T,
Applying this result to each stem cover, we have #7311) =~ % = %P;). O
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The following results are a generalization to Leibniz n-algebras (n > 3) of
the characterizations of stem extensions and stem covers of Leibniz algebras (case
n=2) in [13].

Proposition 4.15. Let Q be a Leibniz n-algebra, and let U be a subspace
of ,HL,(Q), then there exists a stem extension E with U = Ker (0. (A[E])).

PrOOF. Consider the quotient K-vector space N = , HL;(Q)/U as a triv-
ial @-module. Consider the central extension £ : 0 - N - G — Q — 0 €
WHLY(Q,N). Thus 0, (A[E]) = 0.(F) € Hom(, HL1(Q),N).

If 0.(FE) : ,HL1(Q) - N = ,HL;(Q)/U is the canonical projection, then
there exists a central extension £ : 0 = N — G — Q — 0 such that 0, (A[E]) =
0.(F) is the canonical projection.

Associated to E, we have the exact sequence (3), where U = Ker (0.(E))
Ker (6. (A[E])). Moreover, E is a stem extension by Proposition 4.1.

O

Corollary 4.16. A stem extension is a stem cover if and only if U = 0.

Remark 4.17. Any stem cover £ : 0 - N - G — Q — 0 is isomorphic to
a stem cover £ : 0 — ,HL1(Q) — G — Q — 0 with 0, (A[E']) =1, 51, (9)-

Indeed, there always exists E’, it suffices to take U = 0 in Proposition 4.15;
if o : N = ,HL(Q) is the inverse of 6, (A[E]), which is an isomorphism
by [9, Definition 2], then naturality of isomorphism 6, : ,HL'(Q,N) =
Hom(,, HL1(Q),N) implies 0, (¢, (A[E]) = . (6. (ALE]) = (6. (A[E])) =
1, HL,(Q), S0 we can choose E’ such that A[E'] = ¢, (A[E]). By Proposition 2.11,
there exists a homomorphism f : G — G’ making the following diagram commu-
tative:

E:0 N g Q 0
A
E:0——= ,HL(Q) g’ Q 0

Proposition 4.18. Every stem extension of Q is an image by a surjective
homomorphism of some stem cover.

PRrROOF. Let £F:0 — N — G — Q — 0 be a stem extension characterized by
AlE] = ¢ € ,HL'(Q,N); then ¢ = 0,(&) = 0.(A[E]) = 0.(E) : ,HL1(Q) — N is
a surjective homomorphism.

In order to complete the proof, we must find n € ,, HL*(Q, ,HL1(Q)) with
©0«(n) =& and 0.(n) =1, g1, (), Where ¢, is the morphism induced by naturality
of the isomorphism 6, on ¢.
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Let n € HL'(Q,,HL1(Q)) be such that 0.(n) = 1 pr,(g), then 6,(¢ —
w«(M) = ¢ — @« (6.(n)) = 0; consequently, p.(n) = £. Obviously, n satisfies the
required conditions.

Now, let E' : 0 — ,HL1(Q) - G — Q — 0 € ,HLY(Q,,HL1(Q)) be
such that A[E'] = n; by Proposition 2.11, there exists f : G — G’ such that
(¢, f,1) : E — E’ is a surjective homomorphism. O

Proposition 4.19. There exists only one isomorphism class of stem covers

of Q.

PROOF. By Remark 4.17, stem covers are of the form E : 0 — ,HL;(Q) —
G — Q@ — 0 such that 0. (A[E]) =1, m1,(0)-

Fix a stem cover E. For any other stem cover E’, we have that 6, (A[E])
0. (A[E']) = 1,1, (0), then [E] = [E'].

O

Proposition 4.20. Let £ : 0 — ,HL;(Q) - G — Q — 0 be a stem
cover and let E : 0 - N — G — Q — 0 be a central extension. Then every
homomorphism f: @ — Q can be lifted to a map ' : G — G.

PROOF. Let A[E] = ¢ € ,HL*(Q,N). We define ¢ = f* (0.(¢)) : nHL1(Q)

— N. Since n = A[E] € ,HLY(Q,,HL{(Q)) is a stem cover with 6,(n)
0. (ATE]) = () = 1, 11, 0, we have 6. (9. (1) = pu (0(1)) = = F* (6.(6)) =
2

0. (f*(€)), thus pu(n) = f*(£), ie. @ (A[E]) = f*(A[E]). Proposition 2.13
concludes the proof. O

Proposition 4.21. LetE:O%NAQQQ%OandE’:OﬁN’Xﬁg’i
Q' — 0 be central extensions. Let p: N — N and o : Q@ — Q' be homomorphisms
of Leibniz n-algebras. Then:

(a) There exists T : G — G’ inducing p and o if and only if the following diagram
is commutative:

0+ (E)
nHL1(Q) ——=N

b
0.(E")

nHLi(Q) — N
(b) If T exists, it is unique if and only if Hom(, HLy(Q),N’) = 0.

PRrOOF. (a) If 7 exists, the commutativity of the square follows from the
naturality of sequence (3).
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Conversely, consider the following diagram provided by the natural isomor-
phism 6,:
0, : nHL'(Q,N) — == Hom(,, HL{(Q),N)

6! : WHL'(Q,N') —>Hom(,HL1(Q),N')

0" : HL'(Q',N') —=> Hom(,HL,(Q'),N)

(
Let £ = A[E] and &' = A[E'] be, then p, (6.(£)) = p« (0. (A[E])) = p« (0.(E)) =
p(0.(E)) = 0.(E') oo, = 0" 0 0.(E) = 0" (0 i( [E'])) = 07 (6.(¢)). Thus
07 (p«(£)) = ps (0:(8)) = 0" (0.()) = 07 (c7(£')), and consequently, p.(§) =
o*(&"). Now Proposition 2.13 provides 7 : G — G’ inducing p and o.

(b) Suppose there exists 7 : G — G’ that induces p and o, and let 7' : G — G’
be another homomorphism that induces p and o, then there are unique homomor-
phisms f : G — N’ such that 7/ — 7= x' o f and ¢ : @ — N’ such that pom = f;
consequently, 7/ = 7+ x’' o p o ; that is, for another homomorphism 7/ : G — G/,
there exists a unique homomorphism ¢ : @ — N’ such that 7/ = 7+ x' oo .
Conversely, if ¢ : @ — N’ is a homomorphism, then 7" = 7 + x’ o ¢ o 7 induces
p and o.

7 is unique if and only if 7 — 7/ = 0, that is, x’ oo = 0, which is equivalent
to ¢ € Hom(Q,N’) = 0 and then Hom(,HLy(Q),N") = 0. O

Corollary 4.22. Under the hypothesis of Proposition 4.21, the map 7 : G —
G’ exists and it is unique when Q is a perfect Leibniz n-algebra (Q = [Q,.7., Q]).

PRrROOF. If Q is a perfect Leibniz n-algebra, then Hom(,, HLy(Q),N’) = 0. O

Proposition 4.23. The isomorphism classes of stem extensions of Q are
in one-to-one correspondence with the subspaces of ,HL1(Q). Moreover, if U
and V are two subspaces of , HL1(Q), then U C V if and only if there is a map
(necessarily surjective) from the stem extension corresponding to U to the stem
extension corresponding to V.

PrROOF. Let £E: 0 - N - G — Q — 0 be a stem extension. According to
Proposition 4.15, let U = Ker (0.(E)) = Ker (0.(A[E]) : nHL1(Q) — N) be the
subspace associated to E. It is clear that isomorphic stem extensions yield the
same subspace of , HL1(Q).

Conversely, let Y C ,HL(Q) and N = ,HL,(Q)/U be; we consider the
canonical projection 7 : ,HL1(Q) — N, then there exists an element A[E] €
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nHL'Y(Q,N) such that 6, (A[E]) = 7. Obviously, [E] is unique, 0, (A[E]) is
a surjective homomorphism and then E is a stem extension.

Finally, if £/ : 0 — N — G’ — Q — 0 is other stem extension associated
with U, then there exists an isomorphism r : N — N’ such that the following
diagram is commutative:

0.(FE
00—t —— 1L (Q) " N0

o |

0—U—> ,HL;(Q) —>N —=0

By Proposition 4.21 (a), there exists 0 : G — G inducing r : N = N" and 15 :
Q — Qsuch that (r,0,1g) : E — E’ is a homomorphism of extensions; moreover,
o is an isomorphism, and then £ and E’ are in the same isomorphism class.

For the second statement, we consider a morphism of stem extensions (r, ¢, 1) :
E — F’. Naturality in sequence (3) implies U = Ker (6.(E)) C Ker (0.(E")) = V.

For the converse, we first recall that every stem extension is isomorphic to
an extension F with 0, (A[E]) the canonical projection. It is thus enough to
consider those. Let Y CV C ,HL1(Q),N = ,HL1(Q)/U and N' = ,HL,(Q)/V.
There exists a surjective homomorphism r : N — N’ such that

0——=U—> ,HL;(Q) —>N—=0

T
00—V —= , HL;(Q) ~+>N ——=0

Now,if E: 0 — N — G — Q — 0is an extension with 0, (A[E]) = 0.(F) = 7, and
E' :0—= N — G — Q — 0 is another extension with 0, (A[E']) = 0.(E’) = o,
then by Proposition 4.21 (a), there exists ¢t : G — G’ inducing r and 1; moreover,
t is surjective. ([

Remark 4.24. We recall that when Q is perfect, then Proposition 4.21 implies
that ¢ is uniquely determined by r.

Proposition 4.25. Let Q be a perfect Leibniz n-algebra, and let E : 0 —
N — G — Q — 0 be a stem extension, then the following sequence is exact:

0= HL1(G) = nHL1(Q) "' N = 0.

ProOOF. From exact sequence (3) in [7] and keeping in mind that Proposi-
tion 4.1 implies that , HLq(G) = 0. |
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Note that it follows from Propositions 4.23 and 4.25 that when Q is a perfect
Leibniz n-algebra, then the first n-Leibniz homology K-vector spaces with trivial
coefficients of a stem extension of Q are precisely the subspaces of , HL1(Q).

Corollary 4.26. Let Q be a perfect Leibniz n-algebra, and let E : 0 —
N — G — Q — 0 be a central extension. Then E is a stem cover if and only if
wHLo(G) =nHL1(G) =0.

PROOF. It easily comes from the exact sequence (3) in [7] associated to E,
with ,HLo(G) = ,HL1(G) = 0, it is easily derived that 6, (F) is an isomorphism,
and conversely. O

Remark 4.27. Let E : 0 - N = G — Q — 0 be a stem extension with
nHL1(G) =0, then E is a stem cover. Corollary 4.26 shows that the converse is
true if, in addition, Q is a perfect Leibniz n-algebra.

In general, however, there are stem covers with , HL1(G) # 0. For example,
let F be a non-abelian or non-nilpotent free Leibniz n-algebra, and let us consider
the sequence 0 — F*/Fk+l — F/Fk+l — F/Fk — 0, which is central for k > 2,
and moreover, is a stem cover by [9, Proposition 9], since (F/FF+1),, & Foy, =
(F/F*)ap and, on the other hand, the map , HL;(F/Frt1) = Fhtl/Fht2
WHLy(F/F*)=F*)FF+1is trivial. Moreover, ,, H Ly (F/FF+1)=Fr+1/ Fr+2L0.

Proposition 4.28. Let Q be a perfect Leibniz n-algebra, and let 0 - R —
F EN Q — 0 be a free presentation. Then

[F,.m., F]

@
. 5050
[R, F,n7L F] <

0— nHL1(Q) —

is a stem cover of Q, where ¢ is induced by f.

PrROOF. 0 —» ,HL,(Q) — _FT] 8 Q — 0 is the universal central ex-

[R,F,"=1,F]
tension of Q [6, Theorem 5]. Moreover, ,, H Ly (%) =,HLg (%)
=0 by [11, Proposition 5.1], hence it is a stem cover by Corollary 4.26. (]

From Proposition 4.19, when Q is a perfect Leibniz n-algebra, we have that

any stem cover is isomorphic to 0 — , HL;(Q) — % — Q9 —0.
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Proposition 4.29. Let E: 0 — N 5 G 5 Q — 0 be a central extension,
and let f : X — Q be a homomorphism of Leibniz n-algebras where X is a perfect
Leibniz n-algebra. Then there exists ¢ : X — G such that m o ¢ = f if and only
if fo(nHL1(X)) € m(nHL1(G)).

If ¢ exists, then it is uniquely determined.

PROOF. If ¢ exists, then the functor ,, H L1 (—) preserves the composition, so
fenHL1 (X)) = 7o (@i (n HL1 (X)) C (o HL1(G)).

Conversely, let Q" = Im(f) C Q and § = Ker(f), then the exact sequence
0S8 — X - Q — 0 induces the exact sequence 0 — S/[S,X,"7L X] =
S = X/J[S, X, 7L X] = X' £ 9 55 0 where f/: X' — @ is induced by f.
Now, sequence (3) implies that f,(,HL1(X’")) = fu(o HL1(X)) C m(, HL1(G)) C
nHL1(Q).

In order to complete the proof, we need to construct ¢’ : X’ — G such that
the following diagram be commutative:

0 S’ X' o 0
Lo
0 N g >0 0

By naturality in sequence (3) and by the fact f.(,HL1(X")) C m.(,HL1(G)),
then there exists an injective map 3 : Im(f.) — Im(m,) which induces 7" : & — N.
From Proposition 4.21 it follows the existence of ¢’ : X’ — G. Moreover, ¢’
unique if and only if Hom(,, HL;(Q’),N) = 0, which is obvious. Now ¢ : X = G
is obtained by the composition ¢’ onat: X — X' — G. d

is
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