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Irrationality and transcendence of continued fractions
with algebraic integers

By SIMON BRUNO ANDERSEN (Horsens) and SIMON KRISTENSEN (Aarhus)

Abstract. We extend a result of Hančl, Kolouch and Nair on the irrationality and

transcendence of continued fractions. We show that for a sequence {αn} of algebraic

integers of degree bounded by d, each attaining the maximum absolute value among

their conjugates and satisfying certain growth conditions, the condition

lim sup
n→∞

|αn|
1

Ddn−1 ∏n−2
i=1

(Ddi+1) = ∞

implies that the continued fraction α = [0;α1, α2, . . . ] is not an algebraic number of

degree less than or equal to D.

1. Introduction

Continued fractions are a convenient tool in studying the arithmetical proper-

ties of a number. Usually, one considers a real number α and the simple continued

fraction

α = a0 +
1

a1 +
1

a2 +
1

. . .

= [a0; a1, a2, . . . ],

where a0 ∈ Z and ai ∈ N for i ≥ 1. The sequence of partial quotients {ai} may

be finite or infinite. A number is rational if and only if the sequence is finite.
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For an irrational number α, we define the sequence of convergents of α to be

the finite continued fractions obtained by truncation,

pn
qn

= [a0; a1, a2, . . . , an].

It is a well-known consequence of Roth’s theorem [6] that α is transcendental if

lim sup
n→∞

log an+1

log qn
> 0.

While choosing the partial quotients to be natural numbers is entirely natural

for real numbers, this is in fact not necessary. For instance, in Hurwitz’ continued

fractions [4] the partial quotients are Gaussian integers, and any complex number

can be expanded in a Hurwitz continued fraction. In fact, one may use as partial

quotients any choice of non-zero real or complex numbers, though the resulting

continued fraction need not be convergent. If the partial quotients are all positive

real numbers, the convergence is ensured by the condition

∞∑
n=1

an =∞,

see [6], where it is shown that this is necessary and sufficient in this case. For more

general complex partial quotients this is no longer the case, but if the sequence

{|qn|} is increasing, this is sufficient for the convergence of the continued fraction.

In the present note, we are interested in continued fractions where the partial

quotients are algebraic integers. In particular, we are interested in general criteria

for the irrationality or transcendence of the resulting continued fraction. Not much

appears to be known in this setting. In [3], a growth condition on a series of

positive integers {an} is given, which guarantees that the continued fraction

γ = [0;
√
a1,
√
a2, . . . ]

is not algebraic of degree D. In brief, it is shown that if

lim sup
n→∞

a

1

D2n−1 ∏n−2
i=1

(D2i+1)

n =∞,

then γ cannot be an algebraic number of degree at most D. An immediate corol-

lary is that the condition

lim sup
n→∞

a2
−n2

n =∞

implies the transcendence of γ.
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In the present note – much in the spirit of [1] – we extend this result to deal

with sequences of algebraic integers. To state the result, recall first that the house

of an algebraic number α is the maximal modulus among the conjugates of α, i.e.

if the conjugates of α are α1 = α, α2, . . . , αd, then the house of α is defined to be

α = max
1≤j≤d

{|αj |}.

Next, recall that for a sequence of non-zero complex numbers αn, the de-

nominators qn of the convergents of the continued fraction [0;α1, α2, . . . ] satisfy

the recurrence

q0 = 1, q1 = α1, qn+2 = αn+2qn+1 + qn, (1)

see [6].

Theorem 1. Let d,D ∈ N, such that d > 1, and let {αn} be a sequence of

algebraic integers with max degαn = d, such that |αn| = αn , and such that

lim sup
n→∞

αn
1

Ddn−1 ∏n−2
i=1

(Ddi+1) =∞.

Let α be given by the continued fraction α = [0;α1, α2, . . . ], and suppose that

the sequence of absolute values {|qn|}, where qn is defined by (1), is increasing.

Then,

deg (α) > D.

The final assumption on the recurrence sequence is only to ensure that the

qn are well defined and that the continued fraction converges. If the αn are all

real, positive numbers, we can completely remove the condition on the recurrence

sequence, as it is trivially satisfied.

Corollary 2. Let d,D ∈ N, such that d > 1, and let {αn} be a sequence of

real and positive algebraic integers with max degαn = d, such that |αn| = αn ,

and such that

lim sup
n→∞

αn
1

Ddn−1 ∏n−2
i=1

(Ddi+1) =∞.

Let α be given by the continued fraction α = [0;α1, α2, . . . ]. Then,

deg (α) > D.
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Finally, we remark that if

lim sup
n→∞

αn
d−n2

=∞,

the growth conditions in both Theorem 1 and Corollary 2 are automatically satis-

fied for any value of D ∈ N. Hence, we obtain the following immediate corollary.

Corollary 3. Let {αn} be a sequence of algebraic integers satisfying the

conditions of either Theorem 1 or Corollary 2. If in addition

lim sup
n→∞

αn
d−n2

=∞,

the continued fraction α = [0;α1, α2, . . . ] is transcendental.

2. Auxiliary results

For the proof of Theorem 1, we will need several auxillary results, which will

be stated without proof. Their proofs can be found in the references given. The

first is classical and relates the Weil height H(α) of an algebraic number α to its

Mahler measure M(α), see, e.g., [9].

Theorem 4. For an algebraic number α of degree d,

H(α) = M(α)1/d.

In [1], we use this to derive the following lemma.

Lemma 5. Let α be an algebraic integer of degree d. Then,

H(α) = M(α)1/d ≤ α ≤M(α) = H(α)d.

The inequalities are best possible.

It is also classical that the Weil height of an algebraic number is invariant

under taking the reciprocal, see, e.g., [9]. We phrase this as a lemma.

Lemma 6. Let α be a non-zero algebraic number. Then, H(α) = H(1/α).

We will need bounds on the height and degree of sums of algebraic numbers.

The first inequality in the next lemma is proved in [9], and the second inequality

can be found in [5].
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Lemma 7. Let n ∈ N, and let β1, . . . , βn be algebraic numbers. Then,

H

(
n∑
i=1

βi

)
≤ 2n

n∏
i=1

H(βi),

and

deg

(
n∑
i=1

βi

)
≤

n∏
i=1

deg(βi).

We will also need the Liouville–Mignotte bounds (see [7], [8]) on the distance

between algebraic numbers. A unified proof of the inequalities can be found in

[2, Appendix A].

Lemma 8. Let α and β be non-conjugate algebraic numbers. Then,

|α− β| ≥ 1

2deg(α) deg(β)M(α)deg(β)M(β)deg(α)
.

Again from [1], we will use the following result.

Lemma 9. Let {an}∞n=1 be a sequence of real numbers such that

lim sup
n→∞

an =∞.

Then for infinitely many k ∈ N,

ak+1 >

(
1 +

1

k2

)
max

1≤n≤k
an.

Finally, from the theory of continued fractions we will need the following

result, see [6].

Lemma 10. Let αn ≥ 1 for all n ∈ N. For the continued fraction α =

[0;α1, α2, . . . ], set α(n) = [0;α1, . . . , αn]. Then

|α− α(n)| < 1

|qn+1qn|
,

where q0 = 1, q1 = α1, and qn = αnqn−1 + qn−2.
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3. Proof of the main theorem

First, Corollary 2 immediately follows from Theorem 1, as Lemma 5 implies

that αn = αn ≥ 1, since M(αn) ≥ 1 trivially. Consequently, the sequence {qn}
is evidently increasing.

We now give a proof of Theorem 1. We argue by contradiction, so suppose

that α is algebraic with deg(α) ≤ D. For N ∈ N, we let

α(N) =
pN
qN

= [0;α1, α2, . . . , αN ].

Note that this is an algebraic number, and that

[0;α1, α2, . . . , αN ]−1 = α1 +
1

[0;α2, α3, . . . , αN ]
.

We estimate the degree and the Mahler measure of α(N) using this and Lemma 7.

For the degree, we get

deg(α(N)) = deg([0;α1, . . . , αN ]) = deg([0;α1, . . . , αN ]−1)

≤ ddeg([0;α2, . . . , αN ]) ≤ · · · ≤ dN .

For the Mahler measure, we get

M(α(N)) ≤ H(α(N))d
N

= H(α(N)−1)d
N

≤ (22H(α1)H([0;α2, . . . , αN ]))d
N

≤ · · · ≤

(
22(N−1)

N∏
n=1

H (αn)

)dN
≤

(
22(N−1)

N∏
n=1

αn

)dN
,

where the latter equality follows from Lemma 5.

Now, using the above estimates and Lemma 8,

|α− α(N)| ≥ 1

2deg(α) deg(α(N))M(α)deg(α(N))M(α(N))deg(α)

≥ 1

2DdNM(α)dN
(

22(N−1)
∏N
n=1 αn

)DdN
=

1(
22N−1H(α)

∏N
n=1 αn

)DdN .



Continued fractions 475

The upshot is the following critical estimate, valid for all N ∈ N,

|α− α(N)|

(
22N−1H(α)

N∏
n=1

αn

)DdN
≥ 1. (2)

By Lemma 9, for infinitely many values of N ,

αN+1

1

DdN
∏N−1

i=1
(Ddi+1) ≥

(
1 +

1

N2

)
max

1≤n≤N
αn

1

Ddn−1 ∏n−2
i=1

(Ddi+1) .

Note that for these infinitely many values of N , we get from Lemma 10 that for

N large enough,

|α− α(N)| < 1

|qN+1qN |
≤ 1

αN+1
. (3)

The final inequality follows by the recursion (1) and the assumption that αN+1 =

|αN+1|, which in turn implies that |αN+1| ≥ 1 by Lemma 5. Note also that

log

(
1 +

1

N2

)
≥ 2N2 − 1

2N4
,

and that

dN

(
N−1∏
n=1

(Ddn + 1)

)
2N2 − 1

2N4
≥ log(2)(d+ 1)N ,

so that (
1 +

1

N2

)DdN ∏N−1
i=1 (Ddi+1)

> 2D(d+1)N .

Hence, we find that for these infinitely many values of N ,

αN+1 ≥ 2D(d+1)N
(

max
1≤n≤N

αn
1

Ddn−1 ∏n−2
i=1

(Ddi+1)

)DdN ∏N−1
i=1 (Ddi+1)

= 2D(d+1)N
(

max
1≤n≤N

αn
1

Ddn−1 ∏n−2
i=1

(Ddi+1)

)D2d2N−1 ∏N−2
i=1 (Ddi+1)

(
max

1≤n≤N
αn

1

Ddn−1 ∏n−2
i=1

(Ddi+1)

)DdN ∏N−2
i=1 (Ddi+1)

≥ 2D(d+1)N αN
DdN

(
max

1≤n≤N
αn

1

Ddn−1 ∏n−2
i=1

(Ddi+1)

)DdN ∏N−2
i=1 (Ddi+1)

≥ · · · ≥≥ 2D(d+1)N

(
N∏
n=1

αn

)DdN
.
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Inserting this together with (3) into (2), we find that

1 ≤ |α− α(N)|

(
22N−1H(α)

N∏
n=1

αn

)DdN
≤

(
22N−1H(α)

∏N
n=1 αn

)DdN
αN+1

≤

(
22N−1H(α)

∏N
n=1 αn

)DdN
2D(d+1)N

(∏N
n=1 αn

)DdN =

(
22N−1H(α)

)DdN
2D(d+1)N

,

which is not true for a large enough N . �
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