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Irrationality and transcendence of continued fractions
with algebraic integers

By SIMON BRUNO ANDERSEN (Horsens) and SIMON KRISTENSEN (Aarhus)

Abstract. We extend a result of Hancl, Kolouch and Nair on the irrationality and
transcendence of continued fractions. We show that for a sequence {a,} of algebraic
integers of degree bounded by d, each attaining the maximum absolute value among
their conjugates and satisfying certain growth conditions, the condition

1
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implies that the continued fraction a = [0; 1, 2,...] is not an algebraic number of

degree less than or equal to D.

1. Introduction

Continued fractions are a convenient tool in studying the arithmetical proper-
ties of a number. Usually, one considers a real number « and the simple continued
fraction

a=aqy+ ——= [a0§a1,a2a---]7
a + —

1
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where ap € Z and a; € N for i > 1. The sequence of partial quotients {a;} may
be finite or infinite. A number is rational if and only if the sequence is finite.
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For an irrational number «, we define the sequence of convergents of o to be
the finite continued fractions obtained by truncation,

DPn
q— = [ag; a1, a2, ..., an).
n

It is a well-known consequence of Roth’s theorem [6] that « is transcendental if
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> 0.
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While choosing the partial quotients to be natural numbers is entirely natural
for real numbers, this is in fact not necessary. For instance, in Hurwitz’ continued
fractions [4] the partial quotients are Gaussian integers, and any complex number
can be expanded in a Hurwitz continued fraction. In fact, one may use as partial
quotients any choice of non-zero real or complex numbers, though the resulting
continued fraction need not be convergent. If the partial quotients are all positive
real numbers, the convergence is ensured by the condition

[eS)
E a, = 00,
n=1

see [6], where it is shown that this is necessary and sufficient in this case. For more
general complex partial quotients this is no longer the case, but if the sequence
{l¢n|} is increasing, this is sufficient for the convergence of the continued fraction.
In the present note, we are interested in continued fractions where the partial
quotients are algebraic integers. In particular, we are interested in general criteria
for the irrationality or transcendence of the resulting continued fraction. Not much
appears to be known in this setting. In [3], a growth condition on a series of
positive integers {a,} is given, which guarantees that the continued fraction

v =1[0;va1,Vaz, ... ]

is not algebraic of degree D. In brief, it is shown that if
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then ~ cannot be an algebraic number of degree at most D. An immediate corol-
lary is that the condition
7’”/2
limsupa? = = oo
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implies the transcendence of ~.
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In the present note — much in the spirit of [1] — we extend this result to deal
with sequences of algebraic integers. To state the result, recall first that the house
of an algebraic number « is the maximal modulus among the conjugates of «, i.e.
if the conjugates of a are a1 = a, s, .. ., g, then the house of « is defined to be

ol = lrgfgd{lajl}.

Next, recall that for a sequence of non-zero complex numbers «,,, the de-
nominators ¢, of the convergents of the continued fraction [0;aq, ag, . ..] satisfy
the recurrence

=1 q=01, Qui2= Oni2qns1+ qn, (1)

see [6].

Theorem 1. Let d,D € N, such that d > 1, and let {a,,} be a sequence of
algebraic integers with max deg «,, = d, such that |a,| = [&,], and such that

I SR
lim sup [, 24" " P22 (Ddi+1) — .
n— oo
Let o be given by the continued fraction o = [0; a1, aa,...], and suppose that

the sequence of absolute values {|q,|}, where g, is defined by (1), is increasing.
Then,

deg () > D.

The final assumption on the recurrence sequence is only to ensure that the
qn are well defined and that the continued fraction converges. If the «,, are all
real, positive numbers, we can completely remove the condition on the recurrence
sequence, as it is trivially satisfied.

Corollary 2. Let d,D € N, such that d > 1, and let {c,} be a sequence of
real and positive algebraic integers with maxdeg, = d, such that |a,| = [,
and such that

1
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Let « be given by the continued fraction o = [0; 1, o, .. .|. Then,

deg (o) > D.



472 Simon Bruno Andersen and Simon Kristensen

Finally, we remark that if

2
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lim sup [, d = 00,
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the growth conditions in both Theorem 1 and Corollary 2 are automatically satis-
fied for any value of D € N. Hence, we obtain the following immediate corollary.

Corollary 3. Let {«a,} be a sequence of algebraic integers satisfying the

conditions of either Theorem 1 or Corollary 2. If in addition

2
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lim sup &, = 00,
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the continued fraction o = [0; a1, ag, . . .| Is transcendental.

2. Auxiliary results

For the proof of Theorem 1, we will need several auxillary results, which will
be stated without proof. Their proofs can be found in the references given. The
first is classical and relates the Weil height H(«) of an algebraic number « to its
Mahler measure M (a), see, e.g., [9].

Theorem 4. For an algebraic number « of degree d,
H(a) = M(a)'/4,

In [1], we use this to derive the following lemma.

Lemma 5. Let a be an algebraic integer of degree d. Then,
H(a)= M) <m < M(a) = H(a)?.

The inequalities are best possible.

It is also classical that the Weil height of an algebraic number is invariant
under taking the reciprocal, see, e.g., [9]. We phrase this as a lemma.

Lemma 6. Let a be a non-zero algebraic number. Then, H(a) = H(1/a).

We will need bounds on the height and degree of sums of algebraic numbers.
The first inequality in the next lemma is proved in [9], and the second inequality
can be found in [5].
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Lemma 7. Let n € N, and let 1,..., 3, be algebraic numbers. Then,

H <2/3> <> [[H().

and
deg (Z @) < ] deg(8:)-
=1 i=1

We will also need the Liouville-Mignotte bounds (see [7], [8]) on the distance
between algebraic numbers. A unified proof of the inequalities can be found in
[2, Appendix A].

Lemma 8. Let o and 8 be non-conjugate algebraic numbers. Then,

1
0= 81 2 Saesterdes ) a1 () der I A1 () e

Again from [1], we will use the following result.

Lemma 9. Let {a,}52, be a sequence of real numbers such that

lim sup a,, = 0.
n—oo

Then for infinitely many k € N,

1
Ap+1 > (1 + 162) 12??1« Q.-

Finally, from the theory of continued fractions we will need the following
result, see [6].

Lemma 10. Let «, > 1 for all n € N. For the continued fraction o =

[0; 1, o, ... ], set a(n) = [0; a1, ...,a,]. Then
1

la = a(n)] < —,

|n+14n|

where q =1, q = ay, and n = OnQn—1 1 qn—2-



474 Simon Bruno Andersen and Simon Kristensen
3. Proof of the main theorem

First, Corollary 2 immediately follows from Theorem 1, as Lemma 5 implies
that ay,, = [an] > 1, since M () > 1 trivially. Consequently, the sequence {g, }
is evidently increasing.

We now give a proof of Theorem 1. We argue by contradiction, so suppose
that « is algebraic with deg(a) < D. For N € N, we let

p
O[(N):q%: [0;0&1,0&2,...,0&1\[].

Note that this is an algebraic number, and that

1
Uy +

0; 1,9, ...,an]|" .
[ ' ’ ’ ’ ] [0;0{2,0[3,...,Oé]\/‘]

We estimate the degree and the Mahler measure of a(/N) using this and Lemma 7.
For the degree, we get

deg(a(N)) = deg([0; ay, ..., ay]) = deg([0;aq,...,an]™t)
< ddeg([0;az,...,an]) < - < av.

For the Mahler measure, we get

M(a(N)) < H(a(N)?" = H(a(N)~H¢"

N

< (2°H(a1)H([0; g, ..., an]))?

N dN N dN
< (22<N” 1= (an)> < (22(“) 11 m) :

n=1 n=1

IN

where the latter equality follows from Lemma 5.
Now, using the above estimates and Lemma 8,
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The upshot is the following critical estimate, valid for all N € N,

N Dd
la — ()| (22N1H<a> 11 m) > 1. (2)

By Lemma 9, for infinitely many values of IV,

1

1 1 -1
paN N1 (Dai+1) Dan—1T" =2 (Ddi+1)
[—M i=1 > |14+ — max [« i=1 .
N+l - N2 ) 1<n<n'™ "

Note that for these infinitely many values of N, we get from Lemma 10 that for

N large enough,
1 1

< .
lav+1gn| ~ [@NT1

The final inequality follows by the recursion (1) and the assumption that [@ny;1] =

la — a(N)| < (3)

|an 1|, which in turn implies that |an41] > 1 by Lemma 5. Note also that

o (14 ) 2 2021
8 NZ) = TaNi
and that N
- 2N2Z —1
N N
d (H(Dd”—s—l)) oy 2 log@)d+ 1Y,

so that

1\ PV IS (Dd'+1) D@+1)N

Hence, we find that for these infinitely many values of N,

N 1 DaN TIN Y (Dd*+1)
D(d+1) Ddan—11["=2(Ddi+1)
anNti] > 2 max [a i=1
* 1<n<N' "
N . D2g2N-1 Hﬁ\f:—lz(Ddi_i_l)
_ oD(d+1) Ddn—1 " 2(Ddi+1)
=2 max [a im1
1<n<N' "
1 DdN TIN2(Dd +1)
Ddn—11["=2(Ddi+1)
max [ i=1
(1§n§N "
) DdN TIN2(Dd* +1)
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N DdV
> .. > Pk (H m) -
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Inserting this together with (3) into (2), we find that

D N
N \PT (V) [T )
1<]o—aV)] 2V He) [[em] <
—1 ON+1
2N -1 N Dat N
< (Y H@ILL @) (@21 ()™
= DdN D(d+1)N ’
2b(d+)T (Hr]yzl m) 2
which is not true for a large enough N. (|
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