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The final Moufang variety: FRUTE loops

By ALES DRAPAL (Praha) and J. D. PHILLIPS (Marquette)

Abstract. FRUTE loops are loops that satisfy the identity (z - zy)z = (y - zz)z.
We show that locally finite FRUTE loops are precisely the products O x H, where O is
a commutative Moufang loop in which all elements are of odd order, and H is a 2-group
such that the derived subloop H' is of exponent two and H' < Z(H).

1. Introduction

A loop is a set with a single binary operation such that in z -y = z, knowl-
edge of any two of x, y, and z specifies the third uniquely, and with a unique
two-sided identity element, denoted by 1. Two of the more actively investigated
varieties of loops are the (left) Bol loops and the Moufang loops. Generalizing
from the features common to the Moufang and Bol identities leads to the notion
of generalized Bol-Moufang identity (definitions of terms in this paragraph are
given in Section 2, below). There are 48 varieties of loops of generalized Bol-
Moufang type [2]. The classification of varieties of loops of this type was initiated
by Fenyves [5], [6]. It is well-known that 3 of these 48 are nonassociative vari-
eties that consist of loops all of which are Moufang — the variety of extra loops,
the variety of Moufang loops, and the variety of commutative Moufang loops.
An exhaustive search in [2] showed that there exists precisely one more variety of
nonassociative loops of generalized Bol-Moufang type all of whose members are
Moufang loops: the FRUTE loops. The purpose of this paper is to elucidate the
structure of these loops.
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In Section 2, we give a brief overview of loops of (generalized) Bol-Moufang
type.

In Section 3, we prove some basic facts about FRUTE loops, e.g., that they
are Moufang. We also offer a characterization of FRUTE loops via their commu-
tants and nuclei.

In Section 4, we show that FRUTE loops are automorphic loops. We also
derive some basic facts about middle inner mappings and commutator identities,
and we show that conjugation is homomorphic.

In Section 5, we offer a simple, elegant decomposition of locally finite FRUTE
loops.

In the balance of this section, we fix notation and introduce basic definitions.
We have tried to make this paper as self-contained as possible.

Loops admit both a left and a right division, denoted by \ and /, respectively,
satisfying the following four identities [11]: z-(z\y) = v, (y/z)-z =y, 2\(x-y) =y
and (y-x)/x = y. In the event that 1/x = z\1, we use the standard notation
denoting two-sided inverse: 1. Loops are both left and right cancellative.

We usually write zy instead of x -y, and reserve - to have lower priority than
juxtaposition among factors to be multiplied; for instance, (x - zy)z = (y - z2)x
stands for (z- (z-y)) - z2=(y- (z-2)) - .

Moufang loops satisfy the left alternative property (x - zy = 2% - y) and the
right alternative property (y-2% = yx-x) [11]. Each element of a Moufang loop has
a (unique) two-sided inverse; and Moufang loops satisfy the left inverse property
(x=1- 2y = y), the right inverse property (yz -x~' = y) and the antiautomorphic
inverse property ((zy)~! = y~to~1) [11]. Moufang loops are also diassociative,
i.e., pairs of elements generate associative subloops [11].

Note that the right inverse property can also be given by u(1l/x) = u/x.
Indeed, the choice u = z implies 1/x = 2\1 = 1. Setting u = yx, thus, gives
yzx - 7l = Y.

A triple of permutations, «, 3, v on a loop, @, is called an autotopism if
Vz,y € @Q we have a(z) - (y) = y(x - y); note, we follow the convention of writing
functions on the left of their arguments and thus composing from right to left.

We use the standard notation for the right and left translations: R,(z) =
L,(y) = xy. The group of permutations generated by the set of all right and left
translations is called the multiplication group of Q. The inner mapping group,
1(Q), is the subgroup of those permutations in the multiplication group that fix 1.
Set T, = R;'L,; each T, is an inner mapping.
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A subloop of loop @ is normal if it is invariant as a set under the action of
I(Q) [11]. Automorphic loops are loops all of whose inner mappings are automor-
phisms. The variety of commutative Moufang loops and the variety of groups are
two prominent examples of automorphic loops [9]. As we shall see in Corollary 4.5,
FRUTE loops are automorphic Moufang loops. Thus (and obviously), the many
structural results about automorphic Moufang loops (see, for example, [9]) apply
also to FRUTE loops.

The left nucleus of aloop @ is given by N\(Q) = {a : a-xy = az-y,Vz,y € L}.
The middle nucleus, N,(Q), and the right nucleus, N,(Q), are defined analo-
gously. The nucleus, then, is given by N(Q) = N»(Q) N N,(Q) N N,(Q). Each of
the four nuclei is an associative subloop of @ for any loop @ [11]; none of these is
necessarily normal. The commutant of Q is given by C(Q)={c: Vx €Q, cx = zc}.
It need not be normal, nor even a subloop [10]. If @ is a Moufang loop, then N(Q)
is normal [11], while C(Q) is a subloop [11], but it need not be normal [7]. But if
Q is a FRUTE loop, then it is straightforward to show that both C'(Q) and N(Q)
are normal. Finally, the center is the subloop given by Z(Q) = N(Q) N C(Q);
it is a normal subloop for an arbitrary loop, @ [11].

2. Bol-Moufang identities

In the variety of loops, each of the following four identities implies the other
three: z(zy - z) = zx - yz, z(x - 2y) = (zx- 2)y, (2 -2y)z = 22 - yz, and (xz-y)z =
x(z - yz). A loop that satisfies any one (hence, all four) of these identities is
called a Moufang loop. A left Bol loop is a loop satisfying the identity x(y-xz) =
(z-yx)z; right Bol loops satisfy the mirror identity. The left Bol identity generates
a different variety of loops than does the right Bol identity. The intersection of
the two Bol varieties is the variety of Moufang loops [13]. These three varieties
are amongst the most prominent and intensively investigated varieties of loops;
the six equations axiomatizing them share a number of common features:

(1) they contain only one operation — the loop product;

(2) there are exactly three distinct variables appearing on each side of the equal
sign, one appearing twice on each side of the equal sign, the other two ap-
pearing once each on each side of the equal sign; and

(3) the order in which the variables appear in is the same on each side of the
equal sign.
An identity that satisfies these three conditions is thus called an identity of
Bol-Moufang type. There are 60 identities of Bol-Moufang type, and there are
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precisely 14 varietes of loops axiomatized by a single identity of Bol-Moufang
type [13]. We will refer to these varieties as varieties of loops of Bol-Moufang
type. By nonassociative variety of loops we mean a variety of loops that is not
a subvariety of the variety of groups. Of the 14 varieties of loops of Bol-Moufang
type, exactly 2 — the variety of Moufang loops, and the variety of extra loops —
are nonassociative varieties that consist of loops all of which are Moufang [13].
There is a large body of literature about Moufang loops; quite a bit is also known
about the structure of extra loops [8]. Three different identities of Bol-Moufang
type axiomatize the variety of extra loops [5], [13]; here is one of them: z(y-zxz) =

By dropping the third condition in the definition of Bol-Moufang type, we ob-
tain the following definition: an identity is said to be of generalized Bol-Moufang
type if it satisfies the following two conditions:

(1) it contains only one operation — the loop product; and

(2) there are exactly three distinct variables appearing on each side of the equal
sign, one appearing twice on each side of the equal sign, the other two ap-
pearing once each on each side of the equal sign.

There are 1215 identities of generalized Bol-Moufang type, and there are
precisely 48 varieties of loops axiomatized by a single identity of generalized
Bol-Moufang type, including the 14 varieties of Bol-Moufang type [2]. Of the
remaining 34 varieties, six are varieties of commutative loops, one of which is the
variety of all commutative Moufang loops [2]. Thus, there remains 28 varieties of
not necessarily commutative loops of generalized Bol-Moufang type, only three
of which — the three Cheban varieties [12] — have been investigated. Of the 25
remaining varieties, one is an associative variety (i.e., it consists of groups), and
6 can each be be described by single, shorter identities; they are: x - yxr =y - zx,
TY T =Y TT, XY =Y -TT, T -xY=yYr -, xxr-y==x -yxrand xT -y =Y - T.
Thus, there remain 18 varieties of loops of Bol-Moufang type that have not yet
been investigated. The variety of FRUTE loops is one of these 18; this variety is
axiomatized by the FRUTE identity: (x - xy)z = (y - zx)x. It should be noted
that the name “FRUTE” is a nonsensical pseudo-acronym coined in the service of
a prank [2] — Froot Loops®) are an iconic American breakfast cereal. But pranks
notwithstanding, this variety of loops has interesting structure, as we shall see.

Thus, of the 48 generalized Bol-Moufang varieties, exactly four of them are
nonassociative varieties that consist entirely of Moufang loops; these are (1) the
variety of Moufang loops, (2) the variety of extra loops, (3) the variety of com-
mutative Moufang loops and (4) the variety of FRUTE loops. As above, there
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is a rather large body of literature about the first two varieties. There is also,
obviously, a large body of literature about the commutative Moufang loops;
a good place to start is [1]. Here, we initiate a study of the fourth variety:
the FRUTE loops.

It is worth pointing out two things. Firstly, if a variety of loops of generalized
Bol-Moufang type is not a subvariety of the variety of Moufang loops, and yet it is
a subvariety of the variety of left Bol loops or of the variety of right Bol loops, then
it is equal to one of these two varieties. Secondly, of the remaining 17 varieties of
loops of generalized Bol-Moufang type that remain to be analyzed, two appear
to be especially structurally interesting: (1) the variety of loops axiomatized by
(z - 2y)z = (yz - )z, and (2) the variety of loops axiomatized by this identity’s
mirror: z(z - zy) = z(yz - ). These might be worthy candidates for future study.

3. Characterization via commutant and nucleus

Lemma 3.1. Let Q be a FRUTE loop. Then @ is both left and right alterna-
tive. Moreover, Q) satisfies the left, right and antiautomorphic inverse properties.
Furthermore, x%y = yx? for all z,y € Q.

PROOF. Setting z = 1 in the FRUTE identity yields = - zy = yx - x, and
setting y = 1 yields 2?2 = zx - 2. Hence, 2%y = yz - = z - zy. Next, in
(v-2y)z = (y - z2)x set z = z; by right cancellation, x - zy = yz?. Concatenation
gives yz? = 2%y, and so yz? = r - 2y = yx - T.

Setting z = 1/z yields yz = (z - xy)(1/z). Hence yx = (yx?)(1/x). This
implies the right inverse property, since yx can be also expressed as (yxg) /x,
by the right alternative property. From

x=(z-zy)(zy) ™ = (y- (zy) '2)z

it follows that 1 =y - (zy)'2. Hence y~! = y\1 = (2y)~'z. Thus, by the right
inverse property, y 'z~ = (zy)~!. Of course, the right inverse property and the

antiautomorphic inverse property together imply the left inverse property. O

Corollary 3.2. In the variety of loops, the FRUTE identity is equivalent to
its mirror: x(zz-y) = z(yx - x).

PrOOF. Apply the antiautomorphic inverse property to the FRUTE identity,
and note that each element is an inverse. O
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Theorem 3.3. Fach FRUTE loop is also a Moufang loop.

ProOF. In the FRUTE identity, (z - xy)z = (y - 22)x, set z = z/x to obtain
(x - 2y)(z/x) = yz - x. Next, apply the right inverse property and multiply both
sides of this equation on the left by z to obtain z((z - zy)(zz™1)) = = - (yz - ).
Corollary 3.2, together with the right inverse property, yields x((z - zy)(z2~!)) =
xy - zz; hence z(yz - x) = zy - 2x. O

Theorem 3.4. Let Q be a Moufang loop. The following conditions are
equivalent:

(i) Q is a FRUTE loop;
(ii) 2® € N(Q) and 22 € C(Q) for every z € Q; and

(iii) each Ty, x € Q, is either the identity mapping or an involutory automorphism

on Q.

PrOOF. Note that T, ! = T,-1 in each Moufang loop. Now, the identity
(z - 2y)(z/x) = yz - = is true if and only if each (L2, R, R,) is an autotopism.
This is equivalent to the condition that (L, R, ', Ry Ly, Ry L) = (Ty, Ty, Tp—1)
is an autotopism, since, in a Moufang loop, (L; 'R, !, L., L;1) is an autotopism
for every z € @ [11]. If «, 8 and v are permutations of a loop @ such that «(1) =
B(1) =~(1) =1 and («, 8, 7) is an autotopism, then a = 8 = v € Aut(Q). Hence
(z-zy)z = (y - zx)z holds if and only if T2 = idg and T, = T,-1 € Aut(Q) for
all x € Q. Since LR, = R,L,, both T? = idg and T, = T, -1 are equivalent to
Ly2 = Ry, ie., 22 € C(Q). Finally, we note that in Moufang loops, T, € Aut(Q)
if and only if 23 € N(Q) [11].

The referee suggests including an alternate, and “autotopism-free”, proof.
We use the diassociativity of @ freely in this second proof. In the FRUTE identity
(v-2y)z = (y-zx)x, set y = 2~ 2y to obtain yz = (r~2y-2a)x. Next, in the Moufang
identity z(y-z2) = zyr - 2, set y = 272y and z = 2~ 27 to obtain z(z "2y - z2) =
r7lyz -2~ za. Tt follows from yz = (2 2y - 2a)w that v-yz- -2~ = z(z 7%y - 20) =

= x_lya: -2~ 'zx characterizes the

1

x Yyz -z~ 'zz. Hence, the identity = -yz -z~
FRUTE loops among Moufang loops. Setting y = 1 gives xzz~! = x~!2z; that is

T2 = idg, and hence, T, is an involutory automorphism or the identity map. O

Let @ be a loop with normal subloops A and B such that Q = AB. Put
C = AN B. For each (a,b) € A x B send ab to aC; this is a well-defined
homomorphism @ — A/C. (Indeed, a;by = agbs implies that a1 B = asB.
Of course, 1B = a2B < aj/as € C & a1C = ayC} i.e., the mapping is well-
defined. The rest follows from a1 B - asB = (aja2)B.)
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Thus, ab — (aC,bC) is a well-defined homomorphism @ — A/C x B/C,
the kernel of which is equal to C. This homomorphism is surjective, since a = a-1
and b=1-b, for every (a,b) € A x B.

Proposition 3.5. Let Q be a FRUTE loop. Then Q/Z(Q) = L x G, where
L is a commutative Moufang loop of exponent three, and G is a Boolean group.

PROOF. We have z = 2223 for each z € Q. Hence Q = C(Q)N(Q). By def-
inition, Z(Q) = C(Q) N N(Q). If x € C(Q), then 23 € Z(Q) [11]. Thus, since
C(Q) is a commutative Moufang loop, C(Q)/Z(Q) is a commutative Moufang
loop of exponent three. If x € N(Q), then z? € Z(Q). Finally, since N(Q) is
a group, N(Q)/Z(Q) is a group of exponent two, i.e., a Boolean group. O

4. Conjugation is homomorphic

Proposition 3.5 suggests a characterization of FRUTE loops via central ex-
tensions of loops L x G, where L is a commutative Moufang loop of exponent
three, and G is a Boolean group. However, such an approach requires a number
of opaque technical considerations. We take a different approach and prove first
that & — T is a homomorphism @ — Aut(Q). There are other settings in loop
theory in which a condition of this kind plays a prominent role [3], [9]; it seems
to be indicative of very strong structural assumptions.

Let @ be a FRUTE loop. Since @ is also a Moufang loop, and hence, dias-
sociative [11], T (y) = zyx~! for all z,y € Q.

Lemma 4.1. T, =T,s, for every x € Q.

PROOF. Diassociativity and the fact that 22 € C(Q) together imply that
1

zyr~ ! = 23yx 3. ([l

Lemma 4.2. T,T, = Ty,, for all z,y € Q.

PrOOF. If a,b,¢c € N(Q), then T,T, = T, is equivalent to Tp, = T, and
to the condition that (ab)~'c € C(Q). Since T,T, = TyTys and Tyy = T(ya)s,
by Lemma 4.1, it suffices to prove that y 3z 73(yz)® € C(Q). And this follows
from applying Theorem 3.4 to:

y 2 (ya)? (ya) = (yo)’y ey e = (yo)? (wy) R O

Theorem 4.3. Let Q be a FRUTE loop. Then the mapping T: Q@ — Aut(Q),
z — T,, is a loop homomorphism with kernel equal to C(Q). Furthermore,
Q/C(Q) is a Boolean group, and C(Q) is a commutative Moufang loop.
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PRrROOF. By Theorem 3.4, each T, is an automorphism of @) that is of order
at most two. By Lemma 4.2, all these automorphisms form a subgroup of Aut(Q).
This subgroup is Boolean. Therefore T, T, = T} T, = Ty,. The rest is clear. [

We define the commutator, [z,y] of x and y, thusly: zy = yx - [z,y]. The
least normal subloop of () that contains all commutators is known as the derived
subloop and is denoted by @’. By Theorem 4.3, Q' < C(Q).

Theorem 4.4. Let Q be a FRUTE loop. Then Q' is a Boolean group and
is contained in Z(Q). If z,y,z € Q, then [z,y] = [y,2] = (zy)?x~2y~? and
[z,yz] = [z, y][x, 2].

ProOF. First note that [z,y] € C(Q) by Theorem 4.3. Next, we have 2% €
N(Q) by Theorem 3.4, and so [z°,y] = 73T, (2®) € N(Q), since N(Q) is
normal in @. Thus, since 22 € C(Q) by 3.4, we have [z,y] = [z3,y], and hence,
[z,y] € Z(Q).

In any Moufang loop, we have [a,yz] = [a, z](27![a,y]2) if a is nuclear. This
is because (a,y, z) is a group, by Moufang’s theorem [4]. Thus, if commutators
are in the commutant, as they are in FRUTE loops, we have [a,yz] = [a,y][a, z].
Now, recalling that 2® is nuclear, we obtain [z,yz] = [23,y2] = [23,y][z3, 2] =
[#,y][z,2]. And this in turn gives[z,y]? = [x,9%] = 1, since y*> € C(Q). Hence
[y, ] = [z,y]7" = [x,y] for all x,y € Q. Finally, since Q is diassociative, and
since 22,92 € C(Q), we have (xy)?2z~2y~2 = 2 2ayy 2 Loy = [z,v)],
again, for all z,y € Q. |

xYy = x_ly_

Corollary 4.5. Let Q be a FRUTE loop. Then (@) is an automorphic Mo-
ufang loop.

ProOOF. The standard inner mappings are pseudoautomorphisms, the com-
panions of which are nuclear. Thus, the inner mappings are automorphisms [1]. O

5. Locally finiteness takes a coproduct face

By a p-group we mean a group in which each element is of an order p* for
some k > 0.

Each locally finite commutative Moufang loop is a coproduct (i.e., a direct
sum) of abelian p-groups, p # 3, and of a commutative Moufang 3-loop, i.e.,
a commutative Moufang loop in which all elements are of order a power of 3 [1].

Lemma 5.1. Let G be a locally finite group such that 2*> € Z(G) for each
x € G. Then G = O x H, where O is an abelian group in which all elements are
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of odd order, and H is a 2-group such that H' is of exponent two and H' < Z(H).
Conversely, every such group G = O x H satisfies the condition that 2% € Z(G)
for each = € G.

PrROOF. Indeed, every element of odd order is central. Hence, all elements

of odd order form a central normal subgroup. Now, [z,y] = (zy)%z~2y2

implies
that [x,y] = [y,z] is central. Hence [x,yz] = [x,y][x, 2] for all z,y,z € G, and,
in particular, 1 = [x,9y%] = [z,y]?. Hence G’ is a central Boolean group, and
H may be defined as a preimage of the 2-group in the decomposition of G/G’.
For the converse direction, first note that O < Z(G) and that G’ = H' < Z(G).
Since [z,yz] = [z,yz] = [z, y][z, 2] for all z,y,2z € G, and since [z,y] is of order
at most two, [z,4%] =1 for all 2,y € G. Thus y? € Z(G) for every y € G. O

Theorem 5.2. Let Q be a locally finite FRUTE loop. Then Q = O x H,
where O is a commutative Moufang loop in which all elements are of odd order,
and H is a 2-group such that H' is of exponent two and H' < Z(H). On the
other hand, every such loop Q = O x H is a FRUTE Ioop.

PROOF. Put Q = Q/Q’ and denote by 7 the projection Q — Q. By Theo-
rem 3.4 and the remark before Lemma 5.1, Q = O x H, where H is a 2-group, and
O consists of all odd order elements of Q. Put H = 7~ '(H). All elements of H
are of order that is a power of two. By Theorem 3.4, H is a group, or — more pre-
cisely — a 2-group. The group satisfies the law 2%yz = yza?. Hence H' < Z(H),
by Lemma 5.1. By Theorem 4.4, Q' < Z(Q). All elements of 771(O) thus belong
to C(Q). Indeed, if z € @ is expressed as yz, where y, z €<x>, |y| is odd and |z| is
a power of two, then 7(x) € O if and only if z € Q' < Z(Q). Therefore Q' = H’',
again by Theorem 4.4. Now, 771(0) is a commutative Moufang loop. Hence
it can be expressed as O x H’, where O consists of all odd order elements that are
contained in @ [1]. On the other hand, H consists of all elements in @ the order of
which is a power of two. Clearly, ONH = ONa~'(O)NH = ONH' = 1. Both O
and H are normal since each inner mapping is an automorphism, by Corollary 4.5.

The converse is trivial, since both commutative Moufang loops and groups
with central squares satisfy the FRUTE identity. O

Thus, by Theorem 5.2, we see that the minimal order for a noncommutative
FRUTE loop is 8 = 23, while the minimal order for a nonassociative FRUTE loop
is 81 = 3.
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