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The final Moufang variety: FRUTE loops

By ALEŠ DRÁPAL (Praha) and J. D. PHILLIPS (Marquette)

Abstract. FRUTE loops are loops that satisfy the identity (x · xy)z = (y · zx)x.

We show that locally finite FRUTE loops are precisely the products O×H, where O is

a commutative Moufang loop in which all elements are of odd order, and H is a 2-group

such that the derived subloop H ′ is of exponent two and H ′ ≤ Z(H).

1. Introduction

A loop is a set with a single binary operation such that in x · y = z, knowl-

edge of any two of x, y, and z specifies the third uniquely, and with a unique

two-sided identity element, denoted by 1. Two of the more actively investigated

varieties of loops are the (left) Bol loops and the Moufang loops. Generalizing

from the features common to the Moufang and Bol identities leads to the notion

of generalized Bol–Moufang identity (definitions of terms in this paragraph are

given in Section 2, below). There are 48 varieties of loops of generalized Bol–

Moufang type [2]. The classification of varieties of loops of this type was initiated

by Fenyves [5], [6]. It is well-known that 3 of these 48 are nonassociative vari-

eties that consist of loops all of which are Moufang – the variety of extra loops,

the variety of Moufang loops, and the variety of commutative Moufang loops.

An exhaustive search in [2] showed that there exists precisely one more variety of

nonassociative loops of generalized Bol–Moufang type all of whose members are

Moufang loops: the FRUTE loops. The purpose of this paper is to elucidate the

structure of these loops.
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In Section 2, we give a brief overview of loops of (generalized) Bol–Moufang

type.

In Section 3, we prove some basic facts about FRUTE loops, e.g., that they

are Moufang. We also offer a characterization of FRUTE loops via their commu-

tants and nuclei.

In Section 4, we show that FRUTE loops are automorphic loops. We also

derive some basic facts about middle inner mappings and commutator identities,

and we show that conjugation is homomorphic.

In Section 5, we offer a simple, elegant decomposition of locally finite FRUTE

loops.

In the balance of this section, we fix notation and introduce basic definitions.

We have tried to make this paper as self-contained as possible.

Loops admit both a left and a right division, denoted by \ and /, respectively,

satisfying the following four identities [11]: x·(x\y) = y, (y/x)·x = y, x\(x·y) = y

and (y · x)/x = y. In the event that 1/x = x\1, we use the standard notation

denoting two-sided inverse: x−1. Loops are both left and right cancellative.

We usually write xy instead of x · y, and reserve · to have lower priority than

juxtaposition among factors to be multiplied; for instance, (x · xy)z = (y · zx)x

stands for (x · (x · y)) · z = (y · (z · x)) · x.

Moufang loops satisfy the left alternative property (x · xy = x2 · y) and the

right alternative property (y ·x2 = yx·x) [11]. Each element of a Moufang loop has

a (unique) two-sided inverse; and Moufang loops satisfy the left inverse property

(x−1 · xy = y), the right inverse property (yx · x−1 = y) and the antiautomorphic

inverse property ((xy)−1 = y−1x−1) [11]. Moufang loops are also diassociative,

i.e., pairs of elements generate associative subloops [11].

Note that the right inverse property can also be given by u(1/x) = u/x.

Indeed, the choice u = x implies 1/x = x\1 = x−1. Setting u = yx, thus, gives

yx · x−1 = y.

A triple of permutations, α, β, γ on a loop, Q, is called an autotopism if

∀x, y ∈ Q we have α(x) ·β(y) = γ(x · y); note, we follow the convention of writing

functions on the left of their arguments and thus composing from right to left.

We use the standard notation for the right and left translations: Ry(x) =

Lx(y) = xy. The group of permutations generated by the set of all right and left

translations is called the multiplication group of Q. The inner mapping group,

I(Q), is the subgroup of those permutations in the multiplication group that fix 1.

Set Tx = R−1x Lx; each Tx is an inner mapping.
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A subloop of loop Q is normal if it is invariant as a set under the action of

I(Q) [11]. Automorphic loops are loops all of whose inner mappings are automor-

phisms. The variety of commutative Moufang loops and the variety of groups are

two prominent examples of automorphic loops [9]. As we shall see in Corollary 4.5,

FRUTE loops are automorphic Moufang loops. Thus (and obviously), the many

structural results about automorphic Moufang loops (see, for example, [9]) apply

also to FRUTE loops.

The left nucleus of a loopQ is given byNλ(Q) = {a : a·xy = ax·y,∀x, y ∈ L}.
The middle nucleus, Nµ(Q), and the right nucleus, Nρ(Q), are defined analo-

gously. The nucleus, then, is given by N(Q) = Nλ(Q)∩Nµ(Q)∩Nρ(Q). Each of

the four nuclei is an associative subloop of Q for any loop Q [11]; none of these is

necessarily normal. The commutant of Q is given by C(Q)={c : ∀x∈Q, cx = xc}.
It need not be normal, nor even a subloop [10]. If Q is a Moufang loop, then N(Q)

is normal [11], while C(Q) is a subloop [11], but it need not be normal [7]. But if

Q is a FRUTE loop, then it is straightforward to show that both C(Q) and N(Q)

are normal. Finally, the center is the subloop given by Z(Q) = N(Q) ∩ C(Q);

it is a normal subloop for an arbitrary loop, Q [11].

2. Bol–Moufang identities

In the variety of loops, each of the following four identities implies the other

three: z(xy · z) = zx · yz, z(x · zy) = (zx · z)y, (z · xy)z = zx · yz, and (xz · y)z =

x(z · yz). A loop that satisfies any one (hence, all four) of these identities is

called a Moufang loop. A left Bol loop is a loop satisfying the identity x(y ·xz) =

(x·yx)z; right Bol loops satisfy the mirror identity. The left Bol identity generates

a different variety of loops than does the right Bol identity. The intersection of

the two Bol varieties is the variety of Moufang loops [13]. These three varieties

are amongst the most prominent and intensively investigated varieties of loops;

the six equations axiomatizing them share a number of common features:

(1) they contain only one operation – the loop product;

(2) there are exactly three distinct variables appearing on each side of the equal

sign, one appearing twice on each side of the equal sign, the other two ap-

pearing once each on each side of the equal sign; and

(3) the order in which the variables appear in is the same on each side of the

equal sign.

An identity that satisfies these three conditions is thus called an identity of

Bol–Moufang type. There are 60 identities of Bol–Moufang type, and there are
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precisely 14 varietes of loops axiomatized by a single identity of Bol–Moufang

type [13]. We will refer to these varieties as varieties of loops of Bol–Moufang

type. By nonassociative variety of loops we mean a variety of loops that is not

a subvariety of the variety of groups. Of the 14 varieties of loops of Bol–Moufang

type, exactly 2 – the variety of Moufang loops, and the variety of extra loops –

are nonassociative varieties that consist of loops all of which are Moufang [13].

There is a large body of literature about Moufang loops; quite a bit is also known

about the structure of extra loops [8]. Three different identities of Bol–Moufang

type axiomatize the variety of extra loops [5], [13]; here is one of them: x(y ·zx) =

(xy · z)x.

By dropping the third condition in the definition of Bol–Moufang type, we ob-

tain the following definition: an identity is said to be of generalized Bol–Moufang

type if it satisfies the following two conditions:

(1) it contains only one operation – the loop product; and

(2) there are exactly three distinct variables appearing on each side of the equal

sign, one appearing twice on each side of the equal sign, the other two ap-

pearing once each on each side of the equal sign.

There are 1215 identities of generalized Bol–Moufang type, and there are

precisely 48 varieties of loops axiomatized by a single identity of generalized

Bol–Moufang type, including the 14 varieties of Bol–Moufang type [2]. Of the

remaining 34 varieties, six are varieties of commutative loops, one of which is the

variety of all commutative Moufang loops [2]. Thus, there remains 28 varieties of

not necessarily commutative loops of generalized Bol–Moufang type, only three

of which – the three Cheban varieties [12] – have been investigated. Of the 25

remaining varieties, one is an associative variety (i.e., it consists of groups), and

6 can each be be described by single, shorter identities; they are: x · yx = y · xx,

xy · x = y · xx, x · xy = y · xx, x · xy = yx · x, xx · y = x · yx and xx · y = xy · x.

Thus, there remain 18 varieties of loops of Bol–Moufang type that have not yet

been investigated. The variety of FRUTE loops is one of these 18; this variety is

axiomatized by the FRUTE identity : (x · xy)z = (y · zx)x. It should be noted

that the name “FRUTE” is a nonsensical pseudo-acronym coined in the service of

a prank [2] – Froot Loops R© are an iconic American breakfast cereal. But pranks

notwithstanding, this variety of loops has interesting structure, as we shall see.

Thus, of the 48 generalized Bol–Moufang varieties, exactly four of them are

nonassociative varieties that consist entirely of Moufang loops; these are (1) the

variety of Moufang loops, (2) the variety of extra loops, (3) the variety of com-

mutative Moufang loops and (4) the variety of FRUTE loops. As above, there
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is a rather large body of literature about the first two varieties. There is also,

obviously, a large body of literature about the commutative Moufang loops;

a good place to start is [1]. Here, we initiate a study of the fourth variety:

the FRUTE loops.

It is worth pointing out two things. Firstly, if a variety of loops of generalized

Bol–Moufang type is not a subvariety of the variety of Moufang loops, and yet it is

a subvariety of the variety of left Bol loops or of the variety of right Bol loops, then

it is equal to one of these two varieties. Secondly, of the remaining 17 varieties of

loops of generalized Bol–Moufang type that remain to be analyzed, two appear

to be especially structurally interesting: (1) the variety of loops axiomatized by

(x · xy)z = (yz · x)x, and (2) the variety of loops axiomatized by this identity’s

mirror: x(x · zy) = z(yx · x). These might be worthy candidates for future study.

3. Characterization via commutant and nucleus

Lemma 3.1. Let Q be a FRUTE loop. Then Q is both left and right alterna-

tive. Moreover, Q satisfies the left, right and antiautomorphic inverse properties.

Furthermore, x2y = yx2 for all x, y ∈ Q.

Proof. Setting z = 1 in the FRUTE identity yields x · xy = yx · x, and

setting y = 1 yields x2z = zx · x. Hence, x2y = yx · x = x · xy. Next, in

(x · xy)z = (y · zx)x set z = x; by right cancellation, x · xy = yx2. Concatenation

gives yx2 = x2y, and so yx2 = x · xy = yx · x.

Setting z = 1/x yields yx = (x · xy)(1/x). Hence yx = (yx2)(1/x). This

implies the right inverse property, since yx can be also expressed as (yx2)/x,

by the right alternative property. From

x = (x · xy)(xy)−1 = (y · (xy)−1x)x

it follows that 1 = y · (xy)−1x. Hence y−1 = y\1 = (xy)−1x. Thus, by the right

inverse property, y−1x−1 = (xy)−1. Of course, the right inverse property and the

antiautomorphic inverse property together imply the left inverse property. �

Corollary 3.2. In the variety of loops, the FRUTE identity is equivalent to

its mirror: x(xz · y) = z(yx · x).

Proof. Apply the antiautomorphic inverse property to the FRUTE identity,

and note that each element is an inverse. �
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Theorem 3.3. Each FRUTE loop is also a Moufang loop.

Proof. In the FRUTE identity, (x · xy)z = (y · zx)x, set z = z/x to obtain

(x · xy)(z/x) = yz · x. Next, apply the right inverse property and multiply both

sides of this equation on the left by x to obtain x((x · xy)(zx−1)) = x · (yz · x).

Corollary 3.2, together with the right inverse property, yields x((x ·xy)(zx−1)) =

xy · zx; hence x(yz · x) = xy · zx. �

Theorem 3.4. Let Q be a Moufang loop. The following conditions are

equivalent:

(i) Q is a FRUTE loop;

(ii) x3 ∈ N(Q) and x2 ∈ C(Q) for every x ∈ Q; and

(iii) each Tx, x ∈ Q, is either the identity mapping or an involutory automorphism

on Q.

Proof. Note that Tx
−1 = Tx−1 in each Moufang loop. Now, the identity

(x · xy)(z/x) = yz · x is true if and only if each (L2
x, R

−1
x , Rx) is an autotopism.

This is equivalent to the condition that (LxR
−1
x , R−1x Lx, RxL

−1
x ) = (Tx, Tx, Tx−1)

is an autotopism, since, in a Moufang loop, (L−1x R−1x , Lx, L
−1
x ) is an autotopism

for every x ∈ Q [11]. If α, β and γ are permutations of a loop Q such that α(1) =

β(1) = γ(1) = 1 and (α, β, γ) is an autotopism, then α = β = γ ∈ Aut(Q). Hence

(x · xy)z = (y · zx)x holds if and only if T 2
x = idQ and Tx = Tx−1 ∈ Aut(Q) for

all x ∈ Q. Since LxRx = RxLx, both T 2
x = idQ and Tx = Tx−1 are equivalent to

Lx2 = Rx2 , i.e., x2 ∈ C(Q). Finally, we note that in Moufang loops, Tx ∈ Aut(Q)

if and only if x3 ∈ N(Q) [11].

The referee suggests including an alternate, and “autotopism-free”, proof.

We use the diassociativity of Q freely in this second proof. In the FRUTE identity

(x·xy)z = (y·zx)x, set y = x−2y to obtain yz = (x−2y·zx)x. Next, in the Moufang

identity x(y · xz) = xyx · z, set y = x−2y and z = x−1zx to obtain x(x−2y · zx) =

x−1yx ·x−1zx. It follows from yz = (x−2y · zx)x that x ·yz ·x−1 = x(x−2y · zx) =

x−1yx · x−1zx. Hence, the identity x · yz · x−1 = x−1yx · x−1zx characterizes the

FRUTE loops among Moufang loops. Setting y = 1 gives xzx−1 = x−1zx; that is

T 2
x = idQ, and hence, Tx is an involutory automorphism or the identity map. �

Let Q be a loop with normal subloops A and B such that Q = AB. Put

C = A ∩ B. For each (a, b) ∈ A × B send ab to aC; this is a well-defined

homomorphism Q → A/C. (Indeed, a1b1 = a2b2 implies that a1B = a2B.

Of course, a1B = a2B ⇔ a1/a2 ∈ C ⇔ a1C = a2C; i.e., the mapping is well-

defined. The rest follows from a1B · a2B = (a1a2)B.)
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Thus, ab 7→ (aC, bC) is a well-defined homomorphism Q → A/C × B/C,

the kernel of which is equal to C. This homomorphism is surjective, since a = a ·1
and b = 1 · b, for every (a, b) ∈ A×B.

Proposition 3.5. Let Q be a FRUTE loop. Then Q/Z(Q) ∼= L×G, where

L is a commutative Moufang loop of exponent three, and G is a Boolean group.

Proof. We have x = x−2x3 for each x ∈ Q. Hence Q = C(Q)N(Q). By def-

inition, Z(Q) = C(Q) ∩ N(Q). If x ∈ C(Q), then x3 ∈ Z(Q) [11]. Thus, since

C(Q) is a commutative Moufang loop, C(Q)/Z(Q) is a commutative Moufang

loop of exponent three. If x ∈ N(Q), then x2 ∈ Z(Q). Finally, since N(Q) is

a group, N(Q)/Z(Q) is a group of exponent two, i.e., a Boolean group. �

4. Conjugation is homomorphic

Proposition 3.5 suggests a characterization of FRUTE loops via central ex-

tensions of loops L × G, where L is a commutative Moufang loop of exponent

three, and G is a Boolean group. However, such an approach requires a number

of opaque technical considerations. We take a different approach and prove first

that x 7→ Tx is a homomorphism Q → Aut(Q). There are other settings in loop

theory in which a condition of this kind plays a prominent role [3], [9]; it seems

to be indicative of very strong structural assumptions.

Let Q be a FRUTE loop. Since Q is also a Moufang loop, and hence, dias-

sociative [11], Tx(y) = xyx−1 for all x, y ∈ Q.

Lemma 4.1. Tx = Tx3 , for every x ∈ Q.

Proof. Diassociativity and the fact that x2 ∈ C(Q) together imply that

xyx−1 = x3yx−3. �

Lemma 4.2. TxTy = Tyx, for all x, y ∈ Q.

Proof. If a, b, c ∈ N(Q), then TaTb = Tc is equivalent to Tab = Tc, and

to the condition that (ab)−1c ∈ C(Q). Since TxTy = Tx3Ty3 and Tyx = T(yx)3 ,

by Lemma 4.1, it suffices to prove that y−3x−3(yx)3 ∈ C(Q). And this follows

from applying Theorem 3.4 to:

y−3x−3(yx)2(yx) = (yx)2y−1x−1y−1x−1 = (yx)2(xy)−2. �

Theorem 4.3. LetQ be a FRUTE loop. Then the mapping T : Q→ Aut(Q),

x 7→ Tx, is a loop homomorphism with kernel equal to C(Q). Furthermore,

Q/C(Q) is a Boolean group, and C(Q) is a commutative Moufang loop.
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Proof. By Theorem 3.4, each Tx is an automorphism of Q that is of order

at most two. By Lemma 4.2, all these automorphisms form a subgroup of Aut(Q).

This subgroup is Boolean. Therefore TxTy = TyTx = Txy. The rest is clear. �

We define the commutator, [x, y] of x and y, thusly: xy = yx · [x, y]. The

least normal subloop of Q that contains all commutators is known as the derived

subloop and is denoted by Q′. By Theorem 4.3, Q′ ≤ C(Q).

Theorem 4.4. Let Q be a FRUTE loop. Then Q′ is a Boolean group and

is contained in Z(Q). If x, y, z ∈ Q, then [x, y] = [y, x] = (xy)2x−2y−2 and

[x, yz] = [x, y][x, z].

Proof. First note that [x, y] ∈ C(Q) by Theorem 4.3. Next, we have x3 ∈
N(Q) by Theorem 3.4, and so [x3, y] = x−3T−1y (x3) ∈ N(Q), since N(Q) is

normal in Q. Thus, since x2 ∈ C(Q) by 3.4, we have [x, y] = [x3, y], and hence,

[x, y] ∈ Z(Q).

In any Moufang loop, we have [a, yz] = [a, z](z−1[a, y]z) if a is nuclear. This

is because 〈a, y, z〉 is a group, by Moufang’s theorem [4]. Thus, if commutators

are in the commutant, as they are in FRUTE loops, we have [a, yz] = [a, y][a, z].

Now, recalling that x3 is nuclear, we obtain [x, yz] = [x3, yz] = [x3, y][x3, z] =

[x, y][x, z]. And this in turn gives[x, y]2 = [x, y2] = 1, since y2 ∈ C(Q). Hence

[y, x] = [x, y]−1 = [x, y] for all x, y ∈ Q. Finally, since Q is diassociative, and

since x2, y2 ∈ C(Q), we have (xy)2x−2y−2 = x−2xyy−2xy = x−1y−1xy = [x, y],

again, for all x, y ∈ Q. �

Corollary 4.5. Let Q be a FRUTE loop. Then Q is an automorphic Mo-

ufang loop.

Proof. The standard inner mappings are pseudoautomorphisms, the com-

panions of which are nuclear.Thus, the inner mappings are automorphisms [1]. �

5. Locally finiteness takes a coproduct face

By a p-group we mean a group in which each element is of an order pk for

some k ≥ 0.

Each locally finite commutative Moufang loop is a coproduct (i.e., a direct

sum) of abelian p-groups, p 6= 3, and of a commutative Moufang 3-loop, i.e.,

a commutative Moufang loop in which all elements are of order a power of 3 [1].

Lemma 5.1. Let G be a locally finite group such that x2 ∈ Z(G) for each

x ∈ G. Then G = O ×H, where O is an abelian group in which all elements are
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of odd order, and H is a 2-group such that H ′ is of exponent two and H ′ ≤ Z(H).

Conversely, every such group G = O ×H satisfies the condition that x2 ∈ Z(G)

for each x ∈ G.

Proof. Indeed, every element of odd order is central. Hence, all elements

of odd order form a central normal subgroup. Now, [x, y] = (xy)2x−2y−2 implies

that [x, y] = [y, x] is central. Hence [x, yz] = [x, y][x, z] for all x, y, z ∈ G, and,

in particular, 1 = [x, y2] = [x, y]2. Hence G′ is a central Boolean group, and

H may be defined as a preimage of the 2-group in the decomposition of G/G′.

For the converse direction, first note that O ≤ Z(G) and that G′ = H ′ ≤ Z(G).

Since [x, yz] = [x, yz] = [x, y][x, z] for all x, y, z ∈ G, and since [x, y] is of order

at most two, [x, y2] = 1 for all x, y ∈ G. Thus y2 ∈ Z(G) for every y ∈ G. �

Theorem 5.2. Let Q be a locally finite FRUTE loop. Then Q = O × H,

where O is a commutative Moufang loop in which all elements are of odd order,

and H is a 2-group such that H ′ is of exponent two and H ′ ≤ Z(H). On the

other hand, every such loop Q = O ×H is a FRUTE loop.

Proof. Put Q̄ = Q/Q′ and denote by π the projection Q → Q̄. By Theo-

rem 3.4 and the remark before Lemma 5.1, Q̄ = Ō×H̄, where H̄ is a 2-group, and

Ō consists of all odd order elements of Q̄. Put H = π−1(H̄). All elements of H

are of order that is a power of two. By Theorem 3.4, H is a group, or – more pre-

cisely – a 2-group. The group satisfies the law x2yz = yzx2. Hence H ′ ≤ Z(H),

by Lemma 5.1. By Theorem 4.4, Q′ ≤ Z(Q). All elements of π−1(Ō) thus belong

to C(Q). Indeed, if x ∈ Q is expressed as yz, where y, z ∈<x>, |y| is odd and |z| is
a power of two, then π(x) ∈ Ō if and only if z ∈ Q′ ≤ Z(Q). Therefore Q′ = H ′,

again by Theorem 4.4. Now, π−1(Ō) is a commutative Moufang loop. Hence

it can be expressed as O×H ′, where O consists of all odd order elements that are

contained in Q [1]. On the other hand, H consists of all elements in Q the order of

which is a power of two. Clearly, O∩H = O∩π−1(Ō)∩H = O∩H ′ = 1. Both O

and H are normal since each inner mapping is an automorphism, by Corollary 4.5.

The converse is trivial, since both commutative Moufang loops and groups

with central squares satisfy the FRUTE identity. �

Thus, by Theorem 5.2, we see that the minimal order for a noncommutative

FRUTE loop is 8 = 23, while the minimal order for a nonassociative FRUTE loop

is 81 = 34.
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186 75 PRAHA 8

CZECH REPUBLIC

E-mail: drapal@karlin.mff.cuni.cz

J. D. PHILLIPS

DEPARTMENT OF MATHEMATICS

AND COMPUTER SCIENCE

NORTHERN MICHIGAN UNIVERSITY

MARQUETTE, MI 49855

USA

E-mail: jophilli@nmu.edu
URL: http://euclid.nmu.edu/~jophilli/

(Received February 16, 2019; revised May 24, 2019)


