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Tb criteria for Calderón–Zygmund operators on Lipschitz
spaces with para-accretive functions

By TAOTAO ZHENG (Hangzhou) and XIANGXING TAO (Hangzhou)

Abstract. By developing the Littlewood–Paley characterization of Lipschitz

spaces Lip(α)(Rn) and the new Lipschitz spaces Lipb(α)(Rn) with b a para-accretive

function, and establishing a density argument for Lipb(α)(Rn) in the weak sense, the

authors prove that the Calderón–Zygmund operators T are bounded from Lipb(α)(Rn)

to Lip(α)(Rn) if and only if T (b) = 0.

1. Introduction and main results

The L2-boundedness of convolution singular operators follows from the

Plancherel theorem. However, for non-convolution operators, one needs to develop

new methods to obtain the L2-boundedness. It is well-known that the T1 theo-

rem plays a crucial role in the analysis of L2-boundedness, and furthermore, the

Lp boundedness of Calderón-Zygmund singular integral operators, see [3] and [5]

among others. For the endpoint boundedness, there are also analogous T1 crite-

rions for Calderón-Zygmund operators, see, for example, [8].
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To be more precise, assume K(x, y) is a continuous function with x 6= y,

satisfying the following estimates for some σ > 0:

|K(x, y)| ≤ |x− y|−n; (1.1)

|K(x, y)−K(x′, y)|+|K(y, x)−K(y, x′)| ≤ |x− x
′|σ

|x−y|n+σ
, |x−x′| ≤ 1

2
|x−y|. (1.2)

A Calderón–Zygmund singular integral operator T is a continuous linear oper-

ator from C∞0 (Rn) into its dual associated to a kernel K(x, y), which can be

represented in a bilinear form by〈
Tf, g

〉
=

∫
Rn

∫
Rn

K(x, y)f(y)g(x)dydx (1.3)

whenever f and g are two compactly supported C∞-functions whose supports

are disjoint. The L2(Rn)-boundedness of such a non-convolution operator T was

proved by the remarkable T1 theorem of David and Journé [3], which provides

a general criterion for the L2-boundedness of Calderón–Zygmund singular inte-

gral operators. A Calderón–Zygmund singular integral operator T is said to be

a Calderón–Zygmund operator if T is bounded on L2(Rn).

However, the T1 theorem could not be directly applied to the Cauchy integral

on Lipschitz curves

C(f)(x) =
1

π
p.v.

∫ ∞
−∞

f(y)

(x− y) + i(a(x)− a(y))
dy,

where the function a(x) satisfies the Lipschitz condition. One does not know

how to prove that the Cauchy integral C(f) on Lipschitz curves maps the func-

tion 1 into BMO function without assuming the L2-boundedness of the Cauchy

integral C(f). McIntosh and Meyer in [14] (see also [15]) observed that if func-

tion 1 in the T1 theorem is allowed to be replaced by a function b(x) = 1+ ia′(x),

then C(b) = 0, and it will lead to L2-boundedness of the Cauchy integral on all

Lipschitz curves. McIntosh and Meyer [14] proved such a Tb theorem, where b

is an accretive function. Here a bounded complex-valued function b is said to be

an accretive function if b satisfies 0 < δ ≤ Re(b(x)) for almost every x. Finally,

David, Journé and Semmes [4] gave more general conditions for L∞ functions b

to be para-accretive, namely they proved a Tb theorem in which function 1 in

the T1 theorem can be replaced by para-accretive functions (see Definition 1.1).

See also [1], [2], [7], [16] for more details about Tb theorems.

Assuming b is an accretive function, Meyer and Coifman [15] introduced

a new Hardy space H1
b (Rn) such that f ∈ H1

b (Rn) if the product bf is in the
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classical Hardy space H1(Rn). These spaces have the advantage of a cancellation

adapted to the complex measure b(x)dx and are closely related to the Tb theorem.

Han, Lee and Lin [9] developed the Hardy spaces Hp
b (Rn), p ≤ 1, in terms of the

Littlewood–Paley characterization, where b is a para-accretive function. It seems

that f belongs to the Hardy spaces Hp
b (Rn) if bf ∈ Hp(Rn). However, this is not

the case, because, for p < 1, the elements of both Hp(Rn) could be distributions,

and hence, in general, the product bf does not make sense for f ∈ Hp(Rn) and

a para-accretive b unless b is a constant.

It was well known that the dual spaces of H1(Rn) and Hp(Rn) are BMO and

the Lipschitz space Lip(n(1/p − 1))(Rn) for 0 < p < 1, respectively. Meyer and

Coifman [15] proved that for an accretive function b, the dual space of H1
b (Rn)

is BMOb(Rn). Similarly, Han, Lee and Lin [10] proved that the dual space

of Hp
b (Rn) is Lipb(n(1/p − 1))(Rn) for 0 < p < 1. More precisely, denote

Lipb(α)(Rn) = {f : f = bg, g ∈ Lip(α)(Rn)}, where Lip(α)(Rn) is the classical

Lipschitz space of order α. If f ∈ Lipb(α)(Rn), then f = bg where g ∈ Lip(α)(Rn),

and the norm of f is defined by ‖f‖Lipb(α)
= ‖g‖Lip(α). Notice that the classical

Lipschitz spaces on Rn play an important role in harmonic analysis and partial

differential equations (see [6], [11]–[13], [17]).

The goal of this paper is to give a Tb criteria for the boundedness of Calderón–

Zygmund operators on the Lipschitz spaces Lipb(α)(Rn). Our main machine is to

develop the Littlewood–Paley characterization for Lipschitz spaces Lipb(α)(Rn)

and Lip(α)(Rn), which also has its own value and significance. For this purpose,

we first recall some definitions about the para-accretive function, test function

spaces and an approximation to the identity.

Definition 1.1 (Para-accretive function [4]). A bounded complex-valued func-

tion b defined on Rn is said to be para-accretive if there exist constants C, η > 0

such that, for all cubes Q ⊂ Rn, there is a Q′ ⊂ Q with η|Q| ≤ |Q′| satisfying

1

|Q|

∣∣∣∣∫
Q′
b(x)dx

∣∣∣∣ ≥ C > 0.

Definition 1.2 (Test function [10]). Fix β ∈ (0, 1], γ ∈ (0,∞). Let b be

a para-accretive function. A function f defined on Rn is said to be a test function

of type (β, γ) centered at x0 ∈ Rn with width d > 0, if f satisfies the following

conditions:

|f(x)| ≤ Cdγ

(d+ |x− x0|)n+γ
; (1.4)

|f(x)− f(x′)| ≤
(
|x− x′|

d+ |x− x0|

)β
Cdγ

(d+ |x− x0|)n+γ
, (1.5)
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for |x− x′| ≤ d+|x−x0|
2 ; and ∫

Rn

f(x)b(x)dx = 0. (1.6)

The collection of all test functions of type (β, γ) centered at x0 ∈ Rn with

width d > 0 will be denoted by M(β, γ, x0, d). If f ∈M(β, γ, x0, d), the norm of

f is defined by

‖f‖M(β,γ,x0,d) = inf{C ≥ 0 : (1.4) and (1.5) hold}.

We denoteM(β, γ, 0, 1) simply byM(β, γ). Moreover, one can see thatM(β, γ)

is a Banach space under the norm ‖f‖M(β,γ) < ∞. The dual space (M(β, γ))′

consists of all linear functionals L from M(β, γ) to C satisfying

|L(f)| ≤ C‖f‖M(β,γ), for all f ∈M(β, γ).

It is easy to see that for any fixed x0 ∈ Rn and d > 0, ‖f‖M(β,γ,x0,d) is equivalent

to ‖f‖M(β,γ). We denote by
〈
h, f

〉
the natural pairing of elements h ∈ (M(β, γ))′

and f ∈M(β, γ). As usual, we write

bM(β, γ) = {f |f = bg for some g ∈M(β, γ)}.

If f ∈ bM(β, γ) and f = bg for g ∈ M(β, γ), then the norm is defined by

‖f‖bM(β,γ) = ‖g‖M(β,γ).

To state the Calderón reproducing formula, we also need the definition of

an approximation to the identity.

Definition 1.3 (Approximation to the identity [7]). Let b be a para-accretive

function. A sequence of operators {Sk}k∈Z is called an approximation to the

identity associated to b if Sk(x, y), the kernels of Sk, are functions from Rn ×Rn

into C such that there exist constant C and some 0 < ε ≤ 1 for all k ∈ Z and all

x, x′, y and y′ ∈ Rn:

(1) |Sk(x, y)| ≤ C 2−kε

(2−k+|x−y|)n+ε ;

(2) |Sk(x, y)− Sk(x′, y)| ≤ C
(
|x−x′|

2−k+|x−y|

)ε
2−kε

(2−k+|x−y|)n+ε , for |x− x′| ≤ (2−k +

|x− y|)/2;

(3) |Sk(x, y) − Sk(x, y′)| ≤ C
(
|y−y′|

2−k+|x−y|

)ε
2−kε

(2−k+|x−y|)n+ε , for |y − y′| ≤ (2−k +

|x− y|)/2;
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(4) |[Sk(x, y)− Sk(x, y′)]− [Sk(x′, y)− Sk(x′, y′)]|

≤ C
(
|x−x′|

2−k+|x−y|

)ε ( |y−y′|
2−k+|x−y|

)ε
2−kε

(2−k+|x−y|)n+ε ,

for |x− x′| ≤ (2−k + |x− y|)/2 and |y − y′| ≤ (2−k + |x− y|)/2;

(5)
∫
Rn Sk(x, y)b(y)dy = 1 for all k ∈ Z, x ∈ Rn;

(6)
∫
Rn Sk(x, y)b(x)dx = 1 for all k ∈ Z, y ∈ Rn.

Suppose that {Sk}k∈Z is an approximation to the identity defined above,

Dk = Sk − Sk−1 and b is a para-accretive function. The first result of this pa-

per is the following Littlewood–Paley characterization of the Lipschitz spaces

Lip(α)(Rn) and Lipb(α)(Rn).

Theorem 1.1. (1) For 0 < α < ε, f ∈ Lipb(α)(Rn) if and only if f ∈
(M(β, γ))′ with some β ∈ (0, 1], γ ∈ (α,∞), and

sup
k∈Z, x∈Rn

2kα|Dkf(x)| ≤ C <∞.

Moreover,

‖f‖Lipb(α)
≈ sup
k∈Z, x∈Rn

2kα|Dkf(x)|. (1.7)

(2) For 0 < α < ε, f ∈ Lip(α)(Rn) if and only if f ∈ (bM(β, γ))′ with some

β ∈ (0, 1], γ ∈ (α,∞), and

sup
k∈Z, x∈Rn

2kα|Dk(bf)(x)| ≤ C <∞.

Moreover,

‖f‖Lip(α) ≈ sup
k∈Z, x∈Rn

2kα|Dk(bf)(x)|. (1.8)

The main result of this paper is the following Tb criteria for the boundedness

of Calderón–Zygmund operators on Lipschitz spaces.

Theorem 1.2. Let T be a Calderón–Zygmund operator, then T is bounded

from Lipb(α)(Rn) to Lip(α)(Rn) for 0 < α < ε if and only if T (b) = 0.

The organization of this paper is as follows. In Section 2, we will give the

proof of Theorem 1.1, and Theorem 1.2 will be proved in Section 3.

Throughout this paper, we denote by C a positive constant which is inde-

pendent of the main parameters, but it may vary from line to line. We use the

notation A ≈ B to denote that there exists a positive constant C such that

C−1B ≤ A ≤ CB. Let j ∧ j′ be the minimum of j and j′.
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2. Proof of Theorem 1.1

Before the proof of Theorem 1.1, we give two continuous versions of the

Calderón type reproducing formula.

Proposition 2.1 (Continuous Calderón type reproducing formula [9]). Sup-

pose that {Sk}k∈Z is an approximation to the identity defined above. Set Dk =

Sk−Sk−1. Then there exist two families of operators {D̃k}k∈Z and { ˜̃Dk}k∈Z such

that for all f ∈M(β, γ),

f(x) =
∑
k

D̃kbDkb(f)(x) =
∑
k

Dkb
˜̃
Dkb(f)(x), (2.1)

the series converges in the Lp-norm, 1 < p <∞, in theM(β′, γ′)-norm for β′ < β

and γ′ < γ, and in the (bM(β′, γ′))′ for β < β′ and γ < γ′. Moreover, D̃k(x, y),

the kernel of D̃k, satisfy the following estimates: for 0 < ε′ < ε, where ε is the

regularity exponent of Sk, there exists a constant C > 0 such that

|D̃k(x, y)| ≤ C 2−kε
′

(2−k + |x− y|)n+ε′
,

|D̃k(x, y)− D̃k(x′, y)| ≤ C
(

|x− x′|
2−k + |x− y|

)ε′
2−kε

′

(2−k + |x− y|)n+ε′

for |x− x′| ≤ (2−k + |x− y|)/2,∫
Rn

D̃k(x, y)b(x)dx = 0 for all k ∈ Z and y ∈ Rn,∫
Rn

D̃k(x, y)b(y)dy = 0 for all k ∈ Z and x ∈ Rn.

˜̃
Dk(x, y), the kernels of

˜̃
Dk, satisfy the same conditions above but with inter-

changing the positions of x and y.

We also have

f(x) =
∑
k

bD̃]
kbDk(f)(x) =

∑
k

bDkb
˜̃
D
]

k(f)(x), (2.2)

where the series converges in the Lp-norm, 1 < p <∞, in the bM(β′, γ′)-norm for

β′ < β and γ′ < γ, and in (M(β′, γ′))′ for β < β′ and γ < γ′. Moreover, D̃]
k(x, y),

the kernel of D̃]
k, and

˜̃
D
]

k(x, y), the kernel of
˜̃
D
]

k, satisfy the same conditions as

D̃k(x, y) and
˜̃
Dk(x, y), respectively.
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The following four discrete versions of the Calderón type reproducing formula

were given in [9].

Proposition 2.2 (Discrete Calderón type reproducing formula for the case

of M(β, γ)). Suppose that {Sk}k∈Z is an approximation to the identity defined

above. Set Dk = Sk − Sk−1. Then there exists a family of operators { ˜̃D]

k}k∈Z
such that for all f ∈M(β, γ),

f(x) =
∑
k

∑
Q

Dk(x, yQ)

∫
Q

˜̃
D
]

k(bf)(y)b(y)dy, (2.3)

where Q are all dyadic cubes with the side length 2−k−j for some fixed posi-

tive large integer j, yQ is any fixed point in Q, and the series converges in the

M(β′, γ′)-norm for β′ < β and γ′ < γ. Moreover,
˜̃
D
]

k(x, y), the kernel of
˜̃
D
]

k,

satisfy the same conditions as those in Proposition 2.1.

Proposition 2.3 (Discrete Calderón type reproducing formula for the case

of (M(β, γ))′). Let Sk, Dk,
˜̃
D
]

k(x, y), Q, yQ be given in Proposition 2.2. Then,

for all f ∈ (M(β, γ))′,

f(x) =
∑
k

∑
Q

Dk(f)(yQ)

∫
Q

b(x)
˜̃
D
]

k(y, x)b(y)dy, (2.4)

where the series converges in the sense that for all g ∈M(β′, γ′) with β<β′ and

γ<γ′,

lim
M,N→∞

〈 ∑
|k|<M

∑
dist(0,Q)≤N

Dk(f)(yQ)

∫
Q

b(x)
˜̃
D
]

k(y, x)b(y)dy, g

〉
=
〈
f, g
〉
.

Proposition 2.4 (Discrete Calderón type reproducing formula for the case

of bM(β, γ)). Let Sk, Dk,
˜̃
D
]

k(x, y), Q, yQ be given in Proposition 2.2. Then, for

all f ∈ bM(β, γ),

f(x) =
∑
k

∑
Q

b(x)Dk(x, yQ)

∫
Q

˜̃
D
]

k(f)(y)b(y)dy, (2.5)

where the series converges in the bM(β′, γ′)-norm for the case of β′<β and γ′<γ.
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Proposition 2.5 (Discrete Calderón type reproducing formula for the case

of (bM(β, γ))′). Let Sk, Dk,
˜̃
D
]

k(x, y), Q, yQ be given in Proposition 2.2. Then,

for all f ∈ (bM(β, γ))′,

f(x) =
∑
k

∑
Q

Dk(bf)(yQ)

∫
Q

˜̃
D
]

k(y, x)b(y)dy, (2.6)

where the series converges in the sense that for all g ∈ bM(β′, γ′) with β < β′

and γ < γ′,

lim
M,N→∞

〈 ∑
|k|<M

∑
dist(0,Q)≤N

Dk(bf)(yQ)

∫
Q

˜̃
D
]

k(y, x)b(y)dy, g

〉
=
〈
f, g
〉
.

Now we give the proof of Theorem 1.1. For (1), firstly, it is easy to see that

if f ∈ Lipb(α)(Rn), then f ∈ (M(β, γ))′ with β > 0 and γ > α. To check that

supk∈Z, x∈Rn 2kα|Dkf(x)| ≤ C‖f‖Lipb(α)
, notice that Dk(x, y), as the function of

y when x fixed, belongs toM(ε, ε), α < ε, and
∫
Rn Dk(x, y)b(y)dy = 0, so we have

|Dkf(x)| =
∣∣∣∣∫

Rn

Dk(x, y)f(y)dy

∣∣∣∣ =

∣∣∣∣∫
Rn

Dk(x, y)

(
f(y)

b(y)
− f(x)

b(x)

)
b(y)dy

∣∣∣∣
≤ C‖f‖Lipb(α)

∫
Rn

|Dk(x, y)||x− y|α|b(x)|dx

≤ C2−kα‖f‖Lipb(α)

∫
Rn

2−k(ε−α)

(2−k + |x− y|)n+ε−α
dx

≤ C2−kα‖f‖Lipb(α)
. (2.7)

We now prove converse implication of Theorem 1.1 (1). Suppose that f ∈
(M(β, γ))′ and supk∈Z, x∈Rn 2kα|Dkf(x)| ≤ C‖f‖Lipb(α)

. We first show that f is

a continuous function. Recalling the Calderón type reproducing formula (2.4) for

f ∈ (M(β, γ))′,

f(x) =
∑
k

∑
Q

Dkf(yQ)

∫
Q

b(x)
˜̃
D
]

k(y, x)b(y)dy.

We split
∑
k∈Z by the sums over k > 0 and k ≤ 0, and write f = f1 + f2 in

(M(β, γ))′ for the corresponding k. We will show that f1 and f2 are continuous

functions.
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For the first case, using the size condition on
˜̃
D
]

k, we get

|f1(x)| ≤
∑
k>0

∑
Q

|Dkf(yQ)|
∫
Q

|b(x)|| ˜̃D]

k(y, x)||b(y)|dy

≤ C
∑
k>0

2−kα
∑
Q

∫
Q

| ˜̃D]

k(y, x)|dy

≤ C
∑
k>0

2−kα
∑
Q

∫
Q

2−kε
′

(2−k + |y − x|)n+ε′
dy ≤ C.

So the series for f1 is converges uniformly in x, and it implies that f1 is a contin-

uous function.

For g ∈ M(β, γ), by the cancellation condition
∫
Rn g(x)b(x)dx = 0, we

can write〈
f2, g

〉
=
∑
k≤0

∑
Q

Dkf(yQ)

∫
Q

∫
Rn

(˜̃
D
]

k(y, x)− ˜̃D]

k(y, x0)

)
g(x)b(x)dxb(y)dy

=

〈∑
k≤0

∑
Q

Dkf(yQ)

∫
Q

b(x)

(˜̃
D
]

k(y, x)− ˜̃D]

k(y, x0)

)
b(y)dy, g(x)

〉
.

We focus on the series in the inner product. If |x − x0| ≤ 2−k

2 , we can use the

smoothness condition on
˜̃
D
]

k and get∣∣∣∣∣∣
∑
k≤0

∑
Q

Dkf(yQ)

∫
Q

b(x)

(˜̃
D
]

k(y, x)− ˜̃D]

k(y, x0)

)
b(y)dy

∣∣∣∣∣∣
≤ C

∑
k≤0

2−kα
∑
Q

∫
Q

(
|x− x0|

2−k + |x− y|

)ε′
2−kε

′

(2−k + |x− y|)n+ε′
|b(x)||b(y)|dy

≤ C|x− x0|ε
′∑
k≤0

2k(ε
′−α)

∑
Q

∫
Q

2−kε
′

(2−k + |x− y|)n+ε′
dy

≤ C|x− x0|ε
′∑
k≤0

2k(ε
′−α) ≤ C|x− x0|ε

′
. (2.8)

If |x− x0| > 2−k

2 , we have∣∣∣∣∣∣
∑
k≤0

∑
Q

Dkf(yQ)

∫
Q

b(x)

(˜̃
D
]

k(y, x)− ˜̃D]

k(y, x0)

)
b(y)dy

∣∣∣∣∣∣ ≤
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≤ C
∑
k≤0

2−kα
∑
Q

∫
Q

(
|x− x0|

2−k

)ε′ (
| ˜̃D]

k(y, x)|+ | ˜̃D]

k(y, x0)|
)
|b(x)||b(y)|dy

≤ C|x− x0|ε
′∑
k≤0

2k(ε
′−α)

∑
Q

∫
Q

(
| ˜̃D]

k(y, x)|+ | ˜̃D]

k(y, x0)|
)
dy

≤ C|x− x0|ε
′∑
k≤0

2k(ε
′−α) ≤ C|x− x0|ε

′
. (2.9)

Thus, we obtain that for any given large L > 0, the series for f2 converges uni-

formly for |x−x0| ≤ L in the distribution sense. This means that f2 is a continuous

function on any compact subset in Rn, and hence, it is continuous on Rn.

Now, we estimate ‖f‖Lipb(α)
as follows. For any x, y ∈ Rn, we can choose

k0 ∈ Z such that 2−k0 ≤ |x − y| ≤ 2−k0+1. The Calderón type reproducing

formula (2.4) tells us that

f(x)

b(x)
− f(y)

b(y)
=

∑
k≥k0

+
∑
k<k0

∑
Q

Dkf(yQ)

∫
Q

(˜̃
D
]

k(z, x)− ˜̃D]

k(z, y)

)
b(z)dz

:= I + II.

For I, the size condition on
˜̃
D
]

k and the assumption supk∈Z, y∈Rn 2kα|Dkf(y)| ≤ C
lead to that

|I| ≤ C
∑
k≥k0

2−kα
∑
Q

∫
Q

(
2−kε

′

(2−k + |x− z|)n+ε′
+

2−kε
′

(2−k + |y − z|)n+ε′

)
|b(z)|dz

≤ C
∑
k≥k0

2−kα
∫
Rn

(
2−kε

′

(2−k + |x− z|)n+ε′
+

2−kε
′

(2−k + |y − z|)n+ε′

)
dz

≤ C2−k0α ≈ C|x− y|α.

For the second term II, using the smooth condition on
˜̃
D
]

k, we deal with it

similarly as in (2.8) and (2.9),

|II| ≤ C|x− y|ε
′ ∑
k<k0

2k(ε
′−α) ≤ C|x− y|ε

′
2k0(ε

′−α) ≈ C|x− y|α.

Therefore, we have ∣∣∣∣f(x)

b(x)
− f(y)

b(y)

∣∣∣∣ ≤ C|x− y|α,
and we can get the proof of (1.7).

Similarly, using the same methods with the Calderón type reproducing for-

mula (2.5) and (2.6), we can get the conclusion (1.8) in Theorem 1.1 (2).
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3. Proof of Theorem 1.2

To show Theorem 1.2, we need to prove a density argument for Lipb(α)(Rn),

which will play a crucial role in the proof of Theorem 1.2.

Definition 3.1 ([9]). Suppose {Sk}k∈Z is an approximation to the identity

associated to a para-accretive function b with regularity exponent ε. Set Dk =

Sk − Sk−1. The classical Hardy space Hp(Rn), 0 < p ≤ 1, is the collection of

(M(β, γ))′ satisfying

‖f‖Hp := ‖S(f)‖p <∞,

where the square function S(f) is defined by

S(f) =

∑
k∈Z

∑
Qk

|Dk(f)(xQk
)|2χQk

(x)


1/2

.

We also have that the Hardy space Hp
b (Rn), n

n+ε < p ≤ 1, is the collection

of (bM(β, γ))′ such that

‖f‖Hp
b

:= ‖gb(f)‖p <∞,

where gb(f), the discrete Littlewood–Paley g-function associated with the para-

accretive function b, is defined by

gb(f)(x) =

∑
k∈Z

∑
Qk

|Dk(bf)(xQk
)|2χQk

(x)


1/2

,

the dyadic cube Qk with radius 2−k and xQk
are any fixed points in Qk.

Lemma 3.1 ([10]). Suppose that b is a para-accretive function and n
n+ε <

p ≤ 1. The dual space of Hp
b (Rn) is Lipb(n(1/p− 1))(Rn) in the following sense:

(1) For each g ∈ Lipb(n(1/p − 1))(Rn), the linear functional `g : f 7→
〈
f, g
〉

defined initially on Hp
b (Rn)∩L2(Rn), has a continuous extension to Hp

b and

‖`g‖ ≤ ‖g‖Lipb(n(1/p−1)).

(2) Conversely, every continuous linear functional ` on Hp
b can be realized as

`=`g, defined initially onHp
b (Rn)∩L2(Rn), for some g ∈ Lipb(n(1/p−1))(Rn)

and ‖g‖Lipb(n(1/p−1)) ≤ C‖`‖.

The density argument is the following:
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Lemma 3.2. If f ∈ Lipb(α)(Rn), then there exists a sequence {fn} ∈
L2(Rn) ∩ Lipb(α)(Rn) such that

(1)

‖fn‖Lipb(α)
≤ C‖f‖Lipb(α)

, (3.1)

where the constant C is independent of fn and f .

(2) For any g ∈ L2(Rn) ∩Hp
b (Rn), n

n+ε < p ≤ 1,

lim
n→∞

〈
fn, g

〉
=
〈
f, g
〉
. (3.2)

Proof. Note that the Calderón type reproducing formula (2.2) holds in the

sense of distribution. We construct a sequence {fn} as follows,

fn(y) =
∑
|k′|<n

bD̃]
k′bDk′(f)(y). (3.3)

Obviously, fn ∈ L2(Rn) and it converges to f in the sense of distribution. To prove

fn ∈ Lipb(α)(Rn), by the Littlewood–Paley characterization (1.7) of the Lipschitz

spaces, we just need to show

sup
k∈Z, x∈Rn

2kα|Dkfn(x)| ≤ C‖f‖Lipb(α)
.

For the left part of the above inequality, we have

|Dkfn(x)| =

∣∣∣∣∣∣
∫
Rn

Dk(x, y)
∑
|k′|<n

bD̃]
k′bDk′(f)(y)dy

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
|k′|<n

∫
Rn

∫
Rn

Dk(x, y)(bD̃]
k′b)(y, z)dyDk′f(z)dz

∣∣∣∣∣∣
≤ sup
k′∈Z, z∈Rn

2k
′α|Dk′f(z)|

∑
|k′|<n

2−k
′α

∫
Rn

∣∣∣∣∫
Rn

Dk(x, y)(bD̃]
k′b)(y, z)dy

∣∣∣∣dz.
Using the Littlewood–Paley characterization (1.7) and the following almost or-

thogonal estimate (see [7]),∣∣∣∣∫
Rn

Dk(x, y)(bD̃]
k′b)(y, z)dy

∣∣∣∣ =
∣∣∣DkbD̃

]
k′b(x, z)

∣∣∣
≤ C2−|k

′−k|ε′ 2−(k
′∧k)ε′

(2−(k′∧k) + |x− z|)n+ε′
,
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we have,

2kα|Dkfn(x)| ≤ C‖f‖Lipb(α)

∑
|k′|<n

2(k−k
′)α2−|k

′−k|ε′
∫
Rn

2−(k
′∧k)ε′

(2−(k′∧k)+|x−z|)n+ε′
dz

≤ C‖f‖Lipb(α)

∑
|k′|<n

2(k−k
′)α2−|k

′−k|ε′ ≤ C‖f‖Lipb(α)
,

which implies the estimate in (1).

Next, we show (2). According to the construction of D̃]
k and

˜̃
D
]

k, we have,〈
f − fn, g

〉
=

〈 ∑
|k|≥n

bD̃]
kbDk(f)(y), g(y)

〉
=

∫
Rn

∫
Rn

∑
|k|≥n

(b
˜̃
D
]

kb)(z, y)g(y)dy Dkf(z)dz

=

∫
Rn

f(x)
∑
|k|≥n

∫
Rn

Dk(z, x)b
˜̃
D
]

kb(g)(z)dzdx =

〈
f(x),

∑
|k|≥n

Dkb
˜̃
D
]

kb(g)(x)

〉
.

Using the Calderón type reproducing formula (2.1), we denote Sn(g)(x)

by
∑
|k|<nDkb

˜̃
D
]

kb(g)(x), so we have〈
f − fn, g

〉
=
〈
f, g − Sn(g)

〉
.

The duality argument (see Lemma 3.1), together with the fact that for each

g ∈ L2(Rn) ∩Hp
b (Rn), ‖g − Sn(g)‖Hp

b
→ 0 as n→∞, implies that∣∣〈f − fn, g〉∣∣ ≤ C‖f‖Lipb(n(1/p−1)) ‖g − Sn(g)‖Hp

b
→ 0, as n→∞,

which shows (2), and hence the proof of Lemma 3.2 is complete. �

Lemma 3.3. Assume Dkb(x) = Dk(x, zk)b(x), zk is a fixed point, we have

Dkb ∈ Hp(Rn) ∩ L2(Rn), n
n+ε < p ≤ 1 and

‖Dkb‖Hp ≤ C2−kn( 1
p−1). (3.4)

Proof. Firstly, we have∫
Rn

|Dk(x, zk)b(x)|2dx ≤ C
∫
Rn

2−2kε

(2−k + |x− zk|)2n+2ε
dx ≤ C2kn.

Next, based on Coifman’s construction [15], we may assume that Dk(x, y)

has compact support in the sense that Dk(x, y) = 0 for |x − y| ≥ 2−k. For any

fixed k, we estimate the Hp norm of Dkb(x) = Dk(x, zk)b(x) as follows. Denote

Q∗ = 2Qk, the dyadic cube with the center at zk with radius 2× 2−k. We write
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∫
Rn

S(Dkb)(x)pdx =

∫
Q∗
S(Dkb)(x)pdx+

∫
(Q∗)c

S(Dkb)(x)pdx = III + IV.

Applying Hölder’s inequality together with the boundedness of the square function

on L2(Rn) and the size condition of Dk(x, zk), we have

III
1
p =

(∫
Q∗
|S(Dkb)(x)|pdx

) 1
p

≤ µ(Q∗)
1
p−

1
2

(∫
Q∗
|S(Dkb)(x)|2dx

) 1
2

≤ Cµ(Q∗)
1
p−

1
2

(∫
Q∗
|Dkb(x)|2dx

) 1
2

≤ C2knµ(Q∗)
1
p ≤ C2−kn( 1

p−1). (3.5)

We now estimate term IV . Note that if

Dj(Dkb)(x) =

∫
Dj(x, y)Dk(y, zk)b(y)dy 6= 0,

then |y−zk| ≤ 2−k and |x−y| ≤ 2−j . If x /∈ Q∗, then we have 2×2−k ≤ |x−zk| ≤
|x− y|+ |y− zk|. This implies that 2−k ≤ |x− y| ≤ 2−j , and hence j ≤ k. Using

the cancellation condition of Dk(y, zk)b(y) and the smoothness condition of Dj ,

we have

|Dj(Dkb)(x)| =
∣∣∣∣∫

Rn

Dj(x, y)Dk(y, zk)b(y)dy

∣∣∣∣
=

∣∣∣∣∫
Rn

[
Dj(x, y)−Dj(x, zk)

]
Dk(y, zk)b(y)dy

∣∣∣∣
≤ C

∫
Qk

(
2−k

2−j

)ε
2−jε

(2−j + |x− zk|)n+ε
|Dk(y, zk)||b(y)|dy

≤ C2(j−k)ε
2−jε

(2−j + |x− zk|)n+ε
,

which implies that for x /∈ Q∗,

S(Dkb)(x) ≤ C

∑
j≤k

22(j−k)ε
2−2jε

(2−j + |x− zk|)2n+2ε

1/2

.

Inserting the above estimate into term IV , it follows that

IV =

∫
(Q∗)c

|S(Dkb)(x)|pdx ≤ C
∫
(Q∗)c

∑
j≤k

22(j−k)ε
2−2jε

(2−j+|x−zk|)2n+2ε

p/2

dx

≤ C
∑
j≤k

2p(j−k)ε 2jn(p−1)
∫
Rn

2−j(pn+pε−n)

(2−j + |x− zk|)n+(pn+pε−n) dx ≤ C2−kn(1−p).

Thus, we completed the proof of Lemma 3.3. �
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To show Theorem 1.2, the main result in this paper, we need the boundedness

of Calderón–Zygmund operator on Hardy spaces.

Lemma 3.4 ([10]). Let T be a Calderón–Zygmund operator and T ∗(b) = 0,

then T is bounded from Hp(Rn) to Hp
b (Rn) for n/(n+ ε) < p ≤ 1.

We are ready to show Theorem 1.2. The necessary conditions of Theorem 1.2

follow directly by

‖Tb‖Lip(α) ≤ C‖b‖Lipb(α)
= ‖1‖Lip(α) = 0.

We now prove the sufficiency. The strategy of the proof is applying the

duality given in Lemma 3.1. We first show the boundedness of T for f ∈ L2(Rn)∩
Lipb(α)(Rn) and then extend to the case for f ∈ Lipb(α)(Rn), where n(1/p−1) =

α < ε. More precisely, for f ∈ L2(Rn) ∩ Lipb(α)(Rn) and ψ ∈ Hp(Rn) ∩ L2(Rn),

by Lemma 3.1 and then applying Lemma 3.4 for T ∗, we have

|
〈
Tf, ψ

〉
| = |

〈
f, T ∗ψ

〉
| ≤ C‖f‖Lipb(α)

‖T ∗ψ‖Hp
b
≤ C‖f‖Lipb(α)

‖ψ‖Hp .

Set LTf (ψ) =
〈
Tf, ψ

〉
, this implies that LTf is a bounded linear functional on

Hp(Rn) and

‖LTf‖ ≤ C‖f‖Lipb(α)
.

We know that the dual space of Hp(Rn) is Lip(α)(Rn), so there exists h ∈
Lip(α)(Rn) such that

〈
Tf, ψ

〉
=
〈
h, ψ

〉
and ‖h‖Lip(α) ≤ C‖f‖Lipb(α)

. Since Dkb ∈
Hp(Rn), we take ψ to be Dkb, by Littlewood–Paley characterization (1.8), it fol-

lows that

‖Tf‖Lip(α) ≈ sup
k∈Z, y∈Rn

2kα|Dkb(Tf)(y)| = sup
k∈Z, y∈Rn

2kα|Dkb(h)(y)|

≈ ‖h‖Lip(α) ≤ C‖f‖Lipb(α)
. (3.6)

We now extend T to the case for f ∈ Lipb(α)(Rn) as follows. To do this,

for f ∈ Lipb(α)(Rn), by Lemma 3.2, there exists a sequence fn ∈ L2(Rn) ∩
Lipb(α)(Rn) with ‖fn‖Lipb(α)

≤ C‖f‖Lipb(α)
, so that for g ∈ Hp(Rn) ∩ L2(Rn),

we have 〈
T (fn − fn′), g

〉
=
〈
fn − fn′ , T ∗g

〉
.

Using Lemma 3.4 with the fact that T ∗g ∈ Hp
b (Rn) ∩ L2(Rn) and then applying

Lemma 3.2 (2), we get
〈
fn − fn′ , T ∗g

〉
→ 0 as n, n′ →∞. Thus, we can define〈

Tf, g
〉

= lim
n→∞

〈
Tfn, g

〉
, g ∈ Hp(Rn) ∩ L2(Rn).
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Finally, Theorem 1.1 (2) and Lemma 3.2 (1) imply that

‖Tf‖Lip(α) ≈ sup
k∈Z, y∈Rn

2kα|Dkb(Tf)(y)| = sup
k∈Z, y∈Rn

2kα| lim
n→∞

Dkb(Tfn)(y)|

≤ lim inf
n→∞

sup
k∈Z, y∈Rn

2kα|Dkb(Tfn)(y)|

≈ lim inf
n→∞

‖Tfn‖Lip(α) ≤ C lim inf
n→∞

‖fn‖Lipb(α)
≤ C‖f‖Lipb(α)

.

We complete the proof of Theorem 1.2.
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