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Tb criteria for Calderé6n—Zygmund operators on Lipschitz
spaces with para-accretive functions

By TAOTAO ZHENG (Hangzhou) and XIANGXING TAO (Hangzhou)

Abstract. By developing the Littlewood—Paley characterization of Lipschitz
spaces Lip(a)(R"™) and the new Lipschitz spaces Lip,(a)(R™) with b a para-accretive
function, and establishing a density argument for Lip,(«)(R™) in the weak sense, the
authors prove that the Calderén-Zygmund operators T' are bounded from Lip,(a)(R™)
to Lip(a)(R™) if and only if T'(b) = 0.

1. Introduction and main results

The L2-boundedness of convolution singular operators follows from the
Plancherel theorem. However, for non-convolution operators, one needs to develop
new methods to obtain the L2-boundedness. It is well-known that the T'1 theo-
rem plays a crucial role in the analysis of L2-boundedness, and furthermore, the
L? boundedness of Calderén-Zygmund singular integral operators, see [3] and [5]
among others. For the endpoint boundedness, there are also analogous T'1 crite-
rions for Calderén-Zygmund operators, see, for example, [8].
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To be more precise, assume K (z,y) is a continuous function with = # v,
satisfying the following estimates for some o > 0:

|K(z,y)| < |z —y|™™; (1.1)
/|0’

K (2,y)— K (2!, 9)| +|K (y,2) ~ K (y.2)]| < ||H

1
L —2| < Zlz—y|. (1.2
ey [l S glemyl (1)

A Calderén-Zygmund singular integral operator T' is a continuous linear oper-

ator from C§°(R™) into its dual associated to a kernel K(x,y), which can be
represented in a bilinear form by

(1) = [ [ Kl (13)

whenever f and g are two compactly supported C'°°-functions whose supports
are disjoint. The L?(R™)-boundedness of such a non-convolution operator T' was
proved by the remarkable T'1 theorem of DAVID and JOURNE [3], which provides
a general criterion for the L?-boundedness of Calderén—Zygmund singular inte-
gral operators. A Calderén—Zygmund singular integral operator 7' is said to be
a Calderén—Zygmund operator if 7' is bounded on L%(R™).

However, the T'1 theorem could not be directly applied to the Cauchy integral
on Lipschitz curves

_1 o0 f(y)
C(f)(z) = e '/_OO (x —y) +ila(z) — a(y))d%

where the function a(x) satisfies the Lipschitz condition. One does not know
how to prove that the Cauchy integral C(f) on Lipschitz curves maps the func-
tion 1 into BMO function without assuming the L2-boundedness of the Cauchy
integral C(f). McINTOSH and MEYER in [14] (see also [15]) observed that if func-
tion 1 in the T'1 theorem is allowed to be replaced by a function b(x) = 1+ia’(z),
then C(b) = 0, and it will lead to L?-boundedness of the Cauchy integral on all
Lipschitz curves. McIntosh and Meyer [14] proved such a Th theorem, where b
is an accretive function. Here a bounded complex-valued function b is said to be
an accretive function if b satisfies 0 < § < Re(b(x)) for almost every z. Finally,
DAvID, JOURNE and SEMMES [4] gave more general conditions for L functions b
to be para-accretive, namely they proved a T'b theorem in which function 1 in
the T'1 theorem can be replaced by para-accretive functions (see Definition 1.1).
See also [1], [2], [7], [16] for more details about Th theorems.

Assuming b is an accretive function, MEYER and COIFMAN [15] introduced
a new Hardy space H}(R™) such that f € H}(R") if the product bf is in the
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classical Hardy space H!(R™). These spaces have the advantage of a cancellation
adapted to the complex measure b(x)dx and are closely related to the Th theorem.
HAN, LEE and LIN [9] developed the Hardy spaces H; (R™), p < 1, in terms of the
Littlewood—Paley characterization, where b is a para-accretive function. It seems
that f belongs to the Hardy spaces Hp (R™) if bf € HP(R™). However, this is not
the case, because, for p < 1, the elements of both H?(R™) could be distributions,
and hence, in general, the product bf does not make sense for f € HP(R™) and
a para-accretive b unless b is a constant.

It was well known that the dual spaces of H'(R™) and H?P(R™) are BMO and
the Lipschitz space Lip(n(1/p — 1))(R™) for 0 < p < 1, respectively. Meyer and
Coifman [15] proved that for an accretive function b, the dual space of H}(R™)
is BMO,(R™). Similarly, HAN, LEE and LIN [10] proved that the dual space
of HJ(R™) is Lipy(n(1/p — 1))(R™) for 0 < p < 1. More precisely, denote
Lipy(«)(R™) = {f : f = bg,¢ € Lip(«)(R™)}, where Lip(a)(R") is the classical
Lipschitz space of order a.. If f € Lipy(«)(R™), then f = bg where g € Lip(a)(R™),
and the norm of f is defined by || f||Lip,(a) = l9llLip(a)- Notice that the classical
Lipschitz spaces on R™ play an important role in harmonic analysis and partial
differential equations (see [6], [11]-[13], [17]).

The goal of this paper is to give a T'b criteria for the boundedness of Calderén—
Zygmund operators on the Lipschitz spaces Lip,(a)(R™). Our main machine is to
develop the Littlewood—Paley characterization for Lipschitz spaces Lip,(a)(R"™)
and Lip(«)(R™), which also has its own value and significance. For this purpose,
we first recall some definitions about the para-accretive function, test function
spaces and an approximation to the identity.

Definition 1.1 (Para-accretive function [4]). A bounded complex-valued func-
tion b defined on R” is said to be para-accretive if there exist constants C, n > 0
such that, for all cubes @ C R", there is a Q' C Q with n|Q| < |Q’| satisfying

@1| ’/, b(x)dx

Definition 1.2 (Test function [10]). Fix 8 € (0,1], v € (0,00). Let b be
a para-accretive function. A function f defined on R"™ is said to be a test function
of type (8,7) centered at xg € R™ with width d > 0, if f satisfies the following
conditions:

>C>0.

cdY )
(d+ |z — zo|)tr’

, |x — | o cdv
1@ -1 = () s 09

|f(z)] < (1.4)
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ZL’/| < d+\w2fzo|

for |z — ; and

f(z)b(z)dx = 0. (1.6)
RTL

The collection of all test functions of type (3,7) centered at zo € R™ with
width d > 0 will be denoted by M(8,~, o, d). If f € M(B,~,xo,d), the norm of
f is defined by

| fllm(8,7,20,0) = inf{C > 0: (1.4) and (1.5) hold}.

We denote M(8,7,0,1) simply by M(8,~). Moreover, one can see that M(8,~)
is a Banach space under the norm | f||r(5,4) < o0. The dual space (M(f,7))’
consists of all linear functionals £ from M(f,~) to C satisfying

LN < Cllfllmpy, forall fe M(B,y).

It is easy to see that for any fixed 2o € R™ and d > 0, || f || rm1(8,7,20,4) 1S equivalent
to || fll rm(,7)- We denote by (h, f) the natural pairing of elements h € (M(8,7))’
and f € M(B,7). As usual, we write

bM(B,v) = {f|f = bg for some g € M(B,7)}.

If f e bM(B,7v) and f = bg for g € M(B,7), then the norm is defined by
1 loatcs,7) = lgllaecs,q-

To state the Calderén reproducing formula, we also need the definition of
an approximation to the identity.

Definition 1.3 (Approximation to the identity [7]). Let b be a para-accretive
function. A sequence of operators {Sj}rez is called an approximation to the
identity associated to b if Sk(x,y), the kernels of Sy, are functions from R™ x R™
into C such that there exist constant C' and some 0 < ¢ <1 for all £ € Z and all
z, 2,y and ¢y € R™:

(1) [Sk(a.y) < O

2—k€
Ty

—ke

(2) |Sk(x7y) - Sk(x/ay” <C (27‘5_;21?!') (2—k+2|m_y‘)n+av for |l‘ - $/| < (Q_k +
|z —yl)/2;
— € —ke _
(3) |Sk(l’,y) - Sk(xvy/” < c (27Ly+|ily‘> (27k+2‘z,y|)n+sa for |y - y/| < (2 F +
|z —yl)/2;
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(4) 1[Sk(z,y) — Sz, y")] = [Sk(@’, y) — Sk(a’,y)]|
lz—a2'] \® =y \° g—ke
S C (2*k+\x—y|) (Q—k_Hx_yl) (2—k+|x_y‘)n+s7
for [z — /] < (2% + [ — yl)/2 and |y — /| < (27* + |z — )2
(5) Jgn Sk(z,y)b(y)dy =1 for all k € Z,z € R™;
(6) Jan Sk(z,y)b(x)dr =1 for all k € Z,y € R".

Suppose that {S;}rez is an approximation to the identity defined above,
Dy = Sk — Si_1 and b is a para-accretive function. The first result of this pa-
per is the following Littlewood—Paley characterization of the Lipschitz spaces
Lip(a)(R™) and Lip,(a)(R™).

Theorem 1.1. (1) For 0 < a < &, f € Lipy(a)(R™) if and only if f €
(M(B,7))" with some § € (0,1], v € (o, 0), and

sup 2Dy f(x)] < C < .
k€Z, zER"

Moreover,

I fllipy(a) = sup  2%|Dyf(2)]. (1.7)
k€Z, xeR™
(2) For 0 < a < ¢, f € Lip(a)(R"™) if and only if f € (bM(B,7)) with some
B8 €(0,1], v € (a, 0), and

sup 28Dy (bf)(z)] < C < .
kEZ, zER™

Moreover,

I fllip) = sup 25Dy (bf) ()], (1.8)
kEZ, TER™

The main result of this paper is the following T'b criteria for the boundedness
of Calderén—Zygmund operators on Lipschitz spaces.

Theorem 1.2. Let T be a Calderén—Zygmund operator, then T is bounded
from Lip,(a)(R™) to Lip(a)(R™) for 0 < o < ¢ if and only if T(b) = 0.

The organization of this paper is as follows. In Section 2, we will give the
proof of Theorem 1.1, and Theorem 1.2 will be proved in Section 3.

Throughout this paper, we denote by C' a positive constant which is inde-
pendent of the main parameters, but it may vary from line to line. We use the
notation A ~ B to denote that there exists a positive constant C' such that
C~ !B < A<CB. Let j A j' be the minimum of j and j'.
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2. Proof of Theorem 1.1

Before the proof of Theorem 1.1, we give two continuous versions of the
Calderén type reproducing formula.

Proposition 2.1 (Continuous Calderén type reproducing formula [9]). Sup-
pose that {Sk}rez Is an approximation to the identity defined above. Set Dy =

Sy — Sk—1. Then there exist two families of operators {f)k}kez and {5k}kez such
that for all f € M(B,7),

F(2) = 3" DibDib(f)(x) = 3 DibDib(f) (@), (2.1)
k k

the series converges in the LP-norm, 1 < p < oo, in the M(8’,~')-norm for 5’ < 3
and 4/ < v, and in the (bM(B',~"))’ for B < 8 and v < ~'. Moreover, Dy(z, ),
the kernel of Bk, satisfy the following estimates: for 0 < & < &, where ¢ is the
regularity exponent of Sy, there exists a constant C' > 0 such that

2—ks'
27F + |z —y[)nte”

De(ery) - Du(avy) < 0 (2= Y .
T\ le—yl) @F+|r—yl)nte

for [z —a'| < (27F + |z — y[)/2,
Dy(z,y)b(z)dx = 0 for all k € Z and y € R,
RTL

Dy(z,y)b(y)dy = 0 for all k € Z and x € R"™.
R’Vl

Ek(m,y), the kernels of Ek, satisfy the same conditions above but with inter-
changing the positions of x and y.
We also have

~ =1t
fla) =D bDEDu(f)(@) = D bDibDy(f)(x), (2:2)
k k
where the series converges in the LP-norm, 1 < p < oo, in the bM(8’,~')-norm for
B < B andy <, and in (M(B',~")) for p < ' and vy < +'. Moreover, D,ﬁc(:c,y),

~ =1 o~
the kernel of Dgﬂ, and Dy (z,y), the kernel of D, satisfy the same conditions as

Dy (z,y) and Dy(z,y), respectively.
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The following four discrete versions of the Calderén type reproducing formula
were given in [9].

Proposition 2.2 (Discrete Calderén type reproducing formula for the case

of M(83,7)). Suppose that {Sk}rez is an approximation to the identity defined

=t
above. Set Dy = Sy — Sip_1. Then there exists a family of operators {D} }kez
such that for all f € M(8,7),

~4
wzzzmmw/mwmmm, (2.3)
E Q Q

where @ are all dyadic cubes with the side length 2=%=7 for some fixed posi-
tive large integer j, yg Is any fixed point in (), and the series converges in the

~4 ~4
M(B',~")-norm for 8’ < B and v < «. Moreover, D (z,y), the kernel of D,,
satisfy the same conditions as those in Proposition 2.1.

Proposition 2.3 (Discrete Calderén type reproducing formula for the case

=4
of (M(8,7))"). Let Sk, Di, Dy(z,y), Q, yo be given in Proposition 2.2. Then,
for all f € (M(B,7))’,

~1
bemew/mmmmm% (2.4)
E Q Q

where the series converges in the sense that for all g € M(8',~") with <’ and
<7,

w%<2 2 D<w/b (m@4m>

|[k|<M dist(0,Q)<

Proposition 2.4 (Discrete Calderén type reproducing formula for the case

=1
of bM(3,7)). Let Sk, Dy, Dy (x,y), Q, yg be given in Proposition 2.2. Then, for
all f € bM(B,7),

ZZb )Di(, yo /Dk y)dy, (2.5)

where the series converges in the bM(B’,~')-norm for the case of B’ < 8 and ' <.
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Proposition 2.5 (Discrete Calderén type reproducing formula for the case

=t
of (bM(B,%))"). Let Sk, Dy, Dy (x,y), Q, yg be given in Proposition 2.2. Then,
for all f € (bM(5,7))",

~1f
@) =33 Debf) (o) / D (y, 2)b(y)dy, (2.6)
E Q Q

where the series converges in the sense that for all g € bM(B',~') with § < 8’
and v < 7/,

=1
Jim (XS i) [ Do) = (1.0)

|k|<M dist(0,Q)<N

Now we give the proof of Theorem 1.1. For (1), firstly, it is easy to see that
if f € Lipy(a)(R™), then f € (M(B,7)) with 8 > 0 and v > «. To check that
SUPrez, wern 27| Dif(x)] < C||fllLip, (), notice that Dy (z,y), as the function of
y when z fixed, belongs to M(e,e),a < ¢, and [;, Di(z,y)b(y)dy = 0, so we have

Dy(z,y) (?:((j)) - ch((;g))) b(y)dy’

<O luipy @) / Dz, y)l|z — y|°[b(z)|de

| Dy f(z)] = ’/R Dk(x,y)f(y)dy‘ -

R

< (2 kaHf”L / e
) i o d.’E
— Py (@) n (2 k ‘fE y|)n+6 «

< O2_kaHf||Lipb(a)- (2.7)

We now prove converse implication of Theorem 1.1 (1). Suppose that f €
(M(B,7))" and supyez epn 2k Dy f ()] < Cl fllLip, (a)- We first show that f is
a continuous function. Recalling the Calderén type reproducing formula (2.4) for

feM(B,7),

=4
£) = Y2 3" Difv) | ) Duy, by,
E Q Q
We split ) .., by the sums over £ > 0 and k& < 0, and write f = f; + fo in
(M(B,7))" for the corresponding k. We will show that f; and fy are continuous
functions.
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=t
For the first case, using the size condition on D;, we get

@] < 351D e | o)1yt )y

k>0 Q
<022—’W /|D (y,z)|dy
k>0
<Y 9ke dy < C.
> z/ e <

So the series for f is converges uniformly in z, and it implies that f; is a contin-
uous function.

For g € M(B,7v), by the cancellation condition [, g(z)b(z)dz = 0, we
can write

(f2.9) =D Drflyq / / <Dk: (y, Bi(y,wo)) g(x)b(x)dzb(y)dy

k<0 Q

~(L Lot [, ()(Ei@,x)—ﬁi@,xo)) . o))

k<0 Q

—k
We focus on the series in the inner product. If |z — x| < %5—, we can use the

=
smoothness condition on D, and get

> Diflyg / b(x )(Ei(y,x) —Ei(y,xo)) b(y)dy

k<0 Q
ko ‘(E — 1'0| ¢ 27]%/
SN Z/ (=) ey bl
k<0
K ) 9—ke’
<Cx—3c05 k(e ~a / -dy
| | k<0 Z 2= k + |I - y|)n+s
< Clz — x| ZQk(E —) < Clz — ol (2.8)
k<0
If |z — x0| > %5—, we have

> Difyq) / b(x )(ﬁ(y,x)—f)i(y,xo)) b(y)dy| <

k<0 Q
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<3y [ () <|Bi<y7x>+|ﬁi<y,xo>|) (e (3l

k<0
<Ol =l S-S / (Dk b2 + Dk<y,xo>|)
k<0
< Cla — x| Z M=) < Ol — x| (2.9)
k<0

Thus, we obtain that for any given large L > 0, the series for f; converges uni-
formly for |x—xo| < L in the distribution sense. This means that fs is a continuous
function on any compact subset in R™, and hence, it is continuous on R".

Now, we estimate | f||Lip,(a) as follows. For any z,y € R", we can choose
ko € Z such that 27% < |z —y| < 27%0+1 The Calderén type reproducing
formula (2.4) tells us that

=t =4

f@) ) _ B 0 -
101w = | S+ X | Soute [ (Bl Bl e

k>ko  k<ko
=1+11.

=t
For I, the size condition on D, and the assumption supycz, ,ern 27Dy f(y)| < C
lead to that

9—ke' o—ke’
I<Cy 2% / ; ) 1b(2)ld
n=c2 22 <2 e P P e ) (=)ld

k>ko

o . 9—ke’ 9—ke’ p
< 2R
> / 2= F + [z — )+ + 2 F + Jy— 2t ) &

k>ko

< 027M% ~ Cla — y|o.

=t
For the second term II, using the smooth condition on D,, we deal with it
similarly as in (2.8) and (2.9),

1] < Clo—y|* Y 2KE =) < Oz — y|F 2 =) » Clo — g
k<ko

Therefore, we have

1@ O] - oo
i) 3 | <O

and we can get the proof of (1.7).

Similarly, using the same methods with the Calderén type reproducing for-
mula (2.5) and (2.6), we can get the conclusion (1.8) in Theorem 1.1 (2).
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3. Proof of Theorem 1.2

To show Theorem 1.2, we need to prove a density argument for Lip, («)(R™),
which will play a crucial role in the proof of Theorem 1.2.

Definition 3.1 ([9]). Suppose {Si}rez is an approximation to the identity
associated to a para-accretive function b with regularity exponent €. Set Dy =
Sk — Sk—1. The classical Hardy space HP(R™), 0 < p < 1, is the collection of
(M(B,7))" satistying

1l = IS(P)llp < oo,

where the square function S(f) is defined by

1/2
S(f) =1 > IDk(H)(xq,)*xq, (@)

kEZ Qk

We also have that the Hardy space Hj (R™), 4= < p < 1, is the collection
of (bM(B,7))" such that

[z == llgo(F)llp < o0,

where g;,(f), the discrete Littlewood—Paley g-function associated with the para-
accretive function b, is defined by

1/2

9 (1)(@) = DY ID(0f) (e, ) xa. (@) ;

kE€Z Qk

the dyadic cube Qj with radius 2% and z, are any fixed points in Q.

Lemma 3.1 ([10]). Suppose that b is a para-accretive function and - <

p < 1. The dual space of H}(R™) is Lip,(n(1/p — 1))(R™) in the following sense:

(1) For each g € Lip,(n(1/p — 1))(R™), the linear functional ¢y : f + (f,g)
defined initially on H} (R"™) N L*(R™), has a continuous extension to H} and
1€g1l < llgllLip, (n(1/p—1))-

(2) Conversely, every continuous linear functional ¢ on H} can be realized as
(=1, defined initially on HY (R")NL?(R™), for some g € Lip,(n(1/p—1))(R")
and ||g|lLip, (n(1/p—1)) < CI€]].

The density argument is the following:
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Lemma 3.2. If f € Lipy(«)(R™), then there exists a sequence {f,} €
L?(R™) N Lip, () (R™) such that
1)
[fnllLip, (@) < Cllf lLip, (o) (3.1)
where the constant C' is independent of f, and f.

(2) For any g € L*(R") N HY(R"), S <p<l,

(fnr9) =(f,9) (32)

lim

n— oo

PRrROOF. Note that the Calderén type reproducing formula (2.2) holds in the
sense of distribution. We construct a sequence {f,} as follows,

fal) = 32 bDLOD(f)(y): (3.3)

[k |<n

Obviously, f, € L*(R") and it converges to f in the sense of distribution. To prove
fn € Lipy(a)(R™), by the Littlewood—Paley characterization (1.7) of the Lipschitz
spaces, we just need to show

sup 28| Dy fo(2)] < Cll fllLip, (a)-
keZ, TER™

For the left part of the above inequality, we have

Difa@] = | | Di(ay) >~ bD},bDy (f)(y)dy
|k |<n

IN

Z \/n o Dk(xay)(bﬁgj,b)(y’ Z)dka’f(Z)dZ
|k |<n '

< s #Duse) Yoo
Rn

! n
k'€Z, z€R |k |<n

Dy (,y)(bD},b)(y, 2)dy|dz.
]R'n.

Using the Littlewood—Paley characterization (1.7) and the following almost or-
thogonal estimate (see [7]),

Dk(x,y)(bﬁ,ﬁ,b)(y7z)dy’ = ‘Dkbﬁi/b(az,z)’
R’n
2—(k’/\k)6/

(2—(k’Ak) + ‘LL’ _ Z‘)n—i—a”

< 02—|kl—k|6l
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we have,
9—(k'Ak)e

RAR) 4 [ — 2 [)nte’ dz

2|Defu@)] < Cll i 3 274021 [

|k |<n

< C”fHLipb(oc) Z Q(k:—k )042*‘16 —kle < CHf”Lipb(a)a

|k |<n
which implies the estimate in (1).

~ =t
Next, we show (2). According to the construction of DlﬁC and D;, we have,

<f — fn g>

< Z bDLOD(f)(y > // Z ka (z,9)9(y)dy Dy f(2)dz

|k >n |k|>n

2 Y [ Diea 10D b(g) () dade — <f(ac), 3 Dkbl:)ib(g)(at)>.

2 =" |k|>n

Using the Calderén type reproducing formula (2.1), we denote S,(g)(x)
~t

by > kj<n DrbDyb(g)(x), so we have

<f - fn7 g> = <f= g — Sn(g)>
The duality argument (see Lemma 3.1), together with the fact that for each
g€ L*(R™) N HY(R™), |lg — Sn(9)ll g — 0 as n — oo, implies that

|<f - fm9>| < C”fHLipb(n(l/p—l)) g — Sn(g)HHg’ — 0, as n — oo,

which shows (2), and hence the proof of Lemma 3.2 is complete. g
Lemma 3.3. Assume Dyb(x) = Dy(x, z)b(x), zi is a fixed point, we have
Db e HP(R") N L*(R"), -2 < p <1 and

7 n+e
| Dbl e < C27Fn(51), (3.4)
Proor. Firstly, we have

272’66

e @+ [ — )P

/ | D (z, 2)b(x)|2dx < C dx < C2P",

Next, based on Coifman’s construction [15], we may assume that Dy (z,y)
has compact support in the sense that Dy (z,y) = 0 for |z —y| > 2%, For any
fixed k, we estimate the H? norm of Dyb(x) = Dg(x, 2 )b(z) as follows. Denote
Q* = 2Qy, the dyadic cube with the center at z, with radius 2 x 27%. We write
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S(Deb)(2)Pdz = | S(Db)(w)Pda + / S(Dyb)(2)Pdz = ITI + IV,
Rn Q* (Q*)L

Applying Holder’s inequality together with the boundedness of the square function

on L?(R™) and the size condition of Dy(z, zx), we have

= ([ |S<Dkb><x>|f’dx); <u@)3 ([ s )

< ou(Q*)r? (/ |Dkb(:c)|2da:> < 2@y < 0271 (3.5)
Q*
We now estimate term V. Note that if
D;(Dyb)(x) = / D, (2, y) Dy, 2)b(y)dy # 0,

then |y—z;| < 27% and [z —y| < 2779, If v ¢ Q*, then we have 2x27F < |z —z;| <
|z —y| + |y — 21|. This implies that 27% < |z —y| < 277, and hence j < k. Using
the cancellation condition of Dy(y, z;)b(y) and the smoothness condition of Dj,
we have

D@ = [ Diten)Dity. )|

[ [Dite0) = Dyte 1)) Dt bty

C 27\ 27" D b(y)|d
< - . -
- on (QJ) (277 + |x — z|)nte | Di(y, 21:)[b(y)|dy

9—Je
(279‘ + |(E — Zk|)n+5,

< C2li—k)e

which implies that for = ¢ Q*,

1/2
2—2]'8 /

277 + |w — 25| )27 t2e

S(Dpb)(x) < C | Y 22Uhe
J<k (
Inserting the above estimate into term IV, it follows that

. p/2
. 27 JE
(Q*)e (Q*)e ]XSI:C (2_]+|J;—Zk|)2n+25

9—j(pn+pe—n)

p(j—k)e ojn(p—1) s
< Cj;irz 2 /R" (Q*j + |x _ Zk|)"+(1m+p€7n) dr < C2 )

Thus, we completed the proof of Lemma 3.3. ([l
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To show Theorem 1.2, the main result in this paper, we need the boundedness
of Calderén—Zygmund operator on Hardy spaces.

Lemma 3.4 ([10]). Let T be a Calderén—Zygmund operator and T*(b) = 0,
then T is bounded from HP(R™) to H} (R"™) for n/(n+¢) <p < 1.

We are ready to show Theorem 1.2. The necessary conditions of Theorem 1.2
follow directly by

IT0[Lip(a) < ClbllLip,(a) = IILip(a) = 0

We now prove the sufficiency. The strategy of the proof is applying the
duality given in Lemma 3.1. We first show the boundedness of T' for f € L?(R")N
Lip,(a)(R™) and then extend to the case for f € Lip,(a)(R™), where n(1/p—1) =
a < e. More precisely, for f € L?(R™) N Lip,(«)(R") and v € HP(R") N L?(R"),
by Lemma 3.1 and then applying Lemma 3.4 for 7™, we have

KT £, ) = [ T9)] < Ollfllvip, o IT* ¢l p < ClflLipy o 191 2r-

Set Lry(v) = <Tf, @[1>7 this implies that Z7; is a bounded linear functional on
HP(R™) and
17l < CllfllLip,(a)-

We know that the dual space of HP(R"™) is Lip(«)(R™), so there exists h €
Lip(ar)(R™) such that (T'f,¢) = (h, 1) and [|hl|Lipa) < CllfllLip, ()~ Since Dib €
HP(R™), we take ¢ to be Dyb, by Littlewood—Paley characterization (1.8), it fol-
lows that

ITfllLipe) = sup  2*[Dpb(Tf)(y)| = sup 27| Dyb(h)(y)|
keZ, yeR™ kEZ, yeR™
~ ||h||Lip(a) < CHf”Lipb(a)' (36)

We now extend T to the case for f € Lip,(a)(R™) as follows. To do this,
for f € Lip,(a)(R™), by Lemma 3.2, there exists a sequence f, € L?(R"™) N
Lipy (@)(R") with [|fulliips(e) < ClLf liipy(a), 50 that for g € HP(R™) 0 L(R™),
we have

<T(fn - fn’)ag> = <fn - fn’;T*g>-

Using Lemma 3.4 with the fact that 7*g € HY (R™) N L*(R™) and then applying
Lemma 3.2 (2), we get <fn — fn/,T*g> — 0 as n,n’ — oo. Thus, we can define

(Tf,9) = lim (Tfu,g), g € H'(R") N L*(R").
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Finally, Theorem 1.1 (2) and Lemma 3.2 (1) imply that
ITfllLipe) = sup 2" [Dpb(Tf)(y)| = sup 28| lim Dyb(T fn)(y)]
keZ, yeR™ keZ, yeR™ =00

<liminf sup 28| Dpb(Tf,)(y)|
n—o0 kez, yeRn

~ o 7 folluip(a) < Clim inf [ fullsip,(a) < Cllf lip, o)

We complete the proof of Theorem 1.2.
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