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Involutory latin quandles of order pq

By PREMYSL JEDLICKA (Prague)

Abstract. We present a construction of a family of involutory latin quandles,
a family that contains all non-Alexander involutory latin quandles of order pq, for p < ¢
odd primes. Such quandles exist if and only if p divides ¢* — 1.

1. Introduction

Involutory quandles appear naturally in several areas of mathematics and
therefore they were given different names, such as kei, or symmetric spaces or right
symmetric right distributive idempotent right quasigroups; see [17] for a survey on
involutory quandles. Actually, in geometry or in topology, the quandles we study
are often latin; we refer to [18] for a guide on latin quandles.

The best understood class of quandles are Alexander quandles, and all the
smallest examples of quandles are actually Alexander. For instance, the smallest
non-Alexander involutory latin quandle is of order 15. It is not difficult to describe
this quandle using an ad-hoc formula, but what about other involutory latin
quandles of a semiprime order?

It is well known, already for a long time [16], [10], [12], that there is a one-
to-one correspondence between involutory latin quandles and 2-divisible Bruck
loops, see Theorem 3.1. Finite 2-divisible Bruck loops are some generalizations of
abelian groups of odd orders and share many properties with groups of odd orders.
For instance, they are solvable and, in the case of p-loops, even nilpotent [3]. Tt is
therefore possible to construct all these loops using cohomology, such as in [19].
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Considering Bruck loops of order pq, the first researchers who constructed
some of them were NIEDERREITER and ROBINSON [14], using a recursive construc-
tion. It has been conjectured for a long time that their loops are the only Bruck
loops of order pq, but all attempts to prove it failed until the work of KINYON,
NAGY and VOJTECHOVSKY [11]. We summarize here their result as Theorem 4.1,
and we easily conclude:

Theorem 1.1. Let p < q be two odd primes. Then there exists a unique,
up to isomorphism, involutory latin Alexander quandle of order pq. There exists
a non-Alexander involutory latin quandle of order pq if and only if p divides ¢*> —1.
Such a quandle is unique, up to isomorphism.

One thing is to know that a quandle exists and another thing is to give
a formula how to construct it. To do this, we use yet another algebraic structure —
commutative automorphic loops; being commutative and having a nice structural
behavior, they seem to be easier to construct than Bruck loops [6]. And it was
proved in [5] that, given a commutative automorphic loop of odd order, we can
construct a Bruck loop of it. This is not a one-to-one correspondence [19], but
it does not matter here. Some commutative automorphic loops of order pg were
constructed in [8] and they give our Bruck loops of order pq.

This paper contains very few new results, it is rather a synthesis of different
results from different papers. In Section 2 we give necessary definitions and fun-
damental properties of the objects we are working with. In Section 3, we present
the correspondence between involutory latin quandles and 2-divisible Bruck loops.
And in Section 4, we write down the formula how to construct the involutory latin
quandles of order pq.

2. Preliminaries

Definition 2.1. A groupoid (G, x) is uniquely 2-divisible if the mapping = —
T * x is a bijection.

Example 2.2. Every idempotent groupoid, that means a groupoid satisfying
T * x = x, is uniquely 2-divisible. A finite group G is uniquely 2-divisible if and
only if the order of G is odd.

Definition 2.3. Let G be a groupoid with an operation *. We define the left
translation L, as the mapping a — x*a, and the right translation R, as the map-
ping a — axx. We say that the groupoid G is a left (respectively, right) quasigroup
if the left translations (respectively, right translations) are permutations.
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If G is a left (respectively, right) quasigroup, then we write 2\ y for L, (y),
respectively, y/x for R;1(y). We define the left (respectively, right) multiplication
group of G as the permutation group generated by translations, i.e.

LMIt(G) = (Ly; z € G), RMIt(G) = (Ry; z € G).
Definition 2.4. A quandle is a right quasigroup that satisfies
xxx =z (idempotency) and (z xy) * z = (x * 2) * (y * z) (right distributivity).

A quandle is called involutory if it satisfies (x * y) x y = 2. A quandle is called
latin, if it is a left quasigroup as well.

Example 2.5. Let A be an abelian group, and let f be an automorphism of A.
An operation on A defined as

rxy=flr—y)+y

forms a quandle. Such a quandle is called an Alezander quandle. This quandle
is involutory if and only if f is involutory. In particular, if f = —id, that means
x*xy = 2y — x, then such an involutory quandle is called the core of the group A.

An Alexander quandle is latin if and only if id — f is an automorphism.
It is not difficult to show that an Alexander quandle is latin and involutory if and
only if it is the core of a uniquely 2-divisible abelian group.

Definition 2.6. Let Q be a quandle, and let e € Q). The displacement group

of @ is the group
Dis(Q) = (RwRy_I; 1,y € Q)= (R.R;*; v €Q).

Example 2.7. Let @@ be an Alexander quandle obtained from an abelian
group A and an automorphism f. Then R,Ry'(z) = R.(f~'(2)) = z — f(x) + =
Therefore, as an abstract group, Dis(Q) = Im(id — f). If Q is involutory, it is well
known that RMIt(Q)) = Dis(Q) X Zs.

Definition 2.8. A loop is a left and right quasigroup with a neutral element.
A loop is called power associative if every mono-generated subloop is a group.

If we work in a general loop (Q,+), then 3 -z is not well defined, since
z+ (z + ) # (r + x) + x. This is not the case of power associative loops, here
k - x is uniquely defined, for every k € Z. In particular, —z = z\0 = z/0.
The mapping x — —z is then a bijection, which is usually denoted by J.
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Definition 2.9. A power associative loop (Q,+) is called a right Bruck loop,
if it satisfies

* —(z+y) = (—x)+ (—y), or equivalently, JR, = Rj(,J, for all 2,y € Q,

e (z+2)+y) +z =2+ ((x+y)+x), or equivalently, R;R, R, = RR, R, (2)s
for all z,y,z € Q.

Right Bruck loops are generalizations of abelian groups. They can be found
mainly in non-euclidean geometry, often under different names as K-loops [9] or
gyrocommutative gyrogroups [20]. In a euclidean space, the sum of two vectors
forms an abelian group, whereas in a non-euclidean space, the addition is neither
commutative nor associative. But it satisfies both identities shown above and
hence it forms (at least locally) a 2-divisible Bruck loop, see, e.g., [21].

Among well-known properties [15] of right Bruck loops we shall benefit of
R;., = R!, in particular, Ry =R_y = R;Y; and of a characterization of finite
2-divisible Bruck loops.

Proposition 2.10 ([3]). A finite right Bruck loop @ is uniquely 2-divisible
if and only if |Q)] is odd.

3. Correspondence between involutory latin quandles
and 2-divisible right Bruck loops

Although the study of cores of abelian groups has also algebraic motiva-
tions [2], the well-known correspondence between abelian groups and their cores
mainly exhibits in geometry. Suppose that we work on a manifold with the follow-
ing properties: there exists a unique and extendable geodesic between each pair
of points and we can measure its length. We can then define “the reflection of z
through 3”, denoted by x * y, as the point on the geodesic from to x via y such
that y is the midpoint between x and x * y. It is easy to see that a groupoid so
defined is an involutory quandle. Moreover, if every line from x to y has a unique
midpoint, this midpoint is z \ y, since z * (z \ y) = y, and therefore the quandle
is latin. We refer to [4] for more details about symmetric spaces.

Now, if we are in a euclidean space, the operation = * y can be derived using
affine coordinates. We choose an origin 0 and then zxy = 2-y—=z, independently of
the origin. On the other hand, x +y can be derived from the reflection operation:
z+y = (x*x0)*(0\y). If the space is not euclidean, then this correspondence
works as well, only that the addition is not an abelian group.
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Theorem 3.1 ([10], [16], [19]).

(1) Let (Q,*) be an involutory latin quandle, and let 0 € ). Then Fq_,g(Q, *),
which is the groupoid (Q,+,0) with the operation + defined by

z+y=(2/0)*(0\y) = (z+0)*(0\y),

is a uniquely 2-divisible right Bruck loop.
(2) Let (Q,+,0) be a uniquely 2-divisible right Bruck loop. Then Fp_.q(Q,+),
which is the groupoid (Q, *) with the operation x defined by

rxy=(-2)+(y+y) =—z+2y,

is an involutory latin quandle.

(3) These constructions are mutually inverse, that means Fq_.g(F—q(Q,+)) =
(Q, +) and Fpq(Fq-B(Q,*)) = (Q, ).

An immediate consequence is due to Proposition 2.10.
Corollary 3.2. A finite involutory latin quandle is of odd order.

Let an involutory latin quandle be Fg_.q of a non-associative Bruck loop.
Is it possible that the quandle is Alexander? An effective criterion how to rec-
ognize an Alexander quandle was described in [7]; nevertheless, we do not need
that much detail here, we focus on one property only; as we saw in Example 2.7,
the displacement group of an Alexander quandle is commutative.

Proposition 3.3. Let (Q,*) be an involutory latin quandle. Then
e Dis(Q, *) = RMIt(Fq_B(Q, *)) and
* RMIt(Q, ) = Dis(Q, *) X (Ro) = RMIt(Fq_p(Q,*)) x (J).

ProOOF. We shall denote by (@, +,0) the corresponding loop, and we shall
distinguish right translations of the quandle and of the loop by superscripts.

The group Dis(Q, *) is generated by the elements R%(R§)~!, which can
be written as R:(R;)™' = Ri,J(R3,J)~! = Ry,, and hence Dis(Q,*) and
RMIt(Q) have the same generators.

Since R = Ry.,J = J, the group RMIt(Q, +) is generated by RMIt(Q, +) U
{J}. Now JRi(y) = —(y +2) = —y + (—2) = (RZ,)J(y) = (R})""J(y), and
we see that RMIt(Q, ) is a semidirect product of RMIt(Q, +) and (J) determined
by the homomorphism J + (a + a™1). O

Lemma 3.4. Let Q be a loop. Then RMIt(Q) is commutative if and only if
Q is an abelian group.
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PrOOF. Let RMIt(Q) be commutative. Then, for all z,y € Q, R;R, =
R,R, implies (0 + z) +y = (0 + y) + z, and therefore @) is commutative.
Furthermore,

s+ y+z)=Wta)+e=U+a)+z=(r+y)+z

The other direction is evident. ([l
Combining the previous two results, we immediately obtain

Corollary 3.5. An involutory latin quandle (Q, x) is Alexander if and only
if Fo,B(Q, *) is an abelian group.

4. Construction of right Bruck loops of order pq

In this section, we finally describe all involutory latin quandles of order pq.
For this, we need the classification of right Bruck loops of order pq.

Theorem 4.1 ([11, Theorem 1.1, Proposition 4.7]). Let p < ¢ be two odd

primes.

(1) Then there exists a non-associative right Bruck loop of order pq if and only
if p divides ¢> — 1 and such a loop is unique up to isomorphism.

(2) If p divides ¢> — 1, then a non-associative right Bruck loop of order pq can
be constructed on a set F, x F,, with the multiplication

(a,i) 5 (b)) =(b-(1+6;)""+(a+b-(1+6;)"")0; "0irj i+ ),

where 0y, ...,0,_1 are defined as 0; = 2 - (¢* + (7")~!, where ( € F, is
a primitive p-th root of unity.

(3) If p divides q and @ is a non-associative right Bruck loop of order pq, then
RMIt(Q) = (Zy X Zy) X Zy,.

From this theorem, we immediately obtain Theorem 1.1.

PROOF OF THEOREM 1.1. There exists only one abelian group of order pgq,
namely the cyclic one. An endomorphisms of the group Z,, is the multiplication
by some k € Z, and we have k> = 1 (mod pq) if and only if k¥ = 41 modulo p
as well as modulo q. Moreover, the number 1 — k is then coprime to pq if and
only if £ = —1 (mod pq). Hence there exist four, up to isomorphism, involutory
Alexander quandles of order pg and only one of them is latin.
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According to Theorem 3.1 and Corollary 3.5, there is a 1:1 correspondence
between involutory non-Alexander latin quandles of order pg and non-associative
right Bruck loops of order pg. And, according to Theorem 4.1, such a loop exists
if and only if p divides ¢ — 1 and it is unique. (Il

There are several approaches how to represent right Bruck loops. In some
situations, sections in groups are preferable [13], in some situations we use loop
folders [1] and sometimes a direct formula is useful. Theorem 4.1 displays such
a formula for constructing the right Bruck loop of order pq. We shall, however,
use a different construction, because it is more general. In this construction,
we obtain a right Bruck loop of order pq if we set M = R = F,;, S = Fp and
k=np.

Theorem 4.2 ([8, Theorem 28]). Let M be a faithful module over a ring R,
which is either a field or the ring Z,,. Suppose that, for some odd number k, there
exists ¢, an element lying in a quadratic extension S of R, which satisfies:

e ( is of order k in S*;
o ( is a root of a polynomial 2% + cx + 1, for some ¢ € R.

Then we can define a loop on the set M X Zj, as follows:

Cj_<i+12 C2i+j+1.cj+1 ] )
' (<i£j+1))2 v (Ci“)Jr(l)2 . “”)' “1)

This loop is a non-associative right Bruck loop.

(a,1) * (b, ) = (

By the property that (2 + 1 = —c(, the expression is well-defined, i.e., that
both the fractions lie in the ring R, although the numerators and the denominators
may lie in S\ R.

For each k, there may exist several elements . It was shown in [8] that
the choice of ( is irrelevant when R is a field, since we always obtain isomorphic
loops. We may, on the other hand, obtain non-isomorphic loops if the ring is not
a field. Another interesting question is the sole existence of such a (. We give
several examples.

Ezample 4.3. Let R =R and k > 2 an arbitrary odd number. Then such ¢
always exists, namely ( = cos 2% +¢-sin 2?",

a quadratic extension of R, and ¢ is a root of 22 — 2 cos 2%:0 + 1.

since this number lies in C, which is

Ezxample 4.4. If R = Q, then such ( exists for £ = 3 only. The number
—% —|—i~§ is a root of z2 + = + 1, whereas ! + 22 + ... + 2 + 1 does not
split as a product of quadratic polynomials with rational coefficients, for & > 3
and k odd.
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Example 4.5. Let R =F,. There are two possibilities: every ¢ € R* is a root
of 22 — (¢ + ¢~ Yz + 1 and it satisfies (?~! = 1. Therefore, k may be any odd
divisor of ¢ — 1. The other possibility is { € Fgp2 \ F,. It is then not difficult to
prove [8, Proposition 9] that k& may be any odd divisor of ¢ + 1.

Theorem 4.6. Let M be a faithful module over a ring R, which is either
a field or the ring Z,. Suppose that, for some odd number k, there exists (,
an element lying in a quadratic extension S of R, which satisfies:

e ( is of order k in S*;
o ( is a root of a polynomial 2% + cx + 1, for some ¢ € R.
Then we can define a quasigroup on the set M x Zj, as follows:
(¢ +1)?- (¢¥% +1) (@ +¢)?

(a,i)* (b, j) = (b. CEENE —a- CEEE 25 — z) . (42

This quasigroup is an involutory latin quandle which is not Alexander.

PROOF. Let us construct a Bruck loop (@,+,0) on the set M x Zj using
Theorem 4.2. We shall compute the operation * of Fg_.q(Q,+), following The-
orem 3.1. We first compute

N A R (S e A (St VR (SR R VI
2= TP )

(b @D (AT T+

-( 1) )
b-(¢F+1)? (P +1) N _ (@D
(e ) = (@),

and we prove that —(a,i) = (—a, —i) as follows:

(a,i) * (—a, —i) = (a it I)Q(Ij 1§§ LM Sk 23 0) — (0,0)
Finally,
(~a,=i) +2- (b,3)
—a (TR b SRR ) ()
B (T +1p B
_ (—a- (G + Cj)z(;f'ffﬂzw (A ) | .
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There are two things worth noting. There is a natural projection (a, i) — @
of M X Zj, onto the core of Zj, which is evidently a homomorphism. On the other
hand, by setting ¢ = j, we obtain (a,?) * (b,7) = (2b — a,i), and therefore each
kernel class of the natural projection is itself isomorphic to the core of M. We can
hence view this quandle as a sort of a semidirect extension of the core of M by
the core of Z.

Remark 4.7. Tt is straightforward (but tedious) to check that the operation
defined in (4.2) is always right distributive and idempotent, if it is well-defined,
which happens if the denominator is never 0, i.e., k is not even. In other words,
the construction works for £ = oo too.
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