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Involutory latin quandles of order pq

By PŘEMYSL JEDLIČKA (Prague)

Abstract. We present a construction of a family of involutory latin quandles,

a family that contains all non-Alexander involutory latin quandles of order pq, for p < q

odd primes. Such quandles exist if and only if p divides q2 − 1.

1. Introduction

Involutory quandles appear naturally in several areas of mathematics and

therefore they were given different names, such as kei, or symmetric spaces or right

symmetric right distributive idempotent right quasigroups; see [17] for a survey on

involutory quandles. Actually, in geometry or in topology, the quandles we study

are often latin; we refer to [18] for a guide on latin quandles.

The best understood class of quandles are Alexander quandles, and all the

smallest examples of quandles are actually Alexander. For instance, the smallest

non-Alexander involutory latin quandle is of order 15. It is not difficult to describe

this quandle using an ad-hoc formula, but what about other involutory latin

quandles of a semiprime order?

It is well known, already for a long time [16], [10], [12], that there is a one-

to-one correspondence between involutory latin quandles and 2-divisible Bruck

loops, see Theorem 3.1. Finite 2-divisible Bruck loops are some generalizations of

abelian groups of odd orders and share many properties with groups of odd orders.

For instance, they are solvable and, in the case of p-loops, even nilpotent [3]. It is

therefore possible to construct all these loops using cohomology, such as in [19].
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Considering Bruck loops of order pq, the first researchers who constructed

some of them were Niederreiter and Robinson [14], using a recursive construc-

tion. It has been conjectured for a long time that their loops are the only Bruck

loops of order pq, but all attempts to prove it failed until the work of Kinyon,

Nagy and Vojtěchovský [11]. We summarize here their result as Theorem 4.1,

and we easily conclude:

Theorem 1.1. Let p < q be two odd primes. Then there exists a unique,

up to isomorphism, involutory latin Alexander quandle of order pq. There exists

a non-Alexander involutory latin quandle of order pq if and only if p divides q2−1.

Such a quandle is unique, up to isomorphism.

One thing is to know that a quandle exists and another thing is to give

a formula how to construct it. To do this, we use yet another algebraic structure –

commutative automorphic loops; being commutative and having a nice structural

behavior, they seem to be easier to construct than Bruck loops [6]. And it was

proved in [5] that, given a commutative automorphic loop of odd order, we can

construct a Bruck loop of it. This is not a one-to-one correspondence [19], but

it does not matter here. Some commutative automorphic loops of order pq were

constructed in [8] and they give our Bruck loops of order pq.

This paper contains very few new results, it is rather a synthesis of different

results from different papers. In Section 2 we give necessary definitions and fun-

damental properties of the objects we are working with. In Section 3, we present

the correspondence between involutory latin quandles and 2-divisible Bruck loops.

And in Section 4, we write down the formula how to construct the involutory latin

quandles of order pq.

2. Preliminaries

Definition 2.1. A groupoid (G, ∗) is uniquely 2-divisible if the mapping x 7→
x ∗ x is a bijection.

Example 2.2. Every idempotent groupoid, that means a groupoid satisfying

x ∗ x = x, is uniquely 2-divisible. A finite group G is uniquely 2-divisible if and

only if the order of G is odd.

Definition 2.3. Let G be a groupoid with an operation ∗. We define the left

translation Lx as the mapping a 7→ x∗a, and the right translation Rx as the map-

ping a 7→ a∗x. We say that the groupoid G is a left (respectively, right) quasigroup

if the left translations (respectively, right translations) are permutations.
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If G is a left (respectively, right) quasigroup, then we write x \ y for L−1x (y),

respectively, y/x for R−1x (y). We define the left (respectively, right) multiplication

group of G as the permutation group generated by translations, i.e.

LMlt(G) = 〈Lx; x ∈ G〉, RMlt(G) = 〈Rx; x ∈ G〉.

Definition 2.4. A quandle is a right quasigroup that satisfies

x ∗ x = x (idempotency) and (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) (right distributivity).

A quandle is called involutory if it satisfies (x ∗ y) ∗ y = x. A quandle is called

latin, if it is a left quasigroup as well.

Example 2.5. Let A be an abelian group, and let f be an automorphism of A.

An operation on A defined as

x ∗ y = f(x− y) + y

forms a quandle. Such a quandle is called an Alexander quandle. This quandle

is involutory if and only if f is involutory. In particular, if f = −id, that means

x ∗ y = 2y− x, then such an involutory quandle is called the core of the group A.

An Alexander quandle is latin if and only if id − f is an automorphism.

It is not difficult to show that an Alexander quandle is latin and involutory if and

only if it is the core of a uniquely 2-divisible abelian group.

Definition 2.6. Let Q be a quandle, and let e ∈ Q. The displacement group

of Q is the group

Dis(Q) = 〈RxR−1y ; x, y ∈ Q〉 = 〈RxR−1e ; x ∈ Q〉.

Example 2.7. Let Q be an Alexander quandle obtained from an abelian

group A and an automorphism f . Then RxR
−1
0 (z) = Rx(f−1(z)) = z− f(x) +x.

Therefore, as an abstract group, Dis(Q) ∼= Im(id−f). If Q is involutory, it is well

known that RMlt(Q) ∼= Dis(Q) o Z2.

Definition 2.8. A loop is a left and right quasigroup with a neutral element.

A loop is called power associative if every mono-generated subloop is a group.

If we work in a general loop (Q,+), then 3 · x is not well defined, since

x + (x + x) 6= (x + x) + x. This is not the case of power associative loops, here

k · x is uniquely defined, for every k ∈ Z. In particular, −x = x \ 0 = x/0.

The mapping x 7→ −x is then a bijection, which is usually denoted by J .
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Definition 2.9. A power associative loop (Q,+) is called a right Bruck loop,

if it satisfies

• −(x+ y) = (−x) + (−y), or equivalently, JRy = RJ(y)J , for all x, y ∈ Q,

• ((z + x) + y) + x = z + ((x+ y) + x), or equivalently, RxRyRx = RRxRy(x),

for all x, y, z ∈ Q.

Right Bruck loops are generalizations of abelian groups. They can be found

mainly in non-euclidean geometry, often under different names as K-loops [9] or

gyrocommutative gyrogroups [20]. In a euclidean space, the sum of two vectors

forms an abelian group, whereas in a non-euclidean space, the addition is neither

commutative nor associative. But it satisfies both identities shown above and

hence it forms (at least locally) a 2-divisible Bruck loop, see, e.g., [21].

Among well-known properties [15] of right Bruck loops we shall benefit of

Ri·u = Riu, in particular, RJ(x) = R−x = R−1x ; and of a characterization of finite

2-divisible Bruck loops.

Proposition 2.10 ([3]). A finite right Bruck loop Q is uniquely 2-divisible

if and only if |Q| is odd.

3. Correspondence between involutory latin quandles

and 2-divisible right Bruck loops

Although the study of cores of abelian groups has also algebraic motiva-

tions [2], the well-known correspondence between abelian groups and their cores

mainly exhibits in geometry. Suppose that we work on a manifold with the follow-

ing properties: there exists a unique and extendable geodesic between each pair

of points and we can measure its length. We can then define “the reflection of x

through y”, denoted by x ∗ y, as the point on the geodesic from to x via y such

that y is the midpoint between x and x ∗ y. It is easy to see that a groupoid so

defined is an involutory quandle. Moreover, if every line from x to y has a unique

midpoint, this midpoint is x \ y, since x ∗ (x \ y) = y, and therefore the quandle

is latin. We refer to [4] for more details about symmetric spaces.

Now, if we are in a euclidean space, the operation x ∗ y can be derived using

affine coordinates. We choose an origin 0 and then x∗y = 2·y−x, independently of

the origin. On the other hand, x+y can be derived from the reflection operation:

x + y = (x ∗ 0) ∗ (0 \ y). If the space is not euclidean, then this correspondence

works as well, only that the addition is not an abelian group.
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Theorem 3.1 ([10], [16], [19]).

(1) Let (Q, ∗) be an involutory latin quandle, and let 0 ∈ Q. Then FQ→B(Q, ∗),
which is the groupoid (Q,+, 0) with the operation + defined by

x+ y = (x/0) ∗ (0 \ y) = (x ∗ 0) ∗ (0 \ y),

is a uniquely 2-divisible right Bruck loop.

(2) Let (Q,+, 0) be a uniquely 2-divisible right Bruck loop. Then FB→Q(Q,+),

which is the groupoid (Q, ∗) with the operation ∗ defined by

x ∗ y = (−x) + (y + y) = −x+ 2y,

is an involutory latin quandle.

(3) These constructions are mutually inverse, that means FQ→B(FB→Q(Q,+)) =

(Q,+) and FB→Q(FQ→B(Q, ∗)) = (Q, ∗).

An immediate consequence is due to Proposition 2.10.

Corollary 3.2. A finite involutory latin quandle is of odd order.

Let an involutory latin quandle be FB→Q of a non-associative Bruck loop.

Is it possible that the quandle is Alexander? An effective criterion how to rec-

ognize an Alexander quandle was described in [7]; nevertheless, we do not need

that much detail here, we focus on one property only; as we saw in Example 2.7,

the displacement group of an Alexander quandle is commutative.

Proposition 3.3. Let (Q, ∗) be an involutory latin quandle. Then

• Dis(Q, ∗) = RMlt(FQ→B(Q, ∗)) and

• RMlt(Q, ∗) = Dis(Q, ∗) o 〈R0〉 = RMlt(FQ→B(Q, ∗)) o 〈J〉.

Proof. We shall denote by (Q,+, 0) the corresponding loop, and we shall

distinguish right translations of the quandle and of the loop by superscripts.

The group Dis(Q, ∗) is generated by the elements R∗x(R∗0)−1, which can

be written as R∗x(R∗0)−1 = R+
2·xJ(R+

2·0J)−1 = R+
2·x, and hence Dis(Q, ∗) and

RMlt(Q) have the same generators.

Since R∗0 = R+
2·0J = J , the group RMlt(Q,+) is generated by RMlt(Q,+) ∪

{J}. Now JR+
x (y) = −(y + x) = −y + (−x) = (R+

−x)J(y) = (R+
x )−1J(y), and

we see that RMlt(Q, ∗) is a semidirect product of RMlt(Q,+) and 〈J〉 determined

by the homomorphism J 7→ (α 7→ α−1). �

Lemma 3.4. Let Q be a loop. Then RMlt(Q) is commutative if and only if

Q is an abelian group.
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Proof. Let RMlt(Q) be commutative. Then, for all x, y ∈ Q, RxRy =

RyRx implies (0 + x) + y = (0 + y) + x, and therefore Q is commutative.

Furthermore,

x+ (y + z) = (y + z) + x = (y + x) + z = (x+ y) + z.

The other direction is evident. �

Combining the previous two results, we immediately obtain

Corollary 3.5. An involutory latin quandle (Q, ∗) is Alexander if and only

if FQ→B(Q, ∗) is an abelian group.

4. Construction of right Bruck loops of order pq

In this section, we finally describe all involutory latin quandles of order pq.

For this, we need the classification of right Bruck loops of order pq.

Theorem 4.1 ([11, Theorem 1.1, Proposition 4.7]). Let p < q be two odd

primes.

(1) Then there exists a non-associative right Bruck loop of order pq if and only

if p divides q2 − 1 and such a loop is unique up to isomorphism.

(2) If p divides q2 − 1, then a non-associative right Bruck loop of order pq can

be constructed on a set Fq × Fp with the multiplication

(a, i) ∗ (b, j) = (b · (1 + θj)
−1 + (a+ b · (1 + θj)

−1) · θ−1i θi+j , i+ j),

where θ0, . . . , θp−1 are defined as θi = 2 · (ζi + ζ−i)−1, where ζ ∈ Fq2 is

a primitive p-th root of unity.

(3) If p divides q and Q is a non-associative right Bruck loop of order pq, then

RMlt(Q) ∼= (Zq × Zq) o Zp.

From this theorem, we immediately obtain Theorem 1.1.

Proof of Theorem 1.1. There exists only one abelian group of order pq,

namely the cyclic one. An endomorphisms of the group Zpq is the multiplication

by some k ∈ Z, and we have k2 ≡ 1 (mod pq) if and only if k ≡ ±1 modulo p

as well as modulo q. Moreover, the number 1 − k is then coprime to pq if and

only if k ≡ −1 (mod pq). Hence there exist four, up to isomorphism, involutory

Alexander quandles of order pq and only one of them is latin.
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According to Theorem 3.1 and Corollary 3.5, there is a 1:1 correspondence

between involutory non-Alexander latin quandles of order pq and non-associative

right Bruck loops of order pq. And, according to Theorem 4.1, such a loop exists

if and only if p divides q2 − 1 and it is unique. �

There are several approaches how to represent right Bruck loops. In some

situations, sections in groups are preferable [13], in some situations we use loop

folders [1] and sometimes a direct formula is useful. Theorem 4.1 displays such

a formula for constructing the right Bruck loop of order pq. We shall, however,

use a different construction, because it is more general. In this construction,

we obtain a right Bruck loop of order pq if we set M = R = Fq, S = Fq2 and

k = p.

Theorem 4.2 ([8, Theorem 28]). Let M be a faithful module over a ring R,

which is either a field or the ring Zn. Suppose that, for some odd number k, there

exists ζ, an element lying in a quadratic extension S of R, which satisfies:

• ζ is of order k in S∗;

• ζ is a root of a polynomial x2 + cx+ 1, for some c ∈ R.

Then we can define a loop on the set M × Zk as follows:

(a, i) ∗ (b, j) =

(
a · ζ

j · (ζi + 1)2

(ζi+j + 1)2
+ b · (ζ2i+j + 1) · (ζj + 1)

(ζi+j + 1)2
, i+ j

)
. (4.1)

This loop is a non-associative right Bruck loop.

By the property that ζ2 + 1 = −cζ, the expression is well-defined, i.e., that

both the fractions lie in the ring R, although the numerators and the denominators

may lie in S rR.

For each k, there may exist several elements ζ. It was shown in [8] that

the choice of ζ is irrelevant when R is a field, since we always obtain isomorphic

loops. We may, on the other hand, obtain non-isomorphic loops if the ring is not

a field. Another interesting question is the sole existence of such a ζ. We give

several examples.

Example 4.3. Let R = R and k > 2 an arbitrary odd number. Then such ζ

always exists, namely ζ = cos 2π
k + i · sin 2π

k , since this number lies in C, which is

a quadratic extension of R, and ζ is a root of x2 − 2 cos 2π
k x+ 1.

Example 4.4. If R = Q, then such ζ exists for k = 3 only. The number

− 1
2 + i ·

√
3
2 is a root of x2 + x + 1, whereas xk−1 + xk−2 + · · · + x + 1 does not

split as a product of quadratic polynomials with rational coefficients, for k > 3

and k odd.
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Example 4.5. Let R = Fq. There are two possibilities: every ζ ∈ R∗ is a root

of x2 − (ζ + ζ−1)x + 1 and it satisfies ζq−1 = 1. Therefore, k may be any odd

divisor of q − 1. The other possibility is ζ ∈ Fq2 r Fq. It is then not difficult to

prove [8, Proposition 9] that k may be any odd divisor of q + 1.

Theorem 4.6. Let M be a faithful module over a ring R, which is either

a field or the ring Zn. Suppose that, for some odd number k, there exists ζ,

an element lying in a quadratic extension S of R, which satisfies:

• ζ is of order k in S∗;

• ζ is a root of a polynomial x2 + cx+ 1, for some c ∈ R.

Then we can define a quasigroup on the set M × Zk as follows:

(a, i) ∗ (b, j) =

(
b · (ζj + 1)2 · (ζ2j−2i + 1)

(ζ2j−i + 1)2
− a · (ζj−i + ζj)2

(ζ2j−i + 1)2
, 2j − i

)
. (4.2)

This quasigroup is an involutory latin quandle which is not Alexander.

Proof. Let us construct a Bruck loop (Q,+, 0) on the set M × Zk using

Theorem 4.2. We shall compute the operation ∗ of FB→Q(Q,+), following The-

orem 3.1. We first compute

2 · (b, j) =

(
b · ζj · (ζj + 1)2 + b · (ζ3j + 1) · (ζj + 1)

(ζ2j + 1)2
, 2j

)
=

(
b · (ζj + 1) · (ζ2j + ζj + ζ3j + 1)

(ζ2j + 1)2
, 2j

)
=

(
b · (ζj + 1)2 · (ζ2j + 1)

(ζ2j + 1)2
, 2j

)
=

(
b · (ζj + 1)2

ζ2j + 1
, 2j

)
,

and we prove that −(a, i) = (−a,−i) as follows:

(a, i) ∗ (−a,−i) =

(
a · ζ−i · (ζi + 1)2 − a · (ζi + 1) · (ζ−i + 1)

(1 + 1)2
, 0

)
= (0, 0).

Finally,

(−a,−i) + 2 · (b, j)

=

−a · ζ2j · (ζ−i + 1)2 + b · (ζ
j+1)2

ζ2j+1 · (ζ
−2i+2j + 1) · (ζ2j + 1)

(ζ−i+2j + 1)2
,−i+ 2j


=

(
−a · (ζj−i + ζj)2 + b · (ζj + 1)2 · (ζ2j−2i + 1)

(ζ2j−i + 1)2
, 2j − i

)
. �
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There are two things worth noting. There is a natural projection (a, i) 7→ i

of M ×Zk onto the core of Zk, which is evidently a homomorphism. On the other

hand, by setting i = j, we obtain (a, i) ∗ (b, i) = (2b − a, i), and therefore each

kernel class of the natural projection is itself isomorphic to the core of M . We can

hence view this quandle as a sort of a semidirect extension of the core of M by

the core of Zk.

Remark 4.7. It is straightforward (but tedious) to check that the operation

defined in (4.2) is always right distributive and idempotent, if it is well-defined,

which happens if the denominator is never 0, i.e., k is not even. In other words,

the construction works for k =∞ too.
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[17] D. Stanovský, Origins of involutory quandles, arXiv:1506.02389.
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